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We investigate the delocalization of operators in non-chaotic quantum systems whose interactions
are encoded in an underlying graph or network. In particular, we study how fast operators of different
sizes delocalize as the network connectivity is varied. We argue that these delocalization properties
are well captured by Krylov complexity and show, numerically, that efficient delocalization of large
operators can only happen within sufficiently connected network topologies. Finally, we demonstrate
how this can be used to furnish a deeper understanding of the quantum charging advantage of a
class of SYK-like quantum batteries.

I. INTRODUCTION

The conjecture that black holes are the fastest scram-
blers of information in nature [1] has precipitated a re-
newed interest into questions of thermalization and er-
godicity in quantum systems [2], and ushered in a new
era of collaboration between seemingly disparate fields
like high energy theory, condensed matter physics and
quantum information. In this regard, one particularly
important development in the past five years has been
the emergence of the Sachdev-Ye-Kitaev (SYK) model
[3],

Ĥ
(q)
SYK = iq/2

∑
i1<···<iq

Ji1···iq γ̂
i1 · · · γ̂iq , (1)

of disordered Majorana fermions as a canonical frame-
work to study questions from the information-loss para-
dox in (low-dimensional) quantum gravity to the physics
of spin-glasses. The SYK model in turn has led to the
development of a host of new (or, sometimes, forgot-
ten) tools such as out of time-order correlators (OTOCs),
spectral analysis of operators and computational com-
plexity to attack quantum many-body problems. Indeed,
this article arose from our trying to answer the question:
What is it that makes the SYK model so special? Is it the
Majorana fermions? Or its quenched random couplings?
Perhaps, it is the all-to-all q-fermi interactions?

An obvious starting point to answer this question
would be to focus on the scrambling properties of the
SYK model. Associated with the fact that the SYKq

model (for q ≥ 4) saturates the Maldacena-Shenker-
Stanford (MSS) bound [4] on the leading Lyapunov expo-
nent λL ≤ 2πT [5], it was recently argued that scrambling
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is better understood in terms of the growth of the size of
time-evolving operators in the model [6–8]. The idea is
that in a scrambling system, the probability distribution
of the size of the operator, Ps(t), shifts towards larger
operators with an initial exponential rate determined by
the infinite-temperature chaos exponent.

We start instead from the seemingly very simple obser-
vation that scrambling in a many-body system is actually
made up of two distinct processes: an initial small oper-
ator first grows to a sufficiently large size; at the same
time, the grown operator delocalizes over the Hilbert
space of large operators. Our main goal in this article
will be to study the latter phase only, which we call op-
erator delocalization, in as simple (and universal) a setup
as possible, to understand how it can be controlled.

To elaborate, in this article we study the SYK2 model.
Even though this model is essentially free, the quenched
random couplings Jij and Majorana fermions γ̂i endow
the system with a rich structure that has garnered much
recent attention [8–10]. We go even further and define
the model on a graph G(V,E), consisting of a collection
of vertices V and edges E ⊆ V ⊗V with the connectivity
of the graph encoded into matrix of couplings, Jij , now
interpreted as the adjacency matrix of the graph [11].

The key observation is that, since the SYK2 model
is free, we do not expect any operator growth through
Hamiltonian evolution [8, 12] but this does not mean
that the system is trivial. We will show that opera-
tor hopping induces nontrivial dynamics of the system
which is heavily controlled by the underlying graph. We
will conjecture that operator delocalization requires two
ingredients, i.e. (i) sufficiently non-local operators (ei-
ther obtained by the growing dynamics of initially small
operators or directly as initially large operators) and (ii)
networks that are able to utilise the non-locality. At the
technical level, we will make use of the notion of op-
erator complexity, introduced in [13]. This Krylov, or
K-complexity, CK , describes the delocalization of an op-
erator in a finite dimensional Hilbert space with respect
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to a specific basis - the Krylov basis - obtained by suc-
cessive nested commutators.

The following two sections introduce and use the idea
of K-complexity to provide supporting evidence for our
conjecture. In section IV we show how the conjecture
itself, and only the notion of operator delocalization
(without operator scrambling), can be used to under-
stand the quantum charging advantage exhibited by the
SYK quantum batteries introduced in [14]. In our view,
this furnishes the first concrete and novel example of
the utility of studying K-complexity in connection with
large operators, going beyond the usual setup in which
K-complexity is used to study the dynamics of small
operators only.

II. KRYLOV COMPLEXITY FOR FREE
MODELS

In this section we review the notion of Krylov complex-
ity [12, 13, 15]. Our focus, however, will be on the dif-
ferences that arise between initial operators having small
or large size with the latter not usually considered when
dealing with scrambling systems.

To this end, let us start with a given quantum operator,
Ô. Our goal will be to efficiently describe its Hamiltonian
time evolution,

Ô(t) = eiĤtÔe−iĤt . (2)

We can expand Ô(t) over the set of the nested commu-

tators of Ô with Ĥ, called the Krylov space, KÔ. Out of
the Krylov set, we want to find a set of orthonormal op-
erators [16] which can fully reconstruct Ô(t) at any time
t. This subset forms the K-dimensional Krylov basis,
{Ôn}K−1n=0 , where the subscript n represents the number
of commuting operations. In addition, the orthogonaliz-
ing coefficients, {b0 ≡ 0, bn}K−1n=1 form the set of so-called
Lanczos coefficients. In this formalism, the time-evolved
operator can be expressed as

Ô(t) =

K−1∑
n=0

inϕn(t)Ôn , (3)

where ϕn(t) satisfy the differential equations

ϕ̇n(t) = bnϕn−1(t)− bn+1ϕn+1(t) . (4)

In other words, knowledge of the Lanczos coefficients bn is
enough to determine the operator dynamics. To extract
the information encoded in the wavefunctions ϕn(t) in a
tractable way, the K-complexity function, CK(t), can be
introduced. It computes the expected number of nested
commutators for Ô(t),

CK(t) =
∑
n

n|ϕn(t)|2 , (5)

with
∑
n |ϕn|2 = 1 and plays a pivotal role in our study.

In [13] it has been argued that, by taking a simple
initial operator, i.e. an operator that can be written as
a linear combination of single Majorana fermions, the
asymptotic behavior of the coefficients bn, for n <∼ logD
can be used to diagnose the chaotic/integrable nature of
the Hamiltonian under investigation. In particular, for
chaotic models one has bn ∝ n [17] while for integrable
models in general one has bn ∝ nα, for some α < 1. The
extreme case of free models gives bn ∼ O(1).

A crucial consequence of equations (3) and (4) is

that, for short enough times, Ô(t) and CK(t) are mostly
controlled by the bn’s with small n. We then conjecture
that at early times there could well be integrable or free
models sharing similar physical properties with chaotic
models. However, this intuition applies only when
considering initial large operators, involving products
of many γ̂i. Such large operators are required because
free models, such as SYK2, do not produce operator
growth dynamics; they simply translate operators in the
operator space [8, 12]. On the other hand, when starting
with operators of large size and not requiring any further
operator growth, the resulting hopping dynamics can be
very close to be chaotic at early times. In particular,
we expect that the dynamics of large operators will be
highly dependent on the connectivity of the graph which
defines the model. In the following section we test this
intuition. [18]

III. OPERATOR DELOCALIZATION WITHOUT
SCRAMBLING

We now study the time evolution of the K-complexity
function, CK(t), for particular deformations of the SYK2

model, controlled by the topologies of the graphs over
which the models live. Our goal here is to study the
extent to which CK(t) is a good probe to distinguish the
properties of the graphs governing the dynamics of the
model under investigation.

Consider a set of SYK2 models defined on graphs, be-
yond the standard choice of complete graphs that char-
acterize the all-to-all interactions typical of SYK physics.
The SYK model is a quantum mechanical model of
Majorana fermions in 1 dimension, consisting of oper-
ators γ̂i, i = 1, 2, . . . , L, satisfying the Clifford algebra{
γ̂i, γ̂j

}
= δij , with random q-body interactions. In this

article, we focus on the case of a quadratic Hamiltonian,

Ĥ(2) = i
∑
i<j

Jij γ̂
iγ̂j . (6)

In the usual formulation of the model, the all-to-all
coupling constants Jij are randomly extracted from a
Gaussian distribution, with vanishing mean and variance
〈J2
ij〉 = J2/L, and where the constant J2 has the dimen-

sion of energy. In what follows, we set J = 1.



3

Similar to the sparse SYK models of [19–21], we con-
sider models living on graphs different from the complete
graph case described above. To implement this, we re-
place the matrix of couplings Jij with the adjacency ma-
trix, Aij , of a given graph, G(L,E), with L vertices (one
for each Majorana fermion) and E edges. Finally, we
multiply each non-vanishing entry of Aij (with i < j)
with a random number extracted from a Gaussian dis-
tribution having vanishing mean and variance L−1

2nE
, with

nE denoting the number of edges in G(L,E). This pro-

cedure produces a new matrix of couplings, J̃ij , which
defines a quadratic Hamiltonian,

Ĥ
(2)
G(L,E) = i

∑
i<j

J̃ij γ̂
iγ̂j , (7)

in the same fashion as for the complete graph, equation
(6). To be more concrete, the couplings J̃ij ’s are explic-
itly computed by taking the upper diagonal part of the
adjacency matrix, Aij , of a given graph and replacing
all its unit entries with numbers drawn from a random
Gaussian distribution. The lower diagonal part is then
obtained by antisymmetry and additional factor of i is
added in order to enforce hermiticity of the Hamiltonian.
Among possible networks, small-world graphs [22, 23]
form a distinguished subset. Produced by the so-called
Watts-Strogatz algorithm, they parametrically interpo-
late between a regular lattice and a random Erdös-Renyi
graph. The algorithm to generate their adjacency ma-
trix Aij , necessary to build the couplings J̃ij entering in
equation (7), is specified in terms of two numbers: an
integer k and a probability value p ∈ [0, 1]. For a given
value of k, it starts with a regular circulant lattice in
which each vertex is connected to its 2k nearest neigh-
bours [24]. Edges are subsequently rewired at random
with probability p, avoiding self-loops, edge duplication
and keeping the graph connected. Examples of small-
world networks, and their associated density matrices are
shown in figure 1. When p = 0 and k = 1, the resulting
SYK2 model is equivalent to a nearest neighbors tight-
binding system, from which no interesting dynamics can
arise. On the other hand, by dialling the value of p, net-
works become highly interconnected and the mean dis-
tance between two edges can be very short. We will show
that this geometry change has huge impact on the SYK2

physics.
Given these preliminaries, we have computed the early-

time evolution of Ck(t), i.e. for times much shorter than
the saturation time, for several choices of k and p and for
both small operators (operators of size 1, i.e. the simple
operator γ̂1) and for large operators (operators having

extensive size equal to L/2, i.e. Ô(L) ≡
∏L/2
i=1 γ̂

i). For
comparison, we have also computed the time evolution of
the K-complexity for the fully connected SYK2 model.
In all cases, to remove a possible source of spurious ef-
fects, we have normalized the Hamiltonians to have unit
bandwidth, i.e. we imposed that the difference between
the largest and the smallest eigenvalue is equal to 1. The
results are reported in figure 2.

FIG. 1. The Watts-Strogatz algorithm can be visualized best
in terms of network diagrams and their associated adjacency
matrices - here represented by an N × N array coded black
where a connection exists and white otherwise.In the above,
for example, we take N = 11. The left set of networks all
have p = 0 with k = 2, 4 and 10, reading from top to bot-
tom. The regularity of these graphs are clear in the adjacency
matrices.The set of graphs on the right implement the Watts-
Strogatz algorithm on the k = 2, N = 11 lattice with p in-
creasing from top to bottom. The increasing randomness seen
in the graph is reflected in the increasingly crossword-puzzle-
like resemblance of the corresponding adjacency matrices.

FIG. 2. CK(t) for systems having L = 24. CK(t) is computed
for small (size 1) and large (size L/2) operators, for the full
SYK2 model, compared against the Watts-Strogatz Hamilto-
nians having k = 1, 2 and both low and large rewiring prob-
ability (p = 0.1 and p = 0.9, respectively). The results are
averaged over 1000 realizations of disorder and graph.

There are a number of points we wish to draw atten-
tion to. First, the underlying graph plays essentially no
role for small operators. In all cases, CK(t) displays a
slow growth and the full SYK curve is just barely dis-
tinguishable from the small-world curves, at both high
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and low rewiring probabilities. This is just another man-
ifestation of the fact that, irrespective of the underlying
quantum network, the SYK2 model is not a scrambling
system. As such, it cannot create any operator size and
so, does not utilize the connectivity of the underlying
graph. The situation changes drastically when large op-
erators are involved: here, we see that the evolution of
the K-complexity function which, as already mentioned,
quantifies the delocalization properties of the system,
varies dramatically with a change of the graph topol-
ogy. In particular, for low re-wiring probabilities, the
Watts-Strogatz Hamiltonians exhibit much smaller val-
ues of CK(t) compared to the full SYK2 Hamiltonian. On
the other hand, when p is large, the Krylov-complexity
for quantum small-world graphs is essentially equivalent
to the corresponding function for the full SYK2 model.

Another interesting figure of merit to quantify the abil-
ity of a given graph to delocalize large operators is given
by the ratio R(t), between CK(t) for operators of size L/2
and operators of size 1. As is evident from its definition,
R(t) measures how good a given graph is in utilizing oper-
ators of large size, normalized by the delocalizing proper-
ties computed for small operators. Interestingly, we note
that R(t) is essentially time-independent. It therefore
makes sense to consider instead the quantity R(L), de-
fined as such a constant ratio and computed as a function
of the system size, L. Our results are depicted in figure 3.
The main feature of note is that the difference between
the highly connected and poorly connected graph is now
quantitatively clear; for highly connected graphs, R(L)
scales with the system size, a feature shared with the
full SYK2 Hamiltonian. On the other hand, poorly con-
nected graphs do not show any scaling behavior for R(L).
This lacking of a scaling happens because, without long
range interactions, the early-time physics is dominated
by the local features of the graph and, in particular, the
system size does not affect the dynamics.

Taken together, these results show that, when scram-
bling dynamics is absent, the topology (and in particu-
lar the connectivity) of the graph over which the model
is defined becomes the crucial ingredient to understand
how large operators delocalize under quantum evolution.
We note also that the total number of connections in the
model is irrelevant. This is seen from the similarities in
delocalization properties of the Watts-Strogatz Hamilto-
nians and the full SYK2 model at large p, where the latter
has O(L2) edges against the O(L) edges of the former.
This property is the analog, for non scrambling models,
of the results discussed in [19–21] for the sparse SYK4

models, which exhibit similar behavior to the full model,
but with significantly fewer non-vanishing couplings.

FIG. 3. The quantity R(L), computed at different system
sizes and for the full SYK2 model, compared against the
Watts-Strogatz Hamiltonians having k = 1, 2 and both low
and large rewiring probability (p = 0.1 and p = 0.9, respec-
tively). All the results are averaged over 1000 different real-
izations of disorder and underlying graph.

IV. AN APPLICATION TO THE QUANTUM
CHARGING ADVANTAGE OF SYK-LIKE

QUANTUM BATTERIES

The K-complexity framework can be used to under-
stand the quantum charging advantage of SYK-like quan-
tum batteries [14]. We report here the main results, and
defer details to the Supplemental Material.

An SYK quantum battery (see [25, 26] for an overview
of the topic) is built by considering a system prepared in
the ground state, |0〉, of a static initial Hamiltonian of

the form Ĥ0 = h
∑L/2
i=1 σ̂

x
i , where h denotes a constant

magnetic field, oriented along the x-axis (which we will
set equal to 1), and σ̂ai , with a = x, y, z, are the usual
Pauli operators, defined on a spin chain of length L/2.
At t = 0 the system is suddenly coupled, via a standard
Jordan-Wigner map, to an SYK Hamiltonian and evolved
under the quantum quench. The average charging power
of the battery reads

Pav(t) =
〈ψ(t)| Ĥ0 |ψ(t)〉 − 〈0| Ĥ0 |0〉

t
, (8)

where |ψ(t)〉 denotes the evolved state at time t, 〈0| Ĥ0 |0〉
is the ground state energy and 〈ψ(t)| Ĥ0 |ψ(t)〉 measures
the energy stored in the battery (averaged over disor-
der and possible graph realizations). By quenching with
an SYK4 Hamiltonian (rescaled to unit bandwidth), it
was found in [14] that the maximum value of the average
power, Pmax, scales with L, signalling a quantum charg-
ing advantage [27–29].

A crucial point, first noticed in [8] and proven in
full generality in [29], is that such charging advantage
strongly relies on the fact that the σ̂xi , when written in
terms of γ̂i, have very large size. This in turn suggests
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FIG. 4. The maximum charging power, Pmax(L) for the same
models considered in figure 3.

that charging advantage may also be obtained from SYK2

models on highly connected graphs.
This intuition can indeed be confirmed for the full

SYK2 model: after considering the ensemble average over
the Gaussian couplings, Pav(t) takes the form

Pav(t) ∝ ϕ
(Ĥ0)
0 (t)− 1

t
, (9)

where ϕ
(Ĥ0)
0 (t) is the (averaged over disorder) first wave-

function, defined as in equation (3), in the Krylov ex-

pansion of Ĥ0. In particular, equation (9) expresses the
relationship between the average power and the delocal-
izing properties of the quench Hamiltonian, quantified
by the Krylov complexity. For the more general Watts-
Strogatz Hamiltonians equation (9), which is valid for
a fixed graph topology, must be supplemented with an
additional average over the graph topology. As an illus-
tration, figure 4 displays the result of our numerical com-
putation of Pmax(L) for several Watts-Strogatz Hamilto-
nians, compared against the full SYK2 charging power.
This clearly matches the analogous results obtained in
figure 3 and demonstrates that K-complexity and the de-
localization properties are indeed the relevant quantities
to understand the quantum charging advantage of SYK
quantum batteries. The scaling, exhibited by highly con-
nected graphs, shows that interaction connectivity is suf-
ficient to obtain such an advantage.

V. CONCLUSIONS

SYK-like models defined on graphs offer a versatile and
novel class of quantum systems to explore many-body lo-

calization, thermalization and chaos [19–21, 30]. Previ-
ous studies that investigated the preservation of chaotic
properties by the graph topology, have focused primarily
on the strongly interacting SYK4 Hamiltonians. In this
paper, to better disambiguate spectral properties from
those hinging on the (hyper)graph structure, we have fo-
cused instead on the free SYK2 model defined on various
graphs. The spectral properties of the system are then
rather trivial, and any non-triviality must be a conse-
quence of the underlying graph structure. Here, we have
shown that, as long as operators of sufficiently large size
are taken into account, the dynamics is far from trivial
and in particular the K-complexity function, CK(t), is
highly dependent on the geometry and connectivity of
the graph. In turn, this observation has led us to pro-
pose the notion of “operator delocalization”, describing
how large operators delocalize under the operator hop-
ping dynamics [8, 12].

As an application of these ideas, we have shown also
that the quantum charging advantage of SYK quantum
batteries, found in [14], is a direct consequence of opera-
tor delocalization and, as such, relies only on the under-
line graph topology.

There are many intriguing future directions worth pur-
suing. It would be of significant interest to find other
physical quantities which are highly sensitive to operator
delocalization only. Another interesting direction would
be to understand how operator delocalization depends
on the statistics of the evolving operators. Of particular
interest, given their relevance in condensed matter sys-
tems, would be the study of SYK-like models build from
parafermionic operators [31–33].
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