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Abstract

Many molecular, quantum-dot, and optomechanical nanocavity-QED systems demonstrate

strong nonlinear interactions between electrons, photons, and phonon (vibrational) modes. We

show that such systems can be described by a universal model in the vicinity of the nonlinear

resonance involving all three degrees of freedom. We solve the nonperturbative quantum dynamics

in the strong coupling regime of the nonlinear resonance, taking into account quantization, dissi-

pation, and fluctuations of all fields. We find analytic solutions for quantum states in the rotating

wave approximation which demonstrate tripartite quantum entanglement once the strong coupling

regime is reached. We show how the strong coupling at the nonlinear resonance modifies photon

emission and vibrational spectra, and how the observed spectra can be used to extract information

about relaxation rates and the nonlinear coupling strength in specific systems.
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I. INTRODUCTION

Nonlinear optical interactions acquire qualitatively new features in the strong-coupling

regime of cavity quantum electrodynamics (QED), especially when utilizing an extreme field

localization achievable in nanophotonic cavities. Even in the standard cavity QED scenario

of the strong coupling at the two-wave resonance between only two degrees of freedom, e.g.,

between an electronic or vibrational transition in a molecule and an electromagnetic (EM)

cavity mode, strong coupling has been shown to modify the properties of Raman scattering,

generation of harmonics, four-wave mixing, and nonlinear parametric interactions, with

applications in photochemistry, quantum information, and quantum sensing; see, e.g., [1–

12].

The dynamics becomes more complicated but also more interesting when the strong

coupling regime is realized at the nonlinear resonance between three or more degrees of

freedom. One possible example where it can be realized is a molecule or an ensemble of

molecules placed in a photonic or plasmonic nanocavity; e.g. [11–18]. In this case the

fermion system may comprise two or more electron states forming an optical transition at

frequency ωe, and the nonlinear parametric process may involve, e.g., a decay of the electron

excitation into a cavity photon at frequency ω and a phonon of a given vibrational mode

of a molecule at frequency Ω, under the nonlinear resonance condition ωe = ω + Ω, or

an absorption of a photon with simultaneous creation of electron and phonon excitations,

given by the nonlinear resonance condition ω = ωe + Ω. When the strength of such a

nonlinear three-wave interaction is higher than the dissipation rates, hybrid electron-photon-

phonon states are formed. If the phonon mode is classical, the parametric process is simply

the modulation of the electron-photon coupling by molecular vibrations which serve as an

external driving force for the electron-photon quantum dynamics. If the phonon mode is

quantized, the strong coupling between photon, phonon, and electron degrees of freedom

near the nonlinear resonance ωe = ω ± Ω leads inevitably to the formation of tripartite

entangled states belonging to the family of Greenberger-Horne-Zeilinger (GHZ) states [19].

Another route to the nonlinear resonance is within the framework of cavity optome-

chanics, e.g. [21–25], and quantum acoustics [26–28]. It can occur in the situations where

mechanical oscillations of a cavity parameter at frequency Ω modulate the frequency of the

photon cavity mode. Here again the nonlinear resonance ωe = ω ± Ω at strong coupling
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should give rise to tripartite entangled states of the electrons, photons, and mechanical vi-

brations [29]. While quantization of all three degrees of freedom in experiment remains an

unsolved challenge, strong coupling and entanglement of acoustic phonons [30, 31], resolving

the energy levels of a nanomechanical oscillator [28], or cooling a macroscopic system into

its motional ground state [32] have already been demonstrated.

Yet another situation leading to the nonlinear resonance is when the phonons or molecular

vibrations modulate the electron transition frequency. This coupling is typically introduced

via the Huang-Rhys theory; see the Hamiltonian Eq. (14) below. The same type of the

Hamiltonian is often used to describe the effect of phonons on the coupling of a quantum

dot or an optically active defect in a solid matrix to the EM cavity field [33–37]. The

exciton-photon coupling strength (Rabi frequency) in nanocavities can be even high enough

to exceed the phonon frequency, which brings the system to the ultrastrong coupling regime

with respect to the phonon mode [37].

There is a great variety of models and formalisms describing these diverse physical sys-

tems, and attempts have been made to establish connections between different models.

For example, it was shown in [24] that plasmon-enhanced Raman scattering on individ-

ual molecules can be mapped onto a cavity optomechanics Hamiltonian when the plasmon

frequency is far detuned from the electronic transition in a molecule, i.e., no electrons are

excited. In this case the vibrational mode of a molecule is analogous to the mechanical oscil-

lations of a cavity parameter. In [3] it was argued that Stokes Raman scattering in molecules

under the condition of a strong coupling between the vibrational mode and the cavity mode

is equivalent to the parametric decay of the pump photon into the Stokes photon and the

vibrational quantum. In both cases a simple linear resonance ω = Ω was assumed and the

EM field was far detuned from any electronic transition in a molecule, thus excluding any

real electron excitation. In [12] resonant Raman scattering of single molecules when the

two-wave exciton-photon coupling frequency is comparable to the vibrational frequency was

analyzed. The situation when the Rabi frequency becomes comparable to the vibrational

frequency was also considered in [19].

In this paper we deal with the strong coupling at the nonlinear three-wave resonance

ωe = ω ± Ω when the excitation of the electron transition and energy exchange between

all three degrees of freedom are of principal importance. We show that in the RWA (i.e.,

excluding ultrastrong-coupling regimes) all physical models of electron-photon-vibrational
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coupling in molecular, optomechanical, and any other coupled three-mode system can be

mapped onto the universal “parametric” Hamiltonian, independently on the specific physical

mechanism of coupling. This result is surprising as the original Hamiltonians describing these

systems have a very different structure; see the next section.

We call this Hamiltonian “parametric” for lack of a better word, because it resembles

the structure of the Hamiltonian describing spontaneous parametric down-conversion of a

pump photon field into signal and idler photons, assuming that all three fields are quantized

[60]. However, one should keep in mind that in our case one of the degrees of freedom is

fermionic (quantum emitter) and we are interested in the nonperturbative regime of strong

coupling when the excitation of the quantum emitter is not small. This is the regime most

interesting for quantum technology applications as it actively involves the fermionic qubit

in the processes of writing, reading, and transferring the information encoded in a quantum

state.

Note that the system must be in the RWA regime for the nonlinear resonance and all

associated physics to exist and make sense. Otherwise the three-wave and two-way reso-

nances overlap [19] and the GHZ-like entangled states cannot be created. Also, it becomes

impossible to build a universal Hamiltonian. That is why the ultrastrong-coupling regimes

are not of interest to us in this paper.

When solving for the quantum dynamics of the resulting nonlinear coupled system, we

include the effects of decoherence and coupling of each dynamic subsystem (electrons, pho-

tons, and phonons) to its own reservoir in the Markov approximation. Previous works (see,

e.g., [35, 37]) included the non-Markovian effects in the coupling of the two-wave exciton-

photon resonance to the phonon reservoir. In our case the phonon mode, which is strongly

coupled to the exciton and photon modes through the nonlinear resonance, is part of the

dynamical system. One could say that the phonon effect on the dynamics is “extremely

non-Markovian”, except that this terminology ceases to have any meaning in this case. The

Markov approximation is of course related only to (weak) coupling of all components of the

dynamic system to their dissipative reservoirs.

Within the formalism of the stochastic equation of evolution for the state vector we are

able to find the general analytic solution for the nonperturbative dynamics of the open

quantum system. This approach is well known [38], but it is usually applied for numerical

Monte-Carlo simulations [39–47]. We recently developed a version of stochastic Schrödinger

4



equation suitable for analytic solutions in open strongly-coupled cavity QED problems [19,

48]. We calculate the photon and phonon emission spectra to obtain the experimentally

observable signatures of the strong coupling regime and tripartite quantum entanglement.

The effect of the phonon reservoir leads to qualitatively new features in both photon and

phonon emission spectra at the nonlinear resonance that are not present in the standard

Rabi oscillations regime and were not found in our recent work [19]. In particular, the

intermediate relaxation pathways result in a richer multi-peak structure. Since we are able

to find analytic solutions for the quantum dynamics in systems of coupled electron, photon,

and phonon excitations including dissipation and fluctuation effects in all subsystems, we

can retrieve all experimental parameters from the relative amplitudes and positions of the

spectral peaks, namely transition energies and frequencies, matrix elements of the optical

transitions, the spatial structure of the field modes, relaxation rates for all constituent

subsystems, ambient temperatures etc. We believe that the results obtained in this paper

will be useful for designing and interpreting the experiments on a broad range of cavity QED

systems.

The paper is structured as follows. In Section II we present the Hamiltonian for cou-

pled quantized fermion, photon, and phonon fields near the nonlinear resonance for one

particular mechanism of three-wave coupling. In Section III we show that a large variety

of different three-wave coupling mechanisms and physical systems are reduced to the same

Hamiltonian which therefore can serve as a universal model of the strongly coupled nonlin-

ear resonance. Section IV includes the effects of dissipation, decoherence, and fluctuations

within the stochastic equation for the state vector which describes the evolution of an open

system in contact with dissipative reservoirs. As compared to our recent work [19, 48],

we develop a model of fluctuations and dissipative processes which includes all effects of

phonon dissipation on the dynamics of the parametric process and the emission spectra. In

Section V we describe the formation of entangled electron-photon-phonon states for an open

system. Section VI calculates the emission spectra of photons and phonons resulting from

the nonlinear parametric decay of an electron excitation. Appendices A and B contains the

derivation details.
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II. THE UNIVERSAL HAMILTONIAN OF THE NONLINEAR RESONANCE

Consider a simple model of three interacting quantum subsystems which includes (1)

an electron transition in a quantum emitter such as an atom, molecule, optically active

impurity, quantum dot, etc., which we will model as a 2-level system, (2) a single-mode

electromagnetic (EM) field in a cavity, and (3) a mode of mechanical, acoustic, or molecular

vibrations (“phonons”). Although in this section we write the Hamiltonian for a specific

model, in the next section we show that the same Hamiltonian describes the nonlinear

parametric coupling in a variety of physical systems.

The generalization to many bosonic modes or fermionic degrees of freedom is straightfor-

ward and still allows analytic solution within the rotating wave approximation (RWA), but

it leads to more cumbersome algebra (see, e.g., [49]), so we will keep only three degrees of

freedom for clarity.

Figure 1 shows a generic model of parametric decay of an electron excitation in a quantum

emitter (e.g., a molecule) into a photon of a cavity mode at frequency ω and a phonon of

a given vibrational mode at frequency Ω, under the condition of the nonlinear resonance

ωe ≈ ω +Ω.
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FIG. 1: A sketch of nonlinear resonance for a molecule in a cavity showing the decay of the

electron excitation at frequency ωe into a cavity mode photon at frequency ω and a

phonon of a given vibrational mode at frequency Ω. The relaxation rates of the electron,

photon, and vibrational excitations are γ, µω, and µΩ, respectively.

In the absence of coupling, the partial Hamiltonians are:
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A. The 2-level fermion system

It is described by a standard effective Hamiltonian

Ĥe = ~ωeσ̂†σ̂. (1)

Here σ̂ = |0〉 〈1|, σ̂† = |1〉 〈0| ; |0〉 and |1〉 are the eigenstates of an “atom” with energies 0

and ~ωe respectively. The Hamiltonian (1) corresponds to the dipole moment operator

d̂ = d
(
σ̂† + σ̂

)
, (2)

where d = −e 〈1| r |0〉, r is a coordinate for the finite motion of a bound electron.

B. The EM field

Here we consider a single-mode EM field for simplicity, although including many bosonic

field modes does not present any principal difficulties. Besides, in a micro- or nanocavity

other EM modes will be far detuned from the nonlinear resonance. The Hamiltonian is

Ĥem = ~ωĉ†ĉ. (3)

Here ĉ and ĉ† are standard bosonic annihilation and creation operators of photons or plas-

mons in the EM mode of frequency ω . The electric field operator is

Ê = E (r) ĉ+ E∗ (r) ĉ†. (4)

The spatial structure of the normalization amplitude of the field E (r) is determined by

solving the boundary value problem. The normalization condition is∫
V

∂ [ω2ε (ω, r)]

ω∂ω
E∗ (r)E (r) d3r = 4π~ω. (5)

Here V is the quantization volume, ε (ω, r) the dielectric function of the dispersive medium

which fills in the resonator. Eq. (5) is derived, e.g., in [50–53].

C. The phonons

We again assume a single bosonic mode of a vibrational field for the same reasons,

Ĥp = ~Ωb̂†b̂, (6)
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where b̂ and b̂† are phonon annihilation and creation operators. Depending on the situation,

they may define, e.g., the radius-vector of oscillations of the center of mass of an atom

[5, 19, 55] or a geometric parameter of the optomechanical cavity [22, 24],

R̂ = Qb̂+ Q∗b̂†. (7)

The normalization amplitude Q depends on the system; its absolute value can be expressed

through an effective mass of the quantum mechanical oscillator [22]: |Q|2 = ~
2meffΩ

.

D. The coupling

The coupling between subsystems is strongest at resonance. Since usually ω, ωe � Ω,

two most relevant resonances are a two-wave resonance,

ωe ≈ ω (8)

and a three-wave (nonlinear) resonance,

ωe ≈ ω ±Ω (9)

There could be also resonances at the harmonics of the phonon frequency: ωe ≈ ω ±MΩ,

where M is integer. The modulation of the system parameters by a classical phonon field

at frequency Ω was studied, e.g., in [48], and we don’t consider the classical field here.

The two-wave resonance in the RWA [39] is desrcibed by the Jaynes-Cummings (JC)

Hamiltonian [59],

Ĥ = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~
(
Ω

(2)
R σ̂†ĉ+ h.c.

)
. (10)

The electric dipole coupling between the electron and EM subsystems is expressed here

through the effective Rabi frequency for the two-wave coupling, Ω
(2)
R = −d·E(r0)

~ , where r0 is

the coordinate of a point-like atom.

A three-wave (parametric) resonance appears in many different scenarios. As we show in

the next section, various models existing in the literature can be described with one universal

Hamiltonian. One of the scenarios leading to the universal three-wave coupling Hamiltonian

is when a quantized phonon (vibrational) mode modulates the coupling strength between the

electron transition and the EM field mode. In this case the JC Hamiltonian is generalized
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to the following form [3, 19]:

Ĥ = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~Ωb̂†b̂+ ~
(
Ω

(3)
R σ̂†ĉb̂+ h.c.

)
, (11)

where Ω
(3)
R is the coupling parameter for the three-wave resonance, which depends on the

specific coupling mechanism. The above interaction term is written for the decay of an

electron transition into the photon and the phonon, i.e., assuming that the electron excitation

energy is the largest of the three. This decay process corresponds to the upper (plus) sign

in the resonant condition (9). If we choose the lower (minus) sign in Eq. (9), the three-wave

coupling Hamiltonian will become ~
(
Ω

(3)
R ĉ†b̂σ̂ + h.c.

)
.

Note that the three-wave coupling term in Eq. (11) has the structure formally equivalent

to the parametric down-conversion (PDC) Hamiltonian describing the parametric decay of

the quantized pump field into quantized signal and idler modes [60, 61]. Of course one

difference is that all fields in the photonic PDC process are described by bosonic operators

whereas the electron excitation in Eq. (11) is described by fermionic operators, giving rise

to its specific nonlinearities.

The strong coupling regime at the nonlinear resonance is realized when the three-wave

coupling parameter in Eq. (11) is larger than a certain combination of the relaxation con-

stants γ, µω, µΩ of all subsystems. The exact criterion can be retrieved from the analytic

solution presented in Sections V and VI below.

The specific form of the parameter Ω
(3)
R depends on the nonlinear coupling mechanism.

For example, a phonon mode can modulate the position of the center of mass of an “atom”

within a spatially nonuniform distribution of the EM field of a cavity mode. It can be

realized for all kinds of quantum emitters: an electron transition in a molecule, a quantum

dot or defect in a solid matrix, an optomechanical system with a varying cavity parameter,

etc. In this case, in the limit of a small amplitude of vibrations, one can obtain that [19]

Ω
(3)
R = −1

~
[d (Q · ∇)E]r=r0

. (12)

The Hamiltonian in Eq. (11) is valid if the three-wave resonance is well separated from the

two-wave one. The conditions for that are [19]

|ωe − ω −Ω| � |ωe − ω| ,
∣∣∣Ω(2,3)

R

∣∣∣� Ω. (13)

In the next section we will see that if the conditions (13) are satisfied, other models of

three-wave coupling can be reduced to the universal parametric Hamiltonian (11). Note
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that in plasmonic nanocavities the two-wave or/and three-wave Rabi frequency Ω
(2,3)
R can

become higher than the vibrational or phonon frequency Ω, which would violate the last of

inequalities (13); see [12, 19, 37].

III. THE MODELS DESCRIBED BY THE UNIVERSAL PARAMETRIC HAMIL-

TONIAN

In addition to the three-wave coupling mechanism considered in the previous section,

there are other ways for phonons or any mechanical oscillations to affect the coupling be-

tween the EM cavity field and the quantum emitter. Here we give several examples, as-

suming without loss of generality that the amplitudes Q in the expression for the position

displacement operator in Eq. (7) are real functions.

A. Phonons modulate the energy of the electron transition

For a single phonon mode the Hamiltonian is

Ĥ = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~Ωb̂†b̂+ ~
(
Ω

(2)
R σ̂†ĉ+ h.c.

)
+ ~
√
SΩσ̂†σ̂

(
b̂+ b̂†

)
. (14)

Here S is the Huang–Rhys factor, which determines the dependence of the transition energy

on the dimensionless amplitude b̂ + b̂† of the phonon oscillations. There are numerous

studies of this type of modulation; see, e.g., [5, 12–15, 54, 55] and references therein. The

same type of coupling is also used in a Holstein-Tavis-Cummings model; e.g., [56–58]. Let’s

call Eq. (14) the “molecular” Hamiltonian, although it also describes the exciton-phonon

coupling in quantum-dot systems [34–37].

B. Phonons modulate some geometric parameter of the cavity

This type of coupling is usually described by the Hamiltonian of the type

Ĥ = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~Ωb̂†b̂+ ~
(
Ω

(2)
R σ̂†ĉ+ h.c.

)
− ~gĉ†ĉ

(
b̂+ b̂†

)
, (15)

or its multimode extension. Here the factor g determines the linear dependence of the

resonant frequency of the cavity on some geometric parameter G modulated by mechanical
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vibrations:

g = −Q ∂ω

∂G
.

There are numerous studies of this model as well; see, e.g., [21–24] for examples of classical

and recent papers, reviews, and numerous references therein. We will call Eq. (15) the

“optomechanical” Hamiltonian.

The Hamiltonians (14) and (15) appear to be very different from Eq. (11). Indeed, they

both contain the standard two-wave resonance as opposed to Eq. (11) and their three-wave

coupling terms are completely different. Moreover, the nonlinear coupling in Eq. (15) does

not even involve the fermionic degree of freedom. Nevertheless, we will show that when

the conditions (13) are satisfied, the “molecular” and “optomechanical” Hamiltonians are

equivalent to the universal Hamiltonian in Eq. (11).

To prove this statement, we write the Hamiltonian (11) in the interaction representation:

Ĥint = eiĤ0tV̂ e−iĤ0t, (16)

where

Ĥ0 = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~Ωb̂†b̂, V̂ = ~
(
Ω

(3)
R σ̂†ĉb̂+ h.c.

)
.

This yields

Ĥint = ~
(
Ω

(3)
R σ̂†ĉb̂ei(ωe−ω−Ω)t + h.c.

)
. (17)

Next, we write the Hamiltonians in Eqs. (14) and (15) in the interaction representation

by defining the unperturbed Hamiltonian as

Ĥ0 = ~ωĉ†ĉ+ ~ωeσ̂†σ̂ + ~Ωb̂†b̂+ ~
(
Ω

(2)
R σ̂†ĉ+ h.c.

)
. (18)

This gives

V̂ = V̂mol = ~
√
SΩσ̂†σ̂

(
b̂+ b̂†

)
(19)

for the “molecular” Hamiltonian and

V̂ = V̂optom = −~gĉ†ĉ
(
b̂+ b̂†

)
(20)

for the optomechanical one.
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The operator Ĥ0 given by Eq. (18) is not diagonal. In this case one should generally

diagonalize Ĥ0. However, sometimes a slightly different approach is simpler. Indeed, consider

the Hamiltonian given by

Ĥ = Ĥ0

(
Â1, · · · ÂN

)
+ V̂

(
Â1, · · · ÂN

)
, (21)

where Âi are certain operators related to coupled subsystems (here we assume that Hermitian

conjugated operators are assigned different numbers “i” ). For any interaction operator V̂ ,

which can be expanded in a series

V̂ =
∑
j

kj

Nj∏
i=1

(
Âi

)nji
(here nji are positive integers), the following relationships are true:

Ĥint = eiĤ0tV̂
(
Â1, · · · ÂN

)
e−iĤ0t

=
∑
j

kj

Nj∏
i=1

eiĤ0t
(
Âi

)nji
e−iĤ0t

=
∑
j

kj

Nj∏
i=1

(
eiĤ0tÂie

−iĤ0t
)nji

,

from which one obtains

Ĥint = V̂
(̂̃A1, · · · ̂̃AN,) , (22)

where ̂̃Ai (t, Â1, · · · ÂN
)

= eiĤ0tÂie
−iĤ0t (23)

The operators ̂̃Ai satisfy the Heisenberg equations

∂ ̂̃Ai
∂t

=
i

~

[
Ĥ0,

̂̃Ai] (24)

for the initial conditions ̂̃Ai (t = 0) = Âi. In particular, for the Hamiltonian Ĥ0 given by

Eq. (18) one obtains

∂̂̃σ
∂t

= −iωễσ − iΩ(2)
R
̂̃c(1− 2̂̃σ†̂̃σ) , (25)

∂̂̃c
∂t

= −iω̂̃c− iΩ(2)∗
R
̂̃σ, (26)

where we used the integral of motion ̂̃σ†̂̃σ + ̂̃σ̂̃σ† = 1. Taking into account the condition∣∣∣Ω(2)
R

∣∣∣� |ωe − ω| which follows from Eqs. (13), when solving for the operators ̂̃c and ̂̃σ one

12



can neglect the terms of the order of

∣∣∣∣ Ω(2)
R

ωe−ω

∣∣∣∣2. For the initial conditions ̂̃σ (t = 0) = σ̂ and

̂̃c (t = 0) = ĉ the solution expanded in series in powers of the small parameter

∣∣∣∣ Ω(2)
R

ωe−ω

∣∣∣∣ takes

the form  ̂̃σ̂̃c
 =

̂̂
M

 σ̂

ĉ

 , (27)

where

̂̂
M =

 e−iωet 0

0 e−iωt


−

 0
Ω

(2)
R

ωe−ω

(
1− 2σ̂†σ̂

)
(e−iωt − e−iωet)

Ω
(2)∗
R

ωe−ω (e−iωt − e−iωet) 0

+ o

∣∣∣∣∣ Ω(2)
R

ωe − ω

∣∣∣∣∣
2
(28)

There is an exact solution for the operator ̂̃b:
̂̃b = eiĤ0tb̂e−iĤ0t = b̂e−iΩt. (29)

Now we substitute the three-wave coupling Hamiltonian (19) into Eq. (22) and use

Eqs. (27)-(29). The conditions (13) combined with the RWA allow one to keep only slowly

varying terms ∝ ei(ωe−ω−Ω)t in the final expression. Taking into account that σ̂†σ̂† = σ̂σ̂ = 0

and taking 1
ωe−ω ≈

1
Ω

in Eq. (28), we obtain the following expression for the “ molecular”

Hamiltonian in the interaction picture:(
Ĥint

)
mol

= −~
(√

SΩ
(2)
R σ̂†ĉb̂ei(ωe−ω−Ω)t + h.c.

)
(30)

A similar derivation for the “ optomechanical” Hamiltonian given by Eq. (20) leads to the

following result:

(
Ĥint

)
optom

= −~

(
gΩ

(2)
R

Ω
σ̂†ĉb̂ei(ωe−ω−Ω)t + h.c.

)
(31)

Clearly, in both cases the Hamiltonian has the same structure as the parametric Hamil-

tonian (17), in which(
Ω

(3)
R

)
mol

= −
√
SΩ

(2)
R or

(
Ω

(3)
R

)
optom

= − g
Ω
Ω

(2)
R . (32)

Therefore, one can use the universal parametric Hamiltonian (11) for all kinds of three-wave

couplings after choosing an appropriate expression for the coupling parameter Ω
(3)
R .
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We emphasize again that the universal character of the parametric Hamiltonian (11)

holds as long as inequalities (13) are satisfied, which ensure that the three-wave nonlinear

resonance can be separated from the two-wave resonance. The structure of the nonlinear

coupling term in Eq. (11) could be expected if all three modes are bosonic fields, as in spon-

taneous parametric down-conversion process. However, the fact that the same Hamiltonian

can be extended to two-level (fermionic) transitions with their specific nonlinearity dictated

by the Pauli principle is unusual and unexpected.

IV. INCLUDING DISSIPATION AND FLUCTUATIONS WITHIN THE STOCHAS-

TIC EQUATION FOR THE STATE VECTOR

A. Stochastic equation for the state vector

Many quantum information applications are based on the strong coupling regime in which

the relaxation times τ are much longer than the dynamical coupling times T between the

subsystems. For two- and three-wave couplings those times are determined by effective Rabi

frequencies, T −1 ∼
∣∣∣Ω(2,3)

R

∣∣∣. As shown in [19, 48], the method of the stochastic equation for

the state vector is often the most convenient way to describe the nonperturbative dynamics

of open strongly coupled systems; it leads to simpler derivations for the observables and

characterization of entanglement than the operator-valued Heisenberg-Langevin equations

or the master equation for the density matrix.

Indeed, when applied to strongly coupled systems the Heisenberg approach leads to the

nonlinear operator-valued equations even in the simplest case of a single two-level atom

coupled to a single-mode field [39]. In contrast, the equations for the state vector components

are always linear; they contain much fewer variables as compared to the density matrix

equations and are split into low-dimensional blocks in the RWA, leading to analytic solutions

for both two-wave [39] and three-wave [19, 48] resonant coupling.

One potential difficulty with this approach is that dissipation and fluctuations may lead

to the coupling between different blocks of equations for the state vector components that

were uncoupled in a closed system. However, in the strong coupling regime the coupling

through dissipative reservoirs is weak (scales as a small parameter T/τ) and can be taken

into account perturbatively [19, 48].
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Following [19, 48], we apply the stochastic equation for the state vector to derive analytic

solution for the parametric coupling of a two-level fermionic quantum emitter to two boson

fields. The stochastic equation has the following general form,

d

dt
|Ψ〉 = − i

~
Ĥeff |Ψ〉 −

i

~
|R〉 . (33)

Here |Ψ〉 is the state vector; |R〉 is the noise term satisfying |R〉 = 0, where the bar means

averaging over the noise statistics; Ĥeff = Ĥ + Ĥ(ah) is an effective Hamiltonian which is a

non-Hermitian operator. Its non-Hermitian component Ĥ(ah) describes the effects of relax-

ation. The expressions for Ĥ(ah) and |R〉 must be consistent with each other to guarantee

the conservation of the noise-averaged norm, 〈Ψ (t) |Ψ (t)〉 = 1, and ensure that the system

reaches a physically meaningful steady state in the absence of any external driving force. To

calculate the observables from the state vector given by Eq. (33) one should apply a stan-

dard procedure but with an important extra step: averaging over the noise statistics, i.e.,

q = 〈Ψ | q̂ |Ψ〉 , where q̂ is a quantum-mechanical operator corresponding to the observable

q.

Perhaps the most popular version of the stochastic approach to derive the state vector,

i.e., the stochastic Schrödinger equation (SSE), is its application for numerical Monte-Carlo

simulations within the method of quantum jumps [39–47]. The stochastic equation in a

different form, the Schrödinger-Langevin equation (SLE), was suggested to describe the

Brownian motion of a quantum particle in a constant field [62, 63]. Generally, using some

version of the stochastic equation fits within the narrative of the Langevin method [64].

Within the Langevin approach which describes the system with stochastic equations of

evolution, the averaging over the reservoir degrees of freedom is equivalent to averaging over

the statistics of the noise sources [65]. This paradigm allows one to describe open systems

without relying on the density matrix.

B. Comparison with the Lindblad formalism

It was shown in [19] that one can choose the form of Ĥ(ah) and |R〉 in such a way that the

observables calculated with Eq. (33) will coincide with those obtained by solving the master

equation in the Lindblad approximation. The corresponding master equation has the form
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[39]
d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+ L̂ (ρ̂) (34)

where L̂ (ρ̂) is the relaxation operator (Lindbladian) which can be represented as

L̂ (ρ̂) = − i
~

(
Ĥ(ah)ρ̂− ρ̂Ĥ(ah)†

)
+ δL̂ (ρ̂) . (35)

The equivalence (in the above sense) between the stochastic equation and the Lindblad

approach exists if we substitute the anti-Hermitian part of the Hamiltonian from Eq. (35)

into Eq. (33), and postulate the following correlation properties for the noise source:

|R (t′)〉 〈R (t′′)| = ~2δ (t′ − t′′) δL̂ (ρ̂)ρ̂=⇒|Ψ〉〈Ψ | (36)

C. Parametric decay of the electron excitation into a photon and a phonon

We will describe the dynamics near the three-wave electron-photon-phonon resonance by

the stochastic equation (33) with the parametric Hamiltonian (11). We will seek the state

vector in the form

Ψ =

∞,∞∑
n,α=0

(Cαn0 |α〉 |n〉 |0〉+ Cαn1 |α〉 |n〉 |1〉) ,

where the order of indices corresponds to

Cphonon photon fermion |phonon〉 |photon〉 |fermion〉 .

Consider the initial state with an excited electron and no bosonic excitations, of the type

|Ψ (0)〉 = |0〉 |0〉 |1〉 . Near the resonance ωe ≈ ω + Ω the three-wave coupling leads to the

excitation of the state |1〉 |1〉 |0〉. In the zero-temperature limit, which is valid when the

reservoir temperature is much lower than the transition frequency (for optical frequencies it

is satisfied even at room temperature), relaxation processes could populate only the states

with lower energies: |0〉 |1〉 |0〉, |1〉 |0〉 |0〉 and |0〉 |0〉 |0〉. Therefore, for this initial condition

the state vector will have 5 components:

|Ψ (t)〉 = C000 (t) |0〉 |0〉 |0〉+ C010 (t) |0〉 |1〉 |0〉+ C100 (t) |1〉 |0〉 |0〉

+C110 (t) |1〉 |1〉 |0〉+ C001 (t) |0〉 |0〉 |1〉 . (37)

Note that we are not restricting the basis in any way and only considering the initial

conditions leading to single photon and phonon states to simplify algebra: see, for example,
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the Appendix in [49] where arbitrary multiphoton states are considered in the same way,

leading of course to more cumbersome expressions. Another reason to consider such initial

conditions is that single-photon states are used in most applications, whereas generating

multiphoton Fock states remains a major challenge.

To determine the anti-Hermitian part Ĥ(ah) of the Hamiltonian which describes relaxation

and the correlator |R (t′)〉 〈R (t′′)| describing fluctuations, we will use the expression for the

total Lindbladian of the system including a 2-level “atom”, photons, and phonons [39]. For

simplicity we will assume zero temperature of dissipative reservoirs, which is satisfied at

T � ~ω. The finite-temperature expressions are given in [19, 48] . Then the Lindbladian is

L (ρ̂) = Le (ρ̂) + Lem (ρ̂) + Lp (ρ̂) (38)

Le (ρ̂) = −γ
2

(
σ̂†σ̂ρ̂+ ρ̂σ̂†σ̂ − 2σ̂ρ̂σ̂†

)
(39)

Lem (ρ̂) = −µω
2

(
ĉ†ĉρ̂+ ρ̂ĉĉ† − 2ĉρ̂ĉ†

)
(40)

Lp (ρ̂) = −µΩ
2

(
b̂†b̂ρ̂+ ρ̂b̂b̂† − 2b̂ρ̂b̂†

)
(41)

where γ, µω and µΩ are relaxation rates of corresponding subsystems.

Then the stochastic equation for the state vector takes the form
d
dt

0 0

0 d
dt

+ iω010 + γ010 0

0 0 d
dt

+ iω100 + γ100

×

C000

C010

C100

 = − i
~


R000

R010

R100

 , (42)

 d
dt

+ iω110 + γ110 iΩ
(3)∗
R

iΩ
(3)
R

d
dt

+ iω001 + γ001

 C110

C001

 = − i
~

 R110

R001

 , (43)

where

Rαni = 〈αni |R〉 ;

ω010 = ω, ω100 = Ω, ω110 = ω +Ω, ω001 = ωe;

γ010 =
1

2
µω, γ100 =

1

2
µΩ, γ110 =

1

2
(µω + µΩ) , γ001 =

1

2
γ.

The correlators of the noise sources in Eqs. (42) and (43) are

R∗αni (t
′)Rβmj (t′′) = ~2Dαni,βmj(t

′)δ (t′ − t′′) , (44)
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where the quantities Dαni,βmj are determined using Eqs. (36) and (38)-(41). For the diagonal

elements of the correlators we obtain

D110,110 = D001,001 = 0

D100,100 = µω|C110|2 (45)

D010,010 = µΩ|C110|2

D000,000 = γ|C001|2 + µω|C010|2 + µΩ|C100|2.

The off-diagonal elements are given by

Dαni,βmj = D∗βmj,αni

D110,αni = D001,αni = D100,010 = 0 (46)

D000,100 = µωC∗010C110

D000,010 = µΩC∗100C110.

The dependence of quantities Dαni,βmj in the right-hand side of Eq. (44) on time t′ is due

to the time dependence of amplitudes Cαni which enter Eqs. (45) and (46).

The derivation of the stochastic equation for the state vector including pure dephasing

processes and the finite temperature of the reservoirs has been discussed in [19, 48].

Eqs. (43) describe the dynamic generation of an entangled state of the type |MIX〉 =

A (t) |0〉 |0〉 |1〉+B (t) |1〉 |1〉 |0〉 whereas Eqs. (42) describe the relaxation dynamics leading to

relaxation of populations to states with lower energies. The quantities D010,010 and D100,100

in Eqs. (45) are associated with processes of the relaxation to states |0〉 |1〉 |0〉 and |1〉 |0〉 |0〉

from the entangled state |MIX〉 . The structure of the expression for D000,000 corresponds to

the relaxation of the system from the entangled state to the ground state via both “direct”

pathway |0〉 |0〉 |1〉 → |0〉 |0〉 |0〉 and multistep pathways |1〉 |1〉 |0〉 → |0〉 |1〉 |0〉 → |0〉 |0〉 |0〉

and |1〉 |1〉 |0〉 → |1〉 |0〉 |0〉 → |0〉 |0〉 |0〉, as illustrated in Figs. 3 and 5 below.

D. Expressions for noise sources in the stochastic equation

In addition to the expressions for noise correlators, it is convenient to know more detailed

expressions for the random functions describing the noise sources Rαni(t).

The effect of the reservoir on the dynamic system is characterized by the matrix elements

of the operator which determines coupling to the reservoir. For a weak coupling these matrix
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elements are linear with respect to the matrix elements of the operators describing the dy-

namical system. Therefore, the functions Rαni(t) should depend linearly on the components

of the state vector of the system.

Here we again consider the low-temperature case when the relaxation processes can bring

the populations only down, not up. When the reservoirs for each subsystem are statistically

independent, one can try the following ansatz,

Rαni (t) = ~
√
γCαn(i+1) (t) fe (t) + ~

√
µωCα(n+1)i (t) fem (t) + ~

√
µΩC(α+1)ni (t) fp (t) , (47)

where fe,em,p = 0. Here fe,em,p (t) are random functions that are determined by the statistics

of noise in unperturbed electron, photon, and phonon reservoirs. The functions fe,em,p should

not depend on the set of variables Cαni within the above approximations.

The linear dependence of the noise term on the state vector was also assumed in SLE

[62, 63], in which the noise terms had the form

|R〉 = Û (r, t) |Ψ〉 , (48)

where Û (r, t) is the fluctuating component of the potential.

To ensure that Eq. (47) leads to the correlators Eqs. (44)-(46) that are consistent with the

Lindblad master equation, one needs first to define the correlators of the random functions

in Eq. (47) in the following way:

f ∗κ (t′) fλ (t′′) = δκλδ (t′ − t′′) , (49)

where κ, λ = e, em, p, i.e. the fluctuations in different reservoirs are independent and Marko-

vian. Second, one has to assume that the correlations are factorized when calculating the

averages

C∗αni (t
′)Cβmj (t′′) f ∗κ (t′) fλ (t′′) = C∗αni (t

′)Cβmj (t′′)× f ∗κ (t′) fλ (t′′). (50)

Eq. (49) looks obvious, whereas the factorization in Eq. (50) is valid only in linear ap-

proximation with respect to relaxation constants γ and µω,Ω. However, the Lindbladian of

the form given in Eqs. (38)-(41) is itself valid within the same approximation. Therefore,

Eqs. (47), (49), and (50) lead to all expressions in Eqs. (45),(46). One also has to keep in

mind that with our choice of our initial conditions the amplitudes Cαni = 0 for all states

with energies above those in states |1〉 |1〉 |0〉 and |0〉 |0〉 |1〉.
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V. DYNAMICS OF ENTANGLED FERMION-PHOTON-PHONON STATES IN

A DISSIPATIVE SYSTEM

Here we write an explicit solution of Eqs (42) and (43) for the initial state vector |Ψ (0)〉 =

|0〉 |0〉 |1〉, when C001 (0) = 1, C000 (0) = C010 (0) = C100 (0) = C110 (0) = 0. Assuming exact

resonance at ωe = ω + Ω, and omitting intermediate steps described in Appendix A, we

obtain the solution for the 5-component state vector:

|Ψ〉

= e−iωete−
γ110+γ001

2
t

{[
cos
(
Ω̃Rt

)
+
γ110 − γ001

2Ω̃R

sin
(
Ω̃Rt

)]
|0〉 |0〉 |1〉+ ie−iθ sin

(
Ω̃Rt

)
|1〉 |1〉 |0〉

}
+δC001 |0〉 |0〉 |1〉+ δC110 |1〉 |1〉 |0〉+ C000 |0〉 |0〉 |0〉+ C100 |1〉 |0〉 |0〉+ C010 |0〉 |1〉 |0〉 , (51)

where

δC001 = δC110 = C000 = C100 = C010 = 0, (52)

|δC001|2 = |δC110|2 = 0. (53)

Here the effective Rabi frequency Ω̃R =

√∣∣∣Ω(3)
R

∣∣∣2 − (γ110−γ001)2
4

and , θ = Arg
[
Ω

(3)
R

]
.

It follows from Eq. (51) that in the entangled state |MIX〉 = A (t) |0〉 |0〉 |1〉 +

B (t) |1〉 |1〉 |0〉 the amplitudes A (t) and B (t) oscillate at the effective Rabi frequency and

decay with the decay rate

γ
MIX

=
γ110 + γ001

2
=

1

4
(µω + µΩ + γ) . (54)

The occupation probabilities |C001|2 and |C110|2 are plotted in Fig. 2 as a function of nor-

malized time Ω̃Rt, along with the real parts of their eigenfrequencies obtained from Eqs. (43)

as a function of detuning from the nonlinear resonance ω+Ω−ωe. Although the plots look

like standard anticrossing behavior and decaying Rabi oscillations, one should keep in mind

that (1) the anticrossing occurs not at the standard exciton-photon or phonon-photon reso-

nance but at the nonlinear resonance, which is controlled by the nonlinear coupling strength

Ω
(3)
R and entangles three degrees of freedom; (2) the relaxation rates of each individual sub-

system enter the analytic expressions plotted in Fig. 2 and the decay rate of an entangled

state in a nontrivial way, as is obvious from Eq. (54). The presented solution provides the

way to retrieve the analytic dependence of any observable on the relaxation and coupling pa-

rameters and determine correctly the criterion for observing the strong parametric coupling
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and entanglement in frequency or time domain. Two obvious examples for such observables

are photon and phonon emission spectra that are derived and plotted in Sec. VI, see Figs. 4

and 6.
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FIG. 2: (a) Real parts of eigenstate frequencies of Eqs. (43), shifted by the electron

transition frequency ωe and normalized by |Ω(3)
R |, as a function of detuning from the

nonlinear resonance ω +Ω − ωe normalized by |Ω(3)
R |. The relaxation rates are

µω = µΩ = 0.3|Ω(3)
R | and γ = 0.2|Ω(3)

R |. (b) Occupation probabilities |C001|2 and |C110|2

from Eqs. (A2) and (??) as a function of normalized time Ω̃Rt for the same relaxation

rates.

The expressions for the occupation probabilities |C100|2, |C010|2 and |C000|2 that are valid

under the condition Ω̃R � γani are presented in Appendix A.
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VI. EMISSION SPECTRA OF PHOTONS AND PHONONS FROM THE PARA-

METRIC DECAY OF THE ELECTRON EXCITATION

A. Derivation of the emission spectra from the solution of the stochastic equation

for the state vector: a general scheme

Consider for definiteness the EM radiation out of a cavity. Its power spectrum received

by the detector is given by [39, 66]

P (ν) = A · S (ν) ,

where

S (ν) =
1

π
Re

∫ ∞
0

dτeiντ
∫ ∞
0

dtK (t, τ) , (55)

K =
〈
ĉ† (t) ĉ (t+ τ)

〉
, 〈· · · 〉 is a quantum-mechanical averaging. The coefficient A includes

the Q-factor of a cavity, spatial structure of the outgoing field, and the position and prop-

erties of the detector.

To calculate the power spectrum one needs to know the solution of the Heisenberg-

Langevin equations for the field operators ĉ (t) and ĉ† (t), then calculate the correlator,

and average it over the statistics of Langevin noise: K ⇒ 〈ĉ† (t) ĉ (t+ τ)〉. However, as

we already discussed, the Heisenberg-Langevin equations become nonlinear in the strong-

coupling regime. Therefore, it may be more convenient to obtain the spectra from the

solution of the stochastic equation Eq.(33) for the state vector. The general procedure is as

follows.

First, we need to transform the correlator

K (t, τ) =
〈
ĉ† (t) ĉ (t+ τ)

〉
= 〈Ψ (0)| ĉ† (t) ĉ (t+ τ) |Ψ (0)〉 (56)

to the Schrödinger picture without taking into account dissipation and fluctuations. If Û (t)

is the unitary operator of evolution of the system, one can write

K = 〈Ψ (0)| Û † (t) ĉ† Û (t) Û † (t+ τ) ĉ Û (t+ τ) |Ψ (0)〉 = 〈ĉ Ψ (t)| Û (t) Û † (t+ τ) |ĉ Ψ (t+ τ)〉 ,

(57)

where ĉ is the Schrödinger’s (constant) operator which we will treat as an initial condition

for the Heisenberg operator ĉ (t) at t = 0. We will use the notation Û (t) ≡ Ût0 (t′), where we

indicate explicitly the initial moment of time t0 and the duration of evolution t′ = t−t0. This
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will lead to the following replacements in Eq. (57): Û (t) =⇒ Û0 (t), Û (t+ τ) =⇒ Û0 (t+ τ).

Furthermore, we obviously have

Û0 (t+ τ) = Ût (τ) Û0 (t) (58)

which gives

K = 〈ĉ Ψ (t)| Û0 (t)
(
Ût (τ) Û0 (t)

)†
|ĉ Ψ (t+ τ)〉 = 〈ĉ Ψ (t)| Û0 (t) Û †0 (t) Û †t (τ) |ĉ Ψ (t+ τ)〉 .

Taking into account Û0 (t′) Û †0 (t′) = 1, we obtain

K =
〈
Ût (τ) ĉ Ψ (t) |ĉ Ψ (t+ τ)〉 . (59)

Second, introducing the notations

ΨĈ (t) = ĉ Ψ (t) , Φ (t, τ) = Ût (τ)ΨĈ (t) , (60)

we arrive at

K (t, τ) = 〈Φ (t, τ) |ΨĈ (t+ τ)〉 . (61)

Therefore, in order to calculate the correlator K through the solution of the equation for

the state vector, one has to perform the following steps:

a) Find vector |ΨĈ (t+ τ)〉 = ĉΨ (t+ τ), where Ψ (t+ τ) is the solution for the state

vector |Ψ〉 at the time interval [0, t+ τ ] with initial condition |Ψ (0)〉.

b) Find vector |Φ (t, τ)〉. To do that, one has to solve for the state vector |Ψ〉 at the time

interval [t, t+ τ ] with initial condition |ΨĈ (t)〉. The vector |ΨĈ (t)〉 is the same as in part

a), but instead of the time interval [0, t+ τ ] one has to take the time interval [0, t].

To check Eq. (61) for consistency, we note that in the absence of dissipation one can go

back from this equation to the standard expression which follows directly from the initial

equation (56):

K (t, τ) = 〈Ψ (0)| ei
Ĥ
~ tĉ†ei

Ĥ
~ τ ĉe−i

Ĥ
~ (t+τ) |Ψ (0)〉 .

If the dynamic system is open, then a complete closed system “the dynamic system +

reservoir” has its own unitary operator of evolution Ût0 (t′). Therefore, Eq. (61) should be

valid for a complete system as well which includes the reservoir variables. Now we apply

the Langevin method which assumes that the averaging over the statistics of noise sources

entering a stochastic equation (in this case Eq. (33)) is equivalent to averaging over the

23



reservoir variables. Therefore, we can solve Eq. (33) and, following the above steps, find

the functions ΨĈ (t), ΨĈ (t+ τ) and Φ (t, τ) which are now dependent on the noise sources.

Then we substitute the latter two functions into Eq. (61) and perform averaging over the

noise statistics. As a result, we obtain

K (t, τ) = 〈 Φ (t, τ) |ΨĈ (t+ τ)〉. (62)

B. Photon emission spectra for the parametric decay of an excited electron

Here we apply the general recipe of calculating K (t, τ) formulated in the previous section

to a particular example of the parametric decay of an initially excited fermionic two-level

system under strong coupling to a nonlinear electron-photon-phonon resonance. In [19] we

used a simplified model to analyze the fermion-photon-phonon entanglement, in which all

relaxation pathways to the ground state |0〉 |0〉 |0〉 are assumed to be “direct”, which corre-

sponds to taking all correlators equal to zero except D000,000. This approach is essentially

the Weisskopf-Wigner method, modified in order to conserve the norm of the state vector.

It gives a correct result for the decay rate γMIX of the entangled state. At the same time,

including multistep decay pathways changes the spectra qualitatively and is of principal

importance when interpreting the emission spectra.

Omitting intermediate derivation steps outlined in Appendix B, we obtain

S (ν) =
1

π
Re

∫ ∞
0

dτeiντ
∫ ∞
0

dtK (t, τ) = S1 (ν) + S2 (ν) + S3 (ν) , (63)

where

S1 (ν) =
2Ω̃2

R

πΓ (4Ω̃2
R + Γ 2)

Re
Γ + µΩ

2
− i (ν − ω)

[γac − i (ν − ω)]2 + Ω̃2
R

S2 (ν) =
Ω̃2
R

πΓ (4Ω̃2
R + Γ 2)

µΩ
µ2ω
4

+ (ν − ω)2
(64)

S3 (ν) =
µΩΩ̃

2
R

πΓ
(
γ2d + Ω̃2

R

)
(4Ω̃2

R + Γ 2)
×

{
−Re

Γd [γac − i (ν − ω)] + 2Ω̃2
R − γdΓ

[γac − i (ν − ω)]2 + Ω̃2
R

+
Γd

µω
2

µ2ω
4

+ (ν − ω)2

}

The parameters Γ , γac, γd, and Γd are expressed through the relaxation rates of the electron,
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photon, and phonon subsystems µω, µΩ and γ as

Γ = γ110 + γ001 =
1

2
(µω + µΩ + γ) , γac = γ100 +

Γ

2
=

1

4
(µω + γ) +

3

4
µΩ,

γd = γ100 +
Γ

2
− γ010 =

1

4
(γ − µω) +

3

4
µΩ, Γd = Γ + 2γd = 2µΩ + γ.

The expression for the power spectrum S (ν) contains three terms S1,2,3. The term S3 (ν)

consists of two terms which have the same spectral shapes as the functions S1 (ν) and S2 (ν)

respectively. Therefore, including the term S3 (ν) in Eq. (63) leads only to corrections to the

amplitudes of the functions S1,2 (ν); moreover, under the strong coupling conditions Ω̃R �

γani these corrections are small: of the order of ∼ µΩ(Γ+γac)

Ω̃2
R

for the function S1 (ν) and of

the order of ∼ Γdµω
Ω̃2
R

for the function S2 (ν). For qualitative discussion we will neglect the

contribution of S3 (ν) and keep only the terms S1 (ν) and S2 (ν), although all terms are

included in the spectra plotted in Fig. 4.
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|1⟩|0⟩|0%

|0⟩|0⟩|0%

|0⟩|1⟩|0%
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FIG. 3: Energy levels of |phonon〉 |photon〉 |electron〉 states involved into the photon

emission in the parametric decay of a single-electron excitation in a coupled

phonon-photon-electron system. Bold red arrows indicate photon emission transitions with

their peak frequencies labeled. Wavy purple arrows indicate various relaxation pathways.

Figure 3 indicates all transitions that give contributions to the photon emission. The

function S1 (ν) describes the emission spectrum at the transition |1〉 |1〉 |0〉 → |1〉 |0〉 |0〉,

which is split due to Rabi oscillations. The width of the peaks located at frequencies ν =
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FIG. 4: Normalized photon emission spectra Ω̃2
RS(ν) as a function of normalized detuning

ν−ω
Ω̃R

from the cavity mode frequency ω, for two different values of the phonon relaxation

rate: µΩ = 0.3 (red solid line) and µΩ = 0.02 (blue dashed line). Other relaxation rates are

µω = 0.2 and γ = 0.1. All relaxation constants are in units of Ω̃R.

ω ± Ω̃R is equal to γac = µΩ
2

+ Γ
2
. Here Γ

2
= 1

4
(µω + µΩ + γ) = γMIX is the decay rate of

the entangled state |MIX〉 = A (t) |0〉 |0〉 |1〉 + B (t) |1〉 |1〉 |0〉 (see Eq. (51)), and µΩ
2

is the

broadening of the state |1〉 |0〉 |0〉 due to relaxation. The spectrum given by S1 (ν) agrees

with the one obtained in [19].

The function S2 (ν) describes the emission due to a two-step relaxation process described

in section IV.C: |1〉 |1〉 |0〉 → |0〉 |1〉 |0〉 → |0〉 |0〉 |0〉 . The photons are emitted at the

transition |0〉 |1〉 |0〉 → |0〉 |0〉 |0〉, which is not affected by Rabi oscillations; see Fig. 3.

Therefore, this contribution has a standard Lorentzian shape of an emitter at frequency ω:

S2 (ν) ∝ 1

γ2010 + (ν − ω)2
=

1
µ2ω
4

+ (ν − ω)2
.

In the strong-coupling regime Ω̃R � γani the ratio of the amplitude of this central peak at

frequency ν = ω to the amplitudes of the split peaks at frequencies ν = ω ± Ω̃R is given by

S2 (ω)

S1

(
ω ± Ω̃R

) ≈ µΩ (µω + γ + 3µΩ)

µ2
ω

. (65)

When µΩ → 0, Eq. (65) gives S2(ω)

S1(ω±Ω̃R)
→ 0: indeed without phonon relaxation the state

|0〉 |1〉 |0〉 cannot be populated from |1〉 |1〉 |0〉; therefore, the two-step radiation channel is

suppressed. In the opposite limit of a fast phonon relaxation, when µΩ � µω, γ, we obtain

S2(ω)

S1(ω±Ω̃R)
� 1, i.e., the side peaks are weaker and more broadened than the central peak.
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The latter statement is true despite the large Rabi frequency Ω̃R � µΩ. Indeed, when Ω̃R �

µΩ the interaction has the time to mix the states |1〉 |1〉 |0〉 and |0〉 |0〉 |1〉 before the phonon

relaxation kicks in. Nevertheless, if µΩ � µω, γ the phonon relaxation is able to transfer

population to state |0〉 |1〉 |0〉 faster than the radiative transition |1〉 |1〉 |0〉 → |1〉 |0〉 |0〉

corresponding to the Rabi-split spectrum.

This behavior is illustrated in Fig. 4 which shows photon emission spectra given by

Eqs. (63) and (64) as a function of frequency detuning ν−ω from the cavity mode resonance,

for two different values of the phonon relaxation rate: µΩ = 1.5µω (red solid line) and

µΩ = 0.1µω (blue dashed line). The electron relaxation rate is kept at γ = 0.1 and its exact

value is not important for the overall shape of the spectra, although it affects absolute values

and widths of the peaks. All quantities are normalized by Ω̃R.

The relative magnitudes of the peaks and their widths depend sensitively on different

combinations of the relaxation rates γ, µω, µΩ. The onset of the strong coupling regime in

the frequency domain is determined by the visibility of nonlinear Rabi splitting between the

side peaks in Fig. 4, i.e., the condition Ω̃R > γac
2

. We point out again that the relaxation

rates of the individual subsystems enter the quantum dynamics in a very nontrivial way, and

one need to know all of them to evaluate the feasibility of strong coupling in any particular

system. The reverse is also true: once the strong coupling regime is reached, measurements

of the photoluminescence spectra yield both the relaxation rates and the nonlinear coupling

strength in the system.

A more detailed discussion of the feasibility of strong coupling at the nonlinear resonance

in particular systems can be found in [19]. Here we only point out that in dielectric mi-

crocavities the photon relaxation rates can be very low, in the µeV range, and the strong

coupling threshold is likely to be determined by relaxation of the electron or vibrational

transitions. In plasmonic nanocavities the photon relaxation rate can easily be tens of meV

and will likely dominate the strong coupling threshold. On the other hand, the nonlinear

coupling strength Ω
(3)
R is much higher in plasmonic nanocavities because of greatly enhanced

electric field localization and electric field gradient. One can obtain the magnitude of Ω
(3)
R of

the order of 100 meV for the field localization in the few nm range, which is now routinely

demonstrated in plasmonic nanocavities.
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C. The phonon emission spectra

There is a complete symmetry for the two bosonic fields in the decay process close to the

nonlinear resonance ωe = ω + Ω. Therefore, we can obtain the phonon emission spectrum

from the expressions for the photon emission spectrum Eqs. (63), (64), after replacing

ω ⇐⇒ Ω, µω ⇐⇒ µΩ, γ010 ⇐⇒ γ100.

This results in

Sp (ν) = S1p (ν) + S2p (ν) + S3p (ν) , (66)

where

S1p (ν) =
2Ω̃2

R

πΓ (4Ω̃2
R + Γ 2)

Re
Γ + µΩ

2
− i (ν −Ω)

[γ̃ac − i (ν −Ω)]2 + Ω̃2
R

S2p (ν) =
Ω̃2
R

πΓ (4Ω̃2
R + Γ 2)

µω
µ2Ω
4

+ (ν −Ω)2
(67)

S3p (ν) =
µωΩ̃

2
R

πΓ
(
γ̃2d + Ω̃2

R

)
(4Ω̃2

R + Γ 2)
×

{
−Re

Γ̃d [γ̃ac − i (ν −Ω)] + 2Ω̃2
R − γ̃dΓ

[γ̃ac − i (ν −Ω)]2 + Ω̃2
R

+
Γ̃d

µΩ
2

µ2Ω
4

+ (ν −Ω)2

}

γ̃ac = γ010 +
Γ

2
=

1

4
(µΩ + γ) +

3

4
µω, γ̃d = γ010 +

Γ

2
− γ100 =

1

4
(γ − µΩ) +

3

4
µω

Γ̃d = Γ + 2γ̃d = 2µω + γ.

Similarly to the photon spectrum, the term S3p (ν) is the sum of two terms which have

the same spectral shape as S1p (ν) and S2p (ν), but much smaller magnitudes if Ω̃R � γani.

Therefore we will again include only the first two terms in qualitative discussion, but include

all terms when plotting the spectra.

Figure 5 shows all transitions giving contributions to the phonon emission spectrum, with

their peak frequencies indicated.

The function S1p (ν) describes the phonon emission spectrum due to the transition

|1〉 |1〉 |0〉 → |0〉 |1〉 |0〉, which demonstrates Rabi splitting. The width of the peaks centered

at frequencies ν = Ω ± Ω̃R is equal to γ̃ac = µω
2

+ Γ
2
. The function S2p (ν) describes phonon

emission due to a two-step relaxation |1〉 |1〉 |0〉 → |1〉 |0〉 |0〉 → |0〉 |0〉 |0〉. The phonons are

emitted at the second step, i.e. the transition |1〉 |0〉 |0〉 → |0〉 |0〉 |0〉, which is not affected by
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FIG. 5: Energy levels of |phonon〉 |photon〉 |electron〉 states involved into the phonon

emission in the parametric decay of a single-electron excitation in a coupled

phonon-photon-electron system. Bold red arrows indicate phonon emission transitions with

their peak frequencies labeled. Wavy purple arrows indicate various relaxation pathways.

Rabi oscillations. Therefore, the spectrum due to this contribution is a standard Lorenzian

line, similarly to the case of photons:

S2 (ν) ∝ 1

γ2100 + (ν −Ω)2
=

1
µ2Ω
4

+ (ν −Ω)2
.

The ratio of the amplitude of the central peak at ν = Ω to those of the side peaks at

frequencies ν = Ω± Ω̃R at Ω̃R � γani is given by the expression equivalent to Eq. (65) after

substituting ω ⇐⇒ Ω and µω ⇐⇒ µΩ:

S2p (Ω)

S1p

(
Ω ± Ω̃R

) ≈ µω (µΩ + γ + 3µω)

µ2
Ω

. (68)

The phonon emission spectra are plotted in Fig. 6 as a function of frequency detuning

ν −Ω from the cavity mode resonance. This time we keep the phonon relaxation rate fixed

at µΩ = 0.2 and plot the spectra for two values of the photon relaxation rate, greater and

smaller than µΩ: µω = 0.3 (red solid line) and µω = 0.02 (blue dashed line). All quantities

are normalized by Ω̃R. The numbers are chosen to prove the point that the phonon and
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FIG. 6: Normalized phonon emission spectra Ω̃2
RSp(ν) as a function of normalized

detuning ν−Ω
Ω̃R

from the vibrational mode frequency Ω, for two different values of the

photon relaxation rate: µω = 0.3 (red solid line) and µω = 0.02 (blue dashed line). Other

relaxation rates are µΩ = 0.2 and γ = 0.1. All relaxation constants are in units of Ω̃R.

photon spectra are symmetric with respect to replacement indicated in the beginning of this

section.

In experiment, measuring the ratios given by Eq. (65) and (68) allows one to determine

the relationships between all relaxation rates µΩ, γ, and µω. Indeed, one can obtain from

Eqs. (65) and (68) that

ξΩx
3 + 2x2 − 2x− ξω = 0, y = ξΩx

2 − 3− x;

where x = µΩ
µω

, y = γ
µω

, ξω = S2(ω)

S1(ω±Ω̃R)
, ξΩ = S2p(Ω)

S1p(Ω±Ω̃R)
.

D. The effects of pure dephasing and finite temperature of dissipative reservoirs

Pure dephasing processes do not affect the populations of states with energies below the

energy of state |100〉; see Figs. 3 and 5. Therefore, they won’t change the parameters of

the central peaks in photon and phonon power spectra in Figs. 4 and 6. At the same time,

pure dephasing may affect the dynamics of Rabi oscillations between states |100〉 and |110〉.

Using the analysis in [19, 48, 49], one can show that pure dephasing (elastic scattering) can

be taken into account by replacing γ
2
−→ γ

2
+ γ(el) in the equations for the state vector

amplitudes C001,110, where γ(el) is the inverse scattering time for pure dephasing processes.

The same replacement rule for relaxation constants has to be applied in the expressions for
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the side peaks in photon and phonon emission spectra in Figs. 4 and 6.

It is straightforward to include the effects of finite temperature of dissipative reservoirs;

see, e.g., [19] where the general expressions for the relaxation constants and noise correlators

are given for arbitrary temperature. However, when the inequalities ~ω, ~ωe � T are

satisfied (here T is in energy units), thermal parts of the noise terms have negligible effect

on the amplitudes of excited states C001,010,110. Therefore, under these conditions one can

neglect finite temperature effects on the dynamics of Rabi oscillations, photon emission

spectra, and two side peaks of the phonon spectra. If, in addition, ~Ω � T , all temperature

effects are negligible. When ~Ω ≤ T , finite temperature will enhance the amplitude of the

central peak of the phonon spectra due to thermal redistribution of populations between

states C100 and C000.

VII. CONCLUSIONS

We developed a universal model of strong coupling at three-wave nonlinear resonance

which is applicable to a variety of cavity QED systems with coupled electron, photon, and

vibrational degrees of freedom, such as molecular quantum emitters, quantum dots, and

cavity optomechanics systems. We obtained the analytic solution for the nonperturbative

quantum dynamics of such systems in the vicinity of the nonlinear resonance, taking into

account dissipation and fluctuations for all degrees of freedom in Markov approximation.

The presented solution can be used to derive the explicit analytic expression for any ob-

servable. As an example, we calculated photon and phonon emission spectra which have

a characteristic three-peak form once the strong coupling is reached. We showed how the

relative heights and widths of the peaks can be used to extract information about all relax-

ation rates in the system and the nonlinear coupling strength, or to establish the threshold

for reaching the strong coupling regime.
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Appendix A: The solution for the stochastic state vector in the presence of dissi-

pation and noise

1. The derivation of probability amplitudes

The coefficients in the 5-component state vector (51) are given by

C000 (t) = − i
~

∫ t

0

R000 (t′) dt′

C010 (t) = − i
~

∫ t

0

R010 (t′) e−iω(t−t
′)−γ010(t−t′)dt′ (A1)

C100 (t) = − i
~

∫ t

0

R100 (t′) e−iΩ(t−t′)−γ100(t−t′)dt′,

C001 (t) = e−iωete−
γ110+γ001

2
t

[
cos
(
Ω̃Rt

)
+
γ110 − γ001

Ω̃R

sin
(
Ω̃Rt

)]
+ δC001 (A2)

C110 (t) = e−iωete−
γ110+γ001

2
t
(
ie−iθ

)
sin
(
Ω̃Rt

)
+ δC110 (A3)

where the effective Rabi frequency Ω̃R =

√∣∣∣Ω(3)
R

∣∣∣2 − (γ110−γ001)2
4

, θ = Arg
[
Ω

(3)
R

]
, and the

terms δC100,110 are linear with respect to random functions R001 and R110.

The term proportional to γ110−γ001
Ω̃R

in the first of Eqs. (A2) can be omitted when calcu-

lating most observables when the dissipation is weak, Ω̃R � γani (see, e.g., [19]). However,

one has to keep in mind that this term is needed for Eqs. (A2) to satisfy an exact integral

of motion of Eqs. (43) :

d

dt

(
|C001|2 + |C110|2

)
= −2γ001|C001|2 − 2γ110|C110|2.

Note that when averaged over the period 2π
Ω̃R

the integral is conserved even without this

term.

2. The derivation of occupation probabilities |C100,010,000|2

A number of correlators of the random functions in Eq. (51) is zero due to Eqs. (45),(46):

δC∗110 (t′)Rαmi (t′′) = δC∗001 (t′)Rαmi (t′′) = 0 (A4)
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δC∗001 (t′) δC001 (t′′) = δC∗110 (t′) δC110 (t′′) = δC∗001 (t′) δC110 (t′′) = 0 (A5)

δC∗001 (t′)C000 (t′′) = δC∗110 (t′)C100 (t′′) = δC∗001 (t′)C010 (t′′) = δC∗110 (t′)C000 (t′′)

= δC∗110 (t′)C100 (t′′) = δC∗110 (t′)C010 (t′′) = 0. (A6)

Eqs. (A4)-(A6) ensure that the variables δC100 and δC110 cannot contribute to the values of

any observables and therefore can be omitted.

The other correlators are given by the equations that follow from Eqs. (A1):

d

dt
C∗100C010 = − (γ100 + γ010)C∗100C010 +D100,010,

d

dt
C∗100C000 = −γ100C∗100C000 +D100,000,

d

dt
C∗010C000 = −γ010C∗010C000 +D010,000,

d

dt
|C000|2 = D000,000,

d

dt
|C010|2 = −2γ010|C010|2 +D010,010,

d

dt
|C100|2 = −2γ100|C100|2 +D100,100.

Using Eqs. (45),(46), we arrive at

d

dt
C∗100C010 = −µω + µΩ

2
C∗100C010

d

dt
C∗100C000 = −µΩ

2
C∗100C000 + µωC∗110C010 (A7)

d

dt
C∗010C000 = −µω

2
C∗010C000 + µΩC∗110C100

d

dt
|C000|2 = γ|C001|2 + µω|C010|2 + µΩ|C100|2

d

dt
|C010|2 = −µω|C010|2 + µΩ|C110|2 (A8)

d

dt
|C100|2 = −µΩ|C100|2 + µω|C110|2
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Taking into account Eqs. (A6), one can obtain that C∗110C010 = C∗110C100 = 0 in Eqs. (A7);

as a result, for our initial conditions Eqs. (A7) yield

C∗100C010 = C∗100C000 = C∗010C000 = 0. (A9)

The last two equations in Eqs. (A8) give

|C010|2 = µΩe
−µωt

∫ t

0

eµωτ |C110|2dτ, |C100|2 = µωe
−µΩt

∫ t

0

eµΩτ |C110|2dτ.

Substituting here the function from Eq. (A2) and taking into account Eqs. (A5),(A6) results

in

|C100|2 = µωe
−µΩt

∫ t

0

e
µΩ−µω−γ

2
τ sin2

(
Ω̃Rτ

)
dτ, |C010|2 = µΩe

−µωt
∫ t

0

e
µω−µΩ−γ

2
τ sin2

(
Ω̃Rτ

)
dτ ;

For further integration we use the limit γαni
Ω̃R
� 1, leading to

|C100|2 ≈
µω

µΩ − µω − γ

(
e−

µΩ+µω+γ

2
t − e−µΩt

)
(A10)

|C010|2 ≈
µΩ

µω − µΩ − γ

(
e−

µΩ+µω+γ

2
t − e−µωt

)
(A11)

Note that Eqs. (A10),(A11) do not contain any divergence when [± (µω − µΩ)− γ] −→ 0.

Indeed,

lim
(µΩ−µω−γ)−→0

[
e−

µΩ+µω+γ

2
t − e−µΩt

µΩ − µω − γ

]
=

1

2
te−µΩt, lim

(µω−µΩ−γ)−→0

[
e−

µΩ+µω+γ

2
t − e−µωt

µω − µΩ − γ

]
=

1

2
te−µωt.

Now we return to the first of Eqs. (A8), which yields

|C000|2 =

∫ t

0

(
γ|C001|2 + µω|C010|2 + µΩ|C100|2

)
dτ.

We substitute Eqs. (A10) and (A11) into the second and third terms in the integrand and

substitute the expression |C001|2 which follows from Eqs. (A2) into the first term in the

integrand. Neglecting the small terms ∝ γ110−γ001
Ω̃R

and γαni
Ω̃R

the integration results in

|C000|2 =
γ (γ − µΩ − µω)

γ2 − (µΩ − µω)2

(
1− e−

µΩ+µω+γ

2
t
)
−
(
µΩ

1− e−µωt

µω − µΩ − γ
+ µω

1− e−µΩt

µΩ − µω − γ

)
(A12)
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Appendix B: Calculation of emission spectra based on the stochastic Schroedinger

equation

a) Use the expressions (A1)-(A3) to find the vector |Ψ (t)〉.

b) Determine vectors |ΨĈ (t)〉 and |ΨĈ (t+ τ)〉, resulting in

|ΨĈ (t)〉 = ĉ |Ψ (t)〉 = C110 (t) |1〉 |0〉 |0〉+ C010 (t) |0〉 |0〉 |0〉 , (B1)

|ΨĈ (t+ τ)〉 = ĉ |Ψ (t+ τ)〉 = C110 (t+ τ) |1〉 |0〉 |0〉+ C010 (t+ τ) |0〉 |0〉 |0〉 . (B2)

c) To determine the vector |Φ (t, τ)〉 we will use the solution of Eqs. (42),(43) at the time

interval [t, t+ τ ] where the initial condition |ΨĈ (t)〉 is given by Eq. (B1). In our case Eq. (B1)

determines the initial value of the state vector; its subsequent evolution is determined by

a simple Eq. (42) for the amplitudes of states |1〉 |0〉 |0〉 and |0〉 |0〉 |0〉. As a result, vector

|Φ (t, τ)〉 is given by

|Φ (t, τ)〉 = C
(Φ)
100 (t, τ) |1〉 |0〉 |0〉+ C

(Φ)
000 (t, τ) |0〉 |0〉 |0〉

=

(
e−iωτ−γ100τC110 (t)− i

~

∫ t+τ

t

R
(Φ)
100 (t, t′) e−iω(τ+t−t

′)−γ100(τ+t−t′)dt′
)
|1〉 |0〉 |0〉

+

(
C010 (t)− i

~

∫ t+τ

t

R
(Φ)
000 (t, t′) dt′

)
|0〉 |0〉 |0〉 , (B3)

where functions C110 (t) and C010 (t) are determined by Eqs. (A1), (A2).

The superscript (Φ) in the terms Rαni in Eq. (B3) means that the correlators of these noise

terms correspond to the state vector |Φ〉. The dependence on the initial time moment t of

the evolution in R
(Φ)
αni (t, t

′) takes into account that the correlators of these random functions

may depend on the value of t as a parameter, because complex amplitudes C
(Φ)
αni (t, τ) ≡

C
(Φ)
αni (t, t

′ − t) depend on this parameter.

Next, we substitute the expressions for C110 (t), C010 (t), C110 (t+ τ) determined by Eqs.

(A1) and (A2), into Eqs. (B2) and (B3); after that we substitute Eqs. (B2) and (B3)

into Eq. (62). In the resulting expression we average over the noise statistics taking into

account that the noise sources are delta-correlated. Omitting the terms that become zero

after averaging, we obtain

K (t, τ) = e−iωτ−(γ100+ γ110+γ001
2 )τ−(γ110+γ001)t sin

(
Ω̃Rt

)
sin
[
Ω̃R (t+ τ)

]
+e−iωτ−γ010τ−2γ010t

∫ t

0

D010,010 (t′) e2γ010t
′
dt′

+e−iω(t+τ)−γ010(t+τ)−2γ010t
∫ t+τ

t

D̃000,010 (t, t′) e(iω+γ010)t
′
dt′. (B4)
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Here the quantity D010,010 is determined by Eqs. (45):

D010,010 = 2γ010|C110 (t′)|2 = µΩ|C110 (t′)|2. (B5)

The function D̃000,010 (t, t′) corresponds to the following correlator:

R
(Φ)∗
000 (t, t′)R010 (t′′) = ~2D̃000,010 (t, t′) δ (t′ − t′′) . (B6)

To calculate the value of D̃000,010 (t, t′) it is not enough to have expressions (45) and (46)

because it is determined by correlations between the noise terms for different state vectors

|Φ〉 and |Ψ〉, which correspond to the solutions of the equation for the state vector with

different initial conditions. We need to use the expression for the noise source obtained in

Sec. IV.D. From Eqs. (47), (49), and (50) we obtain

D̃000,010 (t, t′) = µΩC
(Φ)∗
100 (t, t′ − t)C110 (t′). (B7)

Substituting here the appropriate term from Eq. (B3) gives

D̃000,010 (t, t′) = eiω(t
′−t)−γ100(t′−t)−2γ010tC∗110 (t)C110 (t′). (B8)

Substituting Eqs. (B5) and (B8) into Eq. (B4), we arrive at

K (t, τ) = e−iωτ−(γ100+Γ
2 )τ−Γt sin

(
Ω̃Rt

)
sin
[
Ω̃R (t+ τ)

]
+e−iωτ−γ010τµΩ

[
2Ω̃2

R

γn(4Ω̃2
R + γ2n)

e−2γ010t − 1

2γn
e−Γt

− 1

4
(

2iΩ̃R − γn
)e2iΩ̃Rt−Γt +

1

4
(

2iΩ̃R + γn

)e−2iΩ̃Rt−Γt


+e−iωτ−γ010τ−Γt
µΩ
4

[
e(−γd+iΩ̃R)τ − 1

−γd + iΩ̃R

(
1− e2iΩ̃Rt

)
+ c.c.

]
. (B9)

where we denoted Γ = γ110 + γ001, γn = Γ − 2γ010, γd = γ100 + Γ
2
− γ010.

Now we have everything to determine the emission spectra given by Eq. (55). Using the

values of γ100 = µΩ
2

, γ010 = µω
2

, and γ001 = γ
2
, we arrive at Eq. (63).
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