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The present work is motivated by the recent experimental realization of the Townes soliton in an
effective two-component Bose-Einstein condensate by B. Bakkali-Hassan et al., Phys. Rev. Lett.
127, 023603 (2021). Here, we use a similar multi-component platform to exemplify theoretically and
numerically, within the mean-field Gross-Pitaevskii framework, the potential towards the experimen-
tal realization of a different fundamental wave structure, namely the Peregrine soliton. Leveraging
the effective attractive interaction produced within the mixture’s minority species in the immisci-
ble regime, we illustrate how initialization of the condensate with a suitable power-law decaying
spatial density pattern yields the robust emergence of the Peregrine wave in the absence and in
the presence of a parabolic trap. We then showcase the spontaneous emergence of the Peregrine
soliton via a suitably crafted wide Gaussian initialization, again both in the homogeneous case and
in the trap scenario. It is also found that narrower wavepackets may result in periodic revivals of
the Peregrine soliton, while broader ones give rise to a cascade of Peregrine solitons arranged in a
so-called “Christmas-tree structure”. Strikingly, the persistence of these rogue-wave structures is
demonstrated in certain temperature regimes as well as in the presence of transversal excitations
through three-dimensional computations in a quasi-one-dimensional regime. This proof-of-principle
illustration is expected to represent a practically feasible way to generate and observe this rogue
wave in realistic current ultracold atom experimental settings.

I. INTRODUCTION

In 1966, Draper et al. [1] reported the detection of an
oceanic wave event featuring a freak wave, namely a wave
several times bigger than the average sea-state. Nowa-
days these freak waves are referred to as rogue waves [2].
Rogue waves are extreme wave events that emerge out
of nowhere and disappear without a trace [3, 4]. Un-
der appropriate approximations, they can be mathemat-
ically described by solutions of the nonlinear Schrodinger
equation (NLS) [5-9]. This mathematical description of
rogue waves allowed to extrapolate these phenomena to
a large variety of nonlinear physical systems, other than
oceanic waves, ranging from nonlinear optics [10-14] to
plasmas [15-17], and from liquid helium [18] to Bose-
Einstein condensates (BECs) [19, 20] (see also the reviews
of Refs. [21-23]).

Among the different members of the rogue wave family,
arguably, the most celebrated one is the rational solution
known as the Peregrine soliton [24]. Contrary to the
Kuznetsov-Ma soliton [5, 6], which is periodic in time, or
the Akhmediev breather [8], which is periodic in space,
the Peregrine soliton is a wave localized both in time and
in space. Over the recent years, Peregrine solitons have
been successfully realized in water tank experiments [25-
28], in plasmas [29] and in optical fibers [10, 11, 30, 31],

demonstrating the active interest of distinct communi-
ties in these, as well as similar wave events of higher
order [32]. All of the above-mentioned physical settings,
however, involve self-focusing media. Here, we report on
the theoretical formulation and numerical implementa-
tion of the spontaneous nucleation of the Peregrine soli-
ton in self-defocusing media within the mean-field frame-
work.

Within the ultracold superfluid realm, scalar and
multi-component BECs in the mean-field framework are
accurately described by a variant of the NLS equation,
the well-known Gross-Pitaevskii equation (GPE) [33]. In
that light, it is natural to expect that rogue waves can ex-
ist in BEC systems [19, 20, 34-36]. Importantly, the high
degree of controllability of such settings, e.g., in terms of
tunable interatomic interactions through the aid of Fesh-
bach [37, 38] or confinement-induced [39, 40] resonances,
as well as the flexibility to realize almost arbitrary po-
tential landscapes [41, 42], renders these platforms ideal
testbeds for the study of rogue wave formation.

It is also in this BEC context that the recent exper-
imental realization of the so-called Townes soliton [43]
came to fruition [20]. The Townes soliton is a planar,
real, nodeless and radially symmetric stationary solution
of the two-dimensional one-component focusing (i.e., at-
tractive interaction) GPE. Interestingly, the Townes soli-
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ton was conceived theoretically [43], and realized exper-
imentally [20] by reducing a two-component defocusing
(i.e., repulsive interaction) setting to an effective focus-
ing single-component one for a minority component [44]
(in the presence of a dominant majority component [45]).
Motivated by this recent realization of an effectively
attractive dynamics, manifested in the broadly experi-
mentally accessible two-component repulsive BEC set-
ting [33, 46], and the earlier work of Ref. [44], here, we
utilize this multi-component platform to study the for-
mation of the Peregrine soliton by solving the underlying
GPEs. Recall that the realization of this rogue wave,
which is an exact solution of the focusing NLS equa-
tion [24], in the BEC context, remains until now an ex-
perimental challenge, at least in part due to the modu-
lational instability which (the background of) this wave
suffers [4]. Here, we propose an alternative route for
achieving the nucleation of this rational solution paving
the way for its controllable experimental observation in a
repulsive BEC environment which can be routinely and
stably produced in the laboratory.

More concretely, we initially exemplify how, under
the appropriate choice of the inter- and intra-component
interactions, a two-component repulsive BEC can be
effectively reduced to an attractive single-component
one [20, 44], allowing in this way for the spontaneous
emergence of the Peregrine soliton. We investigate such
a rogue wave generation both in the absence and in the
presence of an external harmonic trapping potential but
also within the two- and the effective single-component
model. Here, very good agreement between the two mod-
els is demonstrated, verifying the existence of the Pere-
grine wave for the homogeneous setting while unveiling
its recurrence in the confined setup.

We then study the nucleation of the rogue wave pat-
tern in the so-called semiclassical limit. The latter is
addressed by initializing an experimentally accessible suf-
ficiently wide Gaussian wavepacket. It is found that the
width of the Gaussian directly impacts the resulting dy-
namics, from the periodic revival of the Peregrine soliton
towards the so-called umbilical gradient catastrophe [47].
The latter leads, in turn, to the formation of a cascade of
Peregrine waves, also referred to as the “Christmas-tree
pattern”. In our numerical computations, a Christmas-
tree configuration is found to decay in the confined geom-
etry, emitting dark-bright soliton-type structures which
oscillate inside the parabolic trap featuring unexpected
trajectories. For a recent experiment on the control-
lable generation and current state-of-the-art on multi-
component dark-bright solitons, see, e.g., Ref. [48]. Fur-
thermore, in order to expose the robust features of the
Peregrine wave, we also explore a number of variations of
the two-component setup. Namely, by considering mass-
imbalanced mixtures we unveil that Peregrine formation,
in general, can take place only in mixtures where the
minority component is the heaviest one. Specifically, in
this mass-imbalanced situation, the dark-bright patterns
experience a breathing motion, on top of their in-trap

oscillation, whose frequency depends on the size of the
solitons formed.

Additionally, the robustness of the Peregrine in certain
temperature regimes is unveiled through the dissipative
Gross-Pitaevskii framework [49, 50]. Last, but definitely
not least, the spontaneous nucleation of the Peregrine
and Christmas tree configurations is showcased in gen-
uinely three-dimensional (3D) computations featuring a
quasi-one-dimensional (1D) geometry. We believe that
the numerical persistence of the configuration in this set-
ting is strongly suggestive of the feasibility of our pro-
posed experimental realization.

The flow of our presentation is as follows. In Sec. II
we provide a description of the repulsive two-component
setup along with its reduction to an effective single-
component attractive model. In Sec. III, we elaborate on
the dynamical generation and features of the Peregrine
soliton. First, we show the emergence of the Peregrine
soliton in the absence and in the presence of an external
trapping potential. Then, we extend our considerations
to the semiclassical setting by using as an initial condition
a broad Gaussian wavepacket, again with and without a
trap. In this latter scenario, we also consider the impact
of mass-imbalance. The effect of temperature on the nu-
cleation of the Peregrine soliton is subsequently discussed
in Sec. IV. Importantly, Sec. V elaborates on the genera-
tion of the Peregrine in 3D geometries yet in the realm of
the quasi-1D regime. Finally, Sec. VI provides our con-
clusions and future perspectives. Appendix A presents a
modulational instability structure that arises at long time
dynamics, recently described and found in Refs. [51, 52]
but, contrary to our setup, for focusing media.

II. THE PEREGRINE WAVE IN A
TWO-COMPONENT SETTING

A. Mean-field description

To emulate spontaneous Peregrine soliton generation,
our starting point and the primary focus of our consid-
erations will be the zero temperature limit. The impact
of dissipation is appreciated later on in Sec. IV. In the
aforementioned limit, and also in 1D, the wave func-
tions obey the following dimensionless system of coupled
GPEs [33, 46, 53].
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The subscripts ¢t and x indicate the time and spatial
derivatives, respectively. The field u (v) describes the
wave function of the majority (minority) component. Ad-
ditionally, m, = m, /M, m, = m,/M where m,,, m, de-
note the mass of the corresponding component and M =
My My, [ (My, + my,) is the reduced mass. For our demon-
stration we will assume the scenario m, = m, =m =1,



unless it is stated otherwise. Such a mass-balanced mix-
ture could be realized, for example, by the two differ-
ent hyperfine states of 8"Rb [54] (see also the discussion
below). The external potential of the system is given
in the familiar parabolic form Vj(z) = 21m;Q%z%. Here
Q = w,/w,, where w, and w, denote the longitudinal
and transverse trapping frequencies of the system, re-
spectively. For a 1D cigar-shaped trap they should obey

wy € wy. Also, gj; = ﬁi %1 and g, = %% are the

s
are the effective intra- and inter-component 1D inter-
action strengths, respectively, with a;, denoting the s-
wave scattering lengths accounting for collisions between
atoms of the same (j = k) or different (j # k) species.

In the dimensionless units used here, the densities |u|?
and |v|?, length, energy, and time are measured in units
of 1/2a,,a; = +/h/(Mw,), hw, , and wll, respectively.
In this sense, typical evolution times of the order of 10°
when considering, for instance, a trap with w, =~ 27 x1Hz
and w; = 27 x 400 Hz correspond to ~ 400 ms, see also
Section V.

B. Reduction to a single-component model

The key feature of our analysis lies in considering the
limit where |g12 — g11| < g11, as well as |g22 — g11| < g11-
In this setup, an effective single-component description
of the two-component system can be achieved assuming
that one component is effectively immersed in a bath of
atoms of the second one [20, 44]. Notice that similar
considerations [55-57] are also utilized in rather distinct
contexts such as the dressing of impurities by the exci-
tations of a many-body medium leading to the concept
of polarons [58]. This scheme can be implemented ex-
perimentally via a two-photon Raman transition, where
a transfer of a fraction of atoms (in wave functions of
different types — for details, see below) from the ma-
jority component will be made to the minority species.
Importantly, this allows to keep the total density con-
stant. In line with the recent experimental description of
Ref. [20], our assumption will be that the two species add
up to a Thomas-Fermi profile (since the chemical poten-
tial p,, > Q will be used in the majority species) when
Q) # 0. In the case of Q = 0 (which will be employed first
in order to showcase the ideas in a uniform setup), the
total density of the two species is a constant background.

Then, following the above considerations, the dynam-
ics of the minority species in the two-component system
can be described by an effective single-component GPE
given by [44]:
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The key feature of this description is that the effective
nonlinearity parameter g here reads:

9%2
g =g — —. (3)
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As a result, if the condensates are on the (weakly) im-
miscible side, as is the case for 8”Rb hyperfine states,
we expect the effective nonlinearity to be attractive for
our effective single-component species veg that is approx-
imately equal to v. Here, motivated by relevant studies,
such as those of Ref. [59] and, more recently, Ref. [54],
we will consider g1 = 1.004 and goo = 0.95. The value
of g1 is considered to be close to 0.98, however, in order
to enable the relevant (weak) immiscibility effect to be
amplified and be visible at shorter time-scales, here we
will assume that g12 = 1.1. Effectively, it is well-known
that one of the scattering lengths can be tuned via tech-
niques such as Feshbach resonance over wide parametric
windows [60]. In that light, the relevant phenomenol-
ogy should be observable, for example, in the hyperfine
states |1, —1) and |2,1) of 87Rb for which the above pa-
rameters are given. Besides, the tunability to different
g12 as used here is, in principle, accessible. It is relevant
to note also that it is not central to our considerations
that g1 is tuned. Indeed, the results presented herein
will be valid for the minority component more generally
within the immiscible regime, as the latter leads to the
negativity of the expression of Eq. (3) for g and, hence,
the attractive nature of the effective one-component de-
scription considered.

C. Peregrine ansatz and computational setup

Having set up this effectively attractive interaction, it
is then relevant to discuss the coherent structure of in-
terest, namely the Peregrine soliton, as a prototypical
member of the family of rogue waves. The relevant solu-
tion of Eq. (2) with V(z) = 0 reads [24]:

4(1+2i%%)
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Here, Tp = L% = 1/(gP,) represent the characteristic
scales of time and space of the density variation of the so-
lution, respectively, while P, represents the background
density of the minority component. This implies that
this is a mono-parametric family of solutions, i.e., once
P, is set, so are Tp and Lp. Moreover, t, and z, de-
note,respectively, the time instant and location at which
the Peregrine soliton emerges. In what follows we set
z, = 0, unless stated otherwise.

Eq. (4) is the solution that we will seek to effectively
realize in our investigation in two distinct ways. The first
one, which involves the “proof-of-principle”, will consist
of the initialization of the Peregrine waveform and the
monitoring of its time-evolution. It is assumed, there-
fore, that such a profile is “transferred” to the minority
component at a substantially lower density P, than that
of the O(1) majority component (i.e., P, < p,), while
the majority component represents the “remainder” of
the background towards a cumulative density of either



constant value when V' (z) = 0, or a Thomas-Fermi cloud
when V(x) # 0. By Thomas-Fermi cloud here, we mean
the ground state profile in our setting of large chemi-
cal potential p,. As mentioned above, we perform two
types of investigations, one without an external trapping
potential and one in the presence of the parabolic trap.
Furthermore, in each of the examples, we perform two
complementary explorations. In the first one, we sim-
ulate the full two-component system of Egs. (1a)—(1b),
while in the second one we restrict our considerations
to the one-component effective system of Eq. (2). Our
scope is to illustrate the relevance of the reduction of the
former to the latter, and to identify the case examples
where this reduction may fail.

In addition to the “proof-of-principle” demonstration
that an initialization of the Peregrine initial condition
(well before its formation) will indeed lead to its emer-
gence, we also want to address a more practical question.
In particular, it is straightforward to appreciate that the
slowly decaying spatial waveform of Eq. (4) (to a con-
stant intensity background P,, no less) may be more dif-
ficult to achieve in practice. Hence, it is natural to seek a
“generic” waveform that may lead to such an emergence,
upon a straightforward initialization, e.g., with a Gaus-
sian profile. Here, we leverage the earlier findings of the
rigorous work of Ref. [47] in the integrable NLS setting,
within the so-called semiclassical regime. For our pur-
poses, practically, this concerns wave functions with suf-
ficiently large spatial width. In this context, the authors
of Ref. [47] have identified a generic so-called umbilical
gradient catastrophe which leads to the formation of a
cascade of Peregrine waves, a structure that has been
referred to as “Christmas-tree” in Ref. [19], and has re-
cently been identified also in single and coupled phononic
crystals [61, 62]. The relevant wave structures emerge
at the poles of the so-called tritronquée solution of the
Painlevé I equation. The principal result for our purposes
is that the Peregrine and the Christmas-tree structures
should emerge spontaneously from quite generic (wide,
and thus effectively semiclassical) waveforms, such as a
Gaussian, but also sech-shaped ones and others [63]; in-
deed, the key feature is the width of the localized wave-
form, rather than its concrete functional form. Partic-
ularly, it has been demonstrated that the occurrence of
the Christmas-tree structure is rather universal, in the
sense that it appears as a result of strong modulational
instability from different initial configurations [63]. This
motivates the second set of our numerical experiments
where, instead of initializing a precise Peregrine, we ex-
ploit a broad Gaussian of the form v = Aexp(—x2/w2)
and observe the resulting evolution. Typical values of
the Gaussian amplitude A = 0.2 and width w = 50,150
are used in the results below [64]. For the numerical
investigations that follow, we use a fourth order Runge-
Kutta integrator with spatial and temporal discretiza-
tion steps dxr = 0.1 and dt = 0.001, respectively. Addi-
tionally, the system size for the homogeneous settings is
[—3000, 3000], in the dimensionless units adopted herein,
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Figure 1. Density evolution of the Peregrine initial condition

[Eq. (4)] in the absence of a trap for (a) the minority and (b)
the majority species of the two-component setting with p, =
1. Eq. (4) is initialized with P, = 0.01 and ¢, = 1000. (c)
Dynamics of the density within the effective single-component
model. (d) Density difference between the (a) two- and the
(c) single-component dynamics (the colorbar is rescaled by
a factor of 10%). (e) Density profile of the v-component for
the two- and single-component setups at the time-instant of
Peregrine formation, namely t{y, = 1019 and g, 4. = 1000.
(f) Temporal evolution of the Peregrine wave emerging in the
v-component of both the two- and single-component setups
at ¢ = 0 (see legend). In both (e) and (f), the corresponding
analytical Peregrine solution of Eq. (4) is provided. Note
that length and time are measured in units of a; and wj_l,
respectively.

while for the trapped studies it is [— %’I"TF, %TTF] Here,
rrr = /24, /€ denotes the Thomas-Fermi radius of the

majority u-component.

III. DYNAMICS OF THE PEREGRINE
SOLITON

A. Proof-of-principle

Firstly, we consider the scenario of a Peregrine ini-
tial condition in the absence of a trap in both the two-
component setup, described by Egs. (1a)-(1b) and within
the effective single-component framework of Eq. (2).
Here, we initialize the minority v-component and effec-
tive single-component one with Eq. (4), with P, = 0.01
and t, = 1000. In the two-component setup, the ma-
jority u-component wave function has the form wu(z) =
ity — |v(2)]?, while the chemical potential p, = 1 is
held fixed. The relevant dynamics is shown in Fig. 1.
In terms of the minority v-component, the evolution of
the two-component setup clearly follows that of the ef-
fective single-component one [cf. Figs. 1(a) and 1(c), re-
spectively]. Note also how the majority u-component in
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Figure 2.  Spatiotemporal density evolution of a Peregrine

initial condition in the presence of a trap with 2 = 0.002
for (a) the minority and (b) the majority species of the two-
component case with p, = 1. Eq. (4) is initialized with P, =
0.01 and ¢, = 1000 on top of the ground state obtained for
the supergaussian potential of Eq. (5) using p, = P, (see
text). (c) Density snapshot of the v-component capturing
the instantaneous formation, tty, = 1053, of the Peregrine
soliton. (d) The temporal density profile of the v-component
at the fixed spatial location of z = 0. In both (c) and (d),
the relevant theoretical prediction of Eq. (4) is provided for
a direct comparison (see legend). Length (time) is given in
terms of a | (wll).

Fig. 1(b) naturally accompanies the density bump of the
Peregrine formation with a corresponding (complemen-
tary) density dip. The latter is reminiscent of dark-bright
(DB) solitonic entities [65] and naturally stems from the
repulsive interaction between the components.

For a more accurate comparison of the two models,
the density difference of the v-components is shown in
Fig. 1(d). Here, one can observe that around the Pere-
grine formation the two- and the single-component setups
differ at most by [v]? — |veg|? ~ 1073 (recall that the col-
orbar is rescaled by a factor of 10%). In particular, their
difference may grow, but this only happens past the ini-
tial formation of the Peregrine soliton. This is rather nat-
ural to expect, given that for large densities the correc-
tion to the single-component approximation of v becomes
substantial. As discussed in Ref. [20], such a correc-
tion is proportional to ( Ly — |v|2) / (2 oy — |v|2)
and can thus become relevant when the spatially varying
waveform of |v|? grows substantially, upon the emergence
of the Peregrine.

Indeed, by inspecting in Fig. 1(e) each Peregrine soli-
ton at the instant of its formation, ¢', it is observed that
the Peregrine of the two-component system is slightly
smaller in amplitude and slightly wider when compared
to that formed in the single-component setting. Also,
as shown in Fig. 1(f), we find that the Peregrine for-
mation in the two-component setup takes place later
than in the single-component one. In particular, the

former occurs at ti,, = 1019, while the latter occurs
at 4. = 1000. In Figs. 1(e) and 1(f), we also pro-

vide the analytical solution of Eq. (4), which, as ex-

pected, falls on top of the waveform stemming from the
single-component setup. Hence, we can conclude that in
the two-component scenario the presence of the majority
component slightly hinders/delays the Peregrine forma-
tion. Additionally, a closer inspection of panel (d) reveals
progressively stronger deviations between the single- and
two-component description past the Peregrine formation
time. This stems from the differences in the manifesta-
tion of the modulational instability of the background
for large and positive times (see, for example, Ref. [61]
for a discussion of the relevant instability in the presence
of the Peregrine wave). Moreover, we also found that at
those large positive times a wedge-like structure emerges,
similar to that described in Ref. [51] and, more recently,
experimentally found in Ref. [52] (see also Appendix A).

In the presence of a parabolic trapping potential (2 =
0.002) we prepare our initial state as follows. On the one
hand, we obtain the single-component ground state, uas,
of the majority u-component for p, = 1. On the other
hand, we find the ground state, vgg, of the minority v-
component in a supergaussian trapping potential of the

form
Vea(r) = 1 — exp [ (=) ] , (5)

but for u, = P, = 0.01, which throughout the text
refers to the chemical potential of the minority v-
component. For this initially decoupled two-component
system, rrr = /24,,/2 in Eq. (5) denotes the Thomas-
Fermi radius of the majority u-component. From here,
we imprint Eq. (4) with ¢, = 1000 onto the minority
ground state as v(z) = vgs(z)ver(z,0)/v/P,. The rea-
son for using a supergaussian is to obtain an initial state
with an almost constant (flat) background achieving also
a smoother decay of the tails of the Peregrine, as de-
scribed by Eq. (4). Lastly, we construct the majority
u-component wave function by subtracting the minority
v-component from the majority single-component ground
state, i.e., u(z) = \/|ugs(x)[? — [v(z)]2. Note that the
latter operation emulates a particle transfer from the ma-
jority component to the minority one, while preserving
the total density constant, which experimentally can be
implemented by means of a two-photon Raman tran-
sition, as in the recent Townes soliton realization [20].
Having carried out these 3 steps (ground state under su-
pergaussian, Peregrine imprinting, and formation of the
complementary majority component), we are ready to
perform our direct numerical simulations in the presence
of a parabolic trap. During the dynamics, the supergaus-
sian is turned off, interspecies interactions are switched
on, and both components evolve under the influence of
the same harmonic trapping potential.

The in-trap dynamical evolution of the two-component
system is presented in Fig. 2. Specifically, Figs. 2(a)
and 2(b) illustrate the spatiotemporal evolution of the
density of the v- and u-component, respectively, show-
casing the complementary nature of the latter. The




spontaneous emergence of a Peregrine soliton, and of
the corresponding density-dip appearing in the major-
ity u-component, takes place at ¢’ = 1053. This precise
time instant is captured in Fig. 2(c), where we further
compare the emergent wave against the analytical so-
lution of Eq. (4). The latter is fitted so as to match
the maximum amplitude of the nucleated Peregrine, i.e.,
P, = [vmax|?/9 = 0.0093. Notice that this value is rather
proximal to the initial amplitude of the Peregrine wave-
form, namely P, = 0.01. A nearly excellent agreement
is observed between our numerical observation and the
analytical estimate, an outcome that can also be inferred
by inspecting Fig. 2(d). In the latter, the evolution of
the density of the v-component at x = 0 is also depicted
along with the theoretical prediction. Indeed, the ob-
served structure almost coincides around its core with
the theoretically predicted one, but the numerically ob-
tained one is found to be (very) slightly wider. Similarly,
small deviations between the two occur also in the far
field (at the tails of the wave) but with their density dif-
ference never being greater than ~ 10~2. Even more im-
portantly, at later evolution times the numerical solution
recurs as a rogue pattern reminiscent of the Kuznetsov-
Ma soliton [5, 6, 11]. Recall that the latter is a time-
periodic family of solutions, of which the Peregrine is the
asymptotic limit when the temporal periodicity tends to
o0. A clear example of such a revival, that is related to
the trapped setting at hand, can be seen in Fig. 2(a), but
also in Fig. 2(d) around ¢t = 2358.

B. Semiclassical regime: Gaussian profile

We now turn to the example of a Gaussian initial con-
dition in order to cement the generic nature of the Pere-
grine soliton formation, as well as to showcase an ex-
ample of an initial condition that could be (far more)
straightforwardly accessible in BEC experiments. The
Gaussian profile here is representative of a wide initial
condition in the minority v-component, so as to capture
the semiclassical limit of the work of Ref. [47]. As in the
preceding section, we initialize the dynamics of the two-
and effective single-component system under considera-
tion first in the absence and subsequently in the presence
of a harmonic confinement. Additionally, two different
representative case examples corresponding to two dis-
tinct widths, namely w = 50 and w = 150, of the initial
Gaussian wavepacket are considered, while in both cases
the amplitude, A = 0.2, of this Gaussian initial condition
is held fixed.

The first case example, i.e., that of a narrower Gaus-
sian initial condition (w = 50), is shown in Fig. 3.
Here, the spatio-temporal evolution of the v-component
of both the two- and the single-component setups [see
Figs. 3(a) and 3(c), respectively] present the same chain-
like temporal pattern within which periodic recurrences
of a localized pattern reminiscent of the Peregrine wave
take place. Also, the majority u-component of the two-
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Figure 3. Time-evolution of the density of a Gaussian

wavepacket with A = 0.2 and w = 50 depicting the dy-
namics of the (a) minority and (b) majority species of the
two-component system with p, = 1. (c) Evolution of the
minority v-component within the effective single-component
description. (d) Density difference between the (a) two- and
the (¢) single-component dynamics. (e) Density profile of the
v-component for the two- and single-component setups at the
formation of the largest Peregrine, namely for ti,, = 1846
and t,.. = 1808, respectively. (f) Evolution of the center
position x = 0 of the density of the v-component for the two-
and the single-component setups. In both (e) and (f), the
corresponding analytical solution of Eq. (4) is given, with its
peak fitted to the single-component case (see text). Length
and time are expressed in units of a; and w]_l, respectively.

component model, illustrated in Fig. 3(b), showcases the
complementary dark chain temporal pattern. The ar-
ray of individual rogue wave patterns can be clearly dis-
cerned and once again there is a close correspondence
between the single- and two-component dynamics. To
demonstrate this correspondence, the density difference
of the v-components is provided in Fig. 3(d). Clearly,
the larger deviation between the two systems occurs
around the location of the formation of the localized
peaks (z = 0). To further expand on the compari-
son of the observed structures, in Fig. 3(e) we illustrate
their density profiles at the formation of their maximum,
namely at t{,, = 1846 and t{; . = 1808, respectively,
as compared with an exact Peregrine solution. Par-
ticularly, the largest among the localized patterns that
emerged during the evolution is considered here. No-
tice that an adequate agreement is observed in the vicin-
ity of the core, with the two-component pattern being
slightly wider but also having a smaller amplitude when
compared to the single-component Peregrine wave that
follows the theoretical prediction [see Eq. (4)]. The lat-
ter, is fitted to the Peregrine of the single-component
setup, having P, = [v%*]?/9 = 0.043 ~ A? and be-
ing initialized with ¢, = t;ingle. Naturally, the Gaussian
evolution, given its decaying tail, cannot lead to the con-
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Figure 4. Same as Fig. 3 but considering a significantly

broader Gaussian initial condition with w = 150. In this case
the Peregine soliton formation within the two models occurs
at tiwo = 758 and tf;,.. = 716 respectively. Notice also the
subsequent emergence of the Christmas-tree structure. Re-
call that length and time are given in units of a; and w117
respectively.

stant background of the Peregrine waveform, hence the
observed deviations in the far field. Additionally, moni-
toring in Fig. 3(f) the density at = 0 in the course of the
evolution shown in Figs. 3(a) and 3(c) reveals that the
emergent recurring structures in the chain slightly differ
in their time of formation. Namely, within the effective
model, each member of the chain (i.e. each recurrence
event) appears earlier in time, presenting also a larger
amplitude spike, when compared to the two-component
setting. The aforementioned results are in line with the
trends of the ones found in the homogeneous case [see
Figs. 1(e) and 1(f)].

As a second representative example, a significantly
wider, with w = 150, Gaussian initial condition is con-
sidered again both in the two- and in the effective single-
component setups [see Fig. 4]. It turns out that increas-
ing the width of the Gaussian leads to the dynamical
formation of the Christmas-tree structure (see Sec. IIC).
Indeed, as also explained previously, the mechanism un-
derlying the fragmentation of the solution is the exis-
tence of strong modulational instability of the (in our
case, effectively) focusing NLS equation [47]. The vari-
ous asymptotic regions (smooth vs. highly oscillatory)
are separated by ”breaking curves”, and the solution
of the focusing NLS inside the oscillation region is ap-
proximately given by modulated genus-2 waves. More
specifically, as shown in Ref. [47], near each oscillation
peak the solution takes on the universal shape of the ra-
tional solution known as the Peregrine soliton. In our
computations, a Christmas-tree pattern is clearly seen in
Figs. 4(a) and 4(c), corresponding to the two- and single-
component setups, respectively, while the complementary
dark Christmas-tree structure appearing in the majority

u-component of the two-component system is presented
in Fig. 4(b). Notice here the ramifications of the emerg-
ing Christmas-tree structure right after the formation of
the Peregrine soliton at t{,, = 758 (t;,,. = 716) within
the two-component (single-component) model.

The relevant Peregrine profiles are depicted in Fig. 4(e)
at the time instant of their formation together with the
analytical Peregrine solution of Eq. (4). Recall that the
latter is fitted so as to match the amplitude of the single-
component Peregrine wave. Also in this case an excel-
lent agreement is observed around the waves’ core when
comparing the exact solution to the single- and the two-
component outcome. Thus, increasing the width of the
initial Gaussian profile leads to an overall increase in size
of the emerging Peregrine soliton and to the formation of
the Christmas-tree structure. However, so as to stretch
the comparison of the patterns appearing in the distinct
settings, in Fig. 4(f) we illustrate the temporal evolution
of the central density of both v-components. Evidently,
this quantity perfectly captures the instant where the dy-
namics begins to differ, i.e., t ~ 1500 [cf. Figs. 4(a) and
4(c)]. The observed discrepancy between the two models
is a direct consequence of the presence of the majority
u-component in the two-component setup. This is an ef-
fect which will be even more pronounced in the case of
the presence of harmonic confinement that follows.

Next, we extend the above Gaussian state considera-
tions to the case where a parabolic trap, with trapping
frequency Q2 = 0.002, is also present. Also in this case,
the initial state preparation consists of obtaining the de-
coupled, single-component ground state of the majority
u-component for a fixed chemical potential (u,, = 1), and
then approximating the particle transfer to the minority
v-component by subtracting the latter from the former.
It turns out that the dynamical evolution of narrower
Gaussian wavepackets leads to qualitatively identical re-
sults to those found in the relevant homogeneous investi-
gations discussed above, and thus these findings are not
included herein for brevity.

Contrary to this, a more complex evolution takes place
when a wider (w = 150) Gaussian initial condition is con-
sidered. Here, we observe a particularly interesting phe-
nomenon that we did not encounter in the previous set-
tings, so it is convenient for our purposes to monitor the
dynamics both at long [Fig. 5(a)] and at short time-scales

[Fig. 5(b)]. At initial times, and in particular around
tiwo = 800, the Peregrine soliton forms, being subse-

quently followed by the emergence of the Christmas-tree
structure. Note that the Peregrine formation takes place
at later times as compared to the relevant untrapped sce-
nario. Also, in this case the presence of a modulated den-
sity profile does not appear to sustain this Christmas-tree
structure, which is seen to break into several DB soliton-
like entities after ¢ = 2000. Following these soliton-like
structures for longer evolution times [Fig. 5(a)] reveals
that these patterns oscillate inside the parabolic trap
over a very large period. In particular, their oscillation
frequency is substantially smaller than that of the trap.
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Figure 5. Evolution of the density of a Gaussian wavepacket
with A = 0.2 and w = 150 in the presence of a harmonic
trap with © = 0.002. (a) Temporal evolution of the minor-
ity v-component. (b) A magnification of (a) is provided. (c)
Effective single-component case. (d) Same as (b) but upon
considering a mass-imbalanced BEC mixture (see text). (e)
Density profiles of the v-component for the single-component,
and mass-balanced and mass-imbalanced two-component se-
tups at the instant of formation of the Peregrine soliton
tiingle = D16, tiwo = 800, and #1%) — 795 respectively. All
Peregrine amplitudes are normalized to unity for direct com-
parison. (f) Density profile at t'tsj(;?’) = 1851, depicting the
pairwise DB soliton nucleation that follows the decay of the
Christmas-tree pattern, for the mass-imbalanced mixture. In
all cases, the majority u-component complements its relevant
minority one, and thus it is omitted. The length and time
units shown are in terms of a; and wll, respectively.

Also, their corresponding period is much longer than that
expected for regular DB solitary waves under the same
confinement conditions [46, 66], which would typically be
of the order of a few hundred time units. By comparing
the trajectories of these peculiar DB entities to regular
ones we observe a distinct concavity between the two.
Namely, the present patterns feature (unprecedented, to
our knowledge) convex trajectories until very close to
the turning point, contrary to the usual (nearly) har-
monic oscillations experienced by standard DB solitons.
Nevertheless, after an extremely long period of time and
around t = 11394 the two outermost individual patterns
interfere to produce a revival of a Peregine waveform.
While the latter is not identical to the early one formed
at t{,,, = 800, it is very proximal to a Peregrine pattern
having a distinct amplitude. Hence, the system can ac-
cess a very long-time-scale revival of the relevant pattern
in this parabolically trapped setting that is particularly
interesting in its own right. Recall also that in all of the
above cases the majority u-component evolution comple-
ments the minority v-component shown in Figs. 5(a) and
5(b). Hence, it is not included here.

For completeness, the effective single-component evo-
lution is illustrated in Fig. 5(c). Here, the dynamics ap-
pears to be dramatically faster when compared to the
aforementioned two-component scenario, with the Pere-
grine soliton appearing at tgingle = 516 and being of
higher amplitude [cf. Fig. 5(b) and Fig. 5(c) colorbars
on the right side]. Also, faster is the formation of the
corresponding Christmas-tree structure which once more,
due to the presence of the trap, cannot be sustained and
around ¢ ~ 1000 it blurs out into a smooth background
within which the recurrence of two Peregrine solitons, one
at t = 1068 and one at t = 1425, is evident. Note that the
smoothing of the Christmas-tree pattern is a unique fea-
ture of this effective single-component setup. Strikingly
enough, also a recurrence of a second larger Christmas-
tree structure is observed in this single-component set-
ting, around ¢ ~ 2500, after an interval where interfer-
ence processes take place. This, in turn, confirms the
fact that in the two-component setting, the majority wu-
component plays a major role, not only on the speed of
the events, but also in the formation of more complex
and robust structures, such as the numerically observed
DB soliton-like waves found in this work.

C. Impact of the mass-imbalance

As a next step, our aim is to generalize our findings by
considering mixtures in which the two species bear differ-
ent masses. In particular, in the way of a concrete exam-
ple, here we focus our investigations on mass-imbalanced
mixtures having a mass ratio of (1:3) to gain a qualitative
overview of the main phenomenology, while mimicking
the potentially experimentally relevant situation of het-
eronuclear BEC mixtures of e.g. 3"Rb-174Yb, 2*Na-"Li
or 8"Rb-23Na atoms. Although the initial state prepa-
ration considered in this case is the same as before, it is
important to note that the trapping potential will now af-
fect each component differently [see Eq. (1)]. In general,
it is found that if the majority component is the heaviest
one, Peregrine wave generation, similar to that shown in
Fig. 2, occurs only for narrow initial Gaussian wave func-
tions (w < 60). Therefore, the Christmas-tree structure
is absent and in particular for w > 60 a delocalization
of the Gaussian takes place. On the other hand, if the
minority component is the heaviest one we retrieve the
overall phenomenology. Namely, that of the Peregrine
soliton formation being followed by the nucleation of a
Christmas-tree pattern. Interestingly, the value of the
Gaussian width above which the Christmas-tree pattern
appears is affected by the inter-component mass ratio.
For instance, for m,/m, = 1/3 it occurs for w > 30,
while in the mass-balanced case for w > 52.

A case example is shown in Fig. 5(d) for an initial
Gaussian profile with A = 0.2 and w = 150. For mass-
imabalanced mixtures the dynamical rogue wave pattern
formation (¢ = 795) is slightly accelerated when com-
pared to the equal mass scenario discussed above [cf.
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Figure 6. Dynamical evolution of the density of the minority
v-component for A = 0.2 and (a), (b) w = 50 and (c), (d)
w = 150. The dissipation strength is (a), (c) v = 107* and
(b), (d) v = 5 x 107*. Other parameters used are j, = 1,
v = 0.01, my, = my, and Q = 0.002. Note that length (time)
is in units of a1 (w7').

Fig. 5(a)]. Moreover, as mentioned earlier, the heavi-
est minority component experiences now a tighter trap-
ping potential. This has as a result the emergence of a
Peregrine wave that has its side humps higher in ampli-
tude and closer to the core of the structure. A direct
comparison of the Peregrine soliton formed in this set-
ting with the relevant waves generated within the mass-
balanced and the effective single-component models is
provided in Fig. 5(e). Furthermore, after the decay of the
Christmas-tree structure, we again observe DB soliton-
like structures being emitted around ¢ ~ 1000. The first
half oscillation period of these configurations can be seen
in Fig. 5(d), and the corresponding bright solitary-wave
density profile is depicted in Fig. 5(f) at ¢t = 1851, i.e., at
the maximum amplitude of its oscillation. Besides their
oscillation inside the parabolic trap, these structures fur-
ther undergo a periodic amplitude breathing. The fre-
quency of this breathing is found to increase with the
size of the soliton, i.e., it appears to be larger for the
solitary-waves that are closer to the trap center. Addi-
tionally, it is also found that these structures emerge al-
ways in counterpropagating pairs, the number of which is
directly proportional to the width of the initial Gaussian
profile. For instance for w = 50 (w = 150) the number
of counterpropagating pairs is one (three).

IV. THERMAL EFFECTS ON PEREGRINE
GENERATION

Having established Peregrine soliton generation stem-
ming from generic initial conditions, below, we shall ex-
emplify the validity of our findings in the presence of
dissipation. To this end, we consider the general sys-
tem of two coupled dissipative GPEs [49, 67, 68] for the

mass-balanced mixture
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In these equations - represents the dimensionless dissipa-
tion strength which is in turn related with the system’s
temperature. For instance, when v < 1 lies in the in-
terval [2 x 1074, 2 x 1073], it corresponds in dimensional
units to temperatures [10,100] nK [67-69]. The reduction
of the above-mentioned system of dissipative GPEs fol-
lows the assumption that only the thermal modes along
the longitudinal direction are populated. The relevant
dynamics of a trapped (2 = 0.002) narrow Gaussian
wavepacket having A = 0.2, w = 50 in the case of
v = 10"* and v = 5 x 10~* is presented in Fig. 6(a)
and Fig. 6(b), respectively. As previously, we only show
the time-evolution of the minority v-component density.
The majority u-component is complementary to it while
being significantly less affected by the presence of dissi-
pation, at least within the considered timescales. Notice
that even though the Peregrine soliton emerges around
t = 400 in both scenarios it is of smaller amplitude
as vy increases. Moreover, due to faster particle loss
for larger +’s the pattern observed for smaller v is lost
[see Fig. 6(b)]. Dissipation affects in a similar man-
ner also the nucleation of the Christmas-tree configu-
ration. The latter is generated only for v < 5 x 1074
when broader (w = 150) Gaussian wavepackets are used
[Fig. 6(c)] while its signature is lost for larger values of
the dissipative parameter [Fig. 6(d)]. In this latter sit-
uation only a single Peregrine occurs around ¢ ~ 1100,
i.e., at later times when compared to its faster (around
t ~ 750) nucleation for v = 10~%. In conclusion, nu-
cleation of Peregrine solitons in repulsive media takes
place for v < 1073 corresponding to temperatures smaller
than 100 nK. However, more composite structures such as
the above-discussed Christmas-tree and other observed
(e.g., breathing) patterns are less robust surviving only
if v < 5 x 107%, namely for temperatures roughly above
10nK.

V. QUASI-1D PEREGRINE AND
CHRISTMAS-TREE FORMATION

Next, we aim to also testify Peregrine soliton nucle-
ation in a 3D (yet quasi-1D) environment that can be
readily implemented in recent experimental setups [48,
70, 71]. In this sense, the dissipative effect stemming
from the transverse directions on this intrinsically 1D
wave will be appreciated. Specifically, we consider a sys-
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(a) [(b)] Spatiotemporal evolution of the integrated along the yz-directions density, of the minority v-component

for A = 0.5 ym~*/? and w = 0.7 pm [w = 3.5 um]. Insets in (a) depict density snapshots of the (top) v- and (bottom)
u-components, rescaled by a factor of 1/3 and 1/7, respectively, in the  — y plane at o &~ 13.5ms when the Peregrine initially
forms. (c)-(e) [(f)-(h)] Integrated density profiles at select time instants during evolution of the Peregrine and its revivals [of
the Christmas tree]. A comparison with the relevant analytical prediction of Eq. (4) is also provided (see legends). For this
quasi-1D evolution the corresponding trapping frequencies are (wa,wy,w:) = 27 X (3.06,400,400) Hz and N = 7 x 10°.

tem of 3D coupled GPEs:
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that describes a mass-balanced binary mixture. The
above set of equations is cast in this dimensionless
form by rescaling space and time coordinates as 2’ =
agola:, y = a;oly, Z = a;olz, with an, = +/A/mw,
being the harmonic oscillator length along the longi-
tudinal z-direction, and ¢ = w,t. The correspond-
ing wave functions are also rescaled as u(z',y’,z") =
VNi/a3 u(z,y,z) and v(2',y',2") = /Nijai v(z,y,2)
where N; is the particle number per component. V< =
(92,02,02) is the Laplacian operator and ajj is the
3D scattering length accounting for the intra- (j = k)
and inter-component (j # k) interactions. In par-
ticular, the experimentally relevant ay; = 100.04ay,
ass = 95.44a¢ and a2 = ao; = 110.0aqp are utilized
with ag denoting the Bohr radius. Additionally, V(r) =
3 (:c2 + (wy/wa) Y2 + (s fws)? z2> is the 3D parabolic
potential, where r = (x,y, z), with axial and transverse
trapping frequencies assumed here to be (wg,w,,w,) =
27 % (3.06, 400, 400) Hz. Notice that the above choice pro-
vides an aspect ratio w, /w; & 0.008 leading to a highly-
elongated (cigar-shaped) trapping geometry.

To initiate the dynamics in this 3D, yet quasi-1D set-

ting we assume that the system contains N = 7 x 10°
particles and that it remains in the ground state along
the transverse yz-directions. Accordingly, each compo-
nent’s wave function at ¢t = 0 is expressed as: u(x,y,z) =
u(z)uo(y)uo(z) and v(z,y,z) = v(x)vo(y)ve(z), with
uo(y) = vo(y), uo(z) = wo(z) denoting the normalized
Gaussian wave functions along the transverse directions.
Similarly to the 1D initial conditions of the preceding
section, the wave functions of the two components along
the z-direction are given by a Thomas-Fermi approx-
imation in the u-component complementary to the v-
component for which we assume a Gaussian initial con-
dition: v(z) = Aexp(—2?/2w?). The dynamical evolu-
tion of the density of the v-component when consider-
ing two distinct initializations corresponding to a narrow
(w = 0.7 pum) and a broad (w = 3.5 pym) Gaussian ini-
tial profile with amplitude A = 0.5 pgm~/2 is demon-
strated in Fig. 7(a)-(h). Note that since the spatiotem-
poral evolution of the u-component is complementary to
the one shown it is not illustrated here but it can be in-
ferred, for instance, by inspecting the insets in Fig. 7(a)
where the instantaneous density profiles of both compo-
nents in the z — y plane are shown. Remarkably, the
spontaneous nucleation of a Peregrine structure along
with its revivals takes place in this 3D, quasi-1D set-
ting [Fig. 7(a)] with its integrated, along the transverse
yz-directions, density profiles presented in Fig. 7(c)-(e).
Additionally, and as suggested by the relevant 1D situa-
tion, for wider initial wavepackets a configuration remi-
niscent of the Christmas-tree is generated [Fig. 7(b)]. In
both cases, very good agreement is found when fitting the



analytical 1D solution to the numerically obtained rogue
wave pattern appearing initially at ¢y &~ 13.5ms, but re-
curring at ¢; ~ 46 ms and t5 ~ 81 ms for narrow pulses
[Fig. 7(c)-(e)] and around t3 = 41ms, t4 ~ 47ms and
t5 = 53.6 ms for wider ones [Fig. 7(f)-(h)]. The observa-
tion and persistence of the Peregrine structure in such a
3D setting with a quasi-1D geometry consists, to the best
of our knowledge, an unprecedented result that sets the
stage for an experimental realization of this rogue wave.

VI. CONCLUSIONS AND FUTURE
PERSPECTIVES

In this work, we have presented an experimentally real-
izable setup to explore the formation of Peregrine solitons
in repulsive two-component BECs. First, as a proof-of-
principle, we showed the formation of the Peregine soli-
ton by direct initialization on the wave function of the
minority component, and demonstrated how an effective
single-component picture perfectly captures the dynam-
ics. Additionally, we argued that in the presence of a wide
external harmonic trapping potential Peregrine solitons
can also be realized in a two-component setup, with peri-
odic revivals stemming as a result of the presence of the
trap.

We then extended our work to a more experimen-
tally relevant situation by utilizing wide and thus effec-
tively semiclassical Gaussian wavepackets as initial con-
ditions, both in the absence and in the presence of a
parabolic trap. In particular, by employing differently
sized Gaussian profiles we were able to showcase that nar-
rower wavepackets lead to periodic revivals of a localized
Peregrine-like structure resulting in a chain-like pattern.
Contrary to this dynamical evolution, broader Gaussian
profiles entail the formation of a cascade of Peregrine
waves, also known as a Christmas-tree structure. More-
over, we demonstrated that in the presence of the trap
the dynamics of a narrower Gaussian initial condition
remains qualitatively identical to that observed in the
homogeneous cases under consideration. On the other
hand, for wider Gaussian profiles we encountered a par-
ticularly interesting phenomenon that was absent in the
aforementioned settings. While at “short” time-scales
the dynamical evolution of both the two-component and
the effective single-component models is similar to their
corresponding untrapped settings, this is not the case for
longer evolution times. At these “longer” times dark-
bright soliton-type structures are formed in the two-
component setup and, contrary to the standard dark-
bright solitary waves, feature unexpected very long-time
convex (up to the vicinity of the turning point) oscil-
lations within the parabolic trap. Strikingly, these un-
precedented —to our knowledge— patterns are seen to
interfere anew suggesting that the system can access very
long time-scale recurrences of the Peregrine-like struc-
tures.

Furthermore, we attempted yet another generalization
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of our findings by considering also the case of mass-
imbalanced mixtures. Here, we were able to exemplify
that the overall dynamical response persists for mixtures
in which the minority component is the heaviest one, with
the rogue and Christmas-tree pattern formation being
accelerated when compared to the mass-balanced model.
Moreover, in such mass-imbalanced mixtures we observed
the emergence of dark-bright soliton-like entities that, be-
sides oscillating within the parabolic trap, were also seen
to exhibit a characteristic breathing.

Additionally, we examined the robustness of Peregrine
soliton nucleation in the presence of dissipation. Specifi-
cally, it is demonstrated that the overall phenomenology
persists for values of the dissipative parameter v of the
order of ~ 1072 (i.e. temperatures of about ~ 100nK)
before any signature of the Peregrine wave is lost. A key
finding towards the realizability of our proposal in ex-
perimental settings consists of the successful numerical
realization of both the Peregrine soliton with its revivals
and the Christmas-tree pattern in a 3D geometry involv-
ing a quasi-1D cigar-shaped harmonic trap.

Until now, the realization of a Peregrine soliton has
been a challenge in the field of ultracold atoms. This
mainly stems from difficulties to highly control experi-
ments with attractive BECs, even more so in the presence
of the modulationally unstable background that supports
the Peregrine soliton. Yet, in this work we have argued
that the presence of a majority component contributes to
the formation of more robust structures, rendering two-
component repulsive BECs an appealing and potentially
more suitable platform for the realization and further
study of Peregrine waves in the effective form proposed
herein. At the same time, we observed the peculiar for-
mation of dark-bright soliton-like structures bearing “un-
usual” oscillatory trajectories. The latter, along with
the quantification of the oscillation period of such en-
tities, constitute fruitful directions of study worthwhile
to pursue in the future. Another interesting pathway
is the inclusion of three-body loss rates in order to in-
spect the robustness of the Peregrine wave in the long
time-evolution where their effect might become appre-
ciable. Finally, unraveling the correlation properties of
these structures when embedded in a many-body envi-
ronment, e.g. as has been demonstrated for dark-bright
solitons [72-74], is an intriguing topic especially so when
beyond mean-field effects may come into play, potentially
affecting the validity of the single-component effective de-
scription.
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Figure 8. (a) Density evolution of the Peregrine initial con-
dition of Eq. (4), for P, = 0.01 and t, = 1000, in the homo-
geneous two-component setup. The majority u-component is
complementary to the minority v-component, and thus omit-
ted. White lines, corresponding to Eq. (A1), designate the
boarders of the wedge-like pattern formed. (b) Zoom in of (a).
(c) Density profile of the minority v-component at the time-
instant of Peregrine soliton formation, namely at t; = 1023,
ty = 5148, and tj; = 8052. (d) Temporal evolution of the mod-
ulation wave at « = 0. In both (c) and (d), the corresponding
analytical solutions of Eq. (4) are provided for the chosen
Peregrine solitons. Length and time units are expressed in
terms of a; and w7, respectively.
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Appendix A: Modulation instability and structure
formation in the long-time dynamics

In nonlinear focusing media, a small localized pertur-
bation on a constant background can lead to a modu-
lationally unstable region. The latter acquires a wedge-
like shape characterized by a universal envelope, known
as the nonlinear stage of the modulational instability
(see [51, 75] and references therein). For the integrable
version of the NLS equation, such a region is defined by
the boundaries x+ = +4+/2P,t, with P, denoting the
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background density. On the other hand, beyond the in-
tegrable limit, the boundaries depend also on the nonlin-
earity as follows [52, 76, 77]:

Ty = +2+/—2gP,t. (A1)
This expression refers to a focusing system, and thus
g < 0. In our case, g is given by Eq. (3). In Fig. 8,
we show the long time dynamics of a system initialized
with Eq. (4), with P, = 0.01 and ¢, = 1000, in a repulsive
two-component system (see Sec. II for details). The short
time dynamics of this initial state is presented in Fig. 1.
Here, we find that the long time dynamics of such an ini-
tialization develops into a wedge-like structure similar to
the one described in Ref. [51], and recently found experi-
mentally in Ref. [52]. The analytical estimate of Eq. (A1)
characterizing the boundaries of the wedge structure is
illustrated in Fig. 8(a) with white solid lines. Evidently,
a good agreement with the numerical prediction is found.

However, in this case we observe a particularly interest-
ing behaviour not reported in the previous works. There,
the wedge structure consisted of homogeneous fringes. In
our case, the fringes composing this entity are revivals of
the Peregrine soliton, both in time and space. This way,
they are reminiscent of the Kuznetsov-Ma soliton [5, 6]
and the Akhmediev breather [8] and more generally of
the doubly periodic solutions in space and time [78].

To better showcase this behaviour, in Fig. 8(b) we
present the inner region of the wedge structure. Clearly,
each of the fringes conforming the wedge structure pos-
sesses revivals of the Peregrine soliton. However, every
revival has a smaller amplitude than the previous one.
In Fig. 8(c), we depict several Peregrine solitons emerg-
ing at £ = 0. In decreasing amplitude, they correspond
to the initial Peregrine solitons (¢, = 1023), the second
revival (t, = 5148), and the fourth revival (¢j, = 8052).
Additionally, we fitted Eq. (4) to each of the aforemen-
tioned waveforms to verify that indeed they are Peregrine
solitons. Lastly, the temporal evolution of the density
of the central fringe of the wedge structure is shown in
Fig. 8(d). Here, each revival of the original Peregrine
soliton is clearly discernible, as well as the corresponding
decrease in amplitude. Again, a fitting to the waveform
of Eq. (4) exhibits an adequate agreement with the se-
lected revivals of the density, exposing their Peregrine
character. It is important to remind the reader here that
this wedge structure was predicted and found in focus-
ing media. On the contrary, our setup corresponds to
a manifestation thereof in a repulsive (defocusing) two-
component BEC.
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