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Nanostructures in the form of ellipsoids, prolate spheroids, rings, and cylinders are known to
exhibit resonant surface and cavity modes with applications in nanophotonics and plasmonics and,
more recently, in novel quantum experiments, in which control of plasmons and their interactions
with plasmons, photons, phonons, excitons, and quantum emitters are desired. Nanorods and
nanowires are examples of plasmonic structures with spectral properties of potential use as inter-
connects and circuit components. Estimates of the surface properties of these components are needed
in circuit design and integrated systems. Here, we present a quantum Hamiltonian for the cylindrical
surface charge density. We then study the photon excitation of plasmons on the cylindrical surface
and calculate their scattering and radiative decay rate. Nonradiative decay of plasmons induce an
efficient heating of the nanoparticle and can photoacoustically excite mechanical oscillations. Com-
putational calculations are also presented for the plasmonic modes and the ensuing excitations of
nanomechanical eigenmodes of nanoparticles with near-cylindrical symmetries.

I. INTRODUCTION

Large-aspect-ratio metal and semiconductor struc-
tures, such as wires and antennas, owing to their su-
perior transport properties, have enabled conduction of
energy and information across device-relevant and free-
space length scales, enabling electronics and communica-
tion. Collective electronic effects in the surface regions
of metal nanoparticles with various morphologies have
enabled plasmonics [1]. Mixed photons-surface mode ex-
citations have enabled polaritonics, where hybrid parti-
cles composed of photons are strongly coupled to sur-
face modes or quasi-particles (e.g., plasmons, excitons)
and can carry information. Much opportunity awaits
such structures to enable novel effects in these contexts
and beyond in topological and quantum materials and in
quantum sensing. Examples are numerous in the range
from conceptual designs, such as ion and molecular trap-
ping in nanorings [2] to experimentally demonstrated
cases, such as plasmon assisted electron emission from
nanotips [3]. Exotic states such as the formation of topo-
logical solitons or twistons [4] in graphene nanoribbons,
and bendons [5] in nanowires, are other examples.
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FIG. 1. A segment of a conceptual circuit in plasmonics imple-
mented using cylindrical and toroidal subunits for transport
of information. Analogous to electronic circuitry, plasmonic
circuits may be envisioned to be intimately integrated with
nanophotonics in which information is transported by utiliz-
ing fast electronic excitations in a variety of nanostructures.
Here, the eigenmodes of surface charge density, making up the
quantum states, may be approximated by |mi, ki〉 cylindrical
states. New quantum states |Ψi〉 emerging out of the inter-
action region are envisioned to take the form of correlated
cylindrical plasmonic eigenstates. In elastic scattering (Hel),
photons (blue arrows) are scattered into a cone of directions
at an angle about the cylindrical axis, while in inelastic scat-
tering (Hinel) a plasmon (black arrows) is excited. Absorption
(Habs) entails a photon being annihilated to create a plasmon,
while in emission (Hem), a plasmon is annihilated to create a
photon.
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In the limit of very large aspect ratio, the cylindrical
system approaches a 1D material, which are of poten-
tial to enable new capabilities in electronics and com-
puting [6]. Examples include use of carbon nanotubes as
the gate materials in transistors to overcome the beyond-
Morse-law development [6] and the topological states in
emerging computing paradigms [6]. Nanoscale cylindri-
cal domains occupied by a single material or multiple
materials, as in the case of janus arrangement or a strat-
ified medium [7, 8], offer unique prospects for emerging
quantum circuits and devices, where low-loss fast surface
mode dynamics may facilitate qubit manipulations and
operations.

It is known that photon-surface plasmon interactions,
similar to photon-atom interactions, lead to elastic and
inelastic scattering. Therefore, many scattering processes
such as Raman, Compton, Thomson, and Rayleigh, lead-
ing to emission and absorption may be treated if the
needed surface plasmon operators can be constructed.
Field enhancement and coherent oscillations as a result
of plasmon excitation is accompanied by thermal effects
due to non-radiative decay of plasmons [9],[10, 11]. Re-
cent theoretical calculation suggests the entanglement of
a pair of qubits subject to a dissipative plasmonic reser-
voir [12]. Moreover, theoretical study of the electro-
magnetic field imbalance in surface plasmon polaritons
(SPPs) [13–15], and interaction of a single photon with
two-level quantum dots [16] have been discussed.

A segment of a conceptual circuit component depict-
ing use of quantum surface modes is shown in Fig. 1.
The extended dimension along the cylindrical axis, and
the cross sectional dimensions similar to finite-volume
nanoparticles, calls for specific attention when model-
ing the electronic and optical responses. Particles with
genus g surfaces, appear very promising for both classi-
cal and quantum sensing, but the value of g can signifi-
cantly alter the accessibility and tractability of analyti-
cal solutions. For g = 0, one obtains a sphere, for which
much work has been reported (Mie theory). Recently,
we reported quantum calculations for infinite geometries
[17] and both classical and quantum calculations and the
added analytical complexity for particles with g = 1,
which generates a torus [18]

The axial resonance properties of the cylindrical sur-
face modes are wavelength λ dependent, the strength
of which is affected by the length zC of the cylindrical
structure. The corresponding frequencies ω of the ax-
ial surface charge density oscillations can thus vary for
a cylindrical particle of radius rC when zC ∝ rC , ver-
sus when zC � rC . Furthermore, unlike atomic systems
with sharp and distinct resonances, nanoparticles possess
elaborate spectral features and plasmon dispersion rela-
tions, which are strongly material dependent. In this ar-
ticle, we present a quantum Hamiltonian for a cylindrical
nanostructure such that the underlying normal mode dis-
tribution associated with the surface charge density can
be illuminated. As applications of the Hamiltonian, we
employ Ritchie’s interaction Hamiltonian [19] and calcu-

late the radiative decay, followed by absorption, elastic,
and inelastic scattering of cylindrical surface plasmons.
In doing so, we first calculate the plasmon dispersion rela-
tions for cylindrical media. For appropriate values of rC ,
the dispersion relations agree well with the quasi-static
plasmon dispersion, which will also be discussed.

The presentation has been organized as follows. In
Sec. II, we introduce the modeled system and calculate
the plasmon dispersion relations. Here, we show the re-
covery of the quasi-static dispersion relations in suitable
limits. This section ends with computational results to
account for the nonradiative decay of plasmons and the
photothermal excitation of mechanical motion. In sec-
tion III, we first calculate the non-interacting quantum
Hamiltonian for a solid cylinder in vacuum. We then
calculate the interaction of photons with surface plas-
mons for the cylindrical electronic system. Therefore, in
Sec. VI, we begin to set up the photon and surface plas-
mon operators. Cross sections and transition probabili-
ties, involving appropriate matrix elements, for photons
interacting with cylindrical surface plasmons, will follow.
Our work closely follows the approach by Ritchie et al.
(see e.g., Bagherian et al. [18]). Lastly, we conclude in
Sec. VII.

II. DISPERSION AND FIELDS OF
CYLINDRICAL SURFACE PLASMONS

The interaction of the radiation field with matter, de-
scribed as a scattering process, may exhibit strong spec-
tral variation depending upon the geometric and mate-
rial properties. Therefore, prior to quantization of the
cylindrical surface waves to obtain the surface plasmon
states, we consider electromagnetic normal modes of the
solid domain as a starting point. With reference to Ap-
pendix VIII B, solving the Helmholtz equation for points
r = (ρ, ϕ, z) in a domain partitioned by an infinite cylin-
der of radius ρ = ρ0, the solution set of eigenfunctions is
given in terms of modified Bessel functions of first and
second kind, Im(κρ) and Km(κρ), respectively, for the
tripple (κ, kz,m), where the choice of Bessel functions
depends on two factors: 1) the radiative or non-radiative
regime being considered, and 2) the asymptotic behavior
of the modified Bessel functions. Therefore, in the non-
radiative regime, the solutions may be obtained for the
z component of the electric field as:

Ez(r, t) =

∞∑
m=−∞

Cm(t)ei(kz z+mϕ−ωt)

×
[
θ<m(κi, ρ) + θ>m(κo, ρ)

]
, (1)

where Cm(t) is the complex mode amplitude at time t,
with m ∈ Z, counting the azimuthal modes, where we
introduce

θ<m(κ, ρ) = Θ(ρ0 − ρ) Im(κ ρ)Km(κ ρ0), (2)

θ>m(κ, ρ) = Θ(ρ− ρ0) Im(κ ρ0)Km(κ ρ), (3)
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after partitioning the space with the Heaviside function
Θ, with the half-maximum convention, Θ(0) = 1/2.

Denoting the dielectric functions at frequency ω for the
interior and exterior domains by εi and εo, we impose
Dirichlet and Neumann boundary conditions (see Eq. B-
7). Considering the dielectric properties of the involved
media εi/εo, we may assume εo = 1 and εi(ω) = ε(ω),
that is a vacuum-bounded solid cylinder with a local
frequency dependent dielectric function. Therefore, one
may obtain:

ε(ω) =
κ3

i κ
3
o ImKm − κ4

i κ
2
oK2

m + (mωpkz/ρ0)
2

κ2
i κ

4
o I2

m − κ3
i κ

3
o ImKm + (mωpkz/ρ0)

2 . (4)

where

Im =

[
d

d(κiρ)
ln Im(κiρ)

]∣∣∣∣
ρ=ρ0

, (5)

Km =

[
d

d(κoρ)
lnKm(κoρ)

]∣∣∣∣
ρ=ρ0

, (6)

for m = 0, 1, 2, · · · (also see [20]).
The energies of the first few plasmon modes m in

Fig. (2) (obtained by solving Eq. (B-10) explicitly for ε)
correspond to set of pairs (kz, ω) for which Eq. (B-10) is
zero, that is, for each m, the roots (kz, ω) of the implicit
function Eq. (B-10) are found and enhanced by interpo-
lation. The results agree well with reported cylindrical
surface modes [8, 21]. The solutions on the RHS of the
light line ω = c kz correspond to the non-radiative regime
(whereas the radiative regime solutions will appear on the
LHS, not displayed). The quasi-static plasmon disper-
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FIG. 2. Energy dispersion of the first three surface plasmon
modes excited on a cylinder of radius ρ = 50 nm. The cylin-
drical domain is modeled as a Drude material (see Appendix
VIII A) bounded by vacuum.

sion relations may be obtained from Eq. (B-10) by letting

c→∞. Alternatively, they may also be obtained directly
from the scalar potentials satisfying the Laplace equa-
tion, as described in Appendix VIII C, where we have
shown that our solution in Eq. (B-10) agrees well with
the special case of that of a multi-layered cylinder [8].
In the quasi-static limit, we note from the scalar electric
potential (see Appendix VIII D):

Φ(r, t) =

∞∑
m=−∞

∫ ∞
−∞

Cmk(t)ei(mϕ+kz)

×
[
θ<m(|k|, ρ) + θ>m(|k|, ρ)

]
dk, (7)

that the amplitudes satisfy Cmk(t) = C−m−k(t), using
the fact that the scalar potential is real-valued (see Ap-
pendix VIII D). Following Eqs. (D-7)–(D-13), the equa-
tion of motion for the surface charge will now take the
form C̈mk(t) + ω2

mkCmk(t) = 0, where

ω2
mk = ω2

p |k| ρ0 I
′
m(|k|ρ0)Km(|k|ρ0), (8)

are found to be equal to those obtained above and shown
in Fig. 3. The effect of retardation on the surface plas-
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FIG. 3. Quasi-static resonance values of the dielectric func-
tion for the first few leading modes. The cylindrical domain
is modeled as a free electron gas bounded by vacuum, that is,
the y axis is ω2

p/ω
2.

mon energies may now be explicitly investigated for each
mode of a given cylinder. For m = 1, 2, 3 and ρ = 50 nm,
Fig. (4), compares the solutions of Eq. (4) and Eq. (8).
Similar to Cartesian surface modes, the quasi-static mode
energies are red-shifted by the retardation to be com-
pletely confined to the region below the light line. In
many cases, the differences in the dispersion relations
are smaller when comparing the retarded versus quasi-
static solutions. In the simpler case of the Cartesian so-
lutions for example, this is observed by all the dispersion
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FIG. 4. Effect of retardation on the surface plasmon disper-
sion. A comparison between quasi-static dispersion relations
given in Eq. (B-10) and the quasi-static limit given in Eq. (8),
for fixed modes m = 1, 2, 3 and for a fixed ρ = 50 (nm) has
been shown. In each plot, the dashed line represents the light
line ω = ckz, while solid blue line is obtained using Eq. (B-10)
and as described in Fig. (2). Lastly, solid red line is the en-
ergy levels obtained for different values of frequency given by
Eq. (8).

branches being pushed down below the light line when
one accounts for retardation.

Having obtained the surface plasmon dispersion rela-
tions, one may now consider a specific example to illu-
minate the calculation of the plasmon fields and pho-
tothermal effects. Plasmon decay, in addition to radiative
processes, generates substantial heat. Beyond present-
ing a quantitative assessment of the nonradiative losses,
here the effect does not play a significant role (unless
one attempts plasmon sensing or surface-enhanced Ra-
man spectroscopy/imaging). However, the effect is not

only significant but must indeed be included in the cal-
culations for proper assessment of, for example Raman
cross section calculations of the surface enhancement.
The term “thermo-plasmonics” was introduced in [22]
to emphasize the photothermal nature and processes as-
sociated with plasmon resonances. As an example, we
further discuss these points using the specific example of
a nanorod, as described in Appendix VIII A.

III. HAMILTONIAN OF THE SURFACE
CHARGE DENSITY

The initial state of the system may be composed of
the initial state of the cylindrical surface plasmon and
the initial state of an incident photon. This initial state
may then transition into a state composed of the final
states of the plasmon and an outgoing particle. To cal-
culate the scattering rate, that is, the rate of transitions
in these events, we will require the plasmon Hamiltonian
in terms of creation and annihilation operators. With
the canonical form obtained, other related operators can
be constructed. In addition, having a quantum Hamil-
tonian that explicitly shows the eigenmodes is helpful
for analyzing the various transitions or when calculat-
ing other quantum scenarios, for example qubit-plasmon
coupling for quantum information processing or perform-
ing quantum optical operations such as quantum-dot-
induced beam splitting [23]. In general, when treating,
for example, the coupling between a quantum emitter
and a plasmonic nanostructure, having an appropriate
quantum Hamiltonian for the nanostructure is necessary
for the calculations. Other potentially important in-
formation includes the development of concepts based
on entangled plasmons, entangled photon-plasmon, or
plasmon-electron, etc. In all such calculation, utilizing
specific quantum states of the plasmonic system could be
beneficial. Electronically large systems such as various
nanoparticles pose difficulty for many-body treatments
that take into account the geometry of the electronic
system. The presented treatment helps illuminating the
inner working of involved quantum modes.

From the potential in Eq. 7, the classical energy E of
the cylindrical polarization surface charges can be calcu-
lated (Appendix VIII E) for a scaling factor b as:

E =
bπ

2

∞∑
m=−∞

∫ ∞
−∞

θm(k, ρ0)

ω2
mk

×
[∣∣Ċmk(t)

∣∣2 + ω2
mk

∣∣Cmk(t)
∣∣2] dk, (9)

where, for convenience, we have defined

θm(k, ρ0) = Im(|k|ρ0)Km(|k|ρ0).

Following the symmetry properties of modified Bessel
functions and the relations outlined through Eqs. (E-7)–
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(F-9), we write the amplitudes in terms of the new com-
plex functions cmk as:

Cmk(t) =
γmk

2ωmk

[
cmk(t) + c∗−m−k(t)

]
, (10)

Ċmk(t) =
iγmk

2

[
cmk(t)− c∗−m−k(t)

]
, (11)

and thus express the energy as:

E =
bπ

4

∞∑
m=−∞

∫ ∞
−∞

γ2
mk

ω2
mk

θm(k, ρ0)

×
(
cmkc

∗
−m−k + c∗mkc−m−k

)
dk (12)

using∣∣Ċmk(t)
∣∣2 + ω2

mk

∣∣Cmk(t)
∣∣2

=
γ2
mk

2

(
cmkc

∗
−m−k + c∗mkc−m−k

)
.

We can now write (12) as a quantum Hamiltonian in
terms of the annihilation and creation operators, ĉmk and

ĉ†mk, respectively,

H =
1

2

∑
m

∫ ∞
−∞

~ωmk
(
ĉ†mk ĉmk + ĉmk ĉ

†
mk

)
dk. (13)

From the equity of Eqs. (9) and (13) while using Eqs. (10)
and (11), one finds:

γ2
mk =

2~
bπ

ω3
mk

θm(k, ρ0)
. (14)

To obtain the quantized scalar potentials, we consider
Φi given by Eq. (7) for ρ0 < ρ, and its complex conju-
gate. Following Appendix (VIII F), using the fact that
the scalar potential is real-valued, and Eq. (14) we obtain
the following complex amplitudes:

Cmk(t) =
√
~Amk(ĉmk + ĉ†−m−k),

with

Amk =

√
~ωmk

2bπθm(k, ρ0)
, (15)

where the operator cmk and its complex conjugate c∗mk
are replaced by creation and annihilation operators, ĉmk
and ĉ†mk, respectively. Therefore, Eq. (7) can be re-
written as:

Φ(r, t) =

∞∑
m=−∞

∫ ∞
−∞

Amk
[
θ<m(|k|, ρ) + θ>m(|k|, ρ)

]
× (ĉmk + ĉ†−m−k)ei(kz+mϕ) dk,

with θ<m and θ>m given in Eqs. (2) and (3). In order to
transit from integral to sum, one may use a quantization
volume V, enclosing a length L of the cylinder, where
V = πρ2

0L. Carrying the integral to a sum, where in

transition, we have utilized the expression [24]
∑
k

→√
L
2π

∫
dk, the quantized potential is found:

Φ(r, t) =

√
2π

L

∞∑
m=−∞

∑
k

Amk
[
θ<m(|k|, ρ) + θ>m(|k|, ρ)

]
× (ĉmk + ĉ†−m−k)ei(kz+mϕ).

It is instructive to note that, utilizing the potential and
kinetic energies, given in Eqs. (E-5) and (E-6), respec-
tively, the Lagrangian of the system takes the explicit
form:

L =
1

4

∞∑
m=−∞

∫ ∞
−∞

∣∣Ċmk(t)
∣∣2 − ω2

mk

∣∣Cmk(t)
∣∣2

ωmk A2
mk

dk,

from which we derive the equation of motion as:∣∣C̈mk(t)
∣∣2 − ω2

mk

∣∣Cmk(t)
∣∣2 = 0.

Noting the real-valued electric scalar potentials, the am-
plitudes (see Eq. (F-5)) satisfy Cmk(t) = C−m−k(t), for
all m and k. In order to quantize the system, it is con-
venient to separate the real and imaginary parts of the
complex dynamical variables Cmk(t) by defining real dy-
namical variables xmk, and ymk and write:

Cmk(t) = xmk + i ymk.

The Lagrangian now becomes a function of the coordi-
nates xmk and ymk as:

L =
1

4

∞∑
m=−∞

∫ ∞
−∞

1

ωmk A2
mk

{∣∣ẋmk(t)
∣∣2−ω2

mk

∣∣xmk(t)
∣∣2

+ 2i
[
ẋmk(t)ẏmk(t)− ω2

mk xmk(t) ymk(t)
]

−
∣∣ẏmk(t)

∣∣2 − ω2
mk

∣∣ymk(t)
∣∣2} dk,

and the corresponding velocities ẋmk and ẏmk and conju-
gate momenta (pmk = ∂L/∂ẋmk and qmk = ∂L/∂ẏmk):

pmk =
1

2

∞∑
m=−∞

∫ ∞
−∞

[
ẋmk(t) + iẏmk(t)

]
ωmkA2

mk

dk, (16)

qmk =
1

2

∞∑
m=−∞

∫ ∞
−∞

−
[
ẋmk(t) + iẏmk(t)

]
ωmkA2

mk

dk. (17)

The Hamiltonian now takes the form:

H =
∑
m,k

(pmkẋmk + qmkẏmk)− L,

and inverting Eqs. (16) and (17),

H =

∞∑
m=−∞

∫ ∞
−∞

1

ωmk A2
mk

[∣∣ẋmk(t) + i ẏmk(t)
∣∣2

+ ω2
mk

∣∣xmk(t) + i ymk(t)
∣∣2] dk,
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which gives:

H =
bπ

2

∞∑
m=−∞

∫ ∞
−∞

dk θm(k, ρ0)

×
[∣∣xmk(t) + i ymk(t)

∣∣2 +
1

ω2
mk

∣∣ẋmk(t) + i ẏmk(t)
∣∣2] ,

and is thus consistent with the classical energy given in
Eq. (9).

IV. INTERACTION HAMILTONIAN

Here, we consider the quantum formulations to de-
scribe the photon-surface charge interaction, the solid
cylinder may be treated as an electron fluid. Briefly,
without any specific boundary conditions, we may invoke
the hydrodynamical formulation of a plasma. The collec-
tive linearized hydrodynamic equation-of-motion for an
electron, ignoring the damping, in an electric field is writ-
ten as:

∂v

∂t
= − e

m
E− β2

n0
∇n1(r, t), (18)

where v denotes the nonequilibrium velocity correction
to the static sea of electrons, β is the propagation speed of
the disturbance through the electron gas, and ∇n1(r, t)
denotes the semi-classical correction term in electron
charge density, that is:

n(r, t) = n0 + n1(r, t),

while n0 is the electronic density in the undisturbed state
satisfying n1 � n0. The last term in Eq. (18), origi-
nates from a quantum description of pressure effects in
the electron gas. The continuity equation is given as
∂tn = −∇·(nv). In Eq.(18), the first term is the Lorentz
force, while the second term is due to the internal ki-
netic energy of the electron gas, here described within the
Thomas–Fermi model, with β proportional to the Fermi
velocity vF [25, 26]. In order to solve Eq.(18) along with
the continuity equation, the standard procedure is to ex-
pand the physical fields in a zeroth-order static term,
where, as mentioned above, n0 is the homogeneous static
electron density, with a small first-order dynamic term,
n1 [27]. In the frequency domain, and by linearizing the
equations, one may obtain:

β2∇ (∇ · J) + J = i
e2 n0

mω
E,

where J is the induced current density, here, the cylindri-
cal surface charge, which can be written as J = −n0ev,
where n0 and e denote the number density of electrons
and charge of the electron, respectively [25]. Within
the linearized hydrodynamic model using quantization

and perturbation theory, Ritchie and Wilems [28] ob-
tained important interaction Hamiltonians. An example
is H int = 1

c

∫
J · A dΩ, where A is the vector potential

operator of the photon field.
Other interactions of interest include the first and sec-

ond terms of the perturbed Hamiltonian describing the
photon-plasmon interaction, denoted by H int

em and H int
inel,

respectively, in the model developed by Ritchie [19]. The
first interaction is useful to describe the creation of a plas-
mon by a photon (absorption) or the decay of a plasmon
into a photon (emission). The second-order interaction
describes the inelastic scattering of a photon in creating a
plasmon. A zeroth-order interactionH int

el , may be used to
describe the elastic scattering of photons due to the pres-
ence of an electron gas with uniform density. Thus, with
an explicit form of the vector potential operator for the
electromagnetic field, A, the various forms of matrix ele-
ments of the interaction Hamiltonian may be derived. In
what follows, we introduce matrix elements of the main
interest and derive the expressions for different kinds of
interactions between photons and surface plasmons for a
solid cylinder.

To obtain the operator for the current density, we first
write the time derivative of the charge displacement vec-
tor, Ż as:

Ż = −
e

me
∇
∑
m

eimϕ

×
∫ ∞
−∞

Ċmk(t)

ω2
mk

Im(|k|ρ)Km(|k|ρ0)eikz dk. (19)

If we use the following

Ċmk(t) =
iγmk

2
(ĉmk − ĉ†−m−k)

= i
√
~Amk (ĉmk − ĉ†−m−k),

where Amk is given in Eq. (15), then one may write:

J = −
iω2
p

4π
∇
∑
m

∫ ∞
−∞

Amk
ωmk

(ĉmk − ĉ†−m−k)

× Im(|k|ρ)Km(|k|ρ0)eikzeimϕ dk, (20)

where the definition of the bulk plasma frequency ωp =√
4πn0e2/me has been used.
Replacing the integral with summation in (20), gives

J = −
i
√
~ω2

p

4π
√
bL

∑
m

∑
k

√
Km(|k|ρ0)

ωmkIm(|k|ρ0)

× (ĉmk − ĉ†−m−k)∇
[
Im(|k|ρ)eikzeimϕ

]
. (21)

The current density operator can now be written as
J = n0e∇Ψ̇, where v = ∇Ψ̇, and

Ψ̇ =
i
√
~ω2

p

4π
√
bL

∑
m

∑
k

√
Km(|k|ρ0)

ωmkIm(|k|ρ0)

× (ĉmk − ĉ†−m−k)Im(|k|ρ) eikzeimϕ. (22)



7

V. PHOTON AND PLASMON STATES

For a photon of wavevector s, and polarization êq ⊥
s, q = 1, 2, the vector potential, A, in the Coulomb
gauge (transversality condition), can be expressed as [29]:

A =
c
√
~

(2π)3

∑
q=1,2

∫
êq√
ωs

[
asq(t)e

is·r + a∗sq(t)e
−is·r

]
d3s,

(23)

where the energy of the photon is given by ~ωs,and
ωs = cs = c|s| is the photon frequency and asq(t) and
its conjugate a∗sq(t) are the photon operators, such that
the equations for motion of the field for all s are:

(asq(t), ȧsq(t)) = (1,−iωs)asq(0)e−iωst. (24)

To write the photon field as a sum with discrete momen-
tum eigenstates as opposed to the continuous represen-
tation, we consider the field to be confined to a volume
V, which can be taken to be represented by a cube over
which we impose periodic boundary conditions. Since
the electromagnetic energy confined to this volume is in-
dependent of the shape of the volume [24], we take as our
quantization volume as a cylindrical box with volume V
and side L, and carry the following substitutions:∑

s

→ V
(2π)3/2

∫
d3s→

√
V

(2π)3

∫
d3s, (25)

where the normalization factor 1√
V [30] has been used

to arrive at the last expression. This substitution over
the quantization box does not affect the validity of ex-
pressions for Hamiltonian and vector potentials [30–32].
Therefore, in second quantization, the vector potential is
expressed as:

A =
∑
s

∑
q=1,2

√
~c2
Vωs

êq
(
âsq e

is·r + â†sq e
−is·r), (26)

where â†sq and âsq denote the creation and annihila-
tion photon operators, respectively, and we write HA =∑
s,q

~ωs â†sqâsq. A photon in a given momentum and po-

larization state is written as

|s, q〉 = â†sq|0〉, (27)

with |0〉 denoting the zero population in the photon field.
The general noninteracting plasmon states including the
initial and final states, i and f , respectively, is written
as:

|σ〉 ≡ |νmiki · · · νmfkf 〉, (28)

where νmk are the number of plamons in the state (m, k).
The quantum state |σ〉 of the cylinder charge density may

be written in terms of the number of plasmons in the
(m, k) state as |νmk〉, which in the zero-order, is obtained

by populating the no-plasmon state |0〉 via |â†mk|0〉. The
plasmon states are orthonormal, that is:

〈· · · νmN
· · · νm1 |νk1 · · · νkN · · · 〉 =

· · · δm1k1 · · · δmNkN · · · . (29)

Similarly, the radiation field in noninteracting state of
photons can be represented by:

|s, q〉 ≡ |νsiqi · · · νsfqf 〉, (30)

where νsq show the number of photons with wavevector s
and polarization q = 1, 2. The general state for the com-
posite photon-plasmon field, using the fact that photon
operators act only on the photon states and the plasmon
operators only act on plasmons, can be written as:

|s, q〉 ⊗ |σ〉 ≡ |νsiqi · · · νsfqf 〉 ⊗ |νmiki · · · νmfkf 〉. (31)

In the following calculations, we note that for all photon
states sq and s′q′, we have:

〈0 | âs′q′ â†sq | 0〉 = δ(s− s′) δqq′ , (32)

with δ(s − s′) as the Dirac delta function, not to be
confused by δqq′ as the Kronecker delta function. Simi-
larly, for all the plasmon states, mk and m′k′, we have

〈0 | ĉm′k′ ĉ
†
mk | 0〉 = δ(k − k′) δmk′ .

VI. SCATTERING CROSS SECTIONS AND
DECAY RATE

A. Elastic scattering

To calculate the scattering cross section, that is, the
rate of scattering divided by the flux of the incoming par-
ticles, we first set our full system as the combined surface
plasmon and photon field. Then we consider the ground
state or zero-population for both plasmon and photon as
|0〉. The cross section per unit length for the scattering
process can be obtained by summing up the transition
rate over final states. We proceed by calculating the cor-
responding matrix element for direct scattering (elastic,
including the Thomson limit). For scattering of photons
out of the incident beam direction

Mel :=
〈
0
∣∣âqf (sf )H int

el â†qi(si)
∣∣ 0〉 , (33)

for a wavevector s with indices f and i indicating the
final and initial states, respectively, and the zeroth-term
of the interaction Hamiltonian H int

el represents the direct
scattering:

H int
el =

n0e
2

2mc2

∫
ρ≤ρ0

A ·A dV. (34)
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Therefore, in calculating H int
el , using Eq. (26), one may

write:

H int
el =

n0e
2~

2mV√ωs ωs′

∫ ∞
0

∫ 2π

0

∫ ρ0

0∑
s,q,s′,q′

(
âsq e

is·r + â†sq e
−is·r)(âs′q′ eis′·r + â†s′q′ e

−is′·r)
× (êq · êq′)hρhϕhz dρdϕdz. (35)

Direct scattering matrix element as expressed in Eq. (33),
can now be calculated by means of the commutative re-
lations [âsq, â

†
sq] = δqq′δss′ . Therefore,

Mel = b2
n0e

2~
2mV ωs

×
∫ ∞

0

∫ 2π

0

∫ ρ0

0

ρ (êq ·êq)
(
âsq e

is·r+â†sq e
−is·r)dρdϕdz ,

(36)

with no m and k dependency. In order to calculate the
differential scattering cross-section per solid angle Ω, one
may utilize transition-rate formula:

wfi =
2π

~2
|Mel|2 δ(ωsf − ωs0), (37)

to find differential scattering cross-section as:

dσel

dΩf
=

1

c

∑
qf

∫
wfi ω

2
sf

(2πc)3
dωsf . (38)

The normalized cross-section by unit length, is obtained
by summing the transition rate over final states and nor-
malizing by length L and c sinψ0/V, where ψ0 is the an-
gle between a fixed wave s0 and the cylindrical axis [31].
Thus

σel|ρ0 =
V

Lc sinψ0

2π

~2

∑
qf

∑
sf

|Mel|2 δ(ωsf − ωs0). (39)

B. Emission & Absorption

It can be observed from Eqs. (40) and (42), that sur-
face plasmons emission and absorption originate from the
same dipole transition matrix element and they assume
the same magnitude in principle. Therefore, in this case
they are reversible in the sense that an emitted photon
from such a quantum system, should be absorbed by the
same system. In general, the reciprocity between emis-
sion and absorption occur for many transitions. This is
not unlike the electromagnetic reciprocity, time-reversal
symmetries, and Kirchhoff’s law of thermodynamics for
equilibrium systems, which can impose constraints on
emission and absorption properties of, for example, an-
tennas in a broad frequency range. The requirement

of reciprocity means that the optical antenna transmits
and receives fields equally well from the same direction.
Breaking the reciprocity is currently the focus of recent
work to enable new applications [33].

Here, we provide a detailed calculations the rate at
which an excited surface emits lights per solid angle Ω
in a cylindrical domain. Based on the argument above,
deriving the same expressions for absorption should fol-
low immediately. The matrix elements corresponding to
emission via radiative decay of surface plasmons may be
written as:

Mem :=
〈

0
∣∣∣âqf (sf ) H int

em ĉ†miki

∣∣∣ 0〉 , (40)

where

H int
em =

1

c

∫
J ·A dV. (41)

The term H int
em represents the interaction of one photon

and one plasmon, which can be used to predict the cre-
ation of a plasmon by a photon or the decay of a plasmon
into a photon. This term also corresponds to the interac-
tion Hamiltonian used to calculate the rate of absorption.
The matrix element for absorption is given by

Mabs :=
〈
0
∣∣ĉmfkf H

int
em â†qi(si)

∣∣ 0〉 , (42)

which is the Hermitian dual to Eq. (40), since it repre-
sents the inverse process.

The interaction Hamiltonian, imposing the Coulomb
gauge condition ∇ ·A = 0 and considering the fact that
current is confined to the surface of the cylinder, is given
by:

H int
em = −n0e

c

∫ 2π

0

∫ ∞
0

(
Ψ̇A · êρ

)
hϕ hz dϕ dz, (43)

where leads to:

H int
em =

n0e
2

m0c

∑
s

∑
k=1,2

√
~
Vωs

(êρ · êk)

×
(
âske

is·r + â†ske
−is·r) ∑

m

J km(ρ0), (44)

where V = πρ2
0L is the volume of the finite cylindrical

box with length L and γ is given in (14) and

J km(ρ) =

∫ 2π

0

∫ L
−L

{∫ ∞
0

Km(|k|ρ)Im(|k|ρ)eimϕeikz

× −iAmk
ωmk

(ĉmk − ĉ†−m−k)dk

}
hϕhz dϕdz, (45)

Hence, the emission matrix element become

Mem = −in0e
2

m0

√
~
Vωs

Amk
ωmk

θm(k, ρ0)Imk(ρ), (46)
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where

Imk(ρ) =

∫ 2π

0

∫ L
−L

(êρ · êk)e−is·reimϕeikzhϕhz dϕdz.

(47)

Taking s = ωs(cosψ, 0, sinψ), allows us to take êq, as
ê1 = (0, 1, 0) and ê2 = (sinψ, 0,− cosψ). Leaving us with
two different integrals to calculate:

I(1)
mk = bρ0

×
∫ 2π

0

∫ L
−L

sinϕeimϕeikzEmk(ϕ, z) dϕdz, (48)

and

I(2)
mk = bρ0

×
∫ 2π

0

∫ L
−L

sinψ cosϕeimϕeikzEmk(ϕ, z) dϕdz, (49)

where

Emk(ϕ, z) = e−iωs

(
ρ0 cosψ cosϕ+sinψz

)
. (50)

Radiative decay rate with respect to solid angel Ω is
given by the following which after using (14), it takes the
form

dγmk
dΩ

=

(
n0e

2

me

)2
θm(k, ρ0)

8πbc3

[(
I(1)
mk

)2

+
(
I(2)
mk

)2
]
.

(51)

The analytic solution for I(1)
mk and I(2)

mk can be obtained
as:

I(1)
mk =

−2ibρ0

αβ
sin(Lα)

[
(−1)me−iβ − im

2π
Jm(β)

]
, (52)

and

I(2)
mk =

2bρ0 sinψ

4πα
sin(Lα) [Jm+1(β) + Jm−1(β)] . (53)

where

α = k − ωs sinψ, β = ρ0 ωs cosψ. (54)

In Fig. 5, contour plots corresponding to two specified
modes (m, k) = (0, 1) and (m, k) = (0, 2) for shape pa-
rameters ρ, using Eq. (51) using the integral solutions
given in Eqs. (52) and (53) are illustrated.

C. Total elastic and inelastic scattering

Matrix element for the total elastic scattering, assum-
ing that γ is the plasmon damping factor, is obtained as
shown below:

Mtel =Mel +
∑
mk

1

~

[
MemMabs

ωsi − ωmk + (iγ/2)

− M∗emM∗abs
ωsf + ωmk − (iγ/2)

]
. (55)

FIG. 5. Contour plots of curvature induced shift in the radia-
tion pattern associated with the decay of plasmons excited on
the cylindrical surfaces for the specified modes (m, k) = (0, 1)
(up) and (m, k) = (0, 2) (down), and for different shape pa-
rameter ρ and varying emission angle ψ (see Eq. (51)).

For inelastic photon scattering resulting in excitation
of a surface plasmon mode (m, k) on the cylinder, the
matrix element is:

Minel =
〈
0
∣∣âqf (sf )ĉmfkf H

int
inel â

†
qi(si)

∣∣ 0〉 , (56)

where

H int
inel =

e2

2mc2

∫
n̂(r, t)A ·A dV, (57)

with n̂(r, t) being the number charge density operator.
The involvement of two photons and one plasmon de-
scribes the inelastic scattering of a photon in creating a
plasmon. The number density operator n(r, t), is found
from the volume charge density, %, for the cylindrical do-
main. Noting Eq. (D-1), and Φ given in Eq. (7), we find

% =
δ(ρ− ρ0)

4πh2
ρρ0

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cmk(t)eikz dk.
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Using Cmk(t) =
√
~Amk(ĉmk + ĉ†−m−k), with Amk given

in Eq. (15), the operator n̂(r, t) can be written:

n̂(r, t) = −δ(ρ− ρ0)

4π e h2
ρρ0

∞∑
m=−∞

eimϕ

×
∫ ∞
−∞

√
~Amk(ĉmk + ĉ†−m−k)eikz dk. (58)

Therefore,

H int
inel = − b n0e ~3/2

8πmρ2
0V
√
ωs ωs′

∞∑
m=−∞

∑
s,q,s′,q′∫ ∞

0

∫ 2π

0

∫ L
−L
Gkm(ρ0)(êq · êq′)

(
âsq e

is·r + â†sq e
−is·r)

×
(
âs′q′ e

is′·r + â†s′q′ e
−is′·r)dz dϕ dk, (59)

and with L → ∞, we have

Gkm(ρ) = Amk(ĉmk + ĉ†−m−k)ei(mϕ+kz). (60)

We may now use Eq. (56) and the commutation rela-
tions for photon and plasmons interaction, to obtain the
matrix element:

Minel = − i b n0e ~3/2L1/2

4πmρ2
0V
√
ωs ωs′

(êqi · êqf )Amk Jm(µ), (61)

where Jm(·) denotes the Bessel function of the first kind
and µ is calculated by the choice of wavevector travel
direction being perpendicular to the polarization vectors,
i.e. êq ⊥ s, q = 1, 2.

As presented above, by expressing the energy in the
canonical form followed by replacing the mode ampli-
tudes with boson creation and annihilation operators
for the surface plasmons, various quantum cross sections
may be calculated. However, a note on a comparison of
these results to classical results may be worthwhile. De-
spite previous reports [34–36] on the difference between
the classical and quantum mechanical definitions of scat-
tering cross sections and the problem of classical limit,
the general derivation of classical results from the quan-
tum mechanics, i.e., the reduction theory, is still afar.
While, such calculations are outside of the current work,
to compare the classical and quantum results, one may
consider the more tangible case of a finite nanostructure.
For example, the prolate spheroidal nanoparticle may be
employed in a comparison study.

VII. CONCLUSIONS

In summary, the classical and quantum calculations
present a reasonable modeling framework when work-
ing with nanostructures with cylindrical symmetry. The
quasi-static plasmon dispersion relations, predicting the
availability of useful resonance modes in the low-eV
range, appear to be modified significantly by retarda-
tion effects near the light-line. The computed fields,
corresponding to the resonance modes, induce signifi-
cant and rapid (∼ ns) heating of the nanostructures,
and by conduction, of the substrate. The quantum cal-
culations, while illustrating the nature of the various
surface electronic normal modes, provides a first esti-
mate of the plasmon energies. The obtained Hamilto-
nian proved useful as a means to calculate relevant scat-
tering quantities. The quantum state of the collective
surface charge density oscillation provides a direct ac-
cess to the quantum numbers of the modes, which can
be insightful when studying particle-emitter coupling.
In quantum sensing with plasmonic nanostructures, the
eigenstates of the Hamiltonian corresponding to differ-
ent charge oscillations may be useful for coupling to and
controlling of specific qubits. It may be of interest to
consider specific thin film cylindrical coatings of non-
linear materials, envisioned in a multilayer cylindrical
circuit element, which may provide squeezing and en-
tanglement of specific modes. Given the long propaga-
tion of surface plasmons, it is conceivable to devise cir-
cuits that facilitate transport of qubits across larger seg-
ments of an integrated on-chip photonics system. The
described photon-plasmon interaction Hamiltonian may
be upgraded to a higher order, beyond the first order em-
ployed here. The example depicted in Fig. 1, although
conceptual, is of current interest in the study of meta-
materials, e.g., for designing optomechanical metamate-
rial systems [37]. Moreover, large-aspect-ratio structures,
similar to hyperboloids and paraboloids, are excellent
platforms for photo-emission, making the obtained re-
sults of potential use for the study of nanostructures as
electron sources [38, 39]. Similarly, our quantum calcula-
tions can serve to further study the electronic and mag-
netic properties of carbon nanotubes, where cylindrical
domains are the natural modeling environment [8, 40]
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APPENDICES

A. FURTHER DISCUSSIONS ON LOSSES

Here, we present a specific example that illuminates
the calculation of the plasmon fields and their photo-
acoustic or photothermal effects. In the following, to
compute the needed fields and spectra we use the nu-
merical technique of finite elements (FEM [41])). The
complex dielectric function ε(ω) is taken to be in the
Drude form:

ε(ω) = 1−
ω2
p

ω2 + Γ2
+ i

ω2
pΓ

ω(ω2 + Γ2)
, (A-1)

where ωp is the usual plasma frequency, and the relax-
ation constant Γ quantifies the damping. Since the damp-
ing is at least three orders of magnitude smaller than the
actual energy and its absolute value increases with the
increasing k, often one suffices with considering only the
real part, as in the case of Fig. 2. We may consider a
metallic domain such as a substrate-supported nanopar-
ticle or nanostructure real materials from a comparison
with the experimentally determined optical properties of

z

y
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e2

µ1

e1

a1

b1

z

xk

e = es

e = em

d2

d1

FIG. 6. An example of a basic substrate-bound nanoparticle
for integrated plasmonics. Shown is a nanorod-type metallic
particle with a dielectric function of εm placed on a substrate
with a dielectric function εs. A number of quantum emitters
ei, i = 1, 2 with dipole moments µ̄i, i = 1, 2 may be brought
into interaction with the particle. The angles α1 and β1 depict
a possible orientation of the first emitter. Other types of
nanoparticles, substrates, emitters, and their configurational
relations can be similarly envisioned. A field with momentum
k̄, here arbitrarily shown in a plane of incidence perpendicular
to the x axis, interacts with the nanoparticle and the emitters.
The system may be assumed thermodynamically open.

solids (such the compilation by Johnson and Christy [42]
or by Palik [43]). This configuration is particularly useful
for studies of interactions between quantum emitters and
the plasmon-supporting particles, as depicted in Fig. 6.
As a brief illustration, the dipole-excited fields may be
computed, as visualized for the near-zone in Fig. 7. For
a gold particle immobilized on a quartz substrate, the
fields were here computed by numerically solving the 3D
field equations subject to appropriate boundary condi-
tions. Assuming a properly polarized incoming field, that
is, one which is defined with respect to the symmetries of
the structure, we can compute (using the finite elements
method) the spectral properties of the ensuing scatter-
ing, as shown in Fig. 8. The scattering and extinction
cross sections are here given without any normalization
(in units m2 for 3D models). The redshift and signifi-
cantly lower energy (nW) dissipation for the case with
a substrate are evident. With the excited polarization
for specific spectral peaks, as visualized in Fig. 9, the
deposited power into the nanostructure as a result of
its interaction with the field can be computed, shown
in Fig. 10. To account for the temperature T changes,
brought about by the optical losses, we may solve the
heat diffusion equation. Neglecting heat flux by radiation
and convection (nanometer-scale surface area), and with
zero velocity vector for the subdomain translational mo-
tion, we soolve T (r, t) solves: −∇ · k∇T + ρCTt = S(λ),
where ρ, C, and k are, respectively, the density, heat ca-
pacity, and thermal conductivity of gold or quartz, while
S is the wavelength-dependent λ source term. In gen-
eral, k is a symmetric positive-definite second order ten-
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FIG. 7. Field component distribution Ex (top), Ey (middle),
Ez (bottom) engendered in the nanoparticle by two dipoles
symmetrically placed along the long axis of the nanoparti-
cle. The dipoles emit at a wavelength of 535 nm with their
moments parallel to the z axis.

sor. Thus, the ensuing thermoelastic effect generates a
source term −αT : dσ/dt, where α is the thermal expan-
sion coefficient, and d/dt is the time derivative operator
in the material frame, and σ is the stress distribution.
The temperature changes yields an effective mechanical
force. By solving the equation of motion, we thus com-
pute the mechanical eigenmodes of the nanoparticle. By
solving the heat diffusion equation with the source term
provided by the optical losses, as can be seen in Fig. 11,
the time evolution is seen to be sufficiently fast that, as
far as energy diffusion is concerned, one may assume that
the deposited power is instantaneous and uniform. From
the solution of the diffusion equation, we can therefore
obtain the energy transport from the nanoparticle into
the surrounding domain via radiation and conduction but
neglecting convective transport. Inclusion of the dielec-
tric substrate will not only redshift plasmon energies but
also facilitate a new transport channel for the dissipated
heat energy.
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FIG. 8. The spectral properties of the nanoparticle shown
in Fig. 6. For a 400nm long gold nanoparticle with pro-
late spheroidal end curvature (long axis 77 nm, short axis
= 50 nm), the scattering of photons exhibit two main peaks
(≈ 535 nm and 642 nm) corresponding to excitation of the
longitudinal and cross sectional excitations. In addition to the
substrate-induced plasmon damping, the two primary bands
are observed to undergo a redshift and broadening as shown
for the scattering cross section (a) and for the energy dissipa-
tion in (b). The worsening of the spectral quality due to the
substrate is shown in (c) for the fused silica substrate as well
an artificial substrate with higher index n.

We also note that when the radius of the structure
is smaller than the electron mean free path, the losses
are larger [44]. Classical computational calculation of
the nonradiative losses (leading to very effective localized
heating) can be informative. The generated heat makes
the plasmonic nanostructure a very effective heat source
for applications such as killing cancer cells and microflu-
idic actuation. Other than presenting a quantitative as-
sessment of the nonradiative losses, the effect does not
play a significant role for the objectives of the present
work (unless one attempts plasmon sensing or surface-
enhanced Raman spectroscopy/imaging [45]). Indeed,
due to the difficulties associated with calculation of the
nonradiative losses, many reported work have simply ne-



14

FIG. 9. Polarization distribution of the nanoparticle at the
spectral peaks of the scattering cross section for an excita-
tion field of a polarization that provides both axial and cross
sectional field components.

FIG. 10. Computed nanoparticle plasmon induced heat gen-
eration for a gold nanorod on a quartz substrate.

glected the photothermal effect. However, the effect is
not only significant but must indeed be included in the
calculations for proper assessment of for example Raman
cross section calculations of the surface enhancement. We
introduced the term “thermoplasmonics” to emphasize
the photothermal nature and processes associated with
plasmon resonances

B. RETARDED DISPERSION RELATIONS

Cylindrical coordinates is given by

x = b ρ cosϕ, y = b ρ sinϕ, z = b z, (B-1)

where ρ ∈ [0,∞), ϕ ∈ [−π, π] and z ∈ (−∞,∞) with
scale factors hρ = hz = b and hϕ = bρ, and b as the
scaling constant. The cylinder of revolution is the surface
generated by the revolution of a line parallel to an axis,

t=0.2 ns

t=2 ns

FIG. 11. Temperature distribution at t = 0.2 ns (top) and t =
2 ns (bottom) in the substrate plane due to energy losses in
the nanoparticle. The energy loss density is visualized for an
interacting field at a wavelength of 642 nm, corresponding to
the plasmon excitation along the long axis of the nanoparticle.

around this axis, here z-axis. Therefore, the resulting
surface has azimuthal symmetry with respect to z axis. A
cylinder in the cylindrical coordinator could be obtained
by fixing the coordinate component ρ as the radius of the
cylinder, i.e. ρ = ρ0.
Helmholtz equation: Time-dependent disper-

sion relations: The Helmholtz equation in cylindrical
coordinate has the closed from ∇2E+ h2E = 0, with ∇2

denoting the Laplace operator, and is given by

1

ρ

∂

∂ρ

(
ρ
∂E

∂ρ

)
+

1

ρ2

∂2E

∂ϕ2
+
∂2E

∂z2
+ h2 E = 0. (B-2)

The goal is to find the complex amplitude of the sec-
ondary field E satisfying the Helmholtz equation given
above. The only possible set of solutions after consid-
ering the separation of variables E = R(ρ) Φ(ϕ)Z(z) is:


ρ d
dρ

(
ρdR(ρ)

dρ

)
+
[
κ2 ρ2 −m2

]
R(ρ) = 0,

d2Φ(ϕ)
dϕ2 +m2Φ(ϕ) = 0,

d2Z(z)
dz2 + k2

zZ(z) = 0,

(B-3)

where κ, m and k are constants of x, y and z with κ and
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k satisfying

κ2 + k2
z = h2. (B-4)

The final solution for a given set of κ, kz and m is given
by:

Eκkm = Bm(κρ) f(mϕ) g(kzz), (B-5)

where Bm(κρ) is the combination of Bessel functions; De-
pending on the boundary conditions, it may be chosen
among Jm(·) and Ym(·), Bessel function of first and sec-
ond kind, respectively, or Im(·) and Km(·), the modified
Bessel function of first and second kind, respectively. The
Hankel functions may be replaced by Jm(·) and Ym(·),
Bessel functions of the first and second kind, as an alter-
native representation [46]. Lastly, the choice of modified
Bessel functions for inside and outside of the solid cylin-
der lies in the asymptotic behaviors of these functions.
Im(|k|ρ) → ∞ when ρ → ∞ while Km(|k|ρ) → ∞ when
ρ→ 0 [46].

In Eq. (B-2), we may make the substitution

h2 = ε
ω2

c2
, (B-6)

as the corresponding total momentum, where ω is the
angular frequency of the excitation and c denotes the so-
called speed of light. We may define a solid cylinder as
a surface of revolution by fixing ρ = ρ0, and the posi-
tion vector as r = (ρ, ϕ, z). One may impose the Dirich-
let boundary condition (which specifies the value of the
function on a surface, i.e. Ei = Eo when ρ = ρ0 ) as
well as Neumann boundary condition which specifies the
normal derivative of the function on a surface, as:

εi(ω)∇Ei · ñ
∣∣∣
ρ=ρ0

= εo(ω)∇Eo · ñ
∣∣∣
ρ=ρ0

. (B-7)

1. Retarded dispersion relations

The interaction of the radiation field with matter, de-
scribed as a scattering process, may exhibit strong spec-
tral variation depending upon the geometric and mate-
rial properties. Therefore, prior to quantization of the
cylindrical surface waves to obtain the surface plasmon
states, we consider electromagnetic normal modes of the
solid domain as a starting point. With reference to Ap-
pendix VIII B, solving the Helmholtz equation for points
r = (ρ, ϕ, z) in a domain partitioned by an infinite cylin-
der of radius ρ = ρ0, the solution set of eigenfunctions
for the tripple (κ, kz,m) is given by:

Eκkzm = Bm(κρ) f(mϕ) g(kzz),

where Bm(κρ) is the combination of Bessel functions, as:

Bm(κρ) ∼ Jm(κρ)Ym(κρ) Im(κρ)Km(κρ),

where Jm(·) and Ym(·) denote the Bessel function of the
first and second kind, respectively, whereas Im(·) and
Km(·) denote the modified Bessel functions of the first
and second kind, respectively. The Bessel functions of the
first and second kind, Jm(·) and Ym(·), may also be re-

placed by the Hankel functions, H
(1)
m (κρ), H

(2)
m (κρ), also

known as the Bessel functions of the third kind, as an
alternative representation [46].

The choice of Bessel functions depends on two fac-
tors: 1) the radiative or non-radiative regime being con-
sidered, and 2) the asymptotic behavior of the mod-
ified Bessel functions. More specifically, Bessel func-
tions of the first and second kinds, Jm(·) and Ym(·),
are associated with the radiative regime, whereas modi-
fied Bessel functions of the first and second kinds, Im(·)
and Km(·), represent the non-radiative regime. The ra-
diative regime requires (as will be seen from Eq. (B-9)
and the light-line in Fig. 2), up to some constant,

Bm(κρ) = Jm(κρ)H
(1)
m (κρ), while for the non-radiative

regime Bm(κρ) = Im(κρ)Km(κρ). In the interior ver-
sus exterior of the cylinder we note, Im(κρ) → ∞ when
ρ→∞ while Km(κρ)→∞ when ρ→ 0 [46].

To simplify the equations, after partitioning the space
with the Heaviside function Θ, with the half-maximum
convention, Θ(0) = 1/2, we introduce θ<m(κ, ρ) and
θ>m(κ, ρ) as given in Eqs. (2) and (3). In the non-radiative
regime, the solutions may be obtained for the z compo-
nent of the electric field as:

Ez(r, t) =

∞∑
m=−∞

Cm(t)ei(kz z+mϕ−ωt)

×
[
θ<m(κi, ρ) + θ>m(κo, ρ)

]
, (B-8)

where Cm(t) is the complex quasi-static mode amplitude
at time t, with m ∈ Z, counting the azimuthal modes.
Here, kz is the magnitude of the wavevector along the
cylinder axis, κ is the transverse momentum, indexed to
indicate the interior and exterior domains (κi and κo)
of the solid, and ω is the field frequency. Alternatively,
one may rewrite Eq. (1) using the Euler relation for the
azimuthal solutions with the consideration that now m ∈
N+{0}, and for a fixed value of m, there are two different
sets of solutions depending on the branches in sin(·) or
cos(·). The remaining field components can be written
as:

Eϕ(r, t) =

∞∑
m=−∞

[
− hm

κ2ρ
Dm(t)Im(κρ)

+
iω

κ
Em(t)K ′m(κρ)

]
,

and

Eρ(r, t) =

∞∑
m=−∞

[
− mω

κ2ρ
Fm(t)Im(κ ρ)

+
ih

κ
Gm(t)K ′m(κρ)

]
.
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Since κ2 + k2
z = h2, we may use Eqs. (B-4) and (B-6) to

write: {
κ2

i = k2
z − h2

i = k2
z−ω2εi(ω)/c2,

κ2
o = k2

z − h2
o = k2

z−ω2εo(ω)/c2,
(B-9)

where εi and εo denote the values of the dielectric func-
tions at frequency ω for the interior and exterior domains,
respectively. Imposing Dirichlet and Neumann boundary
conditions (see Eq. B-7) results in:

(cρ0κiκo)2
(
κ2

o εiIm − κ2
i εoKm

)(
κ2

o Im − κ2
i Km

)
− [mωkz(εo − εi)]

2
= 0, (B-10)

where Im and Km are given in Eqs. (5) and (6), for
m = 0, 1, 2, · · · (also see [20]). We later show that
Eq. (B-10) reduces to the quasi-static dispersion rela-
tions when c → ∞. Considering the dielectric proper-
ties of the involved media εi/εo, we may assume εo = 1
and εi(ω) = ε(ω), that is a vacuum-bounded solid cylin-
der with a local frequency dependent dielectric function.
Solving Eq. (B-10) explicitly for ε, one may obtain:

ε(ω) =
κ3

i κ
3
o ImKm − κ4

i κ
2
oK2

m + (mωpkz/ρ0)
2

κ2
i κ

4
o I2

m − κ3
i κ

3
o ImKm + (mωpkz/ρ0)

2 .

(B-11)
The energies of the first few plasmon modes m in Fig. (2)
correspond to set of pairs (kz, ω) for which Eq. (B-10) is
zero, that is, for each m, the roots (kz, ω) of the implicit
function Eq. (B-10) are found and enhanced by interpo-
lation. The results agree well with reported cylindrical
surface modes [8, 21]. The solutions on the RHS of the
light line ω = c kz correspond to the non-radiative regime
(whereas the radiative regime solutions will appear on the
LHS, not displayed).

C. QUASI-STATIC DISPERSION RELATION

The quasi-static plasmon dispersion relations may be
obtained from Eq. (B-10) when c → ∞. Alternatively,
they may also be obtained directly from the scalar po-
tentials satisfying the Laplace equation. In Appendix
VIII C, we have shown that our solution Eq. (B-10) agree
well with the special case of that of a multi-layered cylin-
der [8]. In the quasi-static limit, c → ∞, Eq. (B-10)
reduces to:[

κo ε(ω)
I ′m(κi ρ0)

Im(κi ρ0)
− κi

K ′m(κo ρ0)

Km(κo ρ0)

]

×

[
κo

I ′m(κi ρ0)

Im(κi ρ0)
− κi

K ′m(κo ρ0)

Km(κo ρ0)

]
= 0. (C-1)

Observing Eqs. (B-9) in this limit, we have |κi| = |κo| =
|kz| = κ, and since the Wronskian of the modified Bessel
functions prevents the second bracket in Eq. C-1 to be

zero, we obtain, for a Drude metal of plasma frequency
ωp, the energy of a surface plasmon mode (m,κ):

~ωmκ = ~ωp

√
I ′m(|κ| ρ0)Km(|κ| ρ0)

W{Im(|κ| ρ0),Km(|κ| ρ0)}

= ~ωp
√
|κ| ρ0 I ′m(|κ| ρ0)Km(|κ| ρ0),

where the last expression is obtained from the fact
that the Wronskian satisfies the identity [47, 48]
W{Im(z),Km(z)} = z−1, which agrees with the cylindri-
cal limit frequency given in Eq. 3.10 in [49]. The results
are shown in Fig. 3. In greater detail, given explicitly
in [8], the non-quasi-static solution for frequencies are
expressed as the following determinant:

∣∣∣∣τm−1 ϕm
ζm νm−1

∣∣∣∣ = 0, (C-2)

whose solutions for a double-nanowire system are given
in [21] as:

κ2
i κ

2
o

[
κo εi

I ′m(κi ρ)

Im(κi ρ)
− κi εo

K ′m(κo ρ)

Km(κo ρ)

]

×

[
κo

I ′m(κi ρ)

Im(κi ρ)
− κi

K ′m(κo ρ)

Km(κo ρ)

]

− m2 k2

ρ2
(εo − εi)

ω2

c2
= 0. (C-3)

On the one hand, without loss of generality one may as-
sume the geometry is placed in a void with εo = 1 and
εi = ε, and κi = κo = κ. Hence,

κ4

[
κ ε(ω)

I ′m(κ ρ)

Im(κ ρ)
− κ K

′
m(κ ρ)

Km(κ ρ)

]

×

[
κ
I ′m(κ ρ)

Im(κ ρ)
− κ K ′m(κ ρ)

Km(κ ρ)

]

− m2 k2

ρ2

[
1− ε(ω)

]ω2

c2
= 0. (C-4)

Using the relation ω2
p/ω

2 = 1− ε, we have:

κ4

[
κ ε(ω)

I ′m(κ ρ)

Im(κ ρ)
− κ K

′
m(κ ρ)

Km(κ ρ)

]

×

[
κ
I ′m(κ ρ)

Im(κ ρ)
− κ K ′m(κ ρ)

Km(κ ρ)

]

− m2 k2
z

ρ2

[
1− ε(ω)

]ω2

c2
= 0. (C-5)
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Therefore,[
(1− ω2

p/ω
2)
I ′m(κ ρ)

Im(κ ρ)
− K ′m(κ ρ)

Km(κ ρ)

]

×

[
I ′m(κ ρ)

Im(κ ρ)
− K ′m(κ ρ)

Km(κ ρ)

]

− m2 k2

κ6 ρ2

ω2
p

c2
= 0. (C-6)

Using notations introduced in Eqs. (5) and (6), after some
algebra, one may find:

ω2
p

ω2
m

=
(Im −Km)2 − m2 k2 ω2

p

κ6 ρ2 c2

I2
m − ImKm

, (C-7)

which indicates the exact frequency for the cylinder.
On the other hand, in a quasi-static limit, if one lets
c→∞, the above equation simplifies to:[

κo εi
I ′m(κi ρ)

Im(κi ρ)
− κi εo

K ′m(κo ρ)

Km(κo ρ)

]

×

[
κo

I ′m(κi ρ)

Im(κi ρ)
− κi

K ′m(κo ρ)

Km(κo ρ)

]
= 0, (C-8)

which implies at least one of the brackets to be zero.
Second bracket is never zero considering the Wronskian
for modified Bessel functions (see below). Hence

κ ε
I ′m(κ ρ)

Im(κ ρ)
− κ K

′
m(κ ρ)

Km(κ ρ)
= 0, (C-9)

hence

ε =
Im(κ ρ)

I ′m(κ ρ)

K ′m(κ ρ)

Km(κ ρ)
. (C-10)

This relation could also be obtained by letting c→∞ is
Eq. (B-10). Using the relation ω2

p/ω
2 = 1 − ε, we may

write:

ω2
p

ω2
m

= 1− Im(κ ρ)

I ′m(κ ρ)

K ′m(κ ρ)

Km(κ ρ)

=
I ′m(κ ρ)Km(κ ρ)− Im(κ ρ)K ′m(κ ρ)

I ′m(κ ρ)Km(κ ρ)

=
W{Im(κ ρ),Km(κ ρ)}
I ′m(κ ρ)Km(κ ρ)

, (C-11)

where W{Im(κ ρ),Km(κ ρ)} denotes the so-called Wron-
skian. Using [47]

W{Im(z),Km(z)} =
1

z
,

one may write:

ω2
p

ω2
m

=
1

κ ρ I ′m(κ ρ)Km(κ ρ)
, (C-12)

which is the same as the cylindrical limit frequency given
in Eq. 3.10 in [49]. In the following section, we obtain
this relation independently by considering the retarded
potential and solving Laplace equation on the boundary
of a solid cylinder.

D. QUASI-STATIC LIMIT

Laplace equation in cylindrical coordinate (ρ, ϕ, z) is
given by

∇2Φ =
1

b2

{
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂ϕ2
+

∂2

∂z2

}
Φ.(D-1)

Letting Φ(ρ, ϕ, z) = R(ρ)Θ(ϕ)Z(z), gives

d2Z
dz2 − k

2Z = 0,

d2Θ
dϕ2 +m2Θ = 0,

d2R
dρ2 + 1

ρ
dR
dρ +

(
k2 − m2

ρ2

)
R = 0,

(D-2)

replacing k with ik gives

d2Z
dz2 + k2Z = 0,

d2Θ
dϕ2 +m2Θ = 0,

d2R
dρ2 + 1

ρ
dR
dρ −

(
k2 + m2

ρ2

)
R = 0,

(D-3)

Considering the Dirichlet and Neumann boundary con-
ditions, one may define

Φ(r, t) = Θ(ρ0 − ρ)Φi(r, t) + Θ(ρ− ρ0)Φo(r, t),(D-4)

where

Φi(r, t) =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cmk(t)Im(|k|ρ)Km(|k|ρ0)

× eikz dk, ρ ≤ ρ0, (D-5)

and

Φo(r, t) =

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cmk(t)Im(|k|ρ0)Km(|k|ρ)

× eikz dk, ρ0 ≤ ρ. (D-6)

Hence Laplacian becomes

∇2Φ(r, t) =
δ(ρ− ρ0)

b2

(
∂Φo

∂ρ
− ∂Φi

∂ρ

)
+ Θ(ρ0 − ρ)∇2Φi(r, t)

+ Θ(ρ− ρ0)∇2Φo(r, t). (D-7)
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Since we are only interested on the surface and since
Laplacian vanishes inside and outside, then

∇2Φ(r, t) =
δ(ρ− ρ0)

b2

(
∂Φo

∂ρ
− ∂Φi

∂ρ

)
. (D-8)

Using (7), we have

∂Φo

∂ρ
− ∂Φi

∂ρ
=

∞∑
m=−∞

eimϕ
∫ ∞
−∞
|k| Cmk(t)

×W{Im(|k|ρ),Km(|k|ρ)}eikz dk

= −
∞∑

m=−∞
eimϕ

∫ ∞
−∞

ρ−1 Cmk(t)eikz dk,

(D-9)

using Wronskian identity :

W{Im(|k|ρ),Km(|k|ρ)} = − 1

|k|ρ
. (D-10)

Using relation hρ∇2Φ = −4πδ(ρ− ρ0)σ, we get

σ =
1

4πbρ0

∞∑
m=−∞

eimϕ
∫ ∞
−∞

Cmk(t)eikz dk (D-11)

therefore

σ̈ =
1

4πbρ0

∞∑
m=−∞

eimϕ
∫ ∞
−∞

C̈mk(t)eikz dk (D-12)

On the other hand

σ̈ = −
ω2
p

4πb

∞∑
m=−∞

eimϕ

×
∫ ∞
−∞
|k| Cmk(t)I ′m(|k|ρ0)Km(|k|ρ0)eikz dk. (D-13)

Putting (D-12) and (D-13) equal and using the orthogo-
nality in m and ϕ and also q and z, we get equation of
motion and frequency as shown in Eq. (8).

E. TOTAL ENERGY OF CYLINDRICAL
CHARGES

Potential energy is given by:

V =
1

2

∫ π

−π

∫ ∞
−∞

σ Φi|ρ=ρ0 hzhϕ dzdϕ.

then

V =
bρ0ω

2
p

8π

∞∑
m,m′

∫ π

−π
ei(m−m

′)ϕ dϕ

×
∫ ∞
−∞

{∫ ∞
−∞

∫ ∞
−∞
|k| Cmk(t)

ω2
mk

Cm′k′(t)

× I ′m(|k|ρ0)Im′(|k′|ρ0)Km(|k|ρ0)Km′(|k′|ρ0)

× ei(k−k
′)z dk dk′

}
dz, (E-1)

as we replaced real-valued potential with its complex con-
jugate. Considering the orthogonality relations:∫ π

−π
ei(m−m

′)ϕdϕ = 2π δmm′ , (E-2)

and ∫ ∞
−∞

ei(k−k
′)z dz = 2πδ(k − k′), (E-3)

where δmm′ denotes the Kronecker delta functions and
δ(k−k′) is the Dirac delta function, it follows that (E-1)
can be written as:

V =
πbρ0ω

2
p

2

∞∑
m=−∞

∫ ∞
−∞

|k|
ω2
mk

∣∣Cmk(t)
∣∣2

× Im(|k|ρ0)I ′m(|k|ρ0)
[
Km(|k|ρ0)

]2
dk. (E-4)

Or using (8),

V =
πb

2

∞∑
m=−∞

∫ ∞
−∞

∣∣Cmk(t)
∣∣2Im(|k|ρ0)Km(|k|ρ0) dk.

(E-5)

Similar calculations gives kinetic energy as

T =
πbρ0ω

2
p

2

∞∑
m=−∞

×
∫ ∞
−∞

|k|
ω4
km

∣∣Ċmk(t)
∣∣2Im(|k|ρ0)I ′m(|k|ρ0)

×
[
Km(|k|ρ0)

]2
dk. (E-6)

Following symmetry relations for modified Bessel func-
tions [48], Eq. 5.7.10, page: 110:{

Im(z) = I−m(z); for m ∈ Z,
kν(z) = k−ν(z); for ν ∈ R,

(E-7)

where for integers ν = n, kn(z) = lim
ν→n

kν(z), then

kn(z) = lim
ν→n

kν(z)

= lim
−ν→n

k−ν(z)
(E-7)

= lim
−ν→n

kν(z)

lim
ν→−n

kν(z) = k−n(z), (E-8)

hence kn(z) = k−n(z) for n ∈ Z.

F. ON THE COMPLEX AMPLITUDES

Recalling the inside scalar potential relation as:

Φi(r, t) =

∞∑
m=−∞

eimϕ

×
∫ ∞
−∞

Cmk(t)Im(|k|ρ)Km(|k|ρ0)eikz dk, (F-1)
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the conjugate of the potential is hence given by

Φi(r, t) =

∞∑
m=−∞

e−imϕ

×
∫ ∞
−∞

Cmk(t)Im(|k|ρ)Km(|k|ρ0)e−ikz dk, (F-2)

letting m→ −m and k → −k, we have

Φi(r, t) =

∞∑
m=−∞

eimϕ

×
∫ ∞
−∞

C−m−k(t)I−m(|k|ρ)K−m(|k|ρ0)eikz dk, (F-3)

using symmetry relations for modified Bessel functions
given in (E-7) [48], we have

Φi(r, t) =
∞∑

m=−∞
eimϕ

×
∫ ∞
−∞

C−m−k(t)Im(|k|ρ)Km(|k|ρ0)eikz dk, (F-4)

since potential is real-valued, then Φi(r, t) = Φi(r, t), im-
plies

Cmk(t) = C−m−k(t), (F-5)

for all m and k. The complex coefficients Cmk(t) could
be writen as

Cmk(t) =
γmk
ωmk

cmk, (F-6)

where cmk are some complex function (of time) propor-
tional to e−iωmkt in which symmetric (in m and k) coef-
ficients γmk would be determined later. One could write:

Cmk(t) =
1

2
[Cmk(t) + Cmk(t)]

(F-5)
=

1

2

[
Cmk(t) + C−m−k(t)

]
=

γmk
2ωmk

(cmk + c−m−k)

=
γmk

2ωmk

(
cmk + c∗−m−k

)
, (F-7)

note that according to (8), since ωmk = ω−m−k, we could
factor it out. Its time derivative gives

Ċmk(t) = −iγmk c∗mk, (F-8)

similarly

Ċmk(t) =
1

2

[
Ċmk(t) + Ċmk(t)

]
=

1

2

[
Ċmk(t) + Ċ−m−k(t)

]
(F-8)

=
γmk

2

(
− ic∗mk + ic−m−k

)
=

iγmk
2

(
cmk − c∗−m−k

)
. (F-9)
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