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The counterflow dynamics of two correlated impurities in a double-well coupled to an one-
dimensional bosonic medium is explored. We determine the ground state phase diagram of the
system according to the impurity-medium entanglement and the impurities two-body correlations.
Specifically, bound impurity structures reminiscent of bipolarons for strong attractive couplings as
well as configurations with two clustered or separated impurities in the repulsive case are identified.
The interval of existence of these phases depends strongly on the impurity-impurity interactions
and external confinement of the medium. Accordingly the impurities dynamical response, triggered
by suddenly ramping down the central potential barrier, is affected by the medium’s trapping ge-
ometry. In particular, for a box-confined medium repulsive impurity-medium couplings lead, due
to attractive induced interactions, to the localization of the impurities around the trap center. In
contrast, for a harmonically trapped medium the impurities perform a periodic collision and expan-
sion dynamics further interpreted in terms of a two-body effective model. Our findings elucidate
the correlation aspects of the collisional physics of impurities which should be accessible in recent
cold atom experiments.

I. INTRODUCTION

Ultracold quantum gases provide an exceptional
playground for the investigation of fundamental quan-
tum many-body phenomena since they feature an
exquisite experimental control [1]. For instance, it
is possible to control the shape and dimensionality
of the external potential [2–4], design species selec-
tive potentials [5–8] and, most importantly, tune the
interparticle interactions to an almost arbitrary ex-
tend via Feshbach resonances [1, 9, 10]. A particular
research focus has been set on strongly particle im-
balanced mixtures, which allow to emulate impurity
systems interacting with a bath. The key mechanism
is that the bare impurity becomes dressed by the ex-
citations of the bath and, thus, can be considered as
a quasi-particle, the so-called polaron [11]. In this re-
gard, several works have been devoted to exemplify
the fundamental stationary properties of both Fermi
[12–18] and Bose polarons [19–27], such as their ef-
fective mass [13, 24, 26], energy [20, 21] and residue
[12, 14].

Recently, more attention has been placed on the
interplay between several impurities immersed in a
quantum gas [28–31]. Among others, the coalescence
of two bosonic impurities coupled to a harmonically
trapped bosonic medium has been predicted [32] as
well as the existence of their induced interactions [33–
35]. In the strongly attractive interaction regime, the
formation of bipolarons referring to impurity bound
states was also unraveled [36, 37]. Beyond these stud-
ies the non-equilibrium dynamics of quasi-particles
following an interaction quench [38–40] has been ex-
amined unveiling, in particular, energy redistribution
processes, temporal orthogonality catastrophe phe-
nomena and the effective temperature of the impu-
rities [39] e.g. by emulating pump-probe and Ramsey

spectroscopy.
Another branch in the field of ultracold quantum

gases concerns the collisional aspects of atomic en-
sembles. Counterflow dynamics can be triggered, e.g.,
by employing a magnetic field gradient separating two
atomic hyperfine states [41] or releasing an ultracold
quantum gas from a double-well potential into a har-
monic oscillator [42]. For a single atomic species these
protocols result in the oscillation of the formed dark
solitons [42] or in the case of a two-component mix-
ture in the spontaneous generation of dark-bright soli-
ton trains [41]. Another technique to initiate atomic
collisions constitutes of two counter-propagating har-
monic oscillator potentials [43] which has been exper-
imentally realized with 40K and 87Rb clouds utilizing
two optical tweezers [44, 45].

In this sense, it is intriguing to explore the counter-
flow correlated dynamics of impurities in combination
with a superimposed superfluid background. A simi-
lar question was addressed for fermions [46, 47] e.g.
showing the formation of shock-waves. Thereby, of
immediate interest is the influence of the background
on the collisional response and the associated emer-
gent induced interactions between the impurities [47].
The impact of the bath on the impurity dynamics is
expected to depend on the confining potential of the
bath, and the impurities coupling strength as well as
the interaction between the impurities and the bath
particles [48]. To tackle these open questions, herein
we consider a minimal model of two bosonic impurities
trapped in a double well and immersed in a bosonic
bath. The counterflow dynamics between the impu-
rities is induced by suddenly ramping down the po-
tential barrier of their double well and, subsequently,
let the system evolve in time for different interaction
configurations.

Specifically, it is shown that already the ground
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state configurations depend on the chosen impurity-
medium and impurity-impurity interaction strength
and, importantly, on the type of the underlying trap-
ping potential of the medium. For instance, in the case
of a box-confined medium the impurities coalesce for
intermediate repulsive impurity-medium couplings in-
dependently of the impurity-impurity repulsion. On
the other hand, for a harmonically trapped bath
the impurities separate from each other for strong
impurity-impurity and impurity-medium repulsions
[32]. Moreover, we find indications of bipolaron for-
mation [36] for strong impurity-medium attractions.

The dynamical response of the impurities appears
to be strongly affected by the combination of the in-
volved interaction strengths as well as by the external
confinement of the bath. More precisely, in the case
of a box-confined medium and intermediate repulsive
impurity-medium couplings the impurities induced in-
teractions lead to their localization at the trap cen-
ter after their first collision. However, increasing the
impurity-medium interaction strength the impurities
experience a periodic collisional response character-
ized by a damped amplitude: a behavior that is ar-
gued to be governed by finite size effects determined
by the size of the box potential. Employing a harmon-
ically trapped medium the impurities localize at the
trap center for attractive impurity-medium coupling
strengths, while for intermediate and strong repulsions
they phase separate with the medium [49, 50] and thus
their dressing is suppressed. Considering weakly re-
pulsive impurity-impurity interactions a state transfer
manifests from two separated to two coalesced impu-
rities. Importantly, this process is absent in the de-
coupled case elucidating the role of the coupling with
the bath and thus of the interspecies correlations (en-
tanglement).

A microscopic analysis provides insights into the
single-particle excitation processes and the two-body
states participating in the dynamics and the afore-
mentioned state transfer. To describe the sta-
tionary and dynamical properties of the composite
impurity-medium system we employ the multi-layer
multi-configuration time-dependent Hartree method
for atomic mixtures (ML-MCTDHX) [51–54]. This
ab initio approach allows us to efficiently track the
relevant inter- and intraspecies correlations which are
anticipated to be enhanced, especially during the dy-
namics. This is in part due to the few-body impurity
subsystem as well as the spatial inhomogeneity caused
by the external potential.

This work is structured as follows. In section II
and III we present the impurity model under con-
sideration and introduce the ingredients of the vari-
ational method, respectively. We proceed in section
IV with an analysis of the system’s ground state and
draw a phase diagram with respect to variations of
the impurity-impurity and impurity-medium interac-
tion strengths. This analysis is based on the two-body
densities quantifying the correlations of the bath par-
ticles and the impurities. Next, in section V and VI
the dynamical response of the system following a sud-
den reduction of the double-well barrier is discussed.

In particular, section V elaborates on the case of a
box-confined medium in which we explicate, e.g., the
localization of the impurities at intermediate repulsive
impurity-medium coupling strengths and the emer-
gence of finite size effects. The case of a harmonically
trapped medium is investigated in section VI where
the focus is set on the impurities excitation processes
and their dependence on the impurity-medium cou-
plings. Our results are summarized in section VII
together with an outlook regarding further research
directions. Appendix A elaborates on the behavior of
the impurities relative distance in their ground state
and in Appendix B the impact of the impurities mass
on their collisions is exposed. In AppendixC we dis-
cuss the persistence of the impurities collisional fea-
tures when a linear ramp is applied to the barrier
height of the double-well potential.

II. IMPURITY-MEDIUM SETTINGS

The system consists of two different bosonic species
B and I at ultracold temperatures. In particular, we
consider NI = 2 impurities of mass mI and a bosonic
bath of NB = 20 particles with mass mB . The corre-
sponding Hamiltonian reads

Ĥ = ĤB + ĤI + ĤBI , (1)

where Ĥσ =
∑Nσ
i=1

(
− ~2

2mσ
∂2

(∂xσi )2 + Vσ(xσi ) +

gσσ
∑
i<j δ(x

σ
i − xσj )

)
is the interaction Hamiltonian

of species σ ∈ {B, I}. Each component is subject to
a different external potential Vσ(xσi ), a scenario that
can be achieved via species selective optical potentials
[55, 56]. It is also restricted to one spatial dimen-
sion [57] that can be realized experimentally, e.g., by
freezing out the transverse degrees of freedom using a
strong harmonic confinement [58, 59].

Since we are operating in the ultracold regime it
is sufficient to take into account only s-wave scat-
tering processes and thus the interaction between
two particles of the same species is modeled with a
contact interaction potential [9] determined by the
one-dimensional effective coupling strength parameter
gσσ. Analogously, the coupling between the impuri-
ties and the bath is described through a contact inter-
action potential ĤBI = gBI

∑NB
i=1

∑NI
j=1 δ(x

B
i − xIj ),

where gBI denotes the impurity-medium interaction
strength. Due to the fact that gσσ′ with σ, σ′ ∈ {B, I}
depends, among others, on the three-dimensional s-
wave scattering length it can be experimentally ad-
justed, e.g., via Feshbach resonances utilizing either
magnetic or optical fields [1, 10, 60, 61]. Below, we
consider a bosonic medium of 87Rb atoms and 133Cs
impurities. Thus, the mass ratio is mI/mB = 133/87
[5, 55, 62, 63].

At t = 0 the system is prepared in its ground state
with a specific combination of interaction strengths
(gσσ′). The impurities are initially confined in a dou-
ble well V dw

I (x) = 1
2mIω

2
Ix

2 + hI
wI
√

2π
exp(−x

2

2w2
I

) which
is the superposition of a harmonic oscillator potential
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Figure 1. Schematic representation of the considered setup
and the quench protocol. Two bosons (red circles) are cou-
pled to a bosonic medium (blue shaded area) which is ei-
ther confined in (a) a box potential or (b) a harmonic oscil-
lator. First, the two impurities are loaded into the double
well and the equilibrium state of the system is obtained
for a specific set of inter- and intraspecies interaction pa-
rameters (gBB , gII , gBI). Subsequently, a counterflow dy-
namics between the two impurities is induced by suddenly
ramping down the barrier of the double-well potential.

with frequency ωI and a Gaussian of width wI and
height hI [64, 65]. For the external potential of the
bosonic medium we consider two cases: a box poten-
tial of size LB = 1 with VB(x) = 0 for −LB/2 < x <
LB/2 and VB(x) = ∞ elsewhere, and a harmonic os-
cillator VB(x) = 1

2mBω
2
Bx

2. In the former scenario we
consider x̃box = LB/10 and Ẽbox = ~2

mB x̃2
box

as char-
acteristic length and energy scales, respectively [66].
Thus, the time and interaction strength are expressed
in units of t̃box =

mB x̃
2
box

~ and g̃box = ~2

mB x̃box
, respec-

tively. However, in the case of a harmonically trapped
medium it is more convenient to express the energy in
units of the medium’s harmonic oscillator Ẽho = ~ω̃ho

where ωB/ω̃ho = 1. It follows that the length, inter-
action strength and timescales are given in terms of
x̃ho =

√
~

mBωB
, g̃ho =

√
~3ωB
mB

and t̃ho = ω−1
B , respec-

tively. To construct the impurities’ double well we
employ ωI/ω̃box,ho = 0.6, hI/Ẽbox,hox̃

−1
box,ho = 3.0 and

wI/x̃box,ho = 0.7.
The ground state of the composite system is ac-

quired for a set of values of interaction strengths (gBB ,
gII , gBI). In the case of a box-confined medium
the impurities always exhibit a finite spatial over-
lap with the bath particles for the considered interac-
tion strengths. However, for a harmonically trapped
bath the impurity-medium overlap vanishes as long
as gBI > gBB (see also the discussion below). Subse-
quently, the dynamics is triggered by suddenly reduc-
ing (at t = 0) the barrier of the impurities’ double-well
potential [see Figure 1]. Consequently, in the course
of the time evolution the impurities collide and ex-
perience a harmonic oscillator potential V ho

I (x) with
frequency ωI . As we shall argue below, the emerg-
ing collisional correlated dynamics depends strongly
on the initial phase of the system determined by the
interaction parameters (gBB , gII , gBI).

III. VARIATIONAL APPROACH AND WAVE
FUNCTION ANSATZ

To determine the time-dependent solution of the
problem described by the Hamiltonian of Eq. (1) we

invoke the ML-MCTDHX method [51–54]. This ap-
proach is an ab-initio one and optimizes a chosen basis
e.g. in terms of the Dirac-Frenkel variational princi-
ple [67]. In particular, the basis set which underlies
the many-body wave function |ΨMB(t)〉 is character-
ized by a time-dependent and multi-layered structure
with individual truncation parameters [68]. Firstly,
the many-body wave function is expanded into dis-
tinct sets of species functions {|Ψσ

i (t)〉}Dσi=1 with Dσ

denoting the number of the latter for species σ ∈
{B, I}. Since here we consider a two-component mix-
ture, |ΨMB(t)〉 is firstly expressed into two such basis
sets and, thus, can be written in the form a truncated
Schmidt decomposition [69–71]

|ΨMB(t)〉 =

D∑
i=1

√
λi(t)|ΨB

i (t)〉|ΨI
i (t)〉, (2)

where D = DB = DI and |Ψσ
i (t)〉 are the so-called

natural species functions [53]. The time-dependent
Schmidt coefficients λi(t) determine the population of
the i-th natural species function and provide informa-
tion about the interspecies entanglement [71, 72]. For
instance, in the case that only a single Schmidt coef-
ficient λi(t) is nonzero, the system is described by a
direct product ansatz of species functions indicating
the absence of entanglement. On the other hand, the
two species are considered to be entangled when more
than one Schmidt coefficients are nonzero.

In the next step of the many-body wave func-
tion |ΨMB(t)〉 truncation, each species function is ex-
panded into time-dependent permanents

|Ψσ
i (t)〉 =

∑
~n|Nσ

Cσi,~n(t)|~n(t)〉. (3)

Here, each permanent represents one of the
(
Nσ+dσ−1

Nσ

)
possible configurations to distribute Nσ particles on
dσ single-particle functions |ϕσj (t)〉. A further im-
posed condition is that the number of occupied single-
particle functions for each permanent has to be equal
to Nσ (indicated by ~n|Nσ). This expansion enables
us to account for intraspecies correlations. Finally,
the time-dependent single-particle functions |ϕσj (t)〉
are expanded into a time-independent discrete vari-
able representation [73], which we choose here to con-
sist of 300 grid points in an interval {−5, 5} in units of
x̃box,ho. Additionally, in this work we employ D = 6
species functions and dA = 4, dB = 6 single-particle
functions for the accurate calculation of the consid-
ered systems.

Especially, the multi-layered architecture and the
time-dependent basis of the many-body wave function
mainly contribute to the high degree of flexibility of
the method which enables |ΨMB(t)〉 to approach the
accurate solution for each time instant with a high
fidelity even for systems containing a mesocopic par-
ticle number. In this way, the ML-MCTDHX method
keeps the number of required wave function coeffi-
cients within a computational feasible limit and, at
the same time, accounts for the relevant inter- and
intraspecies correlations.
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IV. CHARACTERIZATION OF THE
GROUND STATE

In the following we provide an overview of the
ground state characteristics of two impurities trapped
in a double-well and coupled to a bosonic bath con-
fined either in a box potential or a harmonic oscilla-
tor. These ground states will subsequently serve as a
starting point for examining the counterflow impurity
dynamics immersed in a medium which will be dis-
cussed below in Section V. Unless stated otherwise,
the interaction strength between the bath particles is
kept fixed to gBB/g̃box = gBB/g̃ho = 0.5.

A. Main observables of interest

Let us first introduce the quantities that will be em-
ployed for the identification of the ground state phases
and the quench dynamics of the two interacting impu-
rities in the cases of a box-confined and a harmonically
trapped medium. The distinction between the emer-
gent ground state configurations is performed with re-
spect to the two-body density distributions of the im-
purities and the bath particles at t = 0. The reduced
two-body density of two particles of the same species
is given by

ρ(2)
σσ (xσ1 , x

σ
2 , t) = 〈ΨMB(t)|Ψ̂†σ(xσ1 )Ψ̂†σ(xσ2 )

× Ψ̂σ(xσ1 )Ψ̂σ(xσ2 )|ΨMB(t)〉,
(4)

where Ψ̂
(†)
σ (xσ1 ) denotes the bosonic field operator

which annihilates (creates) a particle of species σ ∈
{B, I} at position xσ1 . In fact, ρ(2)

σσ (xσ1 , x
σ
2 ) is the prob-

ability of finding one particle at xσ1 and, simultane-
ously, another particle of the same species at xσ2 . In
the following, we will drop the time parameter since
for the ground state t = 0.

In both considered external confinements of the
medium, an increase of the repulsive impurity-
medium coupling strength leads to the development of
interspecies correlations (entanglement) which even-
tually impact the ground state configurations [74]. A
common measure for quantifying entanglement in a
bipartite system is the von Neumann entropy [71, 75],
defined as

SvN = −
D∑
i=1

λi lnλi. (5)

Recall that D denotes the number of the employed
species functions and λi are the Schmidt coefficients
[cf. Eq. (2)]. For a maximally entangled mixture
the von Neumann entropy obtains its maximum value,
SvN

max = lnD and λi = 1/D. This value corresponds
to SvN

max = 1.79 in our case. In contrast, a vanishing
von Neumann entropy indicates a decoupled (i.e. non-
entangled) mixture such that the total many-body
wave function can be written as a direct product state
of the two individual species wave functions.

Moreover, in order to judge the degree of miscibility
among the impurity and medium clouds we calculate

the interspecies spatial overlap [76, 77] which is quan-
tified through

ΛBI =
[
∫

dxρ
(1)
B (x)ρ

(1)
I (x)]2∫

dx[ρ
(1)
B (x)]2

∫
dx[ρ

(1)
I (x)]2

. (6)

Here, ρ(1)
σ (x) = 〈ΨMB|Ψ̂†σ(x)Ψ̂σ(x)|ΨMB〉 being the

one-body density of σ ∈ {B, I} species [78].

B. Decoupled case gBI = 0

Before addressing the ground state properties of
the coupled mixture, we focus on the simpler scenario
where the bath and the impurities are decoupled from
each other (gBI = 0) and thus they can be treated in-
dividually. Accordingly, the impurity-bath entangle-
ment is vanishing, i.e. SvN = 0. Then, the system re-
duces to two interacting bosons in a double well [79–
81] with the bath being homogeneous or harmonically
trapped [cf. Figure 2(a) and Figure 3(a) for gBI = 0].
Here, we distinguish between weakly and strongly cou-
pled impurities. In the former case, the two impuri-
ties are delocalized over the two sites of the double
well, see the dominant population of the off-diagonal
compared to the diagonal elements of ρ(2)

II (xI1, x
I
2) [cf.

insets of Figure 2(a) and Figure 3(a) corresponding to
regime (II)].

On the other hand, for larger impurity-impurity re-
pulsion gII the density maxima along the diagonal
vanish and only density peaks at the off-diagonal re-
main [cf. inset of Figure 2(a) belonging to regime
(III)]. This configuration of ρ(2)

II (xI1, x
I
2) is described by

the conditional probability of finding one impurity at
the left and one impurity at the right site of the double
well or vice versa. In this sense, the impurities tend
to separate from each other and are anti-correlated
within the same site of the double well. Thus, they re-
side in a Mott-type state. Notice that for a decoupled
mixture the above described impurity configurations
corresponding to regime (II) and (III) occur indepen-
dently of the particular trapping geometry of the bath
[cf. gBI = 0 in Figures 2(a) and 3(a)]. Thereby, the
medium extends almost homogeneously over the box
potential as also reflected by the shape of its two-body
density [see inset of Figure 2(a)], while in the harmon-
ically trapped scenario it exhibits a Gaussian profile
[cf. inset of Figure 3(a)].

C. Finite interspecies interactions with the
medium confined in a box potential

Having analyzed the spatial configurations of the
interacting impurities for a suppressed impurity-bath
coupling we then discuss the ground state properties
of the composite system when the bath is confined in a
box potential and the interspecies interaction strength
gBI becomes finite. The respective ground state phase-
diagram is mapped out and presented in Figure 2(a)
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Figure 2. (a) Phase diagram of the impurities-bath ground state with respect to the impurity-medium (gBI) and
impurity-impurity (gII) interaction strengths for constant interactions of the medium (gBB/g̃box = 0.5). The impurities
are confined in a double well and the medium is trapped in a box potential. The respective ground state configurations are
characterized in terms of the two-body densities of the bath ρ(2)

BB(xB1 , x
B
2 ) and the impurities ρ(2)

II (xI1, x
I
2). All crossovers

among the involved phases are smooth. For each inset the range of the color map is optimally chosen and maximally
extends from 0 to 2 [0.2] for ρ(2)

II (xI1, x
I
2) [ρ(2)

BB(xB1 , x
B
2 )]. In panels (b1)-(d2) the ground state two-body densities of the

bath and the impurities are presented in terms of a weakly interacting bath (gBB/g̃box = 0.1) and strongly interacting
impurities (gII/g̃box = 2.0). The interspecies interaction strength from top to bottom row is gBI/g̃box = 5.0, 0.2, −2.0,
respectively.

based on the underlying two-body configurations iden-
tified in ρ(2)

BB(xB1 , x
B
2 ) and ρ(2)

II (xI1, x
I
2). Overall, we find

that upon varying gBI and gII , the system deforms
smoothly across the different phases, which are ana-
lyzed in detail in the following, see also [82].

In the case of strong repulsive gBI , the mixture en-
ters regime (I) [see Figure 2(a)] [83]. Here, the im-
purities two-body density exhibits two peaks along its
diagonal meaning that the two impurities occupy si-
multaneously a single site of the double-well. Such a
behavior is referred to as the coalescence of the impu-
rities and has been observed also for the case where
the impurities and bath particles are both harmoni-
cally confined [32]. Intuitively, we explain this behav-
ior as follows. One impurity lying at a specific site of
the double well repels the bath particles and, thereby,
creates an effective hole which attracts the other im-
purity [84, 85]. On the other hand, the impurities im-
pact accordingly the bath. This backaction manifests,
for instance, in the off-diagonal parts of the medium’s
two-body density which exhibits strongly suppressed
spatial regions at the location of the impurities [see in-
set in regime (I) of Figure 2(a)]. Indeed, the probabil-
ity to find two bath particles at positions correspond-
ing to opposite double-well sites is vanishing. This is
due to the fact that the impurities lie both either at
the left or at the right double-well site as it becomes
apparent from their reduced two-body density. How-
ever, a configuration where two bath particles reside
simultaneously at the same double-well site is still con-
ceivable, assumed that the impurities are at the oppo-
site site, thereby, avoiding the bath particles [note the
non-vanishing density at the diagonal of ρ(2)

BB(xB1 , x
B
2 )

in the inset of Figure 2(a)].

Increasing the impurity-medium interaction
strength within regime (I) for a fixed gII/g̃box ∈ [0, 2]
we observe two prominent features appearing in
terms of ρ(2)

BB(xB1 , x
B
2 ). Firstly, the two-body density

holes at the off-diagonal of ρ(2)
BB(xB1 , x

B
2 ) become more

pronounced for increasing gBI and, secondly, for a
gBI/g̃box & 2.5 two bath particles are correlated at
the most right and most left or at opposite sites of the
bath cloud [see the outermost density peaks at the
diagonal and off-diagonal elements of ρ(2)

BB(xB1 , x
B
2 ) in

the inset of Figure 2(a)]. From this latter behavior we
can conclude that the bath particles exhibit two-body
long distance correlations. Moreover, we note that in
case of strong impurity-impurity repulsions, e.g. for
gII/g̃box = 2.0, the two-body state of the impurities
begins to fermionize and the diagonal peaks of
ρ

(2)
II (xI1, x

I
2) broaden and, eventually, fragment [86]

[see corresponding inset of Figure 2(a)].

Similarly to the coalescence of the impurities in the
repulsive case [regime (I)] also in the attractive sce-
nario the two impurities simultaneously occupy either
the left or right site of the double well, as it can be
deduced from their diagonal and highly localized two-
body density configuration ρ

(2)
II (xI1, x

I
2) [see the inset

of Figure 2(a)]. In both the repulsive and the attrac-
tive cases, the bath mediates an induced attractive in-
teraction between the impurities such that the latter
coalesce and tend to occupy the same double-well site.
For a more detailed discussion regarding the presence
of the attractive induced interactions between the im-
purities via their relative distance, see Appendix A.
Furthermore, due to the attractive interactions the
bath particles localize in the vicinity of the impurities
such that also the two-body density of the medium ex-
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Figure 3. (a) Ground state phase diagram of the im-
purities inside a harmonically trapped medium. The
crossover from region (I) to (III) is abrupt marked by
the dashed line, while all others are smooth. (b) Spa-
tial overlap ΛBI and (c) von Neumann entropy SvN be-
tween the bath and the impurities for varying impurity-
medium interaction strength and different fixed impurity-
impurity couplings (in units of g̃box,ho) as well as for dis-
tinct external potentials of the bath (see legend). The
interaction strength among the bath particles is fixed to
gBB/g̃box = gBB/g̃ho = 0.5.

hibits two dominant peaks along the diagonal [Figure
2(a)]. Also, we remark that regime (II) in Figure 2(a)
includes ground states corresponding to delocalized
impurities, i.e., where the diagonal and off-diagonal
elements of ρ(2)

II (xI1, x
I
2) are simultaneously populated.

However, with varying gII and gBI the particular den-
sity peaks are deformed compared to the depicted in-
sets of regime (II) in Figure 2(a). For instance, in the
case of gII/g̃box = 2.0 and gBI/g̃box = 1.0 correspond-
ing to regime (II) in Figure 2(a) the two-body density
of the impurities exhibits peaks at its off-diagonal ele-
ments [similar to regime (III)] and fragmented density
humps at its diagonal [as observed in regime (I)].

Moreover, increasing (decreasing) the interspecies
interaction to large repulsive (attractive) values leads
to a noticeable growth of the von Neumann entropy.
Namely, the impurities become highly entangled with
the bath [cf. Figure 3(b)]. At the same time the impu-
rities and the bath share a finite spatial overlap with
each other for all the considered values of gBI and gII
[Figure 3(c)]. Therefore, since these two features con-
stitute a basic requirement for the formation of quasi-
particles, e.g. as discussed in Refs. [24, 39, 50, 87], in
principle, the impurities can be dressed by the excita-
tions of the bath and, thus, form Bose polarons.

Additionally, we investigated the ground state of
the system for a weakly interacting bath, e.g. for
gBB/g̃box = 0.1. As we will argue, the enhanced
compressibility of the bath can alter the ground state
configurations and this is evident, among other ob-
servables, in terms of the two-body density. In Fig-
ures 2(b1)-(d2) we exemplary present the two-body
densities of the impurities and the bath particles for
gBB/g̃box = 0.1 and gII/g̃box = 2.0. Here, the impu-
rities two-body densities exhibit a qualitatively simi-

lar structure with the ones corresponding to a mod-
erately interacting bath [Figure 2(a)]. For instance,
a localization at the sites of the double-well is ob-
served for strongly attractive gBI [Figure 2(d1)] as
well as an anti-correlated behavior for weak impurity-
medium couplings [Figure 2(c1)] and the coalescence
of the impurities for strong gBI [Figure 2(b1)]. Simi-
larly, the two-body density of the weakly interacting
medium resembles the one of a moderately interacting
bath in the cases of weak attractive and repulsive as
well as strong attractive gBI [Figures 2(c2) and (d2)].
However, for strong repulsive gBI the medium’s two-
body density is modified for weak gBB , i.e., the off-
diagonal parts of ρ(2)

BB(xB1 , x
B
2 ) are depopulated and

only the diagonal ones are occupied [Figure 2(b2)].
We attribute this behavior to the increased compress-
ibility of the bath which suppresses correlations be-
tween two bath particles residing at longer distances
e.g. the opposite edges of the cloud as observed in Fig-
ure 2(a). Additionally, this behavior is accompanied
by strong anti-correlations between the impurities and
the bath particles, i.e., the respective two-body den-
sity ρ(2)

BI(x
B
1 , x

I
2) exhibits only peaks at its off-diagonal

(not shown).
Furthermore, we have found that in the correspond-

ing ground state phase diagram of a weakly inter-
acting medium (gBB/g̃box = 0.1) with NB = 20, the
regimes (II) and (III) shrink as compared to the
gBB/g̃box = 0.5 case shown in Figure 2(a). Specifi-
cally, their phase boundaries are shifted towards the
line corresponding to gBI = 0. A similar, but less pro-
nounced, shift of the phase boundaries is observed
when increasing the number of bath particles to
NB = 30 but keeping gBB fixed. Summarizing, both
decreasing gBB or increasing NB while considering
fixed all other parameters leads to an enhancement
of the magnitude of the attractive induced interac-
tions between the impurities when gBI is switched on
towards finite attractive or repulsive values.

D. Harmonically trapped medium

We then proceed to analyze in more detail the sys-
tem consisting of a harmonically trapped medium.
This change of the external confinement reduces the
mobility of the bath particles which are then natu-
rally bounded by the harmonic oscillator around the
trap center. The respective phases presented in Fig-
ure 3(a) feature smooth crossovers among them be-
sides the one between the regimes (I) and (III) which
is abrupt. To testify the "smoothness" of the underly-
ing crossover regions we track, as in the box-confined
scenario, the behavior of the impurities two-body den-
sities (cf. [82]).

An increasing impurity-medium repulsion such that
gBI > gBB leads to a phase separation between the
impurities and the bath particles as it is captured
by the diminishing spatial overlap depicted in Figure
3(b). In this case the impurities are no longer dressed
by the excitations of the bath and, thus, the quasi-
particle notion is essentially lost [39, 49, 50]. Thereby,
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we distinguish between two cases according to the
impurity-impurity interaction strength. In the case
of weak gII and strong gBI corresponding to regime
(I) in Figure 3(a) the impurities coalesce in a similar
manner as described above (see also Ref. [32]). How-
ever, as the impurity-impurity interaction strength be-
comes large enough or the impurity-medium repulsion
sufficiently small, regime (III) is accessed in which
the impurities spatially separate. This is identified
by the exclusive population of the off-diagonals of
ρ

(2)
II (xI1, x

I
2) [cf. corresponding inset of Figure 3(a)].

Turning to strongly attractive impurity-medium in-
teraction strengths assigned as regime (IV) in Figure
3(a) a localization of the impurities in the barrier of
the double-well is observed, see in particular the elon-
gation of ρ(2)

II (xI1, x
I
2) along its diagonal. This prop-

erty is related to the formation of a bipolaron, refer-
ring to a dimer bound state consisting of two polarons
[35, 36, 39]. We base our argument of bipolaron for-
mation on the following observations which have also
been used in Refs . [36] to expose the existence of such
states in three-dimensions. The continuous decrease of
the so-called bipolaron energy EBP = E2 − E1 + E0

has been verified for increasing impurity-medium at-
traction, where Ei denotes the total energy of the
bosonic gas containing i = 0, 1, 2 impurities. In the
same manner, also the size of the dimer state quanti-
fied in our case by 1/

√
〈r̂2
II〉 increases for larger gBI

(not shown here).
Concluding, let us mention in passing that similarly

to the case of a box-confined medium, the main re-
quirements for the formation of Bose polarons are also
fulfilled in the presence of a harmonic trap. The only
exception consists of the region of phase-separation
among the impurities and the medium at gBI > gBB .
Thus, the impurities response, to be presented below,
can be interpreted as the counterflow correlated dy-
namics of two quasi-particles, here Bose polarons.

V. COLLISIONAL MANY-BODY DYNAMICS
FOR A BOX CONFINED MEDIUM

Next, we investigate the time evolution of the com-
posite system upon suddenly ramping down the cen-
tral barrier of the impurities’ double-well potential
such that they are henceforth externally confined in
a harmonic oscillator and, thus, their counterflow dy-
namics is triggered. In a decoupled mixture (gBI = 0)
this quench results in an undamped periodic impuri-
ties motion where they collide and subsequently ex-
pand repeatedly. Turning to finite impurity-medium
couplings the response is substantially altered and
depends strongly on the trapping potential of the
medium, as we will argue below.

A. Response through the time-evolution of the
density

We monitor the counterflow dynamics of two impu-
rities coupled via gBI to a bosonic medium trapped
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Figure 4. Time evolution of the one-body density of (a1)-
(c1) the harmonically trapped impurities and (a2)-(c2) the
bath particles confined in a box potential. Each column
represents the dynamics for a fixed impurity-medium in-
teraction strength which is from left to right gBI/g̃box =
−0.2, 1.5, 5.0. In all cases, the impurity-impurity coupling
is gII/g̃box = 0.2. (a3)-(c3) Snapshots of the impurities
two-body density at different time instants (see legends).
The insets depict the two-body densities at the same time
instants and scales, but for two strongly interacting im-
purities, i.e. gII/g̃box = 2.0. At those time instants, the
one-body densities for two weakly and strongly interact-
ing impurities reveal similar features, thus, allowing the
comparison on the two-body density level.

in a box potential. After ramping down the poten-
tial barrier of the double well, the impurities are left
to evolve in the resulting harmonic trap. As a first
step, we categorize the emergent dynamical response
regimes by inspecting the one-body densities ρ(1)

I (x, t)

and ρ(1)
B (x, t) depicted in Figures 4(a1)-(c1) and (a2)-

(c2), respectively. The impurity-impurity coupling
is kept fixed gII/g̃box = 0.2 and only the impurity-
medium interaction is varied. We are able to iden-
tify four distinct dynamical response regimes taking
place at strong attractive (gBI/g̃box < −0.8), weak
attractive and repulsive (−0.8 . gBI/g̃box < 0.8),
intermediate repulsive (0.8 . gBI/g̃box . 2.0) and
strongly repulsive (2 < gBI/g̃box) values of gBI . These
dynamical regimes are, of course, inherently related
to the corresponding phases unraveled in the ground
state of the system, see Figure 2(a). Note that the
behavior of the one-body densities in the respective
regions do not qualitatively alter for varying gII from
small to large repulsive values at least in the range
of 0 ≤ gII/g̃box ≤ 2.0 considered herein. Only by in-
specting higher-body observables, such as the reduced
two-body density, reveals significant alterations of the
impurities response regarding variations of gII .
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B. Dynamics for weakly attractive and repulsive
impurity-medium couplings

In the case of either weakly attractive or repulsive
gBI the impurities one-body densities feature a peri-
odic motion consisting of a collision and an expansion
of their cloud [cf. Figure 4(a1) for gBI/g̃box = −0.2].
As a consequence, the bath is only weakly perturbed
from its initial homogeneous profile showing small
amplitude distortions at the instantaneous location
of the impurities [see Figure 4(a2)]. This response
emerges when considering initial configurations cor-
responding to the interaction regimes (II) and (III)
discussed in Figure 2(a). Interestingly, the time-
evolution of the one-body density does not depend
strongly on variations of the impurity-impurity in-
teraction strength [88]. Therefore, one has to rely
on two-body observables, such as the two-body den-
sity ρ

(2)
II (xI1, x

I
2), e.g. presented in Figure 4(a3) for

gBI/g̃box = −0.2 and gII/g̃box = 0.2 at t/t̃box = 10.5
and in the respective inset for two strongly interact-
ing impurities with gII/g̃box = 2.0. In the former case,
the two weakly interacting impurities are initially and
throughout the evolution delocalized over both sites
of the double well since both the diagonal and the off-
diagonal elements of ρ(2)

II (xI1, x
I
2) are non-vanishing.

However, for strongly interacting impurities we find
that in the course of the evolution a pronounced cor-
relation hole occurs [39], i.e., solely the off-diagonal
of ρ(2)

II (xI1, x
I
2) is populated [cf. inset of Figure 4(a3)].

In other words, due to the strong repulsion the impu-
rities reside at spatially opposite positions and avoid
each other during the dynamical evolution. The re-
spective dynamics of the impurities is characterized by
the periodic expansion and contraction of their cloud
around the trap center while avoiding to reside at the
same location, see the correlation hole of ρ(2)

II (xI1, x
I
2).

However, independently of gII the impurities remain
within the medium, thus, forming a polaron due to
the finite gBI .

C. Time-evolution for intermediate interspecies
repulsions

Increasing the impurity-medium repulsion to in-
termediate values (gBI/g̃ . 2.0) and, thereby, en-
tering regime (I) in Figure 2(a) a comparatively al-
tered response is realized. Indeed, once the two im-
purities collide at the trap center, they remain local-
ized [89], see Figure 4(b1) for gBI/g̃box = 1.5. Con-
sequently, because of the repulsive character of the
employed gBI , the bath is pushed towards the edges
of the box with each density branch undergoing weak
amplitude oscillations due to its reflection from the
walls of the confining box [Figure 4(b2)]. Simultane-
ously, the bosonic medium becomes highly depleted,
meaning that higher-lying natural orbitals (being the
eigenvalues of the reduced one-body density matrix
ρ

(1)
B (x, x′, t)) are macroscopically populated. Accord-

ingly, the bosonic gas is correlated and deviates from

a perfect BEC. This behavior is in contrast to the case
of gBI/g̃box < 0.8 where the first orbital is dominantly
occupied.

However, the corresponding two-body density
ρ

(2)
II (xI1, x

I
2) when the impurities collide at the trap

center at t/t̃box = 4.5 is shown in Figure 4(b3). The
elongated shape of ρ(2)

II (xI1, x
I
2) along the diagonal indi-

cates the presence of an attractive interaction between
the impurities induced by the coupling with the bath
[32, 39, 50]. Apparently the strength of this induced
attraction is larger than for gBI/g̃box = 0.2. More-
over, by comparing this case to the one of strongly
interacting impurities (gII/g̃box = 2.0), we find once
again significant differences only on the behavior of
their two-body density. At t = 0, the shape of
ρ

(2)
II (xI1, x

I
2) corresponds to two coalesced impurities

whose density peaks lay on its diagonal and are frag-
mented [cf. inset of Figure 2(a)]. In the course of the
dynamics the impurities collide at the center where
they remain in the course of the evolution [see inset of
Figure 4(b3)]. Thereby, the strong repulsion between
the impurities hinders a population at the exact di-
agonal of the two-body density. Notice their small
spatial overlap with the bath hinting towards their
suppressed dressing [90].

D. Dynamical response for strong
impurity-medium repulsions

For even stronger impurity-medium repulsions
(gBI/g̃ > 2.0), the impurities once they collide around
x = 0 they drift apart from each other and collide
again [see Figure 4(c1) for gBI/g̃box = 5.0]. This be-
havior is repeated in the course of time with a damped
collision amplitude. Thereby, the population on the
diagonal of ρ(2)

II (xI1, x
I
2) becomes narrower as compared

to the case of intermediate repulsive gBI , indicating
the presence of an even stronger strength of induced
interactions [cf. Figure 4(c3)]. Again two strongly
repulsive impurities fragment along the diagonal of
ρ

(2)
II (xI1, x

I
2) [see the inset of Figure 4(c3)] with the

two respective density fragments exhibiting each four
faint maxima which persist until an evolution time of
t/t̃box = 8. During the evolution the one-body den-
sity of the bath allocates at the edges of the box when
the impurities collide and reoccupies the trap center
when the latter drift apart, see also below for a more
detailed discussion.

We attribute the impurities’ density splitting for
large gBI , even though the induced attractive interac-
tion is higher in this case than for intermediate repul-
sive couplings, to the finite size of the considered box
potential. In order to elucidate the underlying mecha-
nism we show in Figure 5(a) the time-dependent spa-
tial variance of the medium 〈X̂2

B〉(t) which serves as a
measure for the instantaneous spatial extension of the
medium’s cloud [19, 91]. At t = 0 and for sufficiently
strong repulsive gBI the impurities reside both either
at the right or at the left site of the double well while
the bath particles avoid these pairs [cf. regime (I) in
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−5 0 5
xI/x̃box

0

5

10

V
eff

(x
I
,t

)/
Ẽ
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Figure 5. (a) Dynamics of the width of the medium cloud
(captured by the spatial variance 〈X̂2

B〉(t)) and internal
interaction energy of the bath particles 〈ĤBB〉 for dif-
ferent impurity-medium couplings (see legend) and fixed
impurity-impurity interaction strength gII/g̃box = 0.2.
In (b)-(d) profiles of the impurities one-body density
ρ

(1)
I (xI , t) are shown together with their effective poten-

tial (gray lines) for specific time instants (see legends). In
panel (b) gII/g̃box = 1.5 while in (c) and (d) gII/g̃box =
5.0. The time and interaction are expressed in units of
t̃box and g̃box, respectively.

Figure 2(a)], leading for larger gBI to an increased
〈X̂2

B〉(t = 0) [see Figure 5(a)].
Subsequently, after ramping down the barrier of the

double well, the impurities collide around x = 0 en-
forcing the medium to depopulate the trap center, a
process that results in the increase of 〈X̂2

B〉(t). To fa-
cilitate further our discussion, we provide specific pro-
files of the impurities’ one-body density and their ef-
fective potential [24, 39, 92]. The effective potential is
constructed from the superposition of the impurities’
(post-quench) harmonic oscillator and the one-body
density of the bath weighted by the impurity-medium
coupling strength. It reads,

V eff(xI , t) = V dw
I (xI) +NBgBIρ

(1)
B (xI , t). (7)

A maximum of 〈X̂2
B〉(t) is reached, i.e. the spatial

extend of the medium is largest, when the impurities
allocate at the trap center [see Figures 5(b) and (c)].
Thereby, the impurities transfer energy to the medium
leading to an increased interaction energy between the
particles of the latter, i.e. 〈ĤBB〉 = 〈gBB

∑
i<j δ(x

B
i −

xBj )〉, is maximized [cf. Figure 5(a)]. After reaching
a maximum of 〈ĤBB〉 the bath reoccupies the trap
center as indicated by the reduction of 〈X̂2

B〉(t) and
the impurities’ density splits again, a behavior that
is repeated in the course of time. As argued below,
this dynamical response can be attributed to finite
size effects stemming from the size of the medium’s
box potential.

E. Impact of the barrier height, atom number
and box size on the impurity dynamics

In order to check the robustness of the observed
dynamical response regimes of the impurities against
the system parameters we have additionally varied the
height of the double well hI , the size of the box po-
tential LB and the number of bath particles NB . For
small gBI and fixed gII/g̃box = 0.2, increasing the
height of the double well from hI/Ẽboxx̃

−1
box = 2 to 7

leads to a crossover of the impurities, i.e. from a su-
perfluid to a Mott-insulating phase. The former phase
corresponds to a two-body density ρ(2)

II (xI1, x
I
2) where

in all quarters prominent density peaks are present.
In the latter case only the off-diagonal of ρ(2)

II (xI1, x
I
2)

is populated [compare with the ground state config-
urations in regime (III) of Figure 2(a)]. Further in-
creasing the impurity-medium coupling to intermedi-
ate repulsive values the impurities coalesce again in-
dependently of the barrier height of the double-well.
Thereby, the impurities’ ground state corresponds to
the one of regime (I) depicted in Figure 2(a). Regard-
ing the dynamical response of the above-described sys-
tem, we did not find a qualitatively different behavior
when hI is varied but rather a shifting of the identified
regimes towards a larger value of gBI .

In Section IVC it was mentioned that the ground
state phase diagram is altered with respect to vari-
ations of gBB and NB . As such, also the dynamical
response of the system is affected upon tuning these
parameters by means that the specific dynamical fea-
tures are realized for smaller values of gBI . This is
attributed to the fact that the impurities feature an
enhanced magnitude of attractive induced interactions
for either a decreased gBB (e.g. gBB/g̃box = 0.1 and
especially in the interval |gBI | < gBB) or an increased
NB (for instance at NB = 30). Consequently, they lo-
calize around the trap center after their first collision
for a smaller gBI than for gBB/g̃box = 0.5 or a larger
NB such as NB = 30. This effect is arguably more
prominent in the former scenario and during the dy-
namics manifests by the enhanced impurities localiza-
tion at the trap center.

An opposite behavior is observed for varying only
the size of the medium’s box potential LB . In this
case, an increasing LB broadens the medium such that
the impurities are less affected by the presence of bath
particles which, eventually, for intermediate repulsive
gBI increases the relative distance between the im-
purities for a larger LB (not shown here). However,
when the box size is of the order of the distance of
the double well minima, the bath particles localize at
the trap center (between the two double-well sites)
for intermediate repulsive impurity-medium interac-
tion strengths. Additionally, for strong repulsive gBI
an increasing box size leads to the localization of the
impurities around x = 0 and a dynamical response
similar to the one observed in Figure 4(c1) is absent.
This holds also when we simultaneously increase the
number of bath particles and the size of the box po-
tential while keeping the ratio NB/LB fixed [93].
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Figure 6. Spatiotemporal evolution of the one-body densi-
ties for two weakly interacting impurities (gII/g̃ho = 0.2)
and a weakly interacting bath (gBB/g̃ho = 0.5) trapped in
a harmonic oscillator. The dynamics is induced by ramp-
ing down the barrier of the double well in which the impu-
rities initially reside. In each column a different impurity-
medium interaction strength is considered, which is from
left to right gBI/g̃ho = −0.2, 0.2, 0.6.

VI. IMPURITIES DYNAMICS FOR THE
HARMONICALLY TRAPPED BATH

Next, we examine the counterflow dynamics (in-
duced by the same quench protocol) of the two impuri-
ties coupled to a harmonically confined bath. Since in
this case the medium tends to localize at the trap cen-
ter a phase separation between the two species is facil-
itated for intermediate to strong repulsive impurity-
medium interaction strengths which eventually pro-
hibits a subsequent dynamical mixing of the species.
Indeed, we find that for values larger than gBI/g̃ho =
0.6 > gBB/g̃ho, corresponding to a vanishing spatial
overlap at t = 0 [cf. Figure 3(b)], the initial phase sep-
aration between the impurities and the medium per-
sists also in the course of the propagation. However,
for gBI/g̃ < 0.6 an intriguing response is observed.

A. Collision features in terms of the one-body
density

Figure 6 illustrates the time evolution of ρ(1)
B (x, t)

and ρ
(1)
I (x, t) for weak impurity-impurity couplings,

i.e. gII/g̃ho = 0.2, and for varying impurity-medium
interaction strength. As it can be exemplary inferred
from Figures 6(a1) and (b1) for weak attractive or re-
pulsive gBI the impurities perform a periodic motion
within the harmonic trap and induce only small de-
formations to the bath density associated with sound-
wave emission of the latter [Figures 6(a2) and (b2)].
In the former case, a persisting breathing dynamics
of the initially localized impurities takes place being
somewhat similar to the one which has been previ-
ously discussed for a medium confined in a box po-
tential [Fig. 4(a1)]. In the latter scenario correspond-
ing to Figure 6(b2), the originally spatially separated
impurities collide around x = 0 and then split in a
periodic fashion (see also the discussion below).
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Figure 7. Dynamical evolution of the impurities two-body
density ρ(2)

II (xI1, x
I
2) for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2

at specific time-instants (see legends) in units of t̃ho. Fol-
lowing the quench the impurities perform a periodic mo-
tion consisting of their collision at the trap center and a
subsequent expansion. Panel (b) corresponds to a colli-
sion event of the impurities, while the other panels refer
to time-instants at which the impurities expand [cf. Fig-
ure 6(b1)].

Moreover, we show the respective density evolution
in the phase-separation regime, i.e. for gBI/g̃ho =
0.6 > gBB/g̃ho [Figures 6(c1) and (c2)]. It can be
readily deduced that here the impurities are already
initially phase separated with the bath and remain
in this state also in the course of the evolution while
performing small amplitude oscillations due to their
collisions with the bath edges [94]. In particular, for
gBI/g̃ho > 0.6 the impurities remain in the coales-
cence regime if the initial chosen values for gBI and gII
coincide with regime (I) [Figure 3(a)] and are spatially
separated if the values for gBI and gII correspond
to regime (III) [Figure 3(a)]. Furthermore, for very
strong attractive gBI the impurities and the medium
localize together at the trap center where they remain
throughout the time-evolution (not shown), see also
Ref. [95] for a similar dynamics. We finally remark
that as in the case of a box-confined medium increas-
ing the number of bath atoms, e.g. to NB = 30, does
not lead to significant alterations of the observed dy-
namical response.

B. Two-body density evolution for weak
impurity-medium repulsions

Let us now focus on the dynamical properties of
two impurities which are weakly repulsively coupled
to the medium, e.g., via gBI/g̃ho = 0.2 and inter-
acting among each other with gII/g̃ho = 0.2 [Figure
6(b1)]. Specifically, we are interested in the dynamical
evolution of the impurities’ reduced two-body density
ρ

(2)
II (xI1, x

I
2) depicted in Figure 7. At t = 0, corre-

sponding to the ground state in which the two im-
purities are confined in a double well, their two-body
density exhibits two dominant density peaks across its
off-diagonal and two suppressed peaks at its diagonal
elements [see Figure 7(a)]. Considering the two diago-
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Figure 8. (a) Wannier states corresponding to the first six
energetically lowest eigenfunctions of the one-body Hamil-
tonian consisting of the double-well potential. (b)-(d)
Temporal evolution of the two-body probabilities P (2)

i,j (t)
for the impurities to simultaneously occupy the i-th and j-
th Wannier state for different sets of interaction strengths
(gBI , gII), which are in panel (b) (0.2, 0.2), (c) (0.0, 0.2)
and (d) (0.2, 2.0), expressed in units of g̃ho. Probabilities
involving either the fifth or the sixth Wannier states are
suppressed having at most an amplitude of 0.05 and are
shown in gray. The dynamics is induced by ramping down
the barrier of the impurities double-well potential.

nal peaks as sufficiently small, this two-body configu-
ration can be interpreted as the probability for the im-
purities to occupy opposite double-well sites. Follow-
ing the quench, the impurities collide at the trap cen-
ter and their cloud starts to contract and expand with
a frequency corresponding to the periodic motion of
the one-body density [Figure 6(b1)]. In the course of
this periodic motion the two-body configuration alters
from a two-body superposition state where both diag-
onals and off-diagonal elements are populated [Fig-
ure 7(c)] upon expansion of the cloud to a diagonal
structure when featuring contraction [see Figure 7(d)]
and vice versa [Figures 7(f)]. Notice that this dynam-
ical response is inherently related to a process which
is hidden on the one-body level [cf. Figure 6(b1)].

C. Single-particle dynamical excitation
processes

To obtain insights into the underlying microscopic
processes in the course of the impurity dynamics
we project the many-body wave function onto basis
functions consisting of the generalized Wannier func-
tions φIi (xI) of the initially considered (pre-quenched)
double-well potential [96, 97]. In this way we can re-
trieve the probabilities for the impurities to occupy
certain localized states of this basis and distinguish
between the left and right double-well sites. The Wan-
nier functions are constructed as a superposition from

the six energetically lowest eigenfunctions of the one-
body Hamiltonian Ĥ(1),dw = − ~2

2mI
∂2

(∂xI)2
+ V dw

I (xI)

and are provided in Figure 8(a) together with their
associated eigenenergies εi. In particular, the Wan-
nier state corresponding to i = 1 (i = 2) is the en-
ergetically lowest one at the left (right) site. Analo-
gously, i = 3, 5 (i = 4, 6) signify the first and second
excited Wannier states at the left (right) site. Note
that, even though for the analysis a basis of a double-
well potential is utilized, the impurities’ dynamics still
takes place within a harmonic oscillator. The respec-
tive two-body probabilities for the impurities to simul-
taneously occupy the i-th and j-th Wannier state are
given by

P
(2)
i,j (t) = 〈ΨMB(t)|1B ⊗ |φIi 〉〈φIi | ⊗ |φIj 〉〈φIj |ΨMB(t)〉.

(8)

Here 1B is the unit operator defined in the subspace
of the bath and |φIi 〉〈φIi | are the one-body projectors
of the i-th Wannier state acting on a single impurity.
The quality of the basis is tested by summing up all
probabilities P (2)

i,j (t) for each time instant and verify-
ing that

∑
i,j P

(2)
i,j (t) > 0.97 holds until t/t̃ho = 70.

The above-described two-body probabilities for
gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 are presented in
Figure 8(b). All probabilities show an oscillatory be-
havior stemming from the periodic collision and ex-
pansion of the impurities [cf. Figure 6(b)]. Beyond
this rapid motion, a decay and revival of P (2)

1,2 (t) takes
place at longer time scales, where P (2)

1,2 (t) corresponds
to the probability of finding one impurity in the en-
ergetically lowest left site Wannier state while the
other one occupies the right site Wannier state. On
the other hand, when the envelope of P (2)

1,2 (t) reaches
a minimum the probability of finding two impurities
both in the left P (2)

1,1 (t) (right, P (2)
2,2 (t)) Wannier state

is maximized as demonstrated in Figure 6(b). This
observation implies that a single-particle intraband
excitation process takes place. Moreover, also ener-
getically higher-lying Wannier states contribute to the
ground state configuration of the impurities as well as
to their dynamical response. For instance, the second
and third (first and fourth) Wannier states contribute
with P2,3(0) = P1,4(0) = 19 % to the ground state
configuration. Therefore, the initial state is a super-
position of different single-particle states. This is to
be contrasted with the discussion below [see Figure 9]
where a two-body basis is employed accounting in a
more natural way for effects stemming from impurity-
impurity interactions and the coupling to the bath.

For comparison the case of two weakly interacting
impurities gII/g̃ho = 0.2 which are decoupled from
the bath (gBI = 0) is showcased in Figure 8(c). It
can be readily seen that the impurities do not per-
form a state transfer similar to the one depicted in
Figure 8(b) but rather retain their delocalized config-
uration. In particular, at time-instants correspond-
ing to an expansion of the impurities cloud the two-
body probabilities associated with the energetically
lowest Wannier states lying at opposite and the same
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sites significantly contribute to the impurities many-
body wave function, thus confirming the former state-
ment. Otherwise, the impurities response is character-
ized by excitations to energetically higher-lying states.
Next, we inspect the case of strongly interacting im-
purities (gII/g̃ho = 2.0) which are weakly coupled
to the bath (gBI/g̃ = 0.2) [Figure 8(d)]. The dy-
namics begins with initially separated impurities, viz.
P

(2)
1,2 (t) obtains a maximum at t = 0, and continues

with the collision of the impurities at the trap cen-
ter where they both dominantly populate the same
energetically lowest left or right Wannier state [cf.
P

(2)
1,1 (t) = P

(2)
2,2 (t)]. Subsequently, the strong impurity-

impurity repulsion enforces the impurities to occupy
again opposite double-well sites. This scheme repeats
itself during the evolution and, in particular, lasts un-
til T/t̃ho = 200. Again a state transfer process oc-
curs as it can be seen from the competition of P (2)

1,2 (t)

and P (2)
1,1 (t). However, in this case the transfer is less

transparent and not as dominant as for gII/g̃ho = 0.2,
implying that an increasing gII/g̃ho results in the sup-
pression of this process.

Therefore, the intraband excitation process ob-
served for gBI/g̃ho = 0.2 and gII/g̃ho = 0.2 proves
to be sensitive to the impurity-impurity interaction
strength and, most importantly, requires a finite
impurity-medium coupling. In this manner, we can
conclude that this state transfer of the impurities is in-
duced by the presence of the bath. Moreover, we have
verified the absence of this mechanism for a species
mean-field ansatz (D = 1 in Eq. (2)), i.e. when the
entanglement is not taken into account. Thus, we can
deduce that many-body effects and, in particular, the
impurity-medium entanglement play a crucial role for
the realization of such processes.

D. Effective two-body impurity mechanisms

To further understand the participating excitation
processes we consider a projection of the many-body
wave function onto a two-body basis set. In particu-
lar, we choose for this investigation the ground state
and the first four energetically lowest excited states
of an effective Hamiltonian. This effective Hamilto-
nian Ĥ(2),eff describes two weakly interacting impuri-
ties (gII/g̃ho = 0.2) trapped in the effective potential
defined in Eq. (7) with gBI/g̃ho = 0.2. In this man-
ner, we take the backaction induced by the medium
into account. In Figure 9(c)-(f) we present the impu-
rities two-body density for the ground state as well as
the first three excited states |ΦIi 〉 of Ĥ(2),eff . As such,
we associate the ground state (i = 0) with the two-
body state (|LR〉 + |RL〉)/

√
2 where |L〉 (|R〉) repre-

sents a single-particle state corresponding to the left
(right) site of the double well. Analogously, we re-
fer to the first (i = 1) and second (i = 2) excited
states as the configurations (|LL〉 − |RR〉)/

√
2 and

(|LL〉 + |RR〉)/
√

2, respectively. The corresponding
eigenenergies are shown in Figure 9(b). Note that the
first (i = 1) and second (i = 2) excited eigenstates are
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Figure 9. (a) Time evolution of the fidelity between the
many-body wave function for gBI/g̃ho = 0.2 and gII/g̃ho =
0.2 and the excited states of the effective two-body Hamil-
tonian Ĥ(2),eff (see also Eq. (7)). (b) Sum of the impurity-
medium interaction energy 〈ĤBI〉 and the energy of the
impurities 〈ĤI〉 in the many-body approach for the ground
state as a function of the impurity-medium coupling (blue
line) depicted together with the eigenenergies of Ĥ(2),eff

(grey horizontal dashed lines). The two-body density of
the ground state and the first three excited eigenstates are
provided in (c)-(f).

approximately degenerate. In order to support the
validity of this two-body approach for two impurities
coupled to a larger medium, we additionally provide
the sum of the impurity energy and the interaction
energy (〈ĤI〉 + 〈ĤBI〉) at t = 0 as predicted within
the many-body approach, namely when the impurities
are still trapped in a double-well potential. Since this
energy matches at gBI/g̃ho = 0.2 the ground state
energy of the effective approach [cf. intersection of
〈ĤI〉+ 〈ĤBI〉 with i = 0 in Figure 9(b)] we conclude
that the effective potential adequately accounts for the
presence of the medium at t = 0.

As a next step, we calculate the fidelity of the
two-body eigenstates |ΦIi 〉 with the time-dependent
species functions of the impurities being coupled to
the medium. In this way, the probabilities of the
contributing two-body configurations are revealed.
Therefore, we estimate the absolute square of the pro-
jection of

∑D
j=1 |ΨB

j (t)〉⊗|ΦIi 〉 on the many-body wave
function |ΨMB(t)〉 defined in Eq. (2), which reads as

Fex
i (t) =

∣∣∣∣∣∣
D∑
j=1

√
λj(t)〈ΦIi |ΨI

j (t)〉

∣∣∣∣∣∣
2

. (9)

The dynamics of the fidelity with respect to the
ground state and the first four excited eigenstates of
Ĥ(2),eff is provided in Figure 9(a). Analogously with
the analysis regarding the Wannier states, we observe
besides a fast periodic motion a slower decay and re-
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vival of the ground state |ΦI0〉 associated with two
separated impurities. This behavior is accompanied
by a complementary increase of the second excited
state |ΦI2〉 = (|LL〉 + |RR〉)/

√
2 associated with the

coalescence of the impurities. Since the first excited
state, corresponding to the anti-symmetric configura-
tion (|LL〉−|RR〉)/

√
2, is strongly suppressed we con-

clude that the impurities undergo the two-body state
transfer from (|LR〉+ |RL〉)/

√
2 to (|LL〉+ |RR〉)/

√
2.

Moreover, we note that during the impurities’ collision
an appreciable amount of higher excited states need
to be taken into account as indicated, for instance, by
the non-negligible occupation of the third exited state
|ΦI3〉.

Concluding we have explicated the microscopic
mechanisms on both the one- and the two-body level
taking place during the collision dynamics of inter-
acting impurities coupled to a harmonically confined
bath. For instance, the single-particle intraband ex-
citation process appears to be sensitive with respect
to the impurity-impurity interaction strength and re-
quires a finite coupling to the bath. Moreover, an
analysis with respect to a two-body basis deciphered
the transitions among particular two-body configura-
tions.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the ground state and corre-
lated dynamics of two interacting bosonic impurities
confined in a double well and immersed in a bosonic
medium. The latter either experiences a box poten-
tial or it is confined in a harmonic trap. We estab-
lish the phase diagram of the ground state for vary-
ing impurity-impurity and impurity-medium coupling
strengths. Thereby, the emergent ground states have
been characterized with the aid of the two-body densi-
ties and impurity-medium entanglement. An analysis
of the impact of different trapping geometries on the
formation of these phases has been performed. For
instance, we explicate that the coalescence of the im-
purities at strong (repulsive or attractive) impurity-
medium interaction strengths is preserved for differ-
ent impurity-impurity repulsions when the bath is
in a box. However, in the case of a harmonically
trapped bath the impurities separate from each other
for strong impurity-impurity repulsion residing in a
Mott-type configuration. Moreover, in the latter sce-
nario, we observe at strong impurity-medium attrac-
tions indications for the formation of a bipolaron.

Focusing on a specific interaction-dependent ground
state configuration we trigger the dynamics by sud-
denly ramping down the potential barrier of the im-
purities’ double well. Firstly, the dynamical response
regimes of the impurities coupled to a box confined
medium are unraveled with respect to their associated
one- and two-body densities. In particular, for in-
termediate impurity-medium repulsions a localization
of the impurities at the trap center after the original
collision is realized. The impurities’ two-body den-
sity features an elongated shape along the diagonal

for weak impurity-impurity repulsion which suggests
the presence of attractive induced interactions medi-
ated by the bath. This induced localization of the
impurities persists also when the coupling strength
between the impurities is further increased. This ob-
servation together with the existence of a spatial over-
lap for finite impurity-medium interaction strengths
support the formation of quasi-particles, i.e. two in-
teracting polarons. We have attested the robustness
of the above phenomena with respect to variations of
the number of bath particles and the size of the box
potential. However, for strong repulsions finite size ef-
fects of the medium’s box potential come into play and
govern the dynamical response of the system. Essen-
tially, after the impurities’ collision at the trap center
they drift apart and then the medium reoccupies the
center.

By considering a harmonically confined bath the
impurities’ response is qualitatively altered. Due to
the spatial localization of the bath at the trap cen-
ter the impurities and the medium undergo a phase
separation already for intermediate impurity-medium
repulsions as it was also observed on the ground state
level. The response becomes especially intriguing for
weak impurity-medium couplings where the impuri-
ties are able to perform a breathing motion within
the bath. Specifically, for weak impurity-medium re-
pulsions we observe a state transfer of the impuri-
ties starting with two spatially separated ones located
at different double-well sites and evolving into a coa-
lesced configuration, i.e. the impurities cluster. Inter-
estingly, this state transfer process does not emerge
for strongly interacting impurities and, most impor-
tantly requires a finite impurity-medium interaction
strength, viz. it is induced by the coupling to the
bath. Moreover, it is shown that this mechanism can
be well understood in terms of a single-particle Wan-
nier basis of the double-well. Additionally, we reveal
the participating two-body states in this process using
an analysis in terms of a two-body basis which con-
sists of the low-lying excited states of a corresponding
effective two-body Hamiltonian.

There are several possible extensions of our results.
An immediate one will be to investigate the collision
features of the impurities immersed in a spatially ex-
tended bosonic gas with the aim to unveil their pos-
sible damping mechanisms and appreciate the corre-
sponding drag force. In another context, it would be
worth including a spin degree of freedom for the impu-
rities. Here, the dynamics of the emergent spin-spin
correlations is of interest especially when the impu-
rities localize around the trap center. Moreover, it
would be intriguing to consider two impurities with
different masses, e.g. a light and heavy one, cou-
pled to a background. This way it would be feasible
to investigate the influence of the mass on the emer-
gent collisional aspects of the impurities and their in-
duced interactions as well as trigger specific popula-
tion transfer channels by considering a Rabi-coupling
term.
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Figure 10. Ground state relative distance between the im-
purities 〈rII〉 (in units of x̃ho) with respect to the impurity-
medium interaction strength gBI for different impurity-
impurity couplings (see legend). The relative difference
∆〈rII〉 between the impurity-impurity distance predicted
within the many-body approach (〈rII〉) and the effective
Hamiltonian of Eq. (7) with V dw

I (xI) = 0 (〈reff
II 〉) is also

provided (see main text).
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Appendix A: Bath confined in a box potential:
relative distance between the impurities

In the following, we examine the impurities rela-
tive distance 〈rII〉 which can serve as an indicator
for the existence of their induced interactions medi-
ated by the bath [38, 39, 98]. This quantity, which
is accessible through in-situ spin-resolved single-shot
measurements on the impurities state [99], reads

〈rII〉(t) =
1

NI(NI − 1)

∫
dxI1dxI2

∣∣xI1 − xI2∣∣ ρ(2)
II (xI1, x

I
2).

(A1)

The impurities relative distance is presented in Fig-
ure 10 for the ground state of the system (t = 0)
for varying impurity-medium interaction strength and
different impurity-impurity couplings. In the case of
two weakly interacting impurities as well as for two
strongly interacting ones we observe that with an in-
creasing absolute value of gBI the relative distance
between the impurities reduces. This behavior im-
plies an induced attraction mediated by the coupling
to the bath. Furthermore, it is evident that for larger
impurity-impurity interactions 〈rII〉 is enhanced when

compared to the one of weakly interacting impuri-
ties. This behavior is caused by the increased in-
traspecies impurities direct repulsion compensating
their induced attraction.

To further justify the presence of induced inter-
actions, we compare the resulting impurities relative
distance as obtained using the many-body approach
(〈rII〉) with the one (〈reff

II 〉) predicted within the ef-
fective two-body Hamiltonian H̄(2),eff . The latter was
introduced in section VI for a harmonically confined
medium. Notice that here this effective Hamiltonian
describes the interplay between two interacting par-
ticles confined in an effective potential constructed
by the one-body density of a box-trapped medium
[see Eq. (7)]. As such, the entanglement between
the impurities and the medium is neglected while ef-
fects stemming from the backaction to the bath are
taken into account. By comparing 〈rII〉 between these
two methods we can determine whether the decrease
of 〈rII〉 for increasing |gBI | [see Figure 10] originates
from an entanglement-assisted induced interaction or
it is due to an alteration of the effective potential.

Inspecting ∆〈rII〉 = (〈reff
II 〉 − 〈rII〉)/〈reff

II 〉 depicted
in Figure 10 a large deviation among 〈rII〉 and 〈reff

II 〉
becomes evident for increasing |gBI |. This confirms
the presence of attractive induced interactions be-
tween the impurities. The fact that ∆〈rII〉 is fi-
nite can be traced back to the shape of the impuri-
ties two-body densities as obtained within the afore-
mentioned approaches for large gBI [corresponding to
regime I in Figure 2(a)]. While in the many-body sce-
nario the impurities coalesce (namely only the diag-
onal of ρ(2)

II (xI1, x
I
2) is occupied), in the effective po-

tential case both the diagonal and the off-diagonal
elements of ρ(2)

II (xI1, x
I
2) are equally populated. This

naturally leads to a larger relative distance. Conclud-
ing, the comparison with the effective model under-
lies the importance of considering correlations in the
system and reveals the presence of attractive induced
interactions between the impurities, see more details
in Refs. [39, 100].

Appendix B: Collisional properties of two heavy
impurities

Throughout this work we have considered a system
consisting of 87Rb bath particles and 133Cs impurities
corresponding to a mass ratio of mI = 133/87mB .
Below, we employ a mixture characterized by a mass
ratio m′I = 5mB in order to elaborate on the dynam-
ical response of two heavy impurities [38] immersed
in a bath confined in a box potential [101]. The time
evolution of the corresponding one- and two-body den-
sities of the impurities and the bath particles are de-
picted in Figures 11(a1)-(c1) and (a2)-(c2) for inter-
action parameters as the ones employed in the main
text [Figure 4]. In particular, we assume two weakly
interacting impurities (gII/g̃box = 0.2) and vary the
impurity-medium interaction strength gBI . Regard-
ing the one-body density evolution we do observe a
qualitatively similar behavior as compared to the case
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Figure 11. Time evolution of the one-body density of (a1)-
(c1) two heavy impurities and (a2)-(c2) a box-confined
bosonic bath. Each column represents the dynamics for a
fixed impurity-medium interaction strength which is from
left to right gBI/g̃box = −0.2, 1.5, 5.0. The impurity-
impurity coupling remains constant being gII/g̃box = 0.2.
(a3)-(c3) Snapshots of the impurities two-body density.
The insets show the two-body densities at the same time
instants, but for two strongly interacting impurities, i.e.
gII/g̃box = 2.0.

of lighter impurities. Only in the case of weak at-
tractive gBI [Figure 11(a1)] the heavy impurities per-
form a more pronounced breathing oscillation with a
larger oscillation period. Inspecting a two-body den-
sity snapshot reveals that the impurities are spatially
separated from each other and oscillate along the off-
diagonal of ρ(2)

II (xI1, x
I
2) [cf. Figure 11(a3)]. There-

fore, they are not delocalized as their lighter coun-
terparts [Figure 4(a3)], and this behavior persists for
two strongly interacting impurities [cf. inset of Figure
11(a3)].

Additionally, for intermediate impurity-medium re-
pulsions, i.e. gBI/g̃box = 1.5, the one-body densi-
ties of the impurities and the medium [Figures 11(b1)
and (b2)] as well as the impurities two-body density
[Figure 11(b3) and its inset] do not reveal a qual-
itatively different response with respect to the case
of lighter impurities [cf. Figures 4(b1)-(b3)]. Indeed
the impurities remain very close throughout the time-
evolution exhibiting a more pronounced localization
trend around the trap center as compared to lighter
ones. The same holds also for the case of strong
impurity-medium interactions [see Figures 11(c1)-(c3)
for gBI/g̃box = 5.0] where the impurities feature mul-
tiple collisions with a dissipative amplitude. Only,
the fragmentation in terms of the diagonal of the two-
body density for gII/g̃box = 2.0 is more prominent in
the case of heavy impurities than for lighter ones [cf.
inset of Figure 11(c3)] and becomes visible even on
the one-body density level (not shown here).
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Figure 12. (a) Time-evolution of the von Neumann en-
tropy upon linearly ramping down the barrier height hI

of the double well for different ramp times τ (see legend).
The impurities are weakly interacting with gII/g̃box = 0.2
and are coupled to a box-confined medium with an inter-
species coupling gBI/g̃box = 1.5. An increasing ramp time
maintains an almost constant magnitude of entanglement
until the impurities collision. (b) The corresponding one-
body density evolution of the impurities for τ/t̃box = 30.
As it can be seen the linear ramp delays the impurities
first collision event when compared to Fig. 4 (b1) referring
to the corresponding quench dynamics.

Appendix C: Impurity dynamics after a linear
ramp of their double-well potential

In the following we address the robustness of the im-
purities dynamical response when ramping down their
barrier height hI in a time-dependent manner and
not suddenly as in the main text. Specifically, we ap-
ply the following linear protocol h̃I(t) = hI − hIt/τ if
0 ≤ t ≤ τ whilst h̃I(t) = 0 as long as τ < t. The ramp
time τ is defined as the one at which the barrier height
vanishes, i.e. when h̃I(τ) = 0. For our purposes, we re-
strict our study to finite values of τ which deviate from
the instantaneous quench but also do not refer to an
adiabatic linear ramping.

To visualize the impact of the time-dependent pro-
tocol on the impurities collision process we present in
Figure 12 the time-evolution of the von Neumann en-
tanglement entropy [Eq. (5)] and the impurities one
body density. We follow a linear ramp of the impu-
rities barrier height characterized by a finite ramp
time τ/t̃box = 30. Notice that the latter appreciably
deviates from the quench scenario (τ/t̃box = 0). More-
over, we exemplarily invoke the system where the
medium is confined in a box potential while the rel-
evant interactions are gBB/g̃box = 0.5, gII/g̃box = 0.2
and gBI/g̃box = 1.5. Recall that in the main text it
has been shown that in this regime the impurities lo-
calize at the trap center after their first collision event,
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see also Figure 4(b1). As it can be readily seen [Fig-
ure 12(b)], the impurities dynamical response in terms
of ρ(1)

I (x, t) remains qualitatively unchanged as com-
pared to the quench [Figure 4(b1)]. The most promi-
nent difference regards the timescale at which the im-
purities collide and subsequently localize at the trap
center. As expected the initial collision can be delayed
for an increasing ramp time. Turning to the evolution
of the respective von Neumann entropies for varying
ramp times we observe an interesting behavior. At
short timescales the impurities and the medium are
highly entangled [Figure 12(a)]. The magnitude of the
entanglement is maintained in the course of the evo-
lution until the impurities collide and then localize at
the trap center where it suddenly decreases. This drop
of the entanglement depends strongly on the ramp
time and in particular it takes place faster for smaller
τ since in this case the collision event is accelerated.

Concluding, we remark that the linear protocol af-
fects the remaining response regimes, occurring for
other interspecies interaction strengths, in a similar
vein. Namely the main features as described in Sec-
tion V do not substantially alter but rather the un-
derlying timescales change. For instance, considering
weak attractive or repulsive gBI referring to the im-
purities breathing motion [Figure 4(a1)], we find a de-
creasing tendency of the breathing amplitude and fre-
quency for larger τ (not shown). This is attributed
to the fact that for increasing τ the collision of the
impurities is less violent thus producing a less pro-
nounced breathing. Analogous effects are observed for
a harmonically trapped medium where, for instance,
also in this case the amplitude and frequency of the
underlying breathing motion depend strongly on the
ramp time τ .
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