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We present several toy models for predicting the character and strength of the roughness of ac
Zeeman trapping potentials generated by imperfections in wire traces on an atom chip. An ac
Zeeman trapping potential is generated by targeting a microwave or rf magnetic field at hyperfine
or Zeeman ground state transitions, respectively, while a dc Zeeman trap uses a static magnetic
field to manipulate an atom via its magnetic moment. We find that an ac Zeeman trap suppresses
potential roughness by several orders of magnitude with respect to a comparable dc Zeeman trap.
This suppression stems from the inherent differences between an atom’s response to dc and ac
(namely rf and microwave) magnetic fields, in concert with how the ac skin effect smoothens out a
current distribution disturbed by a conductivity variation. For chip wires fabricated by evaporation,
we find that an ac Zeeman trap for 87Rb atoms, located 100 µm from the chip and operating on
a 6.8 GHz hyperfine transition, is expected to suppress potential roughness by a factor of 4 × 105

compared to a similar dc Zeeman trap. For a comparable ac Zeeman trap operating on a 10 MHz
Zeeman transition, the suppression is 2×104. Conversely, the ac skin effect also slightly exacerbates
potential roughness, in ac Zeeman traps, from defects in the sidewall of a wire trace.

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

Atom chips offer experimenters a miniaturized, low-
power, scalable platform for producing ultracold atomic
gases, while also providing precision control and inte-
gration of magnetic, electric, rf, microwave, and even
optical fields [1]. Precision photolithography, developed
by the semiconductor industry, enables the production
of complicated wire layouts that can be used to sculpt
complex magnetic fields for trapping and manipulating
cold atoms. Atom chips have been successfully used to
produce Bose-Einstein condensates (BEC)[2] and degen-
erate Fermi gases [3], 1D gases [4], atom interferometers
[5–7], and to study atom-surface interactions [8]. Due to
all of these favorable properties, commercial cold atom
apparatuses use atom chips, including the cold atom
apparatus on the International Space Station [9]. Atom
chips are also a favored platform for atomtronics, in
which ultracold atoms are manipulated in circuit-like
structures [10].

Despite all of these benefits, atom chips have not
been widely adopted by experimenters in part due to
the roughness in the magnetic trapping potential that
manifests itself primarily at very low temperatures (i.e.
onset of BEC), or when the trap is brought close to a chip
wire [11]. This roughness limits several key functions:
strong confinement in 1D potentials [11], propagation
of a BEC through a trapping waveguide [12], and atom
interferometry [5, 13]. The use of evaporation deposition
to manufacture high quality atom chip traces has helped
to reduce the degree of roughness [14]. However, small
variations in the bulk conductivity of a trace still lead
to enough roughness that atoms are typically trapped at
chip distances of more than 100 µm with Amp-scale cur-
rents. Notably, an oscillating trapping field (kHz range)
can suppress roughness by generating a smoother time-
averaged potential [15] but requires a more complicated

apparatus. Recently, graphene has been proposed as a
2D wire material for reducing roughness [16].

At present, atom chips use the dc Zeeman (DCZ)
effect to generate a magnetostatic potential, but the ac
Zeeman (ACZ) effect offers an alternate on-chip approach
for trapping atoms. The ACZ effect generates a spin
state-specific energy shift, i.e. a potential, when an rf or
microwave magnetic field drives one of the atom’s ground
state Zeeman or hyperfine transitions near resonance
[17, 18]. Recently, ACZ potentials based on rf near fields
on an atom chip have been used to trap atoms [19].
Furthermore, rf and microwave near fields on atom chips
have been used to translate and manipulate atoms in a
spin-specific manner [7, 20, 21]. ACZ potentials generate
a force with an ac field gradient and are a subset of
a broader class of rf and microwave dressed potentials
[22, 23]. This paper does not consider rf or microwave
adiabatic potentials, which primarily generate a force
with a dc magnetic gradient and use an ac field to couple
spin states [6].

In this paper, we show theoretically that an ACZ chip
trap should substantially suppress potential roughness
due to localized conductivity variations in an atom chip
wire, with respect to its DCZ counterpart. This suppres-
sion is due both to the physics of the ACZ effect for our
trapping geometry and the tendency of the current in a
chip wire to hug its edges at rf frequencies and higher (ac
skin effect). The skin effect also leads to somewhat larger
potential roughness from wire edge defects, though this
increase is relatively small.

The paper is structured in the following manner.
Section II introduces the basic theory of DCZ and ACZ
chip traps. In section III, we explain the roughness sup-
pression mechanism in a chip-based ACZ trap. Section
IV presents a thin wire model for current defects and
compares the roughness of ACZ and DCZ traps. In sec-
tion V, we study roughness suppression and enhancement
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versus microwave frequency due to the ac skin effect. We
conclude in section VI with a summary of the results and
an outlook for future research.

II. ATOM CHIP TRAPS

In this section, we present the basic physics and
equations for calculating the trapping potentials for DCZ
and ACZ traps generated by currents in atom chip
wires. Both DCZ and ACZ potentials for an atom
are described by the Zeeman interaction Hamiltonian
between an atom’s magnetic moment ~µ and an external

magnetic field ~B:

HZeeman = −~µ · ~B (1)

The magnetic field ~B can be static or time dependent,
e.g. an oscillating ac field. If we neglect the nuclear spin
~I, then, for an alkali atom, the magnetic moment is given

by ~µ = (2µB/~)~S. Here, ~S is the spin operator for the
valence electron, ~ is Planck’s constant, and µB is the
Bohr magneton.

A. dc Zeeman trap theory

At ultracold temperatures, the motion of an atom

through a spatially varying static magnetic field ~Bdc is
sufficiently slow that the magnetic moment of the atom
follows the direction of the local magnetic field, i.e. the

angle between ~µ and ~Bdc does not change. At low
magnetic field strength, the total angular momentum of

the atom ~F = ~I + ~S is a good quantum number, and

mF , the projection of ~F onto the local direction of ~Bdc,
does not vary as the atom moves through the magnetic
field. In this case, the dc Zeeman energy EDCZ of the
atom in a specific Zeeman state, mF , is proportional to
the magnitude of the local magnetic field and is given by

EDCZ = mFgFµB| ~Bdc| (2)

where gF is the Landé g-factor [24]. EDCZ represents
both a shift in the energy of the atom’s internal state and
the potential energy of the atom in the magnetic field. As
Earnshaw’s theorem prevents the existence of magnetic
maxima in free space, a magnetic trap can only be used
to trap “weak field seeker” states (with mFgF > 0) at a
magnetic minimum (see Fig. 1(a)).

In the case of an atom chip, a micromagnetic trap is
formed at the magnetic field minimum produced at the

point ~r0 where an applied external magnetic field ~Bext
cancels the field ~Bwire of a current carrying wire trace,
as shown in Fig. 1(b). An additional uniform magnetic

field ~BIoffe, directed along the z-axis of the wire trace,
ensures that the magnetic field minimum (at the trap

bottom) is non-zero. If ~Bext is sufficiently uniform, then
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FIG. 1. Basic physics of a DCZ micro-magnetic chip trap.
(a) Plot of the dc Zeeman energy shift EDCZ for different
mF states in the F = 1 and F = 2 hyperfine manifolds
of an an alkali atom with nuclear spin I = 3/2, e.g. 7Li,
23Na, 39,41K, 87Rb. Only the states whose dc Zeeman shift
is positive can be trapped, i.e. they are weak field seekers.
(b) A trap is formed at the magnetic minimum where the
magnetic field Bwire, generated by the chip wire current Iwire,
is cancelled by an opposing uniform magnetic field Bext. An
additional magnetic field BIoffe directed along the current axis
lifts the magnetic zero at the trap to a finite value. (c) BIoffe

is provided by an externally applied uniform magnetic field
directed along the ẑ direction (large purple arrow) and the
endcap wires of the Z-shaped wire (grey). The field from the
endcaps (smaller purple arrows) is strongest at the ends of
the central wire, thus providing trapping along the z-axis.

the magnetic field is quadrupolar in the vicinity of the
trap bottom and harmonic in the magnitude (at lowest
order):

~Bdc(x, y) ' Bwire
h

(∆yx̂+ ∆xŷ) +BIoffeẑ (3)

Bdc(x, y) ' BIoffe +
Bwire(~r0)2

2h2BIoffe
(∆x2 + ∆y2) (4)

where ∆x and ∆y represent position with respect to the
trap minimum, and h is the distance from the wire to
the trap minimum in the xy-plane. In the case of a thin
infinite wire, the distance is h = µ0Idc/2πBext, where Idc
is the current in the wire, and µ0 is the permeability of
free space. Equation 4 gives an approximate expression
for the field magnitude, which provides the harmonic
radial confinement in the xy-plane.
Axial confinement: Confinement along the axial direction
(z-axis) is typically provide by “endcap” wire segments
to form a Z-shaped wire (see Fig.1(c)). The current in
the transverse endcap segments generates a z-axis com-
ponent to the magnetic field that adds locally to BIoffe,
so that BIoffe(z) is larger at either ends of the central wire
segment, thus providing axial confinement. As we will see
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later (section III), spurious transverse currents within the
central portion of the “Z” wire can generate unwanted
localized axial confinement, i.e. potential roughness, in
DCZ chip traps.

B. ac Zeeman trap theory

The ACZ effect is generated by the same Zeeman
Hamiltonian (Eq. 1) as the DCZ effect. In the most
basic implementation, two Zeeman states |g〉 and |e〉
(in the atom’s ground state) experience an ACZ energy

shift, when an ac magnetic field ~Bac drives an allowed
M1 transition between these two states (see Fig. 2(a)).
Similar to the ac Stark effect, the ACZ energy shift is a
resonant effect, and its strength depends strongly on the
detuning δ = ωac−ωeg between the driving frequency ωac
and the bare transition frequency ωeg. Furthermore, the
ACZ effect mixes the |g〉 and |e〉 states, which results
in new eigenstates for the system, |+〉 and |−〉 (i.e.
the “dressed states”), with the following eigenenergies
[17, 25]:

E± = ±~
2

(−|δ|+
√
δ2 + |Ω|2) (5)

where Ω = 〈g|−~µ · ~Bac|e〉/~ is the Rabi frequency for the
interaction between the atom and the ac magnetic field.

As we will see later, the far-detuned limit, with |δ| �
|Ω|, is a case that is typical in an ACZ trap. In this limit,
the |g〉 and |e〉 barely mix, and they can be identified
with the |±〉 eigenstates. In this case, the ACZ energy
shift is similar to that of the ac Stark shift, and Eq. 5
becomes Eg,e = ±~|Ω|2/4δ, with + for |g〉 and − for |e〉.
The state mixing decreases significantly with increased
detuning: the probability for the atom to be found in
the other state is Pother = |Ω|2/4δ2.

The Rabi frequency Ω is determined by the interaction
geometry of the ac magnetic field and the atomic spin.
In a circular polarization basis with a quantization axis
along the ẑ direction, the Rabi frequency can be written
as [25]

Ω = −µB
~2
〈g|S+Bac,− + S−Bac,+ + 2SzBac,z|e〉 (6)

where S± = Sx±iSy are the spin raising and lowering op-
erators and Bac,± = Bac,x± iBac,y. The matrix elements
in Eq. 6 can be calculated once the |g〉 and |e〉 states
are identified with specific |F,mF 〉 states. Notably, at
low magnetic field strength, angular momentum selection
rules require that a circularly polarized ac magnetic field

Bac,± (and for ~Bac along x̂ and ŷ) can only drive σ±

transitions such that ∆mF = ±1. For ~Bac parallel to
the z-axis, π transitions are allowed such that ∆mF = 0.
Exact expressions for calculating the Rabi frequency Ω
in the low dc magnetic field limit are given in [25].

Polarization selectivity: Fig. 2(b) shows that often only
a single polarization component of the ac driving field
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FIG. 2. Basic physics of an ac Zeeman chip trap. (a) ac
Zeeman shift E± in a 2-level atom due to an ac magnetic
field. Depending on the detuning δ of the driving field
frequency ωac relative to the bare transition frequency ωeg,
the ground and excited states are either symmetrically re-
pelled (red-detuning) or pulled together (blue-detuning). (b)
ACZ transition polarization types (σ+, σ−, and π) between
Zeeman states in the ground level of an alkali atom with
nuclear spin I = 3/2. The |g〉 and |e〉-labeled states form
an effective 2-level system, if the dc Zeeman shift between
neighboring states is sufficiently large. (c) A trap is formed
at the ac magnetic zero where the ac magnetic field Bwire−ac,
generated by the chip wire current Iac, is cancelled by an
in-sync opposing uniform magnetic field Bext−ac at the same
ac frequency. BIoffe is a dc magnetic field, applied along the
wire’s z-axis, which provides a dc Zeeman shift to separate
the Zeeman states within the F = 1 and F = 2 hyperfine
manifolds.

(i.e. equivalent to σ+, σ−, or π type) will affect the
ACZ energy shift of a |F,mF 〉 spin state, due to angular
momentum selection rules and transition detunings. For
example, in the case of microwave hyperfine transitions,
e.g. between the F = 1 and F = 2 hyperfine manifolds
at 6.8 GHz for 87Rb, the |e〉 = |F = 2,mF = 2〉 state can
only experience an ACZ shift via a σ+ transition with the
|g〉 = |F = 1,mF = 1〉 state. The same is true for the
|g〉 state over a narrow range of driving field frequencies,
i.e. if the transitions of |g〉 to the |F = 2,mF = 1〉 and
|F = 2,mF = 0〉 states are sufficiently off-resonance. In
this case, the |g〉 and |e〉 states form an effective 2-level
system over a narrow range of driving frequencies or if
the drive field is purely left-circularly polarized.

In the case of rf Zeeman transitions between mF states
within a hyperfine manifold, only a single polarization
component is involved. Atoms in the F = 1 (F = 2)
manifold can only undergo σ− (σ+) Zeeman transitions
and are thus only affected by the right-circularly (left-
circularly) polarized component of an rf driving magnetic
field. So far, we have used a microwave hyperfine
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transition (i.e. |e〉 ↔ |g〉 in Fig. 2(b)) to illustrate ACZ
trapping physics, but the nearly degenerate rf Zeeman
transitions within each hyperfine manifold can be used
to form an ACZ trap as well: the ACZ physics is similar,
and eq. 5 is qualitatively correct [19, 21].

ACZ trapping scheme: An rf ACZ chip trap has recently
been demonstrated [19] and borrows many elements of
a DCZ chip trap. Fig. 2(c) shows the ACZ trap
architecture that this paper will use to compare the
roughness of ACZ and DCZ trapping potentials. An
ac current Iac in a wire along the z-axis generates an

ac magnetic near field ~Bwire-ac, while an external ac
magnetic field Bext-ac is oriented parallel to the chip
surface along the x-axis. The relative phase of Bwire-ac
and Bext-ac is chosen so that these fields always oppose
each other and cancel at a point ~r0 to form the local
field minimum for the trap, which is located at a distance
h = µ0Iac/2πBext-ac directly above the wire. Small shifts
in the relative phase between Bwire-ac and Bext-ac will
result in small horizontal shifts in the trap location (along
±x̂) [25], so the phase must be stabilized to prevent
position jitter and associated heating. In practice, for rf
frequencies, a roughly uniform Bext-ac can be generated
by two additional parallel chip wires on either side of the
central wire shown in Fig. 2(c) [26]. For operation at
microwave frequencies, microstrip transmission lines can
be used in place of the wires (see section V) [25]. Finally,
a uniform dc magnetic field BIoffe applied along the z-axis
(parallel to wire) separates the Zeeman state energies and
provides a convenient quantization axis. We note that
with this arrangement of fields, Bwire-ac and Bext-ac can
only drive σ± transitions.

Finally, as long as h is much smaller than the wave-
length λac = 2πc/ωac (c is the speed of light), then
~Bwire-ac can be treated as a near field, i.e. it is
given by its static form times an oscillatory ac term:
~Bwire-ac = ~Bwire exp(iωact). In this case, the magnetic
near field obeys Earnshaw’s theorem, and so the chip can
only generate an ac magnetic field minimum: an ACZ
chip trap can only confine weak field seekers, i.e. spin
eigenstates that experience a positive ACZ energy shift.
Notably, since the atoms are trapped in a region of low
ac magnetic field, with Bac = 0 and Ω = 0 at the trap
bottom, sufficiently cold atoms will be confined in the far
detuned limit with |δ| � |Ω|. If atoms are warm enough,
then they can climb the potential and experience a larger
field and Ω. Setting |δ| = |Ω| in Eq. 5, we can see that
the trapped atoms will be in the far-detuned limit so long
as their temperature is much less than T ' 0.21~|δ|/k (k
is Boltzmann’s constant). For example, for a detuning
|δ| = 2π × 1 MHz, the atoms will be trapped in the far-
detuned limit for temperatures well below T ' 10 µK
and thus will be largely in a single one of the |F,mF 〉
spin states.

Both the DCZ and ACZ chip traps tend to produce
harmonic potentials at the bottom of the traps. Fig. 3
shows the trapping potentials for similar ACZ and DCZ
traps: both traps are located at h = 100 µm above the
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FIG. 3. Comparison of similar ACZ and DCZ chip traps.
Both traps have a transverse harmonic trapping frequency of
ωr = 2π × 1 kHz for the |2, 2〉 ground state of 87Rb and are
located at h = 100 µm directly above the current carrying
wire in the configurations of Fig. 1(b) and Fig. 2(c). The
DCZ trap uses Idc = 0.8796 A,Bext = 17.592 G, andBIoffe = 5
G. The trap bottom of the DCZ trap has been set at 0 µK,
i.e. the energy offset from BIoffe has been subtracted. The
ACZ trap operates on the |2, 2〉 ↔ |1, 1〉 hyperfine transition
of 87Rb at ωac = 2π × 6.8 GHz and uses Iac =0.543 A (0.384
A rms), Bext-ac = 10.86 G, and detuning δ = 2π × 1 MHz;
BIoffe is not specified since it does not affect the trap (as long
as the associated DCZ shifts are much larger than δ). (a)
Trapping potentials versus x for y = 100 µm. (b) Trapping
potentials versus y for x = 0 µm.

chip wire and have a transverse trapping frequency ωr =
2π × 1 kHz for the |2, 2〉 ground state of 87Rb. While
the potentials at the bottom of each trap are identical,
they differ away from the bottom and have significantly
different trap depths. However, in this paper, we focus
only on the potential roughness in the vicinity of the trap
bottom.

Axial confinement: While adding endcap wires or de-
forming the ends of the wire can generate some axial
confinement for an ACZ trap, this effect is not as large
as in a DCZ trap, since the atoms are much less sensitive
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to π polarized microwaves or rf. One alternative is
to generate a standing wave, or microwave lattice, by
directing additional microwaves of the same frequency
and amplitude from either end of the trapping wire: If
these microwaves are at a different detuning from the
transverse confinement microwaves, then they will not
affect the transverse trapping, but they will provide axial
confinement. Conveniently, the phase of the standing
wave controls the longitudinal position of the trap.

III. ACZ ROUGHNESS SUPPRESSION

In a DCZ chip trap, potential roughness originates
from deviations of the current Idc from the straight path
of the wire. As shown in Fig. 4(a), a local variation in
wire resistivity (conductivity patch) or a defect in the
side wall of a wire trace (edge defect) can cause a local
deviation in the average current direction. Improvements
in atom chip manufacturing, notably the use of evapo-
ration deposition, have reduced these deviations and in
particular edge defects. At present, the scale for local
deviations of a wire trace edge is 100 nm. However, local
resistivity variations persist and typically give rise to
current deviations on the order of 0.1 mrad over distances
on the order of 100 µm. These deviations are much larger
than those generated by edge defects and are the primary
source of potential roughness. Table I summarizes the
current deviation parameters and wire defects reported
for some atom chips based on evaporation deposition.

TABLE I. Summary of typical current bump deviation di-
mensions and wire trace defect parameters for atom chips
fabricated by evaporation deposition.

Defect Representative Range
Parameter Value

30-70 nm [27, 28]
grain size 90 nm 100 nm [29], < 100 nm [11]

70 nm [30]

edge defect 100 nm < 100 nm [29], 100 nm [11, 31]

0.04-0.16 mrad rms [27]
bump angle θ 0.1 mrad 0.1-0.4 mrad pk-pk [27]

< 0.1 mrad [11]

bump length l 100 µm 10-50, 79, 90, 300 µm [27]

The current deviation in a DCZ chip trap generates
potential roughness by modifying the axial magnetic field
(along the z-axis). If the current deviates by an angle θ
away from the current propagation direction ẑ (see Fig.

4(b)), then the magnetic field ~Bwire that it generates will
now include a longitudinal component B// = Bwire sin θ
along ẑ. Importantly, this B// component adds linearly
to BIoffe. In the small angle limit, the current deviation
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FIG. 4. Current path due to defects in a wire. (a) Illustration
of the average path of the current in a planar wire trace
due a local variation in resistivity (conductivity patch defect)
and an indentation in the wire border (edge defect). (b)
1D current model for a wire trace defect and corresponding
magnetic field. A wire defect causes a “bump” deviation of
the dc current Idc (black) from a straight line trajectory by an
angle θ. The bump has an amplitude w and a length l. The
current generates a magnetic field Bwire (red) perpendicular
to the current, while the current bump results in a magnetic
field component B// parallel to the current direction, which
adds locally to BIoffe (purple). In the case of an ac current
Iac, all of the magnetic fields are ac except BIoffe.

makes a contribution Bwireθ to BIoffe and thus to the
potential energy at the bottom of trap (see Eq. 4).
In contrast, the deviation reduces only slightly the B⊥
component of ~Bwire along the x-axis by Bwireθ

2/2. In
the DCZ trapping potential of Fig. 3, a very long 0.1
mrad deviation (l/2� h) will generate a potential bump
or valley on the order of 100 nK, which is of the same
order as the BEC transition temperature. The blue
curve in Fig. 5 shows the longitudinal potential energy
profile at the original location of the trap bottom for
a DCZ chip trap with the same parameters as Fig. 3
and for the triangular current deviation shown in Fig.
4(b) with θ = 0.1 mrad and l = 100 µm: The positive
(negative) angle of the deviation generates the potential
bump (valley).

In the case of an ACZ chip trap, the longitudinal ac
deviation component B// ' Bwire-acθ (along ẑ) cannot
contribute to BIoffe, which remains a dc field. Instead
B// can only contribute to the ACZ potential by driving
a π transition with angular momentum selection rule
∆mF = 0. As the trap operates on σ± transitions, π
transitions will either be unavailable or far off-resonance,
and so the B// component will contribute much less or
not at all to the ACZ trapping potential. For example,
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in the energy level diagram of Fig. 2(b), an ACZ trap
operating on the microwave σ+ hyperfine transition for
the |e〉 state has no π transition that can be spuriously
driven. In the case of a similar trap for the |g〉 state, a
π transition exists but is suppressed, since it is far off
resonance (if BIoffe is sufficiently large). In the case of an
ACZ trap based on rf Zeeman transitions, there are no
π Zeeman transitions that can be driven by a spurious
B// component. However, a π hyperfine transition to the
other hyperfine manifold is possible, but it is very far
off resonance with a detuning δπ given by the hyperfine
splitting (i.e. δπ = 6.8 GHz for 87Rb): if the allowed π
and σ± transitions have comparable couplings, then the
contribution to the ACZ potential from the spurious π
transition is suppressed by roughly θ2δ/δπ.

Simplified model: In the rest of the paper, we ignore
the contributions of these spurious transitions to the
ACZ potential, since they are either not possible or can
be made sufficiently far off resonance to be strongly
suppressed. Formally, we are modeling the ACZ potential
using an atom with only two states, which simplifies
the treatment significantly, but also implies that the
associated ACZ roughness is somewhat underestimated
with respect to a real atom with many hyperfine states,
e.g. 87Rb with eight hyperfine ground states. However,
this simplified model is exact for an alkali atom with no
hyperfine structure (nuclear spin I = 0) and only two
ground states, e.g. 78Rb with a single F = 1/2 hyperfine
manifold (18 minute half-life) [32].

The reduction in the perpendicular component B⊥ of
Bwire-ac due to the current deviation does not signifi-
cantly affect the ACZ trapping potential. At the trap
location, Bwire-ac and Bext-ac cancel exactly (both are
along x-axis) in the case of no current deviation. With
a current deviation, the x̂ component of the wire’s near
field is Bwire-ac(1 − θ2/2) at the original trap location
(to lowest order), and the total microwave field is then
Bwire-acθ

2/2. The Rabi frequency Ω at the original trap
location is thus proportional to Bwire-acθ

2/2. In the far
detuned limit (|δ| � |Ω|), the ACZ trapping potential
E+ is proportional to |Ω|2, so the change in E+ is pro-
portional to B2

wire-acθ
4/4. Due to the θ4 dependence, this

contribution to the ACZ trapping potential is relatively
unimportant for small θ.

The current bump also leads to a shift in the trap
location along the x̂ direction. This trap position shift
∆x is on the order of the x-axis excursion w of the
current, with ∆x ∝ w (see Fig. 4(b)). Thus at the
original trap location, the trapping potential increases by
∆E = (1/2)ω2

r∆x2, which is proportional to w2, and also
proportional to θ2 for fixed bump length l (in the small
angle limit). This position shift is true for both the ACZ
and DCZ traps, but this contribution to the potential
roughness is the dominant one for the ACZ trap, since
the axial contribution of the DCZ potential is much larger
(and scales like θ). Fig. 5 shows a comparison of the
distortions of the DCZ and ACZ trapping potentials for
two current deviations: (a) a small current deviation

-2 -1 0 1

z position (mm)

-10

0

10

20

en
er

g
y 

/ k
  (

nK
)

(a)

DCZ trap
ACZ trap

-0.5 0 0.5
z position (mm)

0

1

en
er

g
y 

/ k
  (

pK
)

en
er

g
y 

/ k
  (

K
)

-2 -1 0 1

z position (mm)

-5

-2.5

0

2.5

5

7.5

10

en
er

g
y 

/ k
  (

K
)

(b)

DCZ trap
ACZ trap

-0.5 0 0.5
z position (mm)

0

0.1

0.2

FIG. 5. ACZ and DCZ potential distortion at the original
trap location due to a single current deviation located at z =
0. The potential distortion is plotted versus axial position z
along the wire trace. (a) Potential distortion from a small
current deviation based on Table I: current bump with w =
5 nm, l = 100 µm, and θ = 0.1 mrad. Inset: Zoom in on
the much smaller ACZ potential perturbation. (b) Potential
distortion due to a large current deviation: current bump with
w = 2.5 µm, l = 100 µm, and θ = 50 mrad. Inset: Zoom in
on the ACZ potential perturbation. The potential distortions
are based on calculations described in section IV for the same
ACZ and DCZ traps used for Fig. 3.

given by the parameters of Table I (θ = 0.1 mrad, l = 100
µm, w = 5 nm), and (b) an unusually large current
deviation (θ = 50 mrad, l = 100 µm, w = 2.5 µm).
Notably, the ACZ potential deviation is always positive
(E+ > 0 in Eq. 5) and does not depend on the sign of θ,
and so it is symmetric around the current deviation. In
contrast the DCZ potential deviation depends on the sign
of θ and is anti-symmetric around the current deviation.
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IV. 1D WIRE MODEL

In this section, we simulate the potential roughness of
comparable ACZ and DCZ chip traps based on a simple
thin wire model. While the analytic description in section
III provides basic scalings for the roughness of ACZ
and DCZ trapping potentials, a quantitative assessment
of the roughness requires a numerical calculation of
the magnetic near field generated by a specific current
deviation model.

For simplicity, we construct a model for the trapping
potential based on 1D current segments. As shown in Fig.
4(b) the current deviation bump is modeled as a small
triangular deviation in the plane of the chip (xz-plane).
The triangle is symmetric (isoceles) and has base length
l, and transverse deviation w. The triangular deviation
is also characterized by the bump angle θ = tan−1(2w/l).
Unless specified otherwise, in this section we will use the
values for the current bump triangle given in Table I:
l = 100 µm and θ = 0.1 mrad (with w = 5 nm).

We use the Biot-Savart law to calculate the magnetic
near field (dc or ac) for a current segment. The total
magnetic field at a given point (x, y, z) is then the sum
of the fields generated by all the individual segments, e.g.
four segments in the Fig. 4(b) layout. For a segment of
current I starting at position (a, b, c), with length L, and
oriented at at an angle θ from the z-axis (in the xz-plane),

the magnetic field ~B(x, y, z) is given by

~B =
µ0I

4π

1

x̃2 + ỹ2
(x̃ŷ − ỹ cos θx̂+ ỹ sin θẑ)

×

(
z̃√

x̃2 + ỹ2 + z̃2
+

L− z̃√
(x̃2 + ỹ2 + (L− z̃)2

) (7)

where the intermediate coordinate variables x̃, ỹ, and z̃
are defined as

x̃ = −(z − c) sin θ + (x− a) cos θ (8)

ỹ = y − b (9)

z̃ = (z − c) cos θ + (x− a) sin θ (10)

In order to study the effect of the current deviation
bump, we calculate the trapping potential with and
without the bump, and then take the difference of the
two potentials to obtain its effect. By this method, we
find that the potential roughness for an ACZ trap is
substantially smaller than its DCZ counterpart.

In addition, in this section, we also study the case of
a string of current deviations, i.e. connected serially one
after another. All of these deviation bumps are identical
and in the xz-plane of the chip, though we alternate the
sign of the angle θ of the deviations, as shown in Fig.
8(a). Typically, in the case of multiple currents bumps,
an ACZ trap further suppresses the potential roughness
with respect to its DCZ counterpart.

A. Single defect

In this subsection, we investigate the effect of a single
current deviation bump, i.e. a single defect (see Fig. 4),
on the trapping potential at its unperturbed location.
However, the current defect also shifts the location of
the trap, and so we study the trapping potential at this
new location as well, including the trapping potential
minimum and the trap frequency.

We examine the effect of the single current deviation
bump by subtracting the “with defect” and the “no de-
fect” trapping potentials at the “no defect” trap location
(i.e. the minimum of the unperturbed potential). Fig.
5(a) shows this trapping potential difference for the ACZ
and DCZ traps of Fig. 3 located at h = 100 µm directly
above the chip wire. The potential difference is plotted
as a function of position along the wire trace (z-axis),
with the defect located at z = 0. The current defect
triangle is given by the representative values in Table I,
i.e. θ = 0.1 mrad, l = 100 µm, and w = 5 nm. The DCZ
trap experiences a bipolar potential energy excursion
of roughly ±10 nK, while the ACZ trap experiences
a much smaller potential increase of about 1 pK: The
perturbation of the ACZ potential is about 104 times
smaller than the corresponding perturbation in the DCZ
potential. Fig. 5(b) shows the potential perturbation
for a larger current defect triangle with θ = 0.05 rad,
l = 100 µm, and w = 2.5 µm. In this case, the ACZ
potential perturbation is only 24 times smaller than its
DCZ counterpart, i.e. a 0.25 µK increase versus a ±5.5
µK excursion. In both Fig. 5(a) and (b), the roughness
of the ACZ trap is much smaller than for the DCZ
trap. Furthermore, the ACZ potential experiences the
perturbation as a positive single-sided bump, while the
DCZ potential experiences the perturbation as a much
larger bipolar excursion (see explanation in section III).

The current deviation distorts the trapping potential
sufficiently to displace the trap locally. Fig. 6 shows a
3D plot of the (x, y) location of the potential minimum
in the xy-plane as a function of axial z position, for a
current deviation bump located at z = 0. Both the ACZ
and DCZ traps experience small transverse displacements
in the xy-plane. The ACZ potential’s (x, y) minimum
is only shifted in the direction of the current bump,
along the x direction: the minimum’s position essentially
mimics the current bump. The DCZ potential minimum
is displaced in both x and y directions and traces out a
spiral whose maximum x-axis displacement equals that
of the ACZ potential.

The inset of Fig. 6 shows the value of the potential
energy at the (x, y) minimum location as a function of
the z position. The potential energy at the ACZ potential
minimum along z remains at zero and is unchanged by
the presence of the current bump (a zoom-in shows that
it remains at zero to within the numerical error of our
computations). Consequently, the current bump does not
impose any axial confinement on the ACZ trap and only
perturbs its layout. However, the potential energy at
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FIG. 6. Trap location deviation in 3D due to a single current
bump deviation. The unperturbed trap (same as in Fig. 3) is
located along the z-axis (at x = 0, y = 0). The wire defect is
the same as in Fig. 5(a), i.e. θ = 0.1 mrad, l = 100 µm, and w
= 5 nm. Blue (dashed): DCZ trap bottom position. The trap
deviates in both the x and y directions. Red (solid): ACZ trap
bottom position. The trap only experiences a shift along the
x direction. Green (solid): Current path with the x-axis scale
shrunk by a factor of 2 for illustration purposes. In this plot,
the current path is located at y = −100 µm position, but has
been placed at y = −1 nm for illustration purposes. Inset:
Potential energy at the trap minimum position for the ACZ
(solid red) and DCZ (dashed blue) traps. The unperturbed
trap minimum energy has been subtracted.

the DCZ potential minimum varies significantly along z
over the course of its spiral path near the current bump.
This variation in the potential is comparable to that in
Fig. 5(a) and necessarily results in axial confinement:
The result is that atoms congregate at the point with
the lowest potential, generated by the current bump (i.e.
just to the right of z = 0). This mechanism generates
BEC cloud fragmentation in DCZ traps, but according
to this analysis it should not occur for ACZ traps.

In addition to displacing the trap, the current devia-
tion bump also perturbs the transverse trapping frequen-
cies (i.e. the curvature of the trapping potential). We
define the trap frequency deviation as ∆f = (ωdefect −
ωr)/2π, where ωr is the radial trap frequency without
any current defect (i.e. ωr = 2π × 1 kHz for the trap of
Fig. 3) and ωdefect is the trap frequency with the defect.
The trap frequency deviation ∆f is different in the x
and y directions and depends on the axial position z.
Fig. 7 shows the trap frequency deviations ∆fx and ∆fy
as a function of axial position z for the ACZ and DCZ
traps. For both traps, the change in trap frequency is
quite small, though the change for the ACZ trap is three
orders of magnitude smaller than for the DCZ trap. In
the case of the ACZ trap, the current bump results in
a minute reduction in the trap frequencies along both
transverse direction by a few tens of µHz, with the largest
decrease along the x axis (bump direction). The DCZ
trap experiences small bipolar changes in its transverse
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FIG. 7. Trap frequency deviations ∆fx,y due to a single
current bump at z = 0. The current bump is the same as
in Fig. 5(a) and Fig. 6, i.e. θ = 0.1 mrad, l = 100 µm,
and w = 5 nm. The trap frequency deviation ∆f for the (a)
ACZ case is roughly 500 times smaller than for the (b) DCZ
case. The deviation ∆f is strongest along the x axis (bump
direction). The unperturbed trap is the same as in Fig. 3.

trap frequencies of a few tens of mHz, with the largest
again along the bump direction (x-axis). In both cases,
the change in trap frequency is sufficiently small to have
little impact (for this small current bump).

B. Multiple defects

In this subsection, we investigate the effect of multiple
current deviation bumps on the trapping potential. In
the case of a single current deviation bump, the magnetic
near field is distorted beyond the immediate vicinity of
the bump itself. Multiple current defects can thus be
expected to contribute to the distortion of the trapping
potential at a given point. Notably, we find that multiple
bumps typically suppress the ACZ potential roughness
but enhance the DCZ potential roughness.
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We construct a model with multiple current bumps
by stringing together a series of identical single bumps
with alternating ±θ deviation angles. Fig. 8(a) shows
a multiple bump model with 50 current bumps. The
multiple bump model is spatially periodic with period
λ = 2l (there is no space between neighboring bumps).
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FIG. 8. Trapping potential distortion for a wire with multiple
periodic current bumps. (a) Schematic of a chip wire with 50
current deviation bumps with alternating orientations (in the
xy-plane). The diagram is shown for a dc current Idc but
is identical in the case of a microwave ac current Iac. The
parameters for each current bump are the same as in Fig.
5(a), i.e. θ = ±0.1 mrad, w = ±5 nm, and l = 100 µm. The
unperturbed trap is the same as in Fig. 3. (b) Deviation
of the ACZ trapping potential versus axial position z at the
original trap location. (c) Deviation of the DCZ trapping
potential versus z at the original trap location.

In Fig. 8(b), we show the ACZ trapping potential
distortion at the location of the original ACZ trap, using
the same bump parameters as in Fig. 5(a). Each ±θ

current bump results in alternating trap displacements
in the ±x̂ directions of a little less than ±w. The
net effect is that each current bump results in a single
positive ACZ trapping potential bump that is somewhat
smaller in strength than a single isolated bump, e.g. as
shown in Fig. 5(a). If we define the ACZ potential
roughness ∆Erough-AC as the peak-to-peak deviation of
the distorted trapping potential in the central section
of the model, then we see that ∆Erough-AC ' 1 pK in
Fig. 5(a) has decreased to ∆Erough-AC ' 0.5 pK in Fig.
8(b). Furthermore, there are two ACZ potential bumps
for every period λ (for a total of 50).

The DCZ trapping potential is distorted in a different
manner by the presence of multiple current bumps. Fig.
8(c) shows the DCZ trapping potential deviation at the
location of the original DCZ trap, based on the same
multi-bump model as Fig. 8(b). Within the series of
current bumps, each angled current segment (of length
l) at angle +θ generates a corresponding positive bump
in the trapping potential, while segments at angle −θ
generate negative dips in the potential. The net effect of
the alternating ±θ current bumps is to produce trapping
potential variations that are somewhat larger in strength
than a single isolated bump (see Fig. 5(a)). The
DCZ potential roughness ∆Erough-DC is the peak-to-
peak deviation of the distorted trapping potential in the
central portion of the model: in the single bump of
Fig. 5(a), ∆Erough-DC ' 20 nK, while for the multi-
bump model of Fig. 8(c) the roughness increases to
∆Erough-DC ' 30 nK. Notably, there is only one DCZ
potential bump (and dip) for every period λ (for a total
of 25 bumps).

In order to quantify the comparison of the ACZ and
DCZ trapping potential roughness, we introduce the sup-
pression factor, which is the ratio of the two roughnesses
for a same multiple bump model:

suppression factor =
∆Erough-DC
∆Erough-AC

(11)

In the case of the model in Fig. 8, the suppression factor
is about 6× 104.

We can use the suppression factor to compare how the
ACZ and DCZ roughness vary relative to each other as
the parameters of the multiple bump model are varied.
Fig. 9 shows the suppression factor for a model with
500 current bumps as the trap height h is varied, Fig.
9(a), as the bump width w is varied, Fig. 9(b), and as
the bump length l is varied, Fig. 9(c). In all three cases,
the suppression factor is larger with multiple bumps than
with a single current bump.

First, the magnetic roughness falls off at larger trap
heights, and the ACZ roughness falls off faster than the
DCZ roughness. Fig. 9(a) shows that the roughness falls
off faster for the ACZ trap than for the DCZ trap, since
the suppression factor grows quickly as the trap height h
increases. Furthermore, the multiple bump model results
in somewhat more roughness suppression than the single
bump one.



10

0 20 40 60 80 100
trap height h ( m)

103

104

105

su
pp

re
ss

io
n 

fa
ct

or (a)

SingleMultiple

w = 5 nm

l = 100   mm

2 4 6 8 100

104

105

106

su
pp

re
ss

io
n 

fa
ct

or

Multiple
Multiple
Multiple
Multiple

Single, h = 25 m

Single, h = 50 m
Single, h = 100 m

Single, h = 200 m

bump width w (nm)

(b)

l = 100 mm

0 50 100 150 200

bump length 

104

105

106

su
pp

re
ss

io
n 

fa
ct

or

Multiple
Multiple
Multiple
Multiple

Single, h = 25 m

Single, h = 50 m
Single, h = 100 m

Single, h = 200 m

(c)

w = 5 nm

l ( m)

FIG. 9. Suppression factor for a wire with periodic current deviation bumps. The computations for the plots are based on the
periodic current deviation model of Fig. 8 with 500 alternating current bumps. The plots show the single bump suppression
factor for comparison (dashed lines), based on the model of Fig. 4(b) with the same bump parameters as the multi-bump case
(solid lines). The ACZ and DCZ trap frequencies are maintained at ωr = 2π × 1 kHz for all of the trap heights (for all the
curves in the plots). The unperturbed trap at h = 100 µm is the same as in Fig. 3. (a) Suppression factor versus trap height
h, with bump parameters θ = ±0.1 mrad, w = ±5 nm, and l = 100 µm. (b) Suppression factor versus bump width w for
various trap heights; the bump length is held constant at l = 100 µm.(c) Suppression factor versus bump length l for various
trap heights; the bump width is kept constant at w = ±5 nm.

Second, the suppression factor also depends on the
current deviation bump width. In the case of a single
bump the suppression factor is proportional to 1/wl.
This basic behavior is expected since the DCZ roughness
is proportional to θ, which in the small angle limit is given
by θ = 2w/l, while the ACZ roughness is proportional
to w2 and depends much less on l. Fig. 9(b) shows
the suppression factor as a function of current deviation
width w, while keeping the deviation length fixed at
l = 100 µm: The plot shows that the suppression factor
falls off as 1/w in the single and multiple bump cases,
with the latter benefiting from additional suppression of
roughness.

Third, the suppression factor depends on the bump
length. Fig. 9(c) shows the suppression factor versus
bump length l for a fixed bump width of w = ±5 nm.
In the case of a single bump, the suppression factor
falls off roughly as 1/l (at short l, the fall off is a little
faster). In the case of multiple periodic current bumps,
the suppression factor is again larger than the single
bump case, but also falls off faster than 1/l, thus further
suppressing short l bumps. The faster-than-1/l fall off is
accentuated for larger trap heights.

V. AC SKIN EFFECT

The distribution of current in a wire depends on its
frequency. A dc current propagates uniformly in a wire,
except for deviations due to internal wire defects, e.g.
Fig. 4(a). In contrast an ac current tends to hug the
lateral edges of a trace as the frequency is increased,
due to the ac skin effect [33], as shown in Fig. 10(a).
While the previous section investigated differences in
DCZ and ACZ potential roughnesses for a given current

deviation, in this section, we study how the ac skin
effect can suppress or enhance different types of current
deviations. In particular, at high frequencies, the ac
skin effect strongly suppresses current deviations due to
spatial conductivity variations in a wire trace. However,
the ac skin effect can also somewhat exacerbate current
deviations arising from defects in the edges of a wire
trace.

We use a commercial electromagnetic simulation solver
(FEKO by Altair Inc.), based on the method of moments,
for accurate modeling of the ac skin effect [33]. The use
of such a solver also allows us to replace our simple thin
wire model with a microstrip transmission line, which is
a convenient building block for sculpting microwave near
field structures, such as an ACZ trap [25]. Used to convey
microwave signals, a microstrip is a form of transmission
line consisting of a conducting trace separated from a
conducting ground plane by a dielectric layer (substrate)
[34]. Fig. 10(a) shows a schematic of our microstrip
transmission line (used for all simulations in this section)
and the resulting current distribution due to the ac skin
effect at 6.8 GHz. Our microstrip model has a 50 Ω
impedance and consists of a 54 µm wide copper trace
on a 50 µm thick aluminum nitride (AlN) dielectric
substrate with a copper ground plane. High frequency ac
skin effect computations require a very fine discretization
mesh, which in turn requires substantial computational
resources, so we only use a very fine mesh over a central
section of the microstrip trace’s length. As shown in Fig.
10(a), the microwave current hugs the inside lateral edges
of the microstrip trace.

The ac skin effect is due to the generation of eddy
currents from the ac magnetic field of the microwave
current, which concentrates the ac current along the skin
of the conductor [33]. The skin depth characterizes the
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length scale for the thickness of the current “skin” and is
given by

√
2/σµωac. For example, at ωac = 2π×6.8 GHz,

the skin depth is 0.8 µm in copper with conductivity
σ = 5.813 × 107 (Ω·m)−1 and magnetic permeability
µ ' µ0. In the case of a ribbon-like conductor, such
as the microstrip trace, the skin of the lateral current
distribution is typically several skin depths wide [33].

FIG. 10. Microstrip transmission line model showing the ac
skin effect and the conductivity patch model. (a) Microstrip
transmission line model used for all simulations in section V.
The copper microstrip trace is 1 mm long, 54 µm wide, and 5
µm thick and lies on a 50 µm thick aluminum nitride (AlN)
substrate with a 5 µm thick copper ground plane. The AlN
substrate has dimensions 1 mm × 0.8 mm, dielectric constant
ε = 8.9, and a loss tangent of 0.0005. The trace uses a fine
mesh with roughly 1.6 µm triangular elements (or finer) over
its central 0.4 mm long section, while the rest of the trace
uses a coarser mesh with roughly 9 µm triangular elements.
The current density is shown at 6.8 GHz and is only accurate
in the central high-mesh section. (b) Close in view of the
conductivity patch (light blue) located in the central high-
mesh section of the trace (dark blue). The patch is also visible
as a black rectangular outline in (a).

The input and output ports of the microstrip trace
have 50 Ω source and load impedances, respectively, to
match the broadband 50 Ω impedance of the trace (dc-20
GHz) and to suppress any standing waves. In all of the
simulations presented in this section, we use a 1 V rms
source, which corresponds to 20 mW of microwave power

and an rms current of 20 mA. However, the roughness
results in this section do not depend on the specific
input power, e.g. the average transverse position of the
current and fractional change in the magnetic near field
are independent of the current magnitude. We compute
such quantities over the range of 1 MHz to 10 GHz to
determine their frequency dependence. We use 1 MHz as
a stand-in for DC, since the skin depth at this frequency
is larger than the trace width, resulting in a largely
uniform transverse current distribution (in the absence
of wire defects).

In the next two subsections, we study the role of the ac
skin effect in determining the current distribution, and
associated magnetic roughness, in the presence of two
types of defects [35]: a) a local conductivity variation in
the bulk of the microstrip trace, and b) a small geometric
defect in one of the edge walls of the trace.

A. Conductivity patch model

In this subsection, we model the current flow and the
resulting magnetic near field due to a local conductivity
variation, i.e. a “conductivity patch.” In particular, we
focus on how the current flow and magnetic near field
vary as a function of frequency.

At dc and low frequencies, current flows according to
Ohm’s law. However, for an ac current, the ac skin
effect redistributes the current towards the edges of a
wire trace [33]. In the presence of a local conductiv-
ity variation defect, this ac skin effect competes with
Ohm’s law to determine the current distribution in the
trace. For illustrative effect, Fig. 11 shows the current
distribution for a rectangular patch with an unusually
large ±50% conductivity change at both high and low
frequencies. At low frequency, the current distribution
is dominated by Ohm’s law, resulting in a patch that
effectively repulses (low conductivity, Fig. 11(a)) or
attracts currents (high conductivity, Fig. 11(c)). At very
high frequencies, the ac skin effect modifies the current
distribution significantly and pushes the current to the
trace edges, while also making the currents along the
two edges more symmetric (Fig. 11(b,d)). In turn, these
changes in the current distribution affect the magnetic
field roughness and the trapping potential roughness.

More specifically, we can determine how a current de-
viation, due to a conductivity patch, varies as a function
of frequency. The center-of-current (COC) represents
the average transverse current deviation. In terms of
the parameters of the 1D wire model of section IV, the
COC is equivalent to the transverse deviation w of the
wire current. The current deviation, in turn, generates a
corresponding deviation in the ac magnetic near field at
the location of the trap, which we take to be located at
h = 100 µm above the wire trace center.

We use a rectangular conductivity patch, shown in Fig.
10(b), based on the parameters of Table I and reference
[27]. The patch has a conductivity variation of ±0.1%,
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FIG. 11. Current distribution in a copper microstrip due
to an unusually large ±50% conductivity patch defect. The
microstrip is nominally 50 Ω and driven with 20 mW of
power at 1 MHz or 6.8 GHz. The performance at 1 MHz is
representative of the current distribution for a dc current. (a)
Low frequency current distribution for a +50% conductivity
patch. (b) High frequency current distribution for a +50%
conductivity patch. (c) Low frequency current distribution
for a -50% conductivity patch. (d) High frequency current
distribution for a -50% conductivity patch.

which accounts for actual conductivity variations or an
equivalent change in the thickness of the trace over the
patch area [27]. By placing the patch on one edge of
the trace, the resulting COC deviation is maximized.
The patch is located midway along the length of trace.
We set the patch length at l = 100 µm and then use
a simulation at low frequency (1 MHz), with negligible
skin effect, to determine the patch width that results in
a transverse COC deviation of roughly 5 nm (see Fig.
5(a)), consistent with Table I: we settle on a patch width
of 15 µm, which results in a COC of δx = 5.7 nm.

Formally, the COC is the average x-axis position of the
surface current density magnitude K(x) (in Amps/m),
i.e. COC =

∫
K(x)xdx/

∫
K(x)dx, where the integrals

are taken over the 54 µm width of the microstrip trace. In
practice, extracting a sufficiently smooth surface current
density K(x) from the simulation software is difficult
given the triangular mesh, so instead we use the surface
magnetic field Bx(x) evaluated just 20 nm above the
surface of the trace. In very close vicinity of the surface
current, the surface magnetic field (in the x̂ direction)
is a good proxy for K(x), since the two are related by
Bx(x) ' µ0K(x)/2 [33]. This relation is accurate so long
as Bx(x) is evaluated at a distance much closer than the
characteristic length scale for spatial variations of K(x),
e.g. the skin depth or a local defect.

Fig. 12(a) shows the COC due to the conductiv-
ity patch, evaluated halfway down the length of the
microstrip trace at z = 0. The current distribution
shifts towards the patch for a higher conductivity patch
(σ + 0.1%σ case) and shifts away from the patch for
a lower conductivity patch (σ − 0.1%σ case). In the
two cases, the COC deviations are essentially equal
and opposite. Importantly, the magnitude of the COC
deviation remains constant at about 6 nm up to 10 MHz,
after which it decreases steadily by roughly an order of
magnitude as the frequency increases up to 1 GHz. From
1 GHz to 10 GHz, this decrease continues, but at a lower
rate. For example, the COC deviation at 6.8 GHz is
roughly 20 times smaller than at 10 MHz. The main
conclusion for the COC plot in Fig. 12(a) is that current
deviations due to conductivity variations are suppressed
at high frequencies, potentially by an order of magnitude
or more.

The current deviation of the conductivity patch also
generates a distortion of the ac magnetic near field. We
define this distortion as the difference δB between the
magnetic near field Bk,defect (with k = x, y, z) with the
conductivity of the patch set at σ ± 0.1%σ and the
magnetic near field Bk,no-defect with the conductivity set
to σ:

δBk = |B̃k,defect − B̃k,no-defect| (12)

We use a tilde to denote a complex quantity, such as

B̃, which incorporates magnitude and phase distortions
associated with the conductivity patch. Importantly, we

use the same computation mesh for simulating B̃k,defect
and B̃k,no-defect.

Since the hyperfine transitions used for ACZ trapping
require circularly polarized magnetic fields, we also com-
pute the magnetic distortion δB± associated with the B±
components:

δB± = |B̃±,defect − B̃±,no-defect| (13)

The complex B̃± circular polarization components are
computed according to the expressions:

B̃±,defect = B̃x,defect ± iB̃y,defect (14)

B̃±,no-defect = B̃x,no-defect ± iB̃y,no-defect (15)

The magnetic distortion δB is evaluated at a trap
height of h = 100 µm above the geometric center of the
trace (i.e. centered on the length and width of trace).
For simplicity, the external magnetic field Bext-ac and
the Ioffe field BIoffe are not included.

We compute the fractional distortion δB/Btotal using
the total magnetic field Btotal (undistorted):

Btotal =

√ ∑
k=x,y,z

|B̃k,no-defect|2 (16)
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FIG. 12. Current and magnetic field distortions due to the ±0.1% conductivity patch. (a) Center-of-Current (COC) deviation
along x-axis, evaluated halfway down the length of the microstrip at z = 0. In the case of no conductivity patch, the COC
is zero. The magnetic distortion δB is computed at the trap location, which is 100 µm above the geometric center of the
trace. (b) The magnetic distortion δB(x,y,z) of the linearly polarized magnetic field components at z = 0. (c) The magnetic
distortion δB± of the circularly polarized magnetic field components at z = 0. (d) The distortion δB(x,y,z) of the magnetic
field components at z = 50 µm (edge of conductivity patch). The σ + 0.1%σ and σ − 0.1%σ cases are indistinguishable at the
resolution of plots (b-d) and so are plotted as a single curve.

Fig. 12(b-d) shows that the fractional distortion
δB/Btotal of the magnetic near field is suppressed at
high frequencies above 10 MHz, with a fall off similar
to that for the COC in Fig. 12(a). Consequently,
potential roughness from bulk conductivity variations is
suppressed by using high frequency currents.

Fig. 12(b) shows the magnetic distortion for a trap
located halfway down the microstrip trace, i.e. at the
middle of the conductivity path (z = 0). At this position,
δBz = 0 due to symmetry (i.e. z = 0 is located midway
along the patch length). Furthermore, the By component
of the magnetic near field has a much larger distortion
than the Bx component, which is consistent with a small
translation δx of the COC: In a simplified picture where
all the current is at the COC (1D wire model), then
from geometric projection we expect δBy/Bx = δx/h
and δBx/Bx = (1/2)(δx/h)2, with Btotal ' Bx. At low

frequency, we have δx ' 5.7 nm for the COC at 1 MHz,
so for h = 100 µm, we expect δBy/Btotal = 5.7 × 10−5,
which is roughly consistent with δBy/Btotal = 6.5×10−5

in the plot of Fig. 12(b) at 1 MHz.

At high frequency (i.e. 10 GHz), the y-axis distortion
δBy/Btotal in Fig. 12(b) is somewhat larger than ex-
pected from the COC result: The COC has a deviation
of about δx = 0.25 nm, which corresponds to a fractional
magnetic distortion of 2.5 × 10−6, but δBy/Btotal '
4 × 10−6. The simulation gives a magnetic distortion
60% larger than expected from a simple model where all
the current is located at the COC, thus showing that the
full current distribution must be taken into account.

Fig. 12(c) shows that the conductivity patch does not
just modify the magnitude of the current distribution
but also the phase. The plot shows that the δB+ and
δB− components (given by eq. 13-15) are similar but
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not identical in magnitude, thus indicating that the Bx
and By components have accumulated a small phase
difference between them due to the conductivity patch.

Finally, Fig. 12(d) shows the magnetic distortion at
the edge of the conductivity patch (z = 50 µm). In this
case, the longitudinal magnetic distortion δBz is non-zero
and also follows the trend of suppressed roughness at high
frequencies. At low frequency (1 MHz), δBz/Btotal =
2.6 × 10−5 is roughly consistent with the performance
observed for the 1D wire model with w = 5 nm. Indeed,
Fig. 5(a) shows a DCZ trapping potential deviation of
20 nK, which corresponds to a fractional deviation of
δBz/Btotal ' 1.7×10−5 (or 1.9×10−5 when adjusted for
a COC deviation of δx = w ' 5.7 nm).

B. Edge defect model

In this subsection, we show that an ac current ex-
periences a larger deviation from a localized defect in
the sidewall of a trace than a dc current. The ac skin
effect concentrates the current along the inside edges
of the microstrip, thus making the current distribution
more susceptible to defects in the trace edges, i.e. edge
defects. Furthermore, we find that an edge defect in
which material is missing from the sidewall, referred to
as “defect in”, has a larger impact on the ac current path
than a defect where the sidewall sticks out, referred to as
“defect out.” However, this high frequency ac roughness
due to sidewall imperfections is only about a factor of two
larger than the dc case, for edge defects based on Table
I. At high frequency (10 GHz), a “defect in” generates a
COC deviation that is comparable in magnitude to that
from the conductivity patch.

(a) (b)

FIG. 13. Microstrip edge defect models. The edge defect
consist of a square with a 100 nm side that is either missing or
that protrudes from the conducting trace’s edge. (a) “Defect
in” model. (b) “Defect out” model. The defect is located
midway down the length of the trace at z = 0. Due to the
very small size of the edge defect, we use a finer computation
mesh within it (and in its vicinity) with triangles on the order
of 20 nm in size.

We study the effect of edge defects on the current path
and the magnetic near field roughness with the simple
edge defect model shown in Fig. 13. A 100 nm × 100 nm
square conducting patch is either added to the sidewall of
the trace (i.e. defect out) or removed from it (i.e. defect
out). Fig. 14 shows the current density in the vicinity
of the edge defect at low frequency (1 MHz) and high

frequency (6.8 GHz). In the case of a “defect in”, the
current cannot enter the area of missing conductor, and
so the current experiences a fairly significant disruption
to its average path. In the case of a “defect out”, the
current does enter the conducting protrusion, but not
significantly so, and thus the current experiences a much
smaller deviation. However, in both of these cases, the
ac skin effect ensures a larger current deviation at high
frequency than at low frequency: at higher frequency, the
current becomes increasingly concentrated on the lateral
edges of the trace, leading to a larger fraction of the
current that can be deviated by an edge defect.

(a)

1 MHz

2500

0

A/m

(c)

1 MHz

(d)

6.8 GHz

FIG. 14. Current distribution in the vicinity of an edge
defect for a microstrip trace. a) “Defect in” model at low
frequency (1 MHz), which is representative of dc performance.
b) “Defect in” model at high frequency (6.8 GHz). c) “Defect
out” model at low frequency (1 MHz). d) “Defect out”
model at high frequency (6.8 GHz). The color bar shows
the magnitude of the current density and is the same for all
four sub-figures. The arrows show the direction of the current
density magnitude. Displacement currents are not shown.

We evaluate the COC by the same method used for the
conductivity patch. The COC is the average transverse
shift δx in the microstrip current due to the edge defect,
and it represents the current deviation width parameter
w in the 1D wire model. Fig. 15(a-b) show that the COC
shifts away from a “defect in” and towards a “defect out”,
as expected. This shift increases by a factor of two from
dc to 10 GHz. The largest shift is for the “defect in” case
which varies from 1 nm to 2 nm: this COC shift is larger
than the one generated by the conductivity patch above
100 MHz (see Fig. 12(a)), albeit over a much shorter
axial length. In contrast, the COC shift for the “defect
out” case is more than an order of magnitude smaller and
varies from 40 pm to 80 pm (factor of ∼ 25 smaller).

We calculate the distortion of the magnetic field δB
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FIG. 15. Current and magnetic field distortions due to “in” and “out” edge defects. The defect is located at z = 0. (a)
Center-of-current (COC) deviation for the “defect in.” (b) COC deviation for the “defect out.” The COC deviation is along
the x-axis passing through the center of the edge defect. The magnetic distortion δB is computed at the trap location, which
is 100 µm above the geometric center of the trace and at z = 0 . (c) The magnetic distortion δB(x,y) of the linearly polarized
magnetic near field components for the “defect in.” (d) The magnetic distortion δB(x,y,z) for the “defect out,” as well as δBz

for the “defect in.” (e) The magnetic distortion δB± of the circularly polarized magnetic field components for the “defect in.”
(f) The magnetic distortion δB± for the “defect out.” For plots (c-f), we use ribbons to show the max-min range of values
obtained from multiple simulations with different mesh layouts in the vicinity of the edge defect.

due to an edge defect with the same method as for
the conductivity patch model, i.e. using Eqs. 13-16.
Fig. 15(c-f) shows the magnetic field distortion for edge
defects as a function of frequency. Similar to the COC
deviation, the “defect in” generates a magnetic field dis-
tortion that is over an order of magnitude larger (factor
of ∼25) than the “defect out.” At higher frequencies,
the magnetic distortion generally increases: the δBx
distortion increases by a factor of two to three from 1
MHz to 10 GHz, while the larger δBy distortion sees only
a modest increase over this frequency range. The longitu-
dinal magnetic field Bz should be null by symmetry, and
indeed δBx is negligible at low frequencies. However, for

frequencies above 1 GHz, δBz develops a non-zero value
(mechanism not investigated) and becomes comparable
to δBx (albeit smaller) at frequencies above 1 GHz.

Similar to the conductivity patch model, the ŷ com-
ponent of the magnetic field experiences the largest
distortion from the edge defects, while the x̂ component
distortion is generally 2-10 times smaller. However,
in comparison with the conductivity patch model, the
edge defects generate a magnetic field distortion that is
typically an order of magnitude or more smaller at low
frequencies. For example, at 1 MHz the conductivity
patch generates a δB distortion that is 30 times larger
than the largest edge defect distortion (“defect in”).
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However, at high frequencies, the conductivity patch and
edge defect distortions become comparable, even though
the edge defect is more than three orders of magnitude
smaller in size than the conductivity patch: at 10 GHz,
the COC deviation for the “defect in” is somewhat larger
than the conductivity patch COC deviation, while the
magnetic field distortion for the conductivity patch is
only two times larger than the “defect in” distortion.

Finally, at high frequencies, the edge defect induces
a phase difference between the x and y magnetic com-
ponents, thus leading to different B+ and B− circular
polarization components of the near field. This effect is
most apparent in the case of the “defect out” above 1
GHz, which is clearly visible in Fig. 15(f).

VI. SUMMARY & OUTLOOK

In summary, we have shown that potential rough-
ness for an ACZ chip trap is expected to be strongly
suppressed relative to a similar DCZ chip trap. The
character of the roughness differs between the two traps.
In a DCZ trap, the roughness primarily modifies the local
strength of the potential at the bottom of the trap due
to a magnetic field component along the wire axis. In an
ACZ trap, the roughness manifests itself primarily as a
small local shift in the transverse location of the trap in
the plane parallel to the chip.

The roughness suppression is due to two main mech-
anism: 1) Roughness in the ac magnetic near field
contributes only modestly to the ACZ trapping potential
since it tends to drive transitions that are not allowed by
selection rules or that are suppressed because they are far
off resonance; 2) at high frequencies, the ac skin effect
suppresses current deviations due to bulk conductivity
variations in the chip wires. Table II summarizes the sup-
pression of roughness for ACZ traps operating at low and
high frequencies due to these two effects. Furthermore,
multiple defects tend to smoothen out the roughness from
any one defect, thus resulting in further suppression of
ACZ potential roughness. However, we also find that at
high frequencies the ac skin effect leads to a small increase
in roughness (factor of two or less) due to defects in the
edges of a chip wire trace.

While the increase in current deviations due to edge
defects is small, it becomes comparable to deviations due
to bulk conductivity variations at high frequency (1 GHz
and above). However, the short length of edge defects
(∼ 100 nm) limits the resulting roughness of traps that
are sufficiently far from the chip. Furthermore, edge
defects are easier to observe and correct in the chip
manufacturing process, since they can be observed by
visual inspection, unlike bulk conductivity variations.

We note that the microstrip transmission line approach
to ACZ trapping opens up two new sources of roughness
that are not studied in this paper. Defects in both
the dielectric substrate and the ground plane could con-
tribute to the potential roughness in a microwave ACZ

TABLE II. Summary of roughness suppression for an ACZ
trap, relative to a comparable DCZ trap, located at a distance
h = 100 µm from the chip wire. The roughness is generated by
a single current deviation with dc parameters w = 5 nm and
l = 100 µm, due to a bulk conductivity variation of ±0.1%.
The suppression factor contributions are based on Fig. 5(a),
the 1/w scaling in Fig. 9(b), and Fig. 12(a).

Suppression Factor
Suppression Contribution
Mechanism RF trap Microwave trap

10 MHz 6.8 GHz

ACZ physics 2× 104 2× 104

(sections III-IV)

ac skin effect, cond. patch 1 20
(section V.A, COC deviation)

Combined suppression 2× 104 4× 105

trap. These roughness mechanisms are a topic for future
research and have no analog in DCZ chip traps.

We recall that the roughness of the ACZ potential
in this paper is based on a simplified 2-level model of
the atom’s hyperfine ground states. A more accurate
treatment should include the role of far off-resonance
transitions (e.g. π transition), which can result in a
small ACZ energy shift of the untrapped state (i.e.|g〉
in Fig. 2(b)). This small level shift will then gener-
ate a roughness-induced, position-dependent shift of the
detuning δ(z) on the |e〉 ↔ |g〉 trapping transition. In
this way, current deviations can drive far off-resonance
transitions, which can exacerbate the ACZ potential
roughness, though this contribution is suppressed by
the far off-resonance nature of the transitions. This
roughness mechanism depends on the atom’s specific
hyperfine structure, the DCZ energy shifts from the axial
magnetic field BIoffe, and the detuning δ, and is a topic
for future, more detailed theoretical work.

In order to conduct an experimental verification of
roughness suppression, the DCZ and ACZ traps must be
generated from the same source wires. A chip with three
parallel wires generates a trap without the need for an
externally applied magnetic field Bext, as the two outer
wires generate Bext on-chip. These wires can support dc
or RF currents, and so the same three wires can generate
an ACZ trap or a comparable DCZ trap. In the case of
a microwave ACZ trap, the three wires must be replaced
by microstrips [25], which can also support dc currents.

A qualitative observation of roughness suppression can
be conducted by the same method used in ref. [11, 36],
whereby the trapping potential and its roughness are
extracted from in situ images of the atomic density
profile. In the case of chip traces with current deviations
consistent with the parameters of Table I, the DCZ
trap roughness can be observed with a thermal gas with
a temperature of 10-100 nK or a BEC. However, the
ACZ roughness is expected to be in the pK range (see
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Fig. 5(a)), which is too small to be observable with
this method. Such an experiment will only a provide
a qualitative observation of roughness suppression, un-
less another roughness mechanism exists beyond those
considered in this paper. In order to measure both
DCZ and ACZ roughness, the simplest method is to use
an unusually large defect (e.g. an engineered artificial
defect), such as the one in Fig. 5(b).

If the predictions for the suppression roughness are
confirmed by experiment, then an ACZ trap can be
operated closer to the chip traces without suffering from
significant roughness. Operating closer to the chip will
result in lower microwave power requirements, and will
also benefit from steeper and deeper trapping potentials.
In an atomtronics context, operation closer to the chip
can be done with narrower traces for denser integration.
In a physics context, operation closer to the chip also
opens up the possibility of using other potentials for
manipulating atoms, such as the ac Stark potential gen-

erated by a microwave electric near field and eventually
evanescent optical fields. Looking forward, the ac Stark
potential of a microwave near field will also include
roughness and so is an avenue for future investigation.
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[14] S. Groth, P. Krüger, S. Wildermuth, R. Folman, T. Fern-
holz, J. Schmiedmayer, D. Mahalu, and I. Bar-Joseph,
Appl. Phys. Lett. 85, 2980 (2004).

[15] J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen, C. I.

Westbrook, and I. Bouchoule, Phys. Rev. Lett. 98,
263201 (2007).

[16] K. Wongcharoenbhorn, R. Crawford, N. Welch, F. Wang,
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