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In the vicinity of a narrow Feshbach resonances Efimov features are expected to be characterized
by the resonance’s properties rather than the van der Waals length of the interatomic potential.
Although this theoretical prediction is well-established by now, it still lacks experimental confir-
mation. Here, we apply our recently developed three-channel model [1] to the experimental result
obtained in a mass-imbalanced 6Li-133Cs mixture in the vicinity of the narrowest resonance explored
to date [2]. Our analysis suggests that the observed position of the Efimov resonance is dictated
mainly by the resonance physics while the influence of the van der Waals tail of the interatomic
potential is minor. We show that the resonance position is strongly influenced by the presence of
another Feshbach resonance which significantly alters the effective background scattering length at
the narrow resonance position.

I. INTRODUCTION

The Efimov effect in ultracold atoms emerges when the
scattering length a greatly exceeds the van der Waals
length rvdW of the interatomic potential [3]. The res-
onantly enhanced two-body interactions give rise to an
infinite ladder of three-body bound states separated by
a universal scaling factor. Thus, to fully determine the
three-body spectrum it suffices to do so for a single state.
Moreover, as the state’s dependence on a is described by a
universal function, a single parameter is enough to define
the entire spectrum. For this matter it is convenient to
choose the scattering length vale a− at which the ground
state of the Efimov state meets the free-atom continuum.
Experimentally, this is the best studied parameter up to
date [4–6].

It was predicted that a− depends on the underlying
two-body collisional resonance strength which is conve-
niently characterized by a dimensionless parameter sres.
A collisional Feshbach resonance occurs when the free
atoms in an open channel are coupled to a nearly degen-
erate two-body bound state in a closed channel [7]: For
strong coupling with sres � 1 (also known as the broad
resonance regime) a− is universally related to rvdW [4, 5].
When the coupling weakens, a− deviates from this uni-
versality and, instead, tends to be dictated by the effec-
tive range of the Feshbach resonance for sres � 1. The
latter regime can be described by a simplified theory with
a short range potential tuned to have the same effective
range as the true interaction potential [8].

Experimental studies of narrow resonances are diffi-
cult due to the extreme magnetic field stability require-
ment. The difficulties are two-fold. First, the position of
the Efimov resonance is predicted to be pushed towards
higher scattering length values as compared to broad res-
onances which follow the Efimov-van der Waals univer-
sality. Second, narrow resonances are usually literally
narrow, i.e. they are narrow functions of the magnetic
field, which causes large changes in the scattering length
over tiny variations of the magnetic field. The combina-

tion of these two factors renders into an unrealistically
tough requirement on the magnetic field stability, and
hence this demanding regime was rarely approached ex-
perimentally [9, 10]. The narrowest resonance studied up
to date is in the 6Li-133Cs mixture [2].

The few-body aspects of heteronuclear mixtures at-
tracted significant interest in the last decade, both theo-
retical [11–21] and experimental [22–29]. The 6Li-133Cs
mixture is the most extreme mass imbalanced system in
which Efimov features were observed up to date making it
favorable for the attempt to reveal the few-body physics
at a narrow Feshbach resonance. In contrast to homonu-
clear systems, where the large universal scaling factor
makes the observations of two consecutive Efimov reso-
nances challenging [30], the large mass ratio in the Efi-
mov favorable heavy-heavy-light scenario was predicted
to decrease the scaling factor significantly [11]. The Efi-
mov physics in the 6Li-133Cs mixture has been subject of
intense experimental investigation in the vicinity of two
broad Feshbach resonances and the decreased scaling fac-
tor was confirmed [26–29]. This motivated the attempt
to look for Efimov features in the vicinity of a narrow
Feshbach resonance despite the fact that no theoretical
prediction is available in this region [2].

Indeed, the position of the Efimov resonance was re-
vealed at a larger scattering length as compared to the
position predicted by the Efimov-van der Waals uni-
versality and measured in the vicinity of broad reso-
nances [2]. As the model of Ref. [8], in its original form, is
limited to three identical bosons, this result remains the-
oretically unexplored. Nevertheless, developing a suit-
able theory can clarify several interesting aspects of the
three-body physics at a narrow resonance. For example:
How important is the van der Waals tail of the real in-
teratomic potential compared to the resonance physics?
And: What is the influence of a nearby overlapping Fes-
hbach resonance?

Here we consider these questions by extending
our recently developed three-channel theory to mass-
imbalanced mixtures and applying it to the experimen-
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tally relevant resonances in the 6Li-133Cs mixture. We
show that the position of the Efimov resonance is well-
captured by this theory if the overlapping Feshbach res-
onances are properly taken into account. To the best
of our knowledge this is the first time such a theory
demonstrates predictive power for Efimov physics in a
real atomic system. Based on this result we can place
the upper bound for the contribution of the finite range of
the interatomic potential (i.e. the van der Waals length)
to the position of the Efimov resonance. Unfortunately,
the lack of other experimental results under similar con-
ditions prohibits further bench-marking of our model.

Finally, we note that there is a growing effort to in-
corporate realistic multi-channel two-body interactions
in few-body theories to improve their performance when
applied to real systems [10, 31–33]. Our approach sup-
ports the necessity of these efforts.

II. THE MODEL HAMILTONIAN

Inspired by the two-channel model [8, 34, 35], we de-
velop a suitable model step-by-step, starting from an
open channel of free atoms. By considering a non-
interacting open channel (zero background scattering)
the short-range physics is neglected. The resonant two-
body interactions are modeled by coupling the open chan-
nel to a closed molecular channel which is detuned by
a magnetic field-dependent binding energy. The weakly
coupled limit (narrow resonance) leads to a large effec-
tive range re which significantly exceeds rvdW [35]. More
resonances can be included by coupling the open channel
to additional closed channels [1].

We consider a 6Li-133Cs mixture where both atoms
are prepared in their respective absolute ground states
(aa-channel). At 893 G there is a narrow Feshbach
resonance which, according to coupled channels calcu-
lations using the model of Ref. [36], features a large
and negative effective range at the resonance’s position
(re = −1541a0, where a0 is the Bohr radius). As the
van der Waals length of the Li-Cs interaction potential is
rvdW = 44.8a0, the narrow resonance criterion is well sat-
isfied: |re| � rvdW or, alternatively, sres = 0.0509 � 1.
Moreover, abg = −30a0 justifies the assumption of neg-
ligible background scattering [36–38]. However, another
Feshbach resonance at 843 G is expected to play an im-
portant role. This resonance is of intermediate character,
being neither broad nor narrow. As is shown below, it
overlaps with the narrow resonance and strongly alters
the local background scattering in the latter’s vicinity.
Taking into account the 843 G resonance is essential to

reveal the predictive power of our three-channel model.
We start with the most generic case of three distin-

guishable atomic species (labeled i = 1, 2, 3) with masses
mi. Each atom pair can form a molecule in either of two
closed channels ν = 1, 2. We define creation operators

of atoms: â†~q,i, and of molecules: b̂†~q,i,ν , where ~q denotes

the particles momentum. The index i in b̂†~q,i,ν labels the
atom not part of the molecule. The operators satisfy
standard commutation relations. The conversion of two
atoms i 6= j to a molecule k 6= i, j in channel ν is most
generally described by the term

δ (~q1 − ~q2 − ~q3) b̂†~q1,k,ν â~q2,iâ~q3,j , (1)

where the δ(~q1−~q2−~q3) signifies momentum conservation.
The total Hamiltonian consists of a bare atomic, a bare

molecular and an interaction term:

Ĥ = Ĥ(at) + Ĥ(mol) + Ĥ(int). (2)

The bare atomic term is made of three parts, one for each
species:

Ĥ(at) =

3∑
i=1

Ĥ
(at)
i (3a)

Ĥ
(at)
i =

∫
d3q

(2π)
3

~2q2

2mi
â†~q,iâ~q,i. (3b)

The bare molecular term is made of six parts, one for
each pair (i) and each channel (ν):

Ĥ(mol) =

3∑
i=1

2∑
ν=1

Ĥ
(mol)
i,ν (3c)

Ĥ
(mol)
i,ν =

∫
d3q

(2π)
3

(
~2q2

2Mi
+ Ei,ν

)
b̂†~q,i,ν b̂~q,i,ν , (3d)

where the mass of a molecule is Mi = (mj + mk) and
the energy detuning from the open channel is Ei,ν =
µi,ν(Bi,ν − B) with µi,ν the differential magnetic mo-
ment and Bi,ν the bare resonance position. Finally, the
interaction term also consists of six parts:

Ĥ(int) =

3∑
k=1

2∑
ν=1

Ĥ
(int)
k,ν (3e)

Ĥ
(int)
k,ν =

Λk,ν
2

∑
i,j 6=k

∫
d3q1

(2π)
3

∫
d3q2

(2π)
3

[
b̂†~q1,k,ν â~q2+ ~q1

2 ,j
â−~q2+ ~q1

2 ,i
+ â†
−~q2+ ~q1

2 ,i
â†
~q2+

~q1
2 ,j

b̂~q1,k,ν

]
, (3f)

where the factor of 1/2 avoids double-counting. Note that we assume zero direct coupling between the two
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closed channels ν = 1 and ν = 2. Without loss of gener-
ality, this coupling can be diagonalized by introducing a
dressed basis in which interactions are absorbed by the
energy shifts. A more rigorous approach considered in
Ref. [1] shows that this coupling adds an additional free
parameter to the system which remains redundant when
the other parameters are fixed by the two-body observ-
ables. Indirect coupling through the common continuum
remains intact.

III. THREE DISTINGUISHABLE PARTICLES

A. Two-body sector

Since there are three distinct atomic species there are
three two-body sectors k = 1, 2, 3. However, all three are
permutations of each other. The k-th two-body sector is

descried by the Scrödinger equation (Ĥ − E)|ψ(2B)
k 〉 = 0

and the (center-of-mass frame) two-body Ansatz is:

|ψ(2B)
k 〉 =

(∑
ν

βk,ν b̂
†
~q=0,k,ν +

∫
d3q

(2π)
3αk (~q) â†~q,iâ

†
−~q,j

)
|0〉,

(4)
where i 6= j 6= k 6= i. Scattering properties, in par-
ticular the scattering length ak and the effective range
re,k, are derived from the positive energy solution E =

~2q2k/2µk > 0, while for E = −~2
(
λDk
)2
/2µk < 0 the

dimer binding energy is found. Here, µk = mimj/(mi +
mj) is the reduced mass of pair i 6= j. Note that, for
the sake of compact notation, the relative momentum qk
of the free atoms can be formally related to the binding
wave number λDk via qk = iλDk .

The two-body Scrödinger equation leads to the follow-
ing two coupled equations (ν = 1, 2):

β̃k,ν

(
Ẽk,ν − q̃2k

)
+ Λ̃k,νΘ (E)

− Λ̃k,ν
2π2

(
1 +

iπ

2
q̃k

)∑
ν′

Λ̃k,ν′ β̃k,ν′ = 0, (5)

where Θ (E) is the Heaviside step function. In Eq. (5)
all quantities are renormalized with respect to the nat-
urally occurring momentum cut-off qc and its associated
energy Ec,k = ~2q2c/2µk (see section III B). A dimension-
ful quantity x is denoted x̃ when normalized.

Solving Eq. (5) for E > 0 allows for computation of
the scattering amplitude:

f̃ (qk) = −
∑
ν

Λ̃k,ν β̃k,ν
4π

. (6)

The resulting expression is expanded to second order
in q̃k and compared to the effective range expansion:
f̃−1 (qk) = −ã−1k − iq̃k + r̃e,kq̃

2
k/2, to find the interspecies

scattering length ãk and the effective range r̃e,k. When
q̃k = 0 the solution of Eq. (5) leads to an expression of
the scattering length which can be directly compared to
coupled-channel calculations.

For negative dimer energy E < 0, Eq. (5) leads to a
fourth-order polynomial equation for λDk , whose positive
roots correspond to the physically relevant solutions [1].

B. Three-body sector

The trimer binding energy ET = −~2λ2T /2µT , with
λT > max(0, λDk ), is the eigenvalue associated with the
three-body wave function:

|ψ3B〉 =
∑
i,ν

∫
d3q

(2π)
3 βi,ν (~q) b̂†~q,i,ν â

†
−~q,i|0〉

+

∫
d3q1

(2π)
3

∫
d3q2

(2π)
3α (~q1, ~q2) â†

−~q2+ ~q1
2 ,1

â†
~q2+

~q1
2 ,2

â†−~q1,3|0〉.

(7)

Direct substitution of |ψ3B〉 into (Ĥ−ET )|ψ3B〉 = 0 leads
to seven coupled integral equations. The first one, from
projecting onto the free atom continuum, is

α (~q1, ~q2)

~2
∣∣∣~q2 − ~q1

2

∣∣∣2
2m1

+
~2
∣∣∣~q2 + ~q1

2

∣∣∣2
2m2

+
~2q21
2m3

− ET


+
∑
ν

[
Λ1,νβ1,ν

(
~q2 −

~q1
2

)
+ Λ2,νβ2,ν

(
−~q2 −

~q1
2

)
+ Λ3,νβ3,ν (~q1)

]
= 0. (8a)

The remaining six are structured as three pairs ν = 1, 2:

β1,ν (~q1)

(
~2q21
2µ′1

+ E1,ν − ET
)

+ Λ1,ν

∫
d3q2

(2π)
3α

(
~q2 −

~q1
2
,
~q2
2

+
3~q1
4

)
= 0 (8b)
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β2,ν (~q1)

(
~2q21
2µ′2

+ E2,ν − ET
)

+ Λ2,ν

∫
d3q2

(2π)
3α

(
−~q2 −

~q1
2
,
~q2
2
− 3~q1

4

)
= 0 (8c)

β3,ν (~q1)

(
~2q21
2µ′3

+ E3,ν − ET
)

+ Λ3,ν

∫
d3q2

(2π)
3α (~q1,−~q2) = 0 (8d)

where µ′k = Mimi/(Mi +mi) is the reduced mass of the
molecule and the free atom.

We note that these equations reduce to the previously
derived homo-nuclear three-channel model for i = j =
k and to the hetero-nuclear two-channel model in the
case Λi,2 = 0. To proceed, the free particle ampli-
tude α (~q1, ~q2) is eliminated from the first equation and
plugged into the others. The first of the two integrals
in each equation can be solved, as in the two-body sec-
tor, by introducing a high momentum cut-off qc with
which the coupling constants are renormalized accord-

ing to Λ̃k,ν = Λk,νq
3/2
c /Ec, and the amplitudes according

to β̃k,ν = βk,νq
3/2
c . The renormalized magnetic moment

is µ̃i = µi/Ec and all momenta are q̃ = q/qc. In addi-
tion one uses the s-wave property that βk,ν(~q) = βk,ν(q)
are spherically symmetric. One thus ends up with six
one-dimensional coupled integral equations.

IV. LITHIUM-CESIUM-CESIUM SYSTEM

While Eqs. (8) are too complex to solve in general,
they serve as a convenient starting point to study specific
cases. Here, we apply the model to the 2+1 case, i.e.
two particles with equal masses and one distinguishable
particle, of 6Li-133Cs-133Cs trimers.

A. Two-body sector

For the remainder of the paper we define the relevant
masses: m = mLi and M = mCs. In the two-body sec-
tor, only one interspecies molecule is possible (LiCs) such
that the index k can be omitted in Eq. (5). Solutions of
the remaining two equations for E > 0 are compared to
coupled channel calculations [36] to fix the free param-
eters of the model. Here we consider the aa collisional
channel of the 6Li-133Cs mixture, where both atoms are
polarized on their respective absolute ground states, and
which is relevant for the experiment of Ref. [2]. The two
closed channels correspond to the molecules associated
with the 843 G and 893 G Feshbach resonances.

We proceed in the following way. We fit the mag-
netic field dependence of the scattering length provided
by coupled channel calculations with the well-known

parametrization expression:

ãLiCs(B) =
∆̃1

B
(res)
1 −B

+
∆̃2

B
(res)
2 −B

, (9)

where the resonance widths ∆̃ν and positions B
(res)
ν are

experimental observables. These observable parameters
are conveniently related to the model’s bare parame-
ters via analytic expressions [1] with which the latter
are found (see Table I). The differential magnetic mo-
ments µ̃ν are not fitting parameters. Instead, they are
extracted from the asymptotic behavior of the coupled
channel dimer binding energies. In real units they are,
µ1 = −h× 3.03 MHz/G and µ2 = −h× 2.84 MHz/G.

In Fig. 1(a) the scattering length of the three-channel
model as a function of the magnetic field, which by con-
struction coincides with Eq. (9), is compared to the cou-
pled channel calculations together with the result of the
two-channel model. The agreement is very good in the
vicinity of the Feshbach resonances. The discrepancies
between the coupled channel calculations and the three-
channel model are visible for small absolute values of the
scattering length. This is because our model does not
include the global background scattering length.

To illustrate the success of the model, we compare it
with the performance of its simplified version which in-
cludes a single closed channel associated with the narrow
Feshbach resonance at 893 G. The model is developed
along the same lines but keeping only ν = 2 in all ex-
pressions in Sections II and III. To find the bare parame-
ters of the model we fit the coupled channel calculations
with Eq. (9) in the vicinity of the Feshbach resonance

while keeping ∆̃1 = 0 (see Table II). The fit, also shown
in the Fig. 1(a), is significantly less successful at captur-
ing the coupled channel calculations. The absence of the

∆1/a0 (G) 1741.13
∆2/a0 (G) 131.351

B1 −B
(res)
2 (G) −68.736

B2 −B
(res)
2 (G) −1.01

Λ̃1 3.50

Λ̃2 0.707

TABLE I. Parameters of the three channel model derived
from fitting Eq. (9) to coupled channel calculations of 6Li-
133Cs and using analytic expressions from Ref. [1].
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FIG. 1. Two-body sector of LiCs. (a) Magnetic field depen-
dence of the scattering length, (b) binding energy and (c) the
relative difference of the binding energy. In (a) and (b) the
dashed brown line corresponds to the coupled channel calcu-
lations and red solid (blue dashed-dotted) line represents the
three-(two-) channel model. In (c) the red solid (blue dashed-
dotted) curve shows the binding energy relative difference be-
tween the coupled-channels and the three-(two-)channel mod-
els. The comparison is shown only for the energy level associ-
ated with the narrow Feshbach resonance. The difference with
the three-channel model is consistently lower at all magnetic
field values than with the less successful two-channel model.

scattering length zero-crossing leads to a significant dis-
agreement between the model and the coupled channel
calculations.

In Fig. 1(b) the binding energies of the dimers from the
coupled channel calculations are compared to the results
of the two- and three-channel model. Both models are
successful in describing the narrow resonance and capture
the energy level down to hundreds of MHz. However, a
closer look at the differences between the models [shown
in Fig. 1(c)] emphasizes that the three-channel model is a

∆2/a0 (G) 132.165

B2 −B
(res)
2 (G) −1.402

Λ̃2 0.673

TABLE II. Parameters of the two channel model derived from
fitting Eq. (9) (with ∆̃1 = 0) to coupled channel calculations
of 6Li-133Cs in the vicinity of the narrow Feshbach resonance
at 893 G.
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-0.3
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-0.1

0.0

sgn(a)|a0/a|
14

-
|E
/E
0
|1

8

FIG. 2. Three-body sector of LiCsCs. The three-channel
model (solid) is compared to the two-channel model (dashed).
Shown are the dimer (green) and the ground (red) and first
excited (blue) Efimov states. The purple data point is the
measurement from Ref. [2]. Here, the normalization energy is
E0 = ~2/2µT a

2
0.

more successful approach to the real system. The three-
channel model also reproduces the binding energy of the
intermediate resonance although good agreement is ob-
tained only in the regime of weak binding. This discrep-
ancy might be explained by the intermediate character
of the underlying narrow Feshbach resonance for which
our model model’s assumptions cease to be valid.

In addition, we found the effective range re = −1743a0
(at resonance) to differ by 4 percent from the resonance
contribution −1666 a0 to the effective range. The latter
value is found by subtracting the van der Waals con-
tribution +125 a0 [39] from the coupled channels value
−1541 a0, which includes the sum of the van der Waals
and resonant contributions [40].

In conclusion, the two-body sector reveals that the
three-channel model is a better way to describe the real
Li-Cs interactions in the aa collisional channel, due to the
intermediate Feshbach resonance overlapping with the
narrow one and affecting the latter’s properties. Adding
a third channel is a necessary procedure.

Note that in this particular case there is an alterna-
tive theoretical approach. The two-channel model can
be extended to include a non-zero background scattering
length [41] which is expected to improve the agreement
with the coupled channels calculations. This approach
has its own limitations partially discussed in Ref. [1] and
it has not yet been extended to the mass-imbalanced mix-
tures. The three-channel model is superior because it
takes the background scattering length into account by
considering its real cause, namely the presence of another
Feshbach resonance in close proximity.
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B. Three-body sector

For the LiCsCs three-body sector, Eqs. (8) reduce to
four coupled equations. The four remaining molecular
amplitudes βi,ν are i = {LiCs,CsCs} and ν = {1, 2}.

Further simplifications come from the fact that we ne-
glect Cs-Cs interactions by setting the relevant scattering
length (aCsCs) to zero. In reality, its value is moderate
and positive in the vicinity of the narrow Feshbach res-
onance (aCsCs = 260a0), while it is large and negative
at the intermediate resonance (aCsCs = −1400a0) [42].
Since we consider the Efimov spectrum in the close vicin-
ity of the narrow resonance the latter value is irrelevant.
On the other hand, one should be aware of the positive
aCsCs, considering the fact that aCsCs > 0 affects the Efi-
mov spectrum measured at intermediate Feshbach reso-
nances [2, 28, 29]. There, its main influence is to elim-
inate the ground state of the Efimov spectrum [28, 29].

Indeed, also in the vicinity of the narrow resonance, the
ground Efimov state was not detected [2]. Addition-
ally, the first excited Efimov resonance in the vicinity of
two intermediate resonances was measured to be within
∼ 20% from each other for both positive aCsCs = 200a0
and large negative aCsCs = −1400a0 Cs-Cs scattering
lengths [2, 28]. Thus, ∼ 20% can be considered the up-
per limit for our error if aCsCs is set to zero. Note, how-
ever, that at the narrow resonance, aCsCs is at least an
order of magnitude smaller than the absolute values of
the effective range and the interspecies scattering length
at which the first excited Efimov energy level crosses the
threshold. Therefore, its influence on the position of the
Efimov resonance is expected to be less important than
in the case of intermediate resonances.

This simplification leads to two coupled integral equa-
tions for βLiCs,ν = βν :

(
~2q2

2µ′
+ Eν − ET

)
βν (q)− µΛν

π2~2

qc − π

2

√
(2r + 1)q2 + r(r + 1) mµT

λ2T

(r + 1)2

∑
ν′

Λν′βν′ (q)

− mΛν
4π2~2

∫ ∞
0

dp ln

(
p2 + 2r

r+1pq + q2 + r
r+1

m
µT
λ2T

p2 − 2r
r+1pq + q2 + r

r+1
m
µT
λ2T

)∑
ν′

Λν′βν′ (p) = 0, (10)

where r = M/m is the mass ratio and µT is the mass of the trimer whose definition varies throughout the literature.
For the sake of convenience in our calculations we define it to be the reduced mass of LiCs. Following the procedure
shown in Ref. [1], we choose to extend the integration limit to −∞ and multiply the integral term by 1/2. Note
that this extension requires that both β1(q) and β2(q) be odd functions of q. Then we represent the two three-body
amplitudes as a vector: ψ(q) = [β1(q), β2(q)]T , and the coefficients of Eqs. (10) as a 2× 2 matrix: MλT

(q1, q2) that
depends on λT . Then Eqs. (10) take the form

∫∞
−∞ dq2MλT

(q1, q2)ψ(q2) = 0 and a non-trivial solution is obtained for

detMλT
(q1, q2) = 0. We perform renormalization as in Sec. III B, use the practical substitution:

q̃i =

√
r(r + 1)

(2r + 1)

m

µT
λ̃ sinh ξ, (11)

and Eqs. (10) become ∫ ∞
−∞

dξMλT
(ξ, ξ′)ψ (ξ′) = 0. (12)

The vector ψ(ξ) and the matrix elements are

ψ(ξ) =
[
β̃1(ξ), β̃2(ξ)

]T
(13a)

(MλT
)ij =

[
fi (ξ′) δij − Λ̃iΛ̃jg (ξ′)

]
δ (ξ − ξ′)− Λ̃iΛ̃jL (ξ, ξ′) , (13b)

where

fi (ξ) = λ̃T cosh ξ +
µ̃i

λ̃T cosh ξ
(Bi −B) , (14a)

g(ξ) =
1

2π2

µ

µT

(
1

λ̃ cosh ξ
− π

2

√
r

r + 1

m

µT

)
(14b)
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L(ξ, ξ′) =
1

16π2

m

µT

√
r(r + 1)

(2r + 1)

m

µT
ln

 sinh2 ξ′ + 2r
r+1 sinh ξ′ sinh ξ + sinh2 ξ + (2r+1)

(r+1)2

sinh2 ξ′ − 2r
r+1 sinh ξ′ sinh ξ + sinh2 ξ + (2r+1)

(r+1)2

 . (14c)

The requirement of a vanishing determinant:

detMλT
(ξ, ξ′) = 0, (15)

defines a closed equation for λT . In general, there are

many values λT = λ
(sol)
T for which Eq. (15) is satisfied

however not all of them correspond to physical solu-
tions. To identify the real three-body bound sates one
must compute the zero-eigenvalue eigenfunction ψ(ξ) of

M
λ
(sol)
T

in accordance with Eq. (12) and determine β̃1(ξ)

and β̃2(ξ). Then, the mathematical solution λ
(sol)
T is

physical only if both are odd functions of ξ. In addition,
the number of nodes in β̃1(ξ) and β̃2(ξ) allow assignment

of λ
(sol)
T to the ground or an excited Efimov state (see

Sec. IV in Ref. [1] for details).
To solve Eq. (15) numerically, each block Mij is rep-

resented as a n×n matrix by discretizing ξ and ξ′ in the
interval [−ξm, ξm] and step size dξ = 2ξm/(n − 1). The
total matrix thus has dimensions 2n × 2n and its deter-
minant is found. The computed ground and first excited
states are shown in Fig. 2, where we used ξm = 20.02 and
n = 200 (and n = 1600 for some points) together with
the parameters of Tables I and II.

V. DISCUSSION AND CONCLUSIONS

In Table III, a comparison between the position of the
first excited Efimov resonance predicted by the two- and
three-channel models and the experimental result from
Ref. [2] is presented. The two-channel model overesti-
mates the position of the resonance by more than a fac-
tor of two. In contrast, the three-channel model agrees
quite well with the experimental value. For comparison
the Efimov-van der Waals universal theory prediction is
also listed. The latter is based on a single-channel model
of Refs. [28, 43] and cited in Ref. [2]. It is important
to emphasize the amazing and not at all obvious fact
that the overlapping resonances worked in favor of the

experimental observation of the Efimov resonance in this
particular case.

Note, that our comparison between theory and ex-
periment is limited to the first excited Efimov state.
Our minimal model does not capture the absence of the
ground state, caused by the finite and positive Cs-Cs
scattering length (see discussion in Sec. IV B).

In summary, the results presented in this paper con-
firm that the Feshbach resonance used in the experiment
is narrow enough to effectively decouple the three-body
physics from the van der Waals universality. The re-
maining influence of the van der Waals length can then
be estimated to be about 10%. This estimation, however,
is within the limits of the above-mentioned conservative
error set by the aCsCs = 0 assumption. Therefore, the
upper bound for the influence of the finite range of the
interaction potential is dominated by the latter, and can
thus be quoted as . 20%.

Source a
(2)
− (a0)

Experiment [2] −3, 330(240)
Three-channel theory −3, 600
Two-channel theory −7, 189
Efimov-van der Waals universal theory −2, 200

TABLE III. The experimental value of the resonance position
is contrasted to the various theory values. The single channel
Efimov-van der Waals universal theory result is cited as per
Table I in Ref. [2].
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[29] S. Häfner, J. Ulmanis, E. D. Kuhnle, Y. Wang, C. H.
Greene, and M. Weidemüller. Role of the intraspecies
scattering length in the Efimov scenario with large mass
difference. Phys. Rev. A, 95:062708, 2017.

[30] B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hut-
son. Observation of the second triatomic resonance in
Efimov’s scenario. Phys. Rev. Lett., 112:190401, 2014.

[31] X. Xie, M. J. Van de Graaff, R. Chapurin, M. D. Frye,
J. M. Hutson, J. P. D’Incao, P. S. Julienne, J. Ye, and
E. A. Cornell. Observation of Efimov universality across
a non-universal Feshbach resonance in 39K. Phys. Rev.
Lett., 125:243401, 2020.

[32] T. Secker, D. J. M. Ahmed-Braun, P. M. A. Mestrom,
and S. J. J. M. F. Kokkelmans. Multichannel effects
in the Efimov regime from broad to narrow Feshbach
resonances. Phys. Rev. A, 103:052805, 2021.

[33] J. L. Li, T. Secker, P. M. A. Mestrom, and S. J. J.
M. F. Kokkelmans. Strong spin-exchange recombination
of three weakly interacting 7Li atoms, arxiv:2107.11269,
2021.

[34] Y. Castin. Basic theory tools for degenerate Fermi
gases. In C. Salomon M. Inguscio, W. Ketterle, editor,
Ultra-cold Fermi Gases, Proceedings of the Enrico Fermi
Varenna School on Fermi gases, 2006.

[35] A. O. Gogolin, C. Mora, and R. Egger. Analytical solu-
tion of the bosonic three-body problem. Phys. Rev. Lett.,
100:140404, 2008.

[36] S.-K. Tung, C. Parker, J. Johansen, C. Chin, Y. Wang,
and P. S. Julienne. Ultracold mixtures of atomic 6Li
and 133Cs with tunable interactions. Phys. Rev. A,
87:010702(R), 2013.

[37] M. Repp, R. Pires, J. Ulmanis, R. Heck, E. D. Kuhnle,
M. Weidemüller, and E. Tiemann. Observation of in-
terspecies 6Li-133Cs Feshbach resonances. Phys. Rev. A,
87:010701(R), 2013.
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