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An accurate knowledge of the scattering length is fundamental in ultracold quantum gas experi-
ments and essential for the characterisation of the system as well as for a meaningful comparison to
theoretical models. Here, we perform a careful characterisation of the s-wave scattering length as
for the four highest-abundance isotopes of erbium, in the magnetic field range from 0 G to 5 G. We
report on cross-dimensional thermalization measurements and apply the Enskog equations of change
to numerically simulate the thermalization process and to analytically extract an expression for the
so-called number of collisions per re-thermalization (NCPR) to obtain as from our experimental
data. We benchmark the applied cross-dimensional thermalization technique with the experimen-
tally more demanding lattice modulation spectroscopy and find good agreement for our parameter
regime. Our experiments are compatible with a dependence of the NCPR with as, as theoretically
expected in the case of strongly dipolar gases. Surprisingly, we experimentally observe a dependency
of the NCPR on the density, which might arise due to deviations from an ideal harmonic trapping
configuration. Finally, we apply a model for the dependency of the background scattering length
with the isotope mass, allowing to estimate the number of bound states of erbium.

I. INTRODUCTION

The high degree of environmental isolation and the
high control over the large parameter-space of ultracold
quantum gases are key for their success [1]. One of the
most decisive properties in determining the many-body
phases of a quantum gas is the interaction force between
atoms. Among neutral particles, it can be isotropic and
short-range, as in alkali atoms, and/or anisotropic and
long-range. Open-shell lanthanides, such as erbium (Er)
and dysprosium (Dy), have both interactions in place [2].
Their strong magnetic character is reflected in a large
dipole-dipole interaction (DDI), while the contact po-
tential is governed by the well-known scattering length,
whose value as, as in alkali atoms, can be largely con-
trolled by so-called Fano-Feshbach resonances [3–5].

Although the concept of the scattering length itself is
well known by now, theoretical challenges to calculate as

depend on the atomic species of interest. For lanthanides,
predicting as remains a major challenge of quantum
chemistry and microscopic scattering theories [6]. The
complexity of describing such atoms has several reasons:
the multiple valence electrons, the strongly anisotropic
orbital shells, the strong coupling between core and va-
lence electrons, and the relativistic contributions, also
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made important by the large atomic mass. To date,
there are still no ab-initio models with the capacity for
quantitative predictions, although many general proper-
ties of the interaction potentials (e. g. Born-Oppenheimer
potentials) have been studied and understood [7].

Yet, knowledge of the scattering length remains of
prime importance since it is an essential regulator of few-
and many-body quantum phenomena. For instance, the
fascinating supersolid state, recently discovered in Dy [8–
10] and Er [9], lives in a narrow range of only a few
a0 (a0 is the Bohr radius), or the functional forms of
beyond-mean-field corrections, which are still under dis-
cussion [11–14], depend on as in a subtle way. In the
absence of complete microscopic and ab-initio potential
models, the study of as in lanthanides therefore relies on
experimental investigations and empirical models.

Several different experimental methods have been ap-
plied in previous works to extract as for Er and Dy. These
include spectroscopy of the molecular binding energy
close to a broad Fano-Feshbach resonance [15, 16], the
anisotropic expansion of a thermal gas [17], and the cross-
dimensional thermalization technique [18–21]. Further-
more, for the 166Er isotope, as has been determined with
high accuracy based on a measurement of the particle-
hole excitation gap in the Mott insulator regime via lat-
tice modulation spectroscopy [22, 23]. These techniques
did not always provide consistent values, opening up a
number of fundamental questions, e. g. from the validity
of the additivity of the interaction pseudo-potentials [24–
27] to the appropriateness of the Lee-Huang-Yang form
for beyond-mean field effects [12–14, 28].

In this work, we extensively study the scattering length
of the four most abundant bosonic isotopes of erbium
(164Er, 166Er, 168Er, and 170Er) and its magnetic-field de-
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pendence. For each isotope, we perform high-resolution
Fano-Feshbach spectroscopy in the low magnetic-field re-
gion (0 to 5 G) and identify previously unreported scat-
tering resonances. In this range, we then accurately de-
termine the erbium scattering length, as, by develop-
ing a model based on the Enskog equations to extract
as from cross-dimensional-thermalization experiments.
We benchmark our results with the ones obtained from
high-precision lattice-modulation spectroscopy, which
has been previously developed for 166Er [23, 29] and here
expanded to 168Er. Finally, from the magnetic-field map-
ping of as, we extract for each isotope an effective back-
ground scattering length abg

s at zero B field and we dis-
cuss the results in the context of the isotope-mass scaling.

II. CROSS-DIMENSIONAL THERMALIZATION

The cross-dimensional-thermalization technique is a
very powerful method to experimentally determine the
scattering length. First successfully applied to alkali
atoms [30–33], this technique has proved to be very gen-
eral and, more recently, has been used for more complex
atomic species, such as chromium [34], specific isotopes
of erbium [19] and dysprosium [21], and molecular sys-
tems [35, 36].

Starting from a cold thermal cloud, the basic idea of
the cross-dimensional thermalization method is to ex-
cite the system by increasing the potential energy along
one spatial dimension of the atomic cloud and to mea-
sure the characteristic time τ that the system needs to
re-thermalize in the orthogonal directions [30]. In the
regime of small excitations, for an atomic cloud at a tem-
perature T and a total atom numberN , the characteristic
time is related to the total scattering cross section σ̄ by

τ =
α

n̄σ̄vr
, (1)

where n̄ is the mean number density

n̄ =
Nω̄3

√
8

(
m

2πkBT

)3/2

(2)

and vr the mean relative velocity for two colliding atoms

vr =

√
16kBT

πm
(3)

Here, ω̄ is the geometric mean of the harmonic trap-
ping frequencies, m is the atomic mass, and kB is the
Boltzmann constant. Because multiple collisions, not all
contributing equally to re-thermalization, are occurring
during the thermalization process, the parameter α can
be interpreted as a re-scaling of σ̄ and therefore as a
number of collisions per re-thermalization (NCPR). Ex-
perimentally, the knowledge of α is fundamental for the
extraction of the total scattering cross section.

Equation (1) has two unknown parameters: as and
α. In contrast to alkali atoms, where the scattering is

isotropic, the situation is more complex for dipolar atoms
such as Er and Dy [18, 20]. Here, the total cross section
for bosons is not only given by the contact scattering
length as, but an additional contribution from the non-
isotropic DDI, which for two atoms at a distance r and
polarized by an external magnetic field B, reads as

Vdd(r, θ) =
µ0µ

2

4π

1− 3 cos2 θ

|r|3
. (4)

Here, µ0 is the magnetic permeability, µ is the magnetic
dipole moment, and θ the angle between B and r. Taking
an angular average of the total cross section leads to

σ̄ = 8πa2
s +

32π

45
a2

d, (5)

where ad = mµ0µ
2

8π~2 is the dipolar length (ad = 98.2 a0

for 166Er), with ~ being the reduced Planck constant.
Finally, we can rewrite Eq. (1) as

τ =
α

n̄σ̄vr
=

α
4Nmω̄
πkBT0

(a2
s + 4

45a
2
d)
. (6)

The interplay between the isotropic scattering length
and the anisotropic dipolar cross section leads to a de-
pendence of α on both, the dipole orientation θ and
as [37]. In the limit of weak excitation, an analytic form
of α(as, θ) can be found based on the Enskog equations;
see later discussion.

III. EXPERIMENTAL PROCEDURE

In our experiment, we produce a spin-polarized ther-
mal cloud of Er atoms in the lowest Zeeman sublevel,
similarly to Ref. [38]. In brief, after cooling and trapping
the Er atomic ensemble in a narrow-line magneto-optical
trap [39], we transfer the atoms into a crossed optical
dipole trap (cODT). Here, we first further cool the atoms
via standard evaporative cooling, and then tighten the
trapping confinement to avoid atom loss due to residual
evaporation. Simultaneously, we ramp B to the desired
value. At this stage we typically reach a temperature of
T = 250 nK−300 nK with N ≈ 1× 105. The exact num-
bers depend on the isotope choice and the individual set
of measurements. The typical final trap frequencies are
(ωx, ωy, ωz) = 2π × (65(1), 19(1), 300(2)) Hz. For all sets
of measurements the critical temperature for the onset of
Bose-Einstein condensation Tc lies between 150 nK and
200 nK, such that T & 1.5 × Tc. The orientation of the
magnetic dipoles is controlled by the direction of the po-
larizing B and is represented by the angle θ between B
and the vertical direction z, defined by gravity; see in-
set Fig. 1. We calibrate the value of B with an accuracy
of about 1 mG by driving the radio-frequency transition
between the two lowest Zeeman sublevels mJ = −6 to
mJ = −5.
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FIG. 1. Effective temperatures Tz (blue circles) and Ty (red
diamonds) after the increase of the trapping potential along
the weakest trapping direction y. The measurement was per-
formed at 1 G and θ = 0° for the 166Er isotope. The red
dashed line represents a guide to the eye. The black solid line
denotes the results of the Enskog simulations for this specific
dataset. The errorbars denote the standard error for 3 rep-
etitions. The inset shows a schematic representation of our
experimental system.

After preparing the thermal sample, we perform cross-
dimensional thermalization experiments [19]. In particu-
lar, we excite the cloud along the y direction and probe
the thermalization dynamics in the z direction. Our ex-
citation scheme relies on a rapid increase in power of one
trapping beam, leading to a 60 % increase of the trapping
frequency, while leaving the other two directions mostly
unaffected. We extract the effective temperature Tz (Ty)
for a variable in-trap hold time th from the width of the
momentum distribution σz(th) (σy(th)) after a time of
flight of tToF = 25 ms (20 ms). This scheme, illustrated
in the inset of Fig. 1, leads to an out-of-equilibrium cloud
with an effective temperature increase along y from about
300 nK to 600 nK.

Figure 1 shows Tz and Ty as a function of th at
B = 1 G. As we excite the system along y, we observe the
expected rapid increase of Ty. After reaching a maximum
effective temperature, Ty starts to decay, and simultane-
ously Tz increases, both reaching the same equilibrium
temperature, thus showing thermalization dynamics. We
observe oscillations in Ty, which we attribute to a breath-
ing mode that gets induced by the excitation. For Tz we
observe an exponential-type growth of the form

Tz(t) = Tf(1−∆Te−t/τ ). (7)

Here, Tf denotes the final temperature and ∆T denotes
the temperature increase due to the added energy. How-
ever, using this simple fit we can not directly extract as as
additional knowledge on α(as, θ) is needed (see Eq. (6)).
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FIG. 2. (a) Dependency of α on θ and as for as = 0 a0, 5 a0,
10 a0, 36.5 a0, and 68.3 a0. These values are chosen such that
the angle dependence at small as becomes visible. Note that,
at 68.3 a0 (as at 1 G, see later measurements) the variation
of α with θ is strongly suppressed. (b) α vs. as for θ = 0°.
The inset shows an enlargement of the region for as between
0 a0 and 40 a0. The grey dashed lines show the values of α for
s-wave and p-wave scattering, respectively.

IV. THEORETICAL ESTIMATE OF α(as, θ)

To compute α(as, θ), we utilize the Enskog equations
of change [40]: a coupled set of differential equations de-
rived in closed-form for dipolar gases, by linearization of
the Boltzmann equation, and the assertion of a Gaussian
phase-space distribution [41]. These equations permit
an analytic derivation of α(as, θ) in the limit of short-
times and small excitations [37]. For the current exper-
iment with excitation along y and thermalization mea-
sured along z, the NCPR is described by a simple ana-
lytic formula, which reads

α(as, θ) =
14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + (3 cos(4θ) + 13)a2
d

. (8)

The quantity α(as, θ) exhibits an anisotropic character
via its angle dependence, as already observed for dipolar
fermionic atoms [19] and molecules [36].

Figure 2 shows α(as, θ) as a function of θ (a) and as (b),
for our experimental configuration of a pancake shaped
trap. Figure 2(a) shows that the anisotropic character of
α(as, θ) competes with the contact one. Indeed, while for
small as (. 10 a0), α(as, θ) exhibits a pronounced angle-
dependence with a maximum at 45°, for increasing as

such behavior progressively washes out. For as ≈ 70 a0,
the thermalization behavior becomes basically indepen-
dent of θ, however α(as, θ) acquires a number below the
one expected for purely contact interacting s-wave col-
lisions. This suggests faster thermalization for dipolar
particles, arising from a more efficient diversion of veloc-
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FIG. 3. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 250 ms. For each B value, the
data point is an average of 3 repetitions and it is normalized to the maximum averaged atom number recorded in the explored
magnetic field range. Further, as extracted from cross-dimensional thermalization measurements using both, the Enskog
equations (red squares) and the analytic formula of Eq. (8) (blue diamonds) is shown for 166Er. Additionally aLMS

s (black
triangles) obtained from lattice modulation spectroscopy measurements are given. The solid black lines represent a fit of
Eq. (10) to aLMS

s . Error bars and the shaded area of the fitting results denote the standard error.

ities of the scattering constituents. In the experiment, we
only measure re-thermalization for relatively large values
of as & 30 a0, and therefore we are not sensitive to the
angle dependence of α(as, θ). In the course of this work,
we will thus focus on the case θ = 0°, simplifying Eq. (8)
to

α(as, θ = 0°) =
14
(
45a2

s + 4a2
d

)
252a2

s + 96asad + 16a2
d

. (9)

As shown in Figure 2(b), after an initial decrease,
α(as, 0°) increases for as & 36.7 a0 – and thus the ther-
malization loses efficiency – moving to the regime of
contact dominated interaction, eventually reaching the
α(as, 0°) = 2.5 limit of non-magnetic atoms [18, 42, 43].
We note that by setting θ = 0° and ad/as ≈ 2.7, the
NCPR is minimized with value α ≈ 1.65, indicating
highly efficient collisional thermalization. This is directly
attributed to the innate anisotropic differential cross-
section in dipolar bosons [18].

V. MAPPING OF as AS A FUNCTION OF B
FOR 166Er

Before taking cross-dimensional thermalization mea-
surements for 166Er, we perform a high resolution scan
of the atom number as a function of the magnetic field
in order to record the spectrum of Fano-Feshbach reso-
nances, which we know to be exceptionally dense [4, 5].
We record the Fano-Feshbach spectra in a magnetic field
region from 0 G to 5 G; see Fig. 3 and Appendix D. In all
the measurements the magnetic field is oriented along z.

We then perform thermalization measurements at val-
ues of the magnetic field, where the system is not dom-
inated by resonant atom loss. For each thermalization
curve, we extract as using two different approaches, one
numerical and one semi-analytical. The first, constitutes

a direct fit of the full Enskog solutions to the experimen-
tal data, leaving as as a float parameter of the theory;
see Appendix B for more details. The second method,
is based on the exponential growth rate τ , from Eq. (1)
using the analytic expressin for α(as, 0°) in Eq. (9). For
the latter, since as is unknown a priori, we use an it-
erative approach to determine α(as, 0°) starting from
α(as, 0°) = 1.7. We use the calculated as and the analytic
formula (see Eq. (9)) to obtain a new value for α(as, 0°).
We stop the iteration once the relative change of α(as, 0°)
is ≤ 1× 10−7.

Figure 3 summarizes as for 166Er in the region from
0 G to 5 G. In the studied B-field regime, the scattering
behavior is essentially dominated by a broad resonance at
3 G and a second one around B = 0 G. The as extracted
from the Enskog model and the semi-analytic one are
in very good agreement with each other, reflecting the
strength of the analytic formula of Eq. (9).

VI. BENCHMARKING WITH LATTICE
SPECTROSCOPY

To evaluate the robustness of our approach to extract
as, we benchmark our cross-dimensional thermalization
results with the one obtained using an alternative tech-
nique based on lattice modulation spectroscopy (LMS).
Such a technique, which we have developed in the past
for 166Er [23, 29] and 167Er [44], is based on the mea-
surement of the on-site interaction - related to as - of
a lattice-confined dipolar gas in a Mott insulator state.
The LMS is able to provide accurate values of aLMS

s , but
at the price of being experimentally more involved due
to its requirements of an optical lattice together with a
highly degenerate sample. Here we compare the values
of as obtained with cross-dimensional thermalization on
a low-density thermal sample, with aLMS

s obtained from
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the lattice modulation spectroscopy obtained in Ref. [29].
In brief we extract aLMS

s as follows. We prepare an ultra-
cold sample of 166Er atoms in a three-dimensional opti-
cal lattice, created by two retro-reflected laser beams at
532 nm in the horizontal plane and by one retro-reflected
laser beam at 1064 nm along the vertical z direction,
defined by gravity. The final lattice depth along the
three directions is (sx, sy, sz) = (20, 20, 100), in units of
Erec = 4.2 kHz (1.05 kHz) for 532 nm (1064 nm). The un-
certainty on sx, sy, and sz is about 5 %. In such a deep
lattice, the atoms are in the Mott insulator phase [23].

We then create particle-hole-excitations by sinu-
soidally modulating the power of the horizontal lattice
beams for 90 ms with a peak-to-peak amplitude of about
30 % and measure the recovered BEC fraction after melt-
ing of the lattice. At the resonance condition, where the
modulation frequency matches the particle-hole excita-
tion gap, we observe a resonant reduction in the BEC
fraction [45]. The particle-hole excitation gap is directly
given by the on-site interaction U = Uc + Udd. Here, Uc
is the contact interaction – and thus depends on the un-
known aLMS

s – while the on-site dipolar interaction, Udd,
can be accurately calculated. We repeat the measure-
ments at various magnetic-field values and, for each, we
extract aLMS

s .
In Fig. 3, we compare aLMS

s with as extracted from
the thermalization measurements. We see an overall
very good agreement between the value of as extracted
using the two techniques. This shows that the cross-
dimensional thermalization approach combined with the
Enskog equations is a very reliable method to extract as,
even in the case of complex atoms for which the knowl-
edge of α(as, θ) is not a priori given.

VII. DENSITY DEPENDENCE

Our measurements for the 166Er isotope were per-
formed in a regime of relatively low density (n̄ ≤
0.5× 1013 cm−3). Interestingly, when applying the same
method in a regime of high density, we observe a depen-
dence of the thermalization rate on the density which
goes beyond the Enskog approach. For instance, we re-
peat the cross-dimensional thermalization measurements
for 166Er at B = 1 G and variable cloud density, n̄. We
control the density by either increasing N or by apply-
ing a tighter trapping configuration of (ωcyl

x , ωcyl
y , ωcyl

z ) ≈
2π× (300, 19, 300) Hz before compression, or both. From
the lattice modulation spectroscopy, we have extracted a
value as = 68.3(7) a0 at B = 1 G. By fixing this value
– meaning to impose that the scattering length does not
depend on density – and using Eq. (1), we can determine
α(as, 0°) as a function of n̄. Note that for all measure-
ments we find a Knudsen number, given by the ratio of
the mean free path and the size of the atomic cloud, > 10.
This implies that we are far away from the hydrodynamic
regime, which could otherwise lead to modifications in
the thermalization behavior [46, 47].

Figure 4 shows α(as, 0°) for different values of n̄. We
find a pronounced dependency on n̄, with a rapid increase
and an eventual saturation at high densities. Such a be-
havior is not captured by our theoretical model, which,
as reflected in the definition of α(as, 0°) in Eq. (1), pre-
dicts no density dependence. To the best of our knowl-
edge, such a dependence has not been reported in pre-
vious works on cross-dimensional thermalization. Possi-
ble explanations root in various causes, either physical
or technical nature. Although being above Tc, precur-
sors of quantum many-body phenomena might influence
the scattering behavior. Exemplary, we tried to explic-
itly include effects coming from Bose-enhancement into
our theoretical framework. This did not have significant
influence on the thermalization behavior. Note that, in
the experiment, we varied the initial temperature of the
atomic cloud and the excitation strength which did not
show any influence on the observations.

Another possible explanation, based on unavoidable
experimental imperfections, roots in deviations from an
ideal harmonic trapping condition, leading to a modifi-
cation of the kinetic energy and the mean density. Such
a variation would manifest in an apparent change of
α(as, 0°); see Eq. (1). Indeed, Eq. (2) and (3) are only
valid for an ideal harmonic trapping confinement. Fur-
thermore, trap anharmonicities lead to a larger kinetic
temperature after thermalization compared to the case
of purely harmonic traps as seen when formulating the
dynamics using the scaling ansatz method [48]. As this
effect is stronger for larger densities, this further suggests
that the range of low densities is the appropriate one to
consider. First Monte-Carlo simulations performed by
using a realistic gaussian trapping potential seem to sup-
port this assumption; see Appendix C.

We emphasize that, due to the agreement with the
lattice modulation spectroscopy results, the above dis-
cussion on anharmonicities, and since our measurements
to extract as have been performed at low densities, we
are confident that our method remains valid.

VIII. SCATTERING LENGTH FOR 164Er AND
170Er

After the detailed study on 166Er and the benchmark-
ing of the results with high-precision lattice modulation
spectroscopy, we confidently apply our cross-dimensional
thermalization approach to two other isotopes, 164Er and
170Er. Again we start with a Fano-Feshbach spectroscopy
between 0 G and 5G to identify the position of the scat-
tering resonances as shown in Fig. 5. We note that this
Fano-Feshbach spectra have not been reported previ-
ously. For the cross-dimensional thermalization measure-
ments we follow a similar experimental procedure as de-
scribed above. From the thermalization curve, we again
use both, the full fit of the Enskog equations as well as
the iterative approach on α(as, 0°) to determine as from
the exponential growth rate τ .
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FIG. 4. Measurements of α(as, θ) as a function of n̄. The blue
circles correspond to the datasets at 1 G, shown in Fig. 3. The
black solid line marks the value given by the analytic formula
in Eq. (9). All measurements are performed with θ = 0°.
Errorbars denote the standard error.

Figure 5 shows as for the isotopes (a) 164Er and (b)
170Er. While the scattering behavior for 164Er is, sim-
ilarly to 166Er, dominated by two broad resonances at
1.5 G and 3.3 G, 170Er features several narrow overlap-
ping resonances, providing different test scenarios for our
cross-dimensional thermalization. Although minor devi-
ations can be observed in the vicinity of Fano-Feshbach
resonances, for both isotopes, the extracted as using the
two approaches are once more in good agreement.

IX. SCALING OF BACKGROUND
SCATTERING LENGTH WITH MASS

The knowledge on as as a function of the magnetic-
field allows us to extract an effective background scat-
tering length abg

s for each isotope. The general behavior
of as with B can be described by generalizing the well-
known formula [49]

as(B) = (abg
s + sB)×

Nres∏
i=1

(
1− ∆Bi

B −Bi

)
, (10)

to the case of Nres overlapping resonances of position Bi
and width ∆Bi, and allowing for a smooth off-resonant
variation of as with B. We observe that a linear vari-
ation of slope s already well reproduces the data with
as(0) defined as the effective abg

s . We note that different
mechanisms could lead to an off-resonant variation of as.
For instance, the influence of broad Fano-Feshbach res-
onances, which are not within our measurement range,
could lead to a smooth variation of the background be-
havior, similar to that observed for cesium [50]. Alterna-
tively, the effect could be due to the coupling induced by
DDI between the incident scattering channel and Zeeman
states that lie higher in energy. As a consequence this re-
sults in a perturbation of the molecular potential, whose
strength depends on the magnetic field, leading to an
increasing value of the van der Waals C6 coefficient [51].

To parametrize as as a function of B, we fit Eq. (10) to
the measured as for 164Er, 166Er, 168Er, and 170Er. For
166Er and 168Er, we use the scattering lengths obtained
from the lattice modulation spectroscopy, corresponding
to our most accurate determination; see solid lines in
Fig. 3 and Fig. 3. For 164Er and 170Er, we fit Eq. (10) to
the as data obtained by applying the Enskog equations to
the cross-dimensional thermalization measurements; see
solid lines in Fig. 5. More details on the fitting procedure
as well as the complete list of the fit parameters is given
in Appendix F. In general, we observe that the fitting
function reproduces very well the behavior of as for every
isotope.

Figure 6 shows the value of abg
s from the fit as a func-

tion of the isotope mass. We observe a monotonic ris-
ing of abg

s with increasing m, which might be compatible
with different functional forms, including a simple linear
increase. Under the assumption that erbium has a sim-
ilar behavior to ytterbium and cesium, we can use the
model for the mass scaling as developed in Ref. [52–54].
Such a model assumes that as is only given by the Van
der Waals potential U(r) = −C6/r

6, with C6 being the
Van der Waals coefficient. This might be a rather severe
approximation for magnetic atoms but, in absence of al-
ternative models, it is interesting to compare the simple
mass-scaling approach to erbium.

As introduced in Ref. [52], as can be written as

as = ā
[
1− tan

(
φ− π

8

)]
, (11)

with ā = 2−3/2 Γ(3/4)
Γ(5/4)

(
mC6

~2

)1/4
being the characteristic

length and

φ =

√
m

~

∫ ∞
R0

√
−U(r)dr. (12)

Here, Γ(x) is the gamma-function and R0 is the classi-
cal turning point of U(r). Although the exact shape of
U(r) is unknown, Eq. (11) can be employed to extract
a mass-scaling due to the dependence of φ ∝

√
m [53].

Such a scaling is valid, as long as the mass dependent
modification of U(r) is negligible. Furthermore, φ allows
for the calculation of the number of bound states NB via
relation NB = bφ/π − 5/8c, where b c denotes the floor
integer function.

We now apply this model to our Er case. Figure 6
shows the fit of Eq. (11) to the experimental data; see
Appendix G for details. We obtain the best agreement
for φ/π = 144(1), leading to NB = 143(1) for 168Er.
Despite the similar C6 coefficient, NB is approximately
a factor of 2 larger than for ytterbium [53]. Note that,
NB is in agreement with the result obtained when using
the same approach but assuming a hard core potential;
see Appendix H. We would like to emphasize once more
that this model does not consider any contribution aris-
ing from the DDI. An improved description calls for the
development of advanced theoretical models.
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atom number recorded in the explored magnetic field range.

Further, as extracted from cross-dimensional thermalization measurements using both, the Enskog equations (red squares)
and the analytic formula of Eq. (8) (blue diamonds) is shown. The solid black lines represent a fit of Eq. (10) to as obtained

using the Enskog equations. Error bars and the shaded area of the fitting results denote the standard error.
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FIG. 6. Background scattering length abgs for four bosonic
isotopes (red circles). The solid line represents the best fit
with φ/π = 144(1); see text. The shaded area, enclosed by
the dotted lines, represents the fitting function for φ = 143
and φ = 145. The errorbars denote the standard error of the
fit of Eq. (10) to the experimental data.

X. CONCLUSION

In conclusion, we report on an accurate study of the
scattering length of four different isotopes of erbium. Our
work focuses on the low magnetic field region, which is
the range of most interest in current experiments. Our
experimental survey combines two different techniques:

a high-precision, yet demanding, approach based on the
measurement of the onsite interaction in a Mott insu-
lator phase, and another one based on measuring the
re-equilibration time in cross-dimensional thermalization
experiments. From the latter, we extract the the value
of as by both numerically applying the full Enskog equa-
tions and using the analytic formulation for α(as, θ). All
these different approaches, benchmarked one with re-
spect to the others, provide a very consistent measure
of the scattering length in the region of interest. These
results will be relevant for current experiments and more-
over point to a practical manner to extract as with re-
duced experimental effort, which can be readily general-
ized to other magnetic lanthanides.
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Appendix A: Analytic number of collisions per
re-thermalization

Analytic expressions for α(as, θ) can be derived under
a short-time approximation, with the Enskog equations

d〈q2
j 〉

dt
− 2

m
〈qjpj〉 = 0, (A1a)

d〈p2
j 〉

dt
+ 2mω2

j 〈qjpj〉 = C [p2
j ], (A1b)

d〈qjpj〉
dt

− 1

m

〈
p2
j

〉
+mω2

j 〈q2
j 〉 = 0, (A1c)

where rj and pj are positions and momenta respectively
(j = x, y, z), and C is the collision integral. The deriva-
tion follows from Ref. [37], but we present a brief out-
line here for completeness. The gas is assumed close-to-
equilibrium, allowing us to treat rj and pj as Gaussian
distributed. Thermalization trajectories are then tracked
using the Gaussian widths along each axis, to compute
the energy differential

〈χj〉 ≡ Ej − kBTf , (A2)

where Tf = (Tx+Ty+Tz)/3 is the final equilibration tem-
perature (obtained from the equipartition theorem), 〈. . .〉
denotes an ensemble average assuming a Gaussian phase
space distribution whose widths are allowed to vary, and
Ej = 〈p2

j 〉/(2m)+mω2
j 〈r2

j 〉/2 is the sum of kinetic and po-
tential energies in the j-th direction. The Enskog equa-
tions dictate that the relaxation of 〈χj〉 follows the dif-
ferential equation

d〈χj〉
dt

= C [χj ]. (A3)

For small deviations from equilibrium and at short
times, re-thermalization can be approximated with a sin-
gle decay rate γ, such that C [χ] ≈ −γ〈χ〉. This results in
the relation

dEj
dt

= −γyj (Ej − kBTf ) = C [Ej ], (A4)

where the subscript on γyj indicates that the gas was
excited along y, and re-thermalization measured along j.
This then permits us to compute

αyj =
n̄σ̄vr
γyj

=

(
Ej − kBTf

C [Ej ]

)
n̄σ̄vr, (A5)

which for j = z, has the form in Eq. (8).

Appendix B: Fitting Enskog equations to
experimental data

The extraction of the scattering lengths as, from cross-
dimensional thermalization data was done here by means
of full numerical solutions to the Enskog equations. To

0 50 100 150 200 250 300
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340

FIG. 7. Benchmarking of the Enskog simulation results for Tz

(red solid line) with Monte-Carlo simulations (black dashed
line). The dataset is the same as in Fig. 1.

do so, as was left as a float parameter in the theory, then
varied until a best fit between the theory and experimen-
tal data was obtained. A feature we noticed during fitting
was the high sensitivity of thermalization rates to varia-
tions in the trapping frequencies ω, over the finite-time
quench. Measurement uncertainties therefore motivate
us to also leave ω a float parameter, with allowed values
within its 1-sigma errorbars. This is applied both to the
trapping frequencies before and after the quench.

We performed fits using a χ2 optimization criterion

min
ω,as

tend∑
t=t0

(
T (t)− TE [T (0);ω, as] (t)

δT (t)

)2

, (B1)

where the sum runs over measurement time instances
t, T (t) is the temperature data from the experiment,
δT (t) is the temperature measurement uncertainty, and
TE [T (0);ω, as] is the solution to the Enskog equations
with initial condition T (0), and fit parameters as and ω.

To reduce biasing of the fits, we run an iterative algo-
rithm that recursively fits ω and as in succession until
they converge to stable values. Such a procedure would
take exceedingly long times (∼ weeks) with full Monte
Carlo (MC) simulations, but can be done in minutes with
the Enskog equations on a current-day computing device.

Solutions to the Enskog equations have shown them-
selves accurate when compared to MC simulations [37,
41]. We show their accuracy here yet again, using the
parameters from the current experimental set-up. An il-
lustrative example is provided in the plot of Fig. 7, com-
paring an instance of the Enskog solutions (red solid line),
MC simulations (black dashed line) and the experimental
data (blue circles).

Appendix C: Monte-Carlo simulations including
trap anharmonicities

Optical dipole traps are, in many studies, assumed to
be well modeled by purely harmonic potentials. This



11

may however be inadequate in regimes with significant
trap anharmonicity effects, which we currently attribute
the density dependence of α to. In such cases, the poten-
tial is better modeled as two cross-propagating Gaussian-
profile beams along the y and z axes (with gravity). This
produces the confinement potential

VODT(r) = − 2Ũ1P1

πw1,x(z)w1,y(z)
e
−2

(
x2

w2
1,x(z)

+ y2

w2
1,y(z)

)

− 2Ũ2P2

πw2,x(y)w2,y(y)
e
−2

(
x2

w2
2,x(y)

+ z2

w2
2,z(y)

)

+mgz, (C1)

where P is the laser power Ũ is an atomic polarizability
parameter and

w(z) = w0

√
1 +

z2

z2
R

, (C2)

with zR and w0 denoting Rayleigh lengths and beam
widths respectively.

Such a potential limits the applicability of the afore-
mentioned Enskog equations as formulated in Ref. [41].
Instead, more robust MD methods are required to ac-
curately predict thermalization trajectories. We imple-
ment a MD simulation similar to that in Ref. [20], which
evolves simulation particles under the action of VODT via
the Verlet symplectic integrator

qk = rk(t) +
∆t

2m
pk(t), (C3a)

pk(t+ ∆t) = pk(t) + F k∆t, (C3b)

rk(t+ ∆t) = qk +
∆t

2m
pk(t+ ∆t), (C3c)

where subscripts k denote the k-th simulation particle,
∆t is the simulation time-step, t is the time and

F k = −∇VODT(rk). (C4)

Dipolar collisions are then computed with the direct sim-
ulation Monte Carlo method [56], that determines post-
collision momenta via stochastic sampling of the differ-
ential cross section.

In a preliminary study of the density dependence, ideal
Gaussian beam profiles are assumed, along with perfectly
accurate beam widths and Rayleigh lengths. Following a
trap quench, thermalization of the out-of-equilibrium gas
in VODT indeed shows an apparent increase of α with den-
sity, qualitatively similar to that observed in the exper-
iment. This effect is absent in simulations with an ideal
harmonic trap. Furthermore, in higher density regimes,
the simulations with VODT predict the experimentally ob-
served equilibration temperatures more accurately com-
pared to the harmonic trap case. These early findings
on density dependence from trap anharmonicities are in-
triguing, and a cautionary tale for future experiments.
However, we do not develop this idea further here and
leave such analysis for future works.

Appendix D: Fano-Feshbach spectroscopy

To identify the positions of the Fano-Feshbach reso-
nances we perform high-resolution loss spectroscopy in
a cylindrically symmetric trap. We evaporatively cool
the atoms until they reach a temperature between T =
300 nK and 400 nK. At this stage, the atom number is be-
tween 6× 104 and 1.2× 104 with typical trap frequencies
of (ωx, ωy, ωz) = 2π × (300, 30, 300) Hz. The exact val-
ues depend on the isotope choice. After reaching thermal
equilibrium, we change B, oriented along the z axis, in
1 ms to the desired value and wait for a holding time be-
tween 250 ms and 500 ms. We use different holding times
for different datasets to avoid saturation effects of the
resonances for higher densities. After the holding time,
we measure the atom number using absorption imaging
after a time of flight expansion of 25 ms. The results of
the loss-spectroscopy measurements are shown in Fig. 3,
Fig. 5 and Fig. 8.

Appendix E: Scattering length for 168Er

To obtain as for the 168Er isotope, we follow a simi-
lar approach as for 166Er. First, we perform loss spec-
troscopy to identify the position of Fano-Feshbach reso-
nances. We then transfer the atoms into an optical lat-
tice with a depth of (sx, sy, sz) = (20, 20, 40)Erec and ap-
ply the lattice modulation spectroscopy technique to ex-
tract as. The lattice modulation spectroscopy follows the
same lines as for the 166Er isotope; see main text. Fig. 8
summarizes the results for 168Er and shows the Fano-
Feshbach spectroscopy result as well as as as a function
of B in the magnetic field range from 0 G to 5 G.

Appendix F: Extracting background scattering
length

To obtain a value for abg
s , we fit Eq. (10) either to

as obtained from the full Enksog equations (164Er and
170Er) or aLMS

s (166Er and 168Er). Due to the differ-
ent numbers of Fano-Feshbach resonances compared to
the number of available data points for as, we slightly
vary the fitting approach for the individual isotopes. De-
pending on the position and the width of the resonance,
for some resonances, we fix the position Bi to the min-
imum of the loss feature and keep only the width ∆Bi
as a floating parameter. For the very narrow resonances,
which have a negligible influence on the overall scattering
behavior, we fix both Bi and ∆Bi.

Table I gives the results for the background scattering
lengths abg

s and the slopes s for all four isotopes. More-
over, Tables II–V contain a detailed listing of all Fano-
Feshbach resonances and how they are included in the fit-
ting procedure. Note that for 170Er, we are aware of the
existence of a particularly broad resonance at 6.91 G [57],
which we include with variable width. When looking



12

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

0

100

200

300

400

FIG. 8. Atom-loss spectroscopy (orange circles) as a function of B for a fixed holding time of 500 ms. For each B value, the data
point is an average of 6-7 repetitions and it is normalized to the maximum averaged atom number recorded in the explored
magnetic field range. Further, the measured scattering lengths as obtained for 168Er from lattice modulation spectroscopy
measurements are shown. The solid black line represents a fit to aLMS

s . The shaded area as well as the error bars denote the
standard error.

TABLE I. Values for abgs and s obtained from the fit of
Eq. (10) to as for the four bosonic isotopes. The error de-
notes the fit error of one standard deviation.

isotope abgs (a0) s (a0/G)

164 52(6) 9(3)

166 61(3) 5.4(9)

168 110(2) 11(2)

170 129(9) 20(10)

TABLE II. Parameters for the Fano-Feshbach resonances in-
cluded into the fit of Eq. (10) to as for 164Er. The error de-
notes the fit error of one standard deviation. Values without
error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

1.52 0.22(3)

2.67 0.005

2.83 0.005

3.26 0.10(3)

closely, the onset of this resonance can actually be seen
as a reduction of N towards higher magnetic field values
in the loss spectroscopy (see Fig. 5(b)).

Appendix G: χ2 analysis for mass scaling

In this section, we describe our analysis of the back-
ground as of the 4 Er isotopes (Fig. 6) with Eq. (10). To
find the best fitting parameter φ, we analyze the agree-
ment of the theoretical model in Eq. (11) with our exper-
imental data. For each value of φ, we calculate the χ2

TABLE III. Parameters for the Fano-Feshbach resonances
included into the fit of Eq. (10) to as for 166Er. The error de-
notes the fit error of one standard deviation. Values without
error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.02(5) 0.05(2)

3.04(5) 0.15(2)

4.208 0.01

4.96 0.005

TABLE IV. Parameters for the Fano-Feshbach resonances
included into the fit of Eq. (10) to as for 168Er. The error de-
notes the fit error of one standard deviation. Values without
error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.49 0.005

0.911(6) 0.032(2)

1.51 0.01

2.174(4) 0.038(2)

2.471(9) 0.19(1)

2.86 0.005

3.79 0.006(5)

4.23 0.005

4.5 0.005

via

χ2 =

4∑
i=1

(
amod
s − ais
σis

)2

. (G1)

Here, amod
s is the scattering length given by the model

for the corresponding φ and ais and σis are the measured
as with the corresponding standard error.
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TABLE V. Parameters for the Fano-Feshbach resonances in-
cluded into the fit of Eq. (10) to as for 170Er. The error de-
notes the fit error of one standard deviation. Values without
error are fixed in the fitting procedure.

Position Bi (G) Width ∆Bi (G)

0.35 0.005

0.86 0.028(12)

1.12 0.005

1.62 0.01

2.17 0.067(7)

2.74 0.134(9)

3.3 0.01(1)

3.57 0.01

4.38 0.005

4.49 0.01

6.91 0.8(7)

The behavior of χ2 is non-monotonic with the appear-
ance of several minima. We identify the absolute mini-
mum of χ2 for φ = 144.03. To further obtain an estimate
for the error of φ we fit a quadratic function to the local
minima. We extract the limits of the confidence interval
by considering the region where χ2 ≤ χ2 + 1.

Appendix H: Hard-core potential for mass scaling

The model contains the assumption, that the s-wave
scattering length is given at large distances by the van-
der-Waals potential scaling with UvdW(r) ∝ −C6/r

6,
with C6 being the Van der Waals coefficient, and at short
distances r < rc by a hard core potential [52]. In this
specific case, the scaling of abg

s can be described by

abg
s = ā tan(Φ), (H1)

where ā = Γ(3/4)

2
√

(2)Γ(5/4)
ac with ac =

(
2mrC6

~2

)1/4
being the

characteristic scattering length scale of the potential, and

Φ =
a2c
2r2c
− 3π

8 is the semi-classical phase [52].

From theoretical calculations in Ref. [6] we use C6 =
1723 a.u. and we estimate from the theoretical interac-
tion potential given in Ref.[6] that rc ≈ 4 − 8 a0. We fit
Eq. (H1) to abg

s of the four bosonic isotopes. Due to a
large number of possible local minima, we combine the
fitting with a minimization of the χ2-value while varying
the start parameter for rc. We obtain the best agreement
for rc = 5.05(5) a0.

In addition, the Levinson theorem [58] allows us to
estimate the number of bound states NB , which can be
calculated from the semi-classical phase Φ using

NB =

[
Φ

π
− 3

8

]
+ 1, (H2)

where the square brackets mean the integer part. For
the current fitting we obtain NB ranging from 141 to
144, in agreement with the approach in the main text.
We want to emphasize, that this modelling of abg

s is a
simple approach and a more thorough analysis could add
deeper valuable insights.
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