
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum control of two critically dressed spin-1/2 species
in magnetic fluctuations

Raymond Tat and C. M. Swank
Phys. Rev. A 105, 053120 — Published 25 May 2022

DOI: 10.1103/PhysRevA.105.053120

https://dx.doi.org/10.1103/PhysRevA.105.053120


Quantum Control of Two Critically Dressed Spin 1/2 Species in Magnetic Fluctuations

Raymond Tat and C. M. Swank
Division of Physics, Math and Astronomy, California Institute of Technology, Pasadena, California 91125, USA

(Dated: May 11, 2022)

The neutron electric dipole moment experiment at the Spallation Neutron Source (nEDM@SNS
experiment) proposes to measure the nEDM using the spin-dependent capture cross section of
neutrons on 3He. The critical dressing mode of this experiment uses an oscillating magnetic field to
dress the gyromagnetic ratios of neutrons and 3He to the same value. While this technique grants
increased sensitivity to the nEDM by improving the signal-to-noise ratio, this mode of measurement
also introduces additional noise from the power supply used to drive the dressing field. This can lead
to randomly fluctuating magnetic fields which cause the spins of neutrons and 3He to drift apart
over time. Here we use second-order time-dependent perturbation theory to compute relaxation
and frequency shifts due to fluctuations in the dressing field in terms of the magnetic field noise
power spectrum and compare these calculations to numerical solutions obtained by integrating the
Bloch equations. We then use these results to develop mitigation strategies for this type of noise.
Furthermore, we report on spin dressing modulation techniques that significantly amplify coherence
times for the critically dressed system, and attempt to quantify the coherence time achievable.
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I. INTRODUCTION

When a particle’s spin precessing in a static magnetic
field is exposed to an off-resonant oscillating orthogonal
magnetic field, the effective gyromagnetic ratio of the
particle - and thus its precession frequency - is modified.
This phenomenon is known as spin dressing and was first
studied theoretically in reference [1]. Spin dressing is
found to have applications across multiple sub-fields in
quantum information and fundamental physics, including
increasing coherence time of free induction decay (FID)
in relatively large magnetic field gradients [2, 3]. The
use of multiple dressing frequencies tuned to extend the
coherence of atomic clocks in field gradients was first re-
ported in reference [4], whereas the authors of reference
[5] used this technique to mitigate Stark shifts. With
multiple dressing field directions, enhanced spin manip-
ulation for quantum information is achievable, and can
even accelerate the effective Larmor precession; this is
discussed in references [6, 7]. In reference [8], the au-
thors found that critical spin dressing (CSD), the simul-
taneous dressing of two spin species to the same Larmor
frequency, can be applied for a very sensitive measure-
ment of the neutron electric dipole moment (nEDM). A
detailed investigation in reference [9] found that this tech-
nique would halve the statistical uncertainty of an nEDM
measurement compared to an analogous measurement us-
ing FID. Additionally, by modulating the parameters of
CSD as described in references [3, 8], systematic uncer-
tainty from phase fluctuations not associated with noise
in the spin dressing field (e.g. external magnetic field
drifts) is significantly reduced even without correction
from a comagnetometer. For example, with modulation
at the angular frequency ωm phase accumulation from
slow field drifts in the apparatus will be modified by a
factor ∼ 1/

√
ωm [10].

In the nEDM@SNS experiment ultracold neutrons
(UCN) are confined to a pair of acrylic (PMMA)

measurement cells with dimensions Lx × Ly × Lz =
40 cm× 10.2 cm× 7.6 cm in solution with polarized 3He
in superfluid 4He. A large electrode sits between the two
cells which are sandwiched by ground electrodes on either
side and provide a large electric field of order 7.5 MV/m
between each cell in the ẑ direction so the electric field
strength has opposite sign for each cell. A supercon-
ducting persistent ‘cos θ’ coil provides a static uniform
magnetic field of magnitude B0 ≥ 3 µT along the ẑ di-
rection and is the same in each cell. Inside the static
field is a separate audio frequency ‘cos θ’ coil which pro-
vides a dressing field with amplitude of up to 100 µT
oriented along the x̂ direction. In between the static uni-
form field and the dressing field is a copper shield, which
limits interaction between the dressing coil and the static
field coil and acts as a flux return for the dressing field.
To determine the relative phase between the neutron
and 3He spins, nEDM@SNS detects the spin-dependent
capture rate of neutrons on 3He through the reaction
n + 3He→ 3H + p+ 764 keV. The critical dressing mode
of the experiment uses a strong oscillating magnetic field
to dress gyromagnetic ratios of neutrons and 3He to the
same value. This improves sensitivity to the nEDM by
allowing continuous operation at the most sensitive rel-
ative phase between the neutron and 3He [9] for a given
3He concentration. However, this mode of measurement
introduces additional noise, as current fluctuations in the
spin dressing coil will lead to fluctuating magnetic fields.
These fluctuating magnetic fields can cause the spins of
neutrons and 3He to drift apart over time.

Here, we use second-order time-dependent perturba-
tion theory to assess the implications of magnetic field
fluctuations for precision measurements performed on
dressed spin systems, with particular emphasis on apply-
ing these results to mitigate uncertainty in the critical
dressing mode of the nEDM@SNS experiment. In sec-
tion II, we introduce the relevant Hamiltonian for spin
dressing for a spin-1/2 system. In section III, we apply
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time-dependent perturbation theory to this Hamiltonian
to compute the phase variance, frequency shift, and run-
to-run variance of the capture rate signal induced by a
fluctuating dressing field. We express these results in
terms of the power spectrum of these fluctuations. In
this section we also discuss the absence of run-to-run sig-
nal variance due to magnetic field gradients in either the
static uniform field or the dressing field. In section IV,
we confirm these calculations by numerical integration
of the Bloch equations, and discuss the implications of
these results for the nEDM@SNS experiment. Section
V proposes several strategies to mitigate dressing field
fluctuations for the nEDM@SNS experiment. Finally, in
section VI, we introduce a new modulation scheme which
can be used to combat the dressing field noise addressed
in the previous section, as well as enabling precise control
of dressed spins in the presence of magnetic field gradi-
ents.

II. SPIN DRESSING HAMILTONIAN

A spin-1/2 system with gyromagnetic ratio γ precess-
ing in a static uniform field B0ẑ and a strong oscillating
magnetic dressing field B1 cos(ωt)x̂ (with B1 > B0) is
described by the Hamiltonian

H = ωa†a+
Ω

2
σx(a+ a†) +

ω0

2
σz, (1)

where σx, σy, and σz are the usual Pauli spin matrices,
a† and a are the raising and lowering operators for the
photon field, ω0 = γB0 is the undressed frequency of a
spin in a static uniform field, defined along ẑ, and Ω is a
coupling constant given by

Ω =
γB1

2λ1/2
, (2)

where λ = 〈n〉 is the average photon number. We are
interested in how applying a small fluctuating magnetic
field δB(t) with a known power spectrum would affect the
time evolution of an initial state |ψ0〉 under this Hamil-
tonian.

III. THEORY

In the following section, we first outline a general
framework to compute the expectation value and vari-
ance of operators under small, time-dependent perturba-
tions to the Hamiltonian of section II. We then use this
framework to evaluate two observables to second order
for a magnetic fluctuation δB(t) which occurs parallel to
the dressing field. These observables are the variance in
phase for each spin species, and the frequency shift for
each spin species. For an experiment like nEDM@SNS,

these results can be used to estimate the sensitivity of
dressed systems in the presence of field fluctuations. In
deriving these formulae, we make no assumption about
the source of the fluctuations, and therefore these results
apply equally whether the random magnetic field arises
from current fluctuations in the dressing coil or static
magnetic field gradients coupled with the stochastic mo-
tion of the spin species throughout the measurement cell.
In the latter case, the power spectrum of δB(t) may be
calculated through the position-position autocorrelation
function, as in [11]. In addition to these two observables,
we also compute the variance of the phase between two
species that are exposed to the same fluctuating magnetic
field, as would be the case for current fluctuations. This
is useful for nEDM@SNS, as the capture rate of neutrons
on helium-3 depends linearly on this phase difference [9].

III.1. Time-Dependent Perturbation Theory

Suppose that at time t = 0, a system is in the state
|ψ0〉, and we wish to compute the expectation value of
some operator A0 at some future time t. Given a time-
dependent perturbation V (t) to a Hamiltonian H, The
time-evolution operator T (t) to second order in time-
dependent perturbation theory is given by

T (t) = 1− i
∫ t

0

dt′VI(t
′)−

∫ t

0

∫ t′

0

dt′dt′′VI(t
′)VI(t

′′)

+O(V 3),

(3)

where VI(t) ≡ eiHtV (t)e−iHt is the perturbation eval-
uated in the interaction picture. Thus, we need to
compute 〈ψ(t)|A0 |ψ(t)〉 = 〈ψ0|T (t)†AT (t) |ψ0〉, where
A is likewise evaluated in the interaction picture, i.e.
A(t) ≡ eiHtA0e

−iHt.
If V (t) is proportional to δB(t), then we can decom-

pose VI(t) as a sum of complex exponentials as follows:

VI(t) =

∑
j

Qje
−iωjt +Q†je

iωjt

 δB(t), (4)

where Qj are time-independent operators. Provided that
δB(t) has zero mean, the terms of T †AT which are lin-
ear in δB(t) will vanish when we compute an expectation
value over functions δB(t). Therefore we need only con-
sider the quadratic terms, which can be decomposed as

∑
j,k

f(Qj , Qk)

∫ t

0

dt′
∫ t′

0

dt′′e−iωjt
′
eiωkt

′′
δB(t′)δB(t′′),

(5)
where f(Qj , Qk) is some operator which is a function of
only Qj , Qk, and their Hermitian conjugates. We now
evaluate the expectation value of the integral over func-
tions δB(t).
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∫ t

0

dt′
∫ t′

0

dt′′e−iωjt
′
eiωkt

′′
〈δB(t′)δB(t′′)〉 , (6)

=

∫ t

0

dt′
∫ t′

0

dt′′e−i(ωj−ωk)(t′+t′′)/2e−i(ωj+ωk)(t′−t′′)/2 〈δB(t′)δB(t′′)〉 , (7)

=
1

2

(∫ 2t

0

dt̄e−i∆ωt̄
)(∫ t−|t−t̄|

0

d∆te−iω̄∆t

〈
δB

(
∆t

2
+ t̄

)
δB

(
−∆t

2
+ t̄

)〉)
, (8)

≈ 1

2

(∫ 2t

0

dt̄e−i∆ωt̄
)(∫ ∞

0

d∆te−iω̄∆tRδB(∆t)

)
, (9)

where in equation (8) we have made the variable substi-
tutions

ω̄ ≡ ω1 + ω2

2
, (10)

∆ω ≡ ω1 − ω2, (11)

t̄ =
t′ + t′′

2
(integration variable), (12)

∆t = t′ − t′′ (integration variable), (13)

RδB(∆t) = 〈δB(∆t)δB(0)〉 . (14)

In equation (9), we assume that δB(t) is stationary and
has a short correlation time compared to t, and so it
is valid to replace the limit of the second integral with
infinity. The first integral in equation (9) only grows with
time if ∆ω 6= 0, and therefore any term where ∆ω 6= 0
can be neglected. From this, we conclude that for the
purpose of noise analysis, it is sufficient to consider the
individual frequency components of VI(t) independently.
Therefore, without loss of generality, we can write

VI(t) = (Qe−iωt +Q†eiωt)δB(t), (15)

T †AT can now be expressed in terms of Q and A to
second order in VI :

T †AT = A+

∫ t

0

∫ t

0

dt′dt′′VI(t
′′)AVI(t

′)

−
∫ t

0

dt′
∫ t′

0

dt′′VI(t
′′)VI(t

′)A+AVI(t
′)VI(t

′′),

(16)

= A+ uu∗
(
QAQ† +Q†AQ

)
− v(Q†QA+AQQ†)

− v∗(QQ†A+AQ†Q),

(17)

where we have defined the integrals

u(t;ω) ≡
∫ t

0

dt′e−iωt
′
δB(t′), (18)

v(t;ω) ≡
∫ t

0

dt′
∫ t′

0

dt′′e−iω(t′−t′′)δB(t′)δB(t′′). (19)

We can further simplify equation (17) by noting that

v + v∗ =

∫ t

0

dt′
∫ t′

0

dt′′
(
e−iω∆t + e+iω∆t

)
δB(t′)δB(t′′),

(20)

=

∫ t

0

∫ t

0

dt′dt′′e−iω∆tδB(t′)δB(t′′), (21)

= uu∗. (22)

If we now collect the terms proportional to v and v∗, we
get

T †AT = A+ [Q†, [A,Q]]v + [Q, [A,Q†]]v∗. (23)

We can alternatively choose to collect terms proportional
to Re(v) and Im(v), in which case we get

T †AT = A+
(
[Q, [A,Q†]] + [Q†, [A,Q]]

)
Re(v)

+ i[A, [Q†, Q]] Im(v).
(24)

This allows us to calculate the expectation value of an
operator A at time t in the interaction picture. In other
cases, it may also be useful to calculate the variance of
A. In the nEDM@SNS experiment for example, variance
in the capture rate signal, which depends linearly on the
dot product between neutron and 3He spins, could in-
crease uncertainties in the nEDM measurement. In this
particular case, we are concerned not with the quantum
mechanical variance of ~σ1 · ~σ2 (which is nonzero even if
the magnetic field has no fluctuations), but rather in how
the magnetic field perturbs the spin vectors classically. In
other words, we wish to find the variance of the quantum
mechanical expectation value of ~σ1 · ~σ2. We thus define
the classical variance of an operator A as

Varcl(A) ≡
〈
|〈A〉|2

〉
δB
− |〈〈A〉〉δB |

2
, (25)

where 〈·〉δB denotes an average over random functions
δB(t), while 〈·〉 denotes a quantum mechanical expecta-
tion value, i.e. 〈A〉 ≡ 〈ψ|A |ψ〉. A similar analysis as was
used to derive equation (17) yields, in the case that A is
Hermitian,

Varcl(T
†AT ) = 4

〈
[Q†, A]

〉
〈[A,Q]〉Re(v). (26)
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These results can also be applied to a pair of non-
interacting spin-1/2 systems through use of the tensor
product. Suppose that in the interaction picture the
time-dependent perturbations for each of the two spins
are given by

V1(t) = (Q1e
−iωt +Q†1e

iωt)δB(t), (27)

V2(t) = (Q2e
−iωt +Q†2e

iωt)δB(t). (28)

If we wish to compute the expectation value 〈A〉 from
an initial state |ψ〉0 = |ψ1〉0 ⊗ |ψ2〉0, then we can apply
equation (24) or (26) by substituting

Q→ Q1 ⊗ I2 + I1 ⊗Q2, (29)

where I1 and I2 are identity operators.
Lastly, we express v in terms of the power spectrum

S(ω) of δB(t). The power spectrum is defined as

S(ω) ≡
∫ ∞
−∞

dte−iωtRδB(t). (30)

From equation (9), we have

v(t;ω) =
1

2

(∫ 2t

0

dt̄

)(∫ ∞
0

dτe−iωτRδB(τ)

)
, (31)

=
t

2π

∫ ∞
0

dτe−iω̄τ
∫ ∞
−∞

dω′S(ω′)eiω
′τ , (32)

=
t

2π

∫ ∞
−∞

dω′S(ω′)

∫ ∞
0

dτei(ω
′−ω)τ , (33)

=
t

2π

∫ ∞
−∞

dω′S(ω′)

(
πδ(ω′ − ω)− i

ω′ − ω

)
,

(34)

= t

(
1

2
S(ω)− i

2π

∫ ∞
−∞

dω′
S(ω′)

ω′ − ω

)
. (35)

III.2. Initial State

An oscillating magnetic field corresponds quantum me-
chanically to a coherent state, denoted by |α〉. A coherent
state is an eigenstate of the lowering operator with eigen-
value α. The average photon number in such a state is
given by |α|2 = λ, and so we separate α into its magni-

tude and complex phase as α ≡
√
λeiθ. In the appendix,

it is shown that a complex phase of α is equivalent to a
rotation of the neutron and 3He spins. The initial state
in the following is taken to be

|ψ0〉 = |α〉 |s〉 , (36)

where |s〉 is the initial spin state, or if we are considering
both the neutron and 3He spins,

|ψ0〉 = |α〉 |s1〉 |s2〉 . (37)

III.3. Computation of Matrix Elements

We now compute the Q operators (and thus VI(t))
for the spin dressing Hamiltonian in the case where the
time-dependent fluctuating magnetic field is parallel to
x̂. This calculation will proceed in two steps. We first
apply a carefully chosen time-independent unitary trans-
form to the Hamiltonian in order to compute its eigen-
states, and then compute the matrix elements of the op-
erator σx with respect to these states. We then trans-
form these matrix elements into the interaction picture
by multiplying each matrix element by the appropriate
time-dependent phase factor. In the limit where λ � 1
and ω � ω0, the eigenstates and eigenvalues of the spin
dressing Hamiltonian can be found approximately by ex-
pressing H as H = H0 +Hz, where

H0 = ωa†a+
Ω

2
σx(a+ a†), (38)

Hz =
ω0

2
σz. (39)

As shown in [1], H0 can be diagonalized by considering
each of the two eigensubspaces of σx individually. The
Hamiltonians of the two subspaces are given by

Hε = ωa†a+
Ω

2
ε(a+ a†), (40)

where ε ∈ {1,−1} corresponds to the eigenvalues of σx.
The part of the Hamiltonian contained in Hε is diagonal-
ized by applying the displacement operator D(εΩ/2ω),
which is defined by its action on the raising and lower
operators:

D†(η)aD(η) ≡ a+ η, (41)

D†(η) = D(−η). (42)

Explicitly, the displacement operator is given by

D(η) ≡ eηa
†−η∗a. (43)

Note that while the definition of the displacement op-
erator D(η) allows for complex η, here we restrict our
attention to the case where η is real. Applying this op-
erator to Hε and abbreviating D(εΩ/2ω) as Dε yields

DεHεD
†
ε = ωDεa

†aD†ε +
εΩ

2
Dε(a+ a†)D†ε (44)

= ω

(
a† − εΩ

2ω

)(
a− εΩ

2ω

)
+
εΩ

2

(
a+ a† − εΩ

ω

) (45)

= ωa†a− Ω2

4ω
. (46)

From Dε we can construct a unitary operator U , which
applies Dε to the appropriate eigensubspace of σx. Ex-
plicitly,

U ≡ D
(

Ω

2ω

)
|+x〉 〈+x|+D†

(
Ω

2ω

)
|−x〉 〈−x| , (47)
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where |±x〉 are the eigenvectors of σx. Applying U to H0

yields,

UH0U
† = ωa†a− Ω2

4ω
. (48)

We thus see that U diagonalizesH0, and that the eigen-
states of UH0U

† are |n〉 |±z〉. Meanwhile, Hz in this basis
becomes

UHzU
† =

ω0

2

[
D†
(

Ω

ω

)
|+x〉 〈−x|+D

(
Ω

ω

)
|−x〉 〈+x|

]
.

(49)
For large photon number (λ � 1), the displacement op-
erator can be approximated in terms of Bessel functions.
Reference [1] gives the matrix elements of D(η) as

〈n|D(η) |n− q〉 = 〈n| eη(a†−a) |n− q〉 = Jq(2η
√
λ),

(50)
where Jq is a Bessel function of the first kind with order
q. From this we derive

D(η) ≈
∑
n,q

Jq(2η
√
λ) |n+ q〉 〈n| . (51)

With this approximation, the full Hamiltonian H in the
displaced basis is

UHU† = ωa†a

+
ω0

2
J0(x)σz

− ω0

2
J1(x)

(∑
n

|n〉 〈n+ 1| − |n+ 1〉 〈n|

)
iσy

+
ω0

2
J2(x)

(∑
n

|n〉 〈n+ 2|+ |n+ 2〉 〈n|

)
σz

+O(q ≥ 3).

(52)

where we have defined the spin dressing parameter x ≡
2Ω
√
λ/ω = γB1/ω. In reference [3], the matrix elements

of various perturbations are calculated in time-dependent
perturbation theory. Here, we extend those results to the
case where ω0 may not be small compared to ω by incor-
porating the first-order correction to the eigenstates of
UH0U

†. We first consider the energy correction. Let the

eigenstates of UHU† be denoted by ˜|n,±z〉. Treating Hz

as a perturbation on H0, the energies of these states can
be calculated to first order in ω0/ω using perturbation
theory, as in reference [1]. The energy shift is simply

En,± = E
(0)
n,± + 〈n| 〈±z|Hz |±z〉 |n〉 (53)

= nω ± ω0

2
J0(x). (54)

Hz thus lifts the degeneracy of |n〉 |±z〉 and leads to an
effective Larmor frequency ω′0 ≡ ω0J0(x). We similarly

derive the eigenstates of UHU† to first order in ω0/ω:

˜|n,±z〉 = |n〉 |±z〉

± J1(x)ω0

2ω
(|n− 1〉 |∓z〉+ |n+ 1〉 |∓z〉)

± J2(x)ω0

4ω
(|n− 2〉 |±z〉 − |n+ 2〉 |±z〉)

+O(q ≥ 3).

(55)

We can now calculate the matrix elements of vari-
ous time-dependent perturbations with respect to these
eigenstates. For dressing field noise generated from fluc-
tuations in the current provided by the power supply, the
only relevant operator is σx, provided the linearly polar-
ized dressing field is homogeneous. Fortunately, σx is
unchanged by U , as UσxU

† = σx. We obtain

〈̃n,±z|σx ˜|n′,±z〉 = ±J1(x)ω0

ω
δ1,|n−n′|

+O(q ≥ 3),
(56)

〈̃n,±z|σx ˜|n′,∓z〉 = δn,n′ ±
J2(x)ω0

2ω
δ2,|n−n′|

+O(q ≥ 3).
(57)

We have truncated terms containing Bessel functions of
order 3 or greater. From these matrix elements, we can
now evaluate the perturbation in the interaction picture
by computing the individual frequency components of

eiUHU
†tσxe

−iUHU†t using

eiUHU
†t =

∑
n,s

|̃n, s〉〈̃n, s|eiωn,st, (58)

where ~ωn,s is the energy of the state |̃n, s〉. Expanding

eiUHU
†tσxe

−iUHU†t, we get

eiUHU
†tσxe

−iUHU†t =∑
n,n′,s,s′

|̃n, s〉〈̃n, s|σx |̃n′, s′〉〈̃n′, s′|ei∆ωt, (59)

where ∆ω is the frequency difference between |̃n, s〉 and

|̃n′, s′〉. Here we only consider the leading-order term of
each frequency component, so we make the approxima-

tion that |̃n, s〉〈̃n′, s′| ≈ |n〉 |s〉 〈n′| 〈s′|. With this approx-
imation, we can now write

eiUHU
†tσxe

−iUHU†t = W +W †, (60)

where

W = −σ−e−iω
′
0t

+σz
∑
n

|n− 1〉 〈n| J1(x)ω0

ω
e−iωt

−σ−
∑
n

|n− 2〉 〈n| J2(x)ω0

2ω

(
e−i(2w+ω′0)t − e−i(2w−ω

′
0)t
)

+O(q ≥ 3).

(61)
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We can simplify this expression further. In the classical
limit, we can make the approximation that

a ≈
√
λ
∑
n

|n− 1〉 〈n| , (62)

provided that λ is large. Thus when applying operators
of the form

∑
n |n− q〉 〈n| to a coherent state, we get(∑
n

|n− q〉 〈n|

)
|α〉 ≈ aq√

λq
|α〉 , (63)

= eiqθ |α〉 . (64)

This allows us to replace the terms operating on the pho-
ton field in W with simple phase factors. Thus,

W = − σ−e−iω
′
0t

+ σze
iθ J1(x)ω0

ω
e−iωt

− σ−e2iθ J2(x)ω0

2ω
(e−i(2w+ω′0)t − e−i(2w−ω

′
0)t)

+O(q ≥ 3).

(65)

Each independent frequency term of W corresponds to
a Q operator. In particular for a perturbation δH(t) =
σxδB(t), the corresponding Q operators are

Qω′0 = −σ−, (66)

Qω =
J1(x)ω0

ω
σz, (67)

Q2ω+ω′0
= −J2(x)ω0

2ω
σ−, (68)

Q2ω−ω′0 =
J2(x)ω0

2ω
σ+. (69)

In writing these operators we have omitted any phase
factors, as in both equations (24) and (26), Q is always
paired with Q†, and so any phase factor will be elimi-
nated.

III.4. Explicit Calculation for Magnetic Field
Fluctuations

Recalling that equation (24) allows us to calculate
the expectation value of an operator at any time in the
interaction picture, and combining equations (24) and
(66-69), we can now explicitly compute the effects of
fluctuations in the amplitude and phase of the dressing
field. As in [3], we compute the phase variance and fre-
quency shifts by taking the real and imaginary parts of
〈σx + iσy〉 in the interaction picture (rotating frame) for
a spin which starts in the +x̂ direction at time t = 0,
i.e. |ψ0〉 = (|+z〉+ |−z〉)/

√
2. We will denote the rate of

accumulation of phase variance as Γφ and the frequency

shift as δω. Given a perturbation δH(t) = γδB(t)σx/2,
we obtain

Γφ = − d 〈σx〉
dt

=
γ2

4
S(ω′0)

+

(
γJ1(x)ω0

ω

)2

S(ω)

+
1

4

(
γJ2(x)ω0

2ω

)2

[S(2ω − ω′0) + S(2ω + ω′0)]

+O(q ≥ 3),

(70)

δω =
d 〈σy〉

dt
= − γ

2

4π

∫ ∞
−∞

dω′
S(ω′)

ω′ − ω′0

− 1

4π

(
γJ2(x)ω0

2ω

)2 ∫ ∞
−∞

dω′S(ω′)

×
(

1

ω′ − 2ω + ω′0
+

1

ω′ − 2ω − ω′0

)
+O(q ≥ 3).

(71)

We note that in the case where δB(t) is different for
spins in the same measurement cell, as would be the case
for magnetic field gradients, Γφ may be regarded as the
transverse relaxation rate, i.e. Γφ = 1/T2. Conversely,
in the case where all neutrons experience the same time-
dependent magnetic field as would be the case for dress-
ing field fluctuations arising due to current fluctuations
in the dressing coil, Γφ represents the run-to-run phase

variation. That is, Γφ = d
dt Var(φ), where the variance is

taken over multiple runs of the experiment. While Γφ and
δω are quantities that are of general importance in situa-
tions where precise control of the phase of dressed spins is
required, for nEDM@SNS we are particularly concerned
with effects which can perturb neutron-3He capture rate.
This rate depends linearly on ~σ1 · ~σ2, so we would like to
compute the variance of this operator in order to find the
run-to-run variance in the signal rate, this time under the
assumption that the neutrons and 3He atoms are exposed
to the same magnetic field. However, the expectation val-
ues computed from time-dependent perturbation theory
are in the interaction picture, so to convert these values
to those actually observed in the lab frame we must find

the variance of U1U2e
iHtσ1 ·σ2e

−iHtU†2U
†
1 . Details of this

calculation are found in appendix D. Generically, this is
a time-dependent operator having terms which oscillate
at frequencies that are sums of integer multiples of the
dressing field frequency ω and the dressed Larmor preces-
sion frequency ω′0. However, because capture signal rates
in the nEDM@SNS experiment are not sufficiently high
to resolve oscillations at these frequencies, we consider
only the time-independent component of this operator.
We can now calculate the variance in the capture rate

due to a fluctuating magnetic field. Let ~b1 = 〈 ~σ1〉 (t = 0)

and ~b2 = 〈 ~σ2〉 (t = 0) be the Bloch vectors of the neutron
and 3He atom at time t = 0. Then
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Varcl(σ1 · σ2)(t) =
1

2
(γ1 − γ2)2

∣∣∣ẑ × (~b1 × ~b2)
∣∣∣2S(ω′0)t

+ 2

(
γ1J1(x1)ω1 − γ2J1(x2)ω2

ω

)2 ∣∣∣ẑ · (~b1 × ~b2)
∣∣∣2S(ω)t

+
1

2

(
γ1J2(x1)ω1 − γ2J2(x2)ω2

2ω

)2 ∣∣∣ẑ × (~b1 × ~b2)
∣∣∣2 [S(2ω − ω′0) + S(2ω + ω′0)] t

+O(q ≥ 3).

(72)

The first term in equation (72) represents the variance
due to noise at the effective Larmor frequency. However,
if both spins start in the plane of precession, this term
will not contribute. The second term represents variance
due to noise at the dressing frequency, which unlike the
first term is maximized if the spins start in the plane of
precession. The third term, like the first, is minimized
when the spins start in the plane of the precession and
is generated from noise at twice the dressing frequency
shifted by the effective Larmor precession frequency.

Equation (72) may appear to suggest that if ~b1 = ~b2,
one could altogether eliminate variance due to current
fluctuations. However, under critical spin dressing the
quantity proportional to the nEDM is the relative phase
between neutron and 3He spins, i.e. φ2−φ1 ∝ dn. Mean-
while, the signal rate of nEDM@SNS is linear in σ1 · σ2,
which is in turn related to the relative phase by

σ1 · σ2 = cos(φ2 − φ1), (73)

provided both spins start in the plane of precession.
Thus, setting φ2 = φ1 would decrease sensitivity to an
nEDM, as σ1 · σ2 would no longer be sensitive to the
relative phase in this configuration. Furthermore, the
variance of φ2 − φ1 is independent of the starting phase
of either spin. Again assuming both spins start in the
plane of precession,

ẑ · (~b1 × ~b2) = sin(φ2 − φ1), (74)

The variance can be propagated using the Taylor expan-
sion. We have,

Varcl(σ1 · σ2) ≈ |sin(φ2 − φ1)|2 Varcl(φ2 − φ1). (75)

Therefore, in the plane of precession the phase of the
spin of one species with respect to the other spin species
does not matter, and the variance in relative phase will
accumulate according to

Varcl(φ2 − φ1) ≈ 2

(
γ1J1(x1)ω1 − γ2J1(x2)ω2

ω

)2

S(ω)t.

(76)

In figure 1, we show the per-run frequency uncertainty
due to noise in the dressing field with a perfect band-
pass around the dressing frequency, predicted by equa-
tion (76). Explicitly, the frequency uncertainty is found
by taking the square root of the variance at a given time
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FIG. 1. Run-to-run uncertainty in the measured frequency
due to dressing field noise for 57 pT/

√
Hz and 5.7 pT/

√
Hz

dressing field noise and a perfect band-pass filter around the
dressing frequency, calculated from equation (76). The pre-
dicted per-run sensitivity for the nEDM@SNS, formulated
from reference [9], is shown for comparison. It is shown

that 57 pT/
√

Hz dressing field noise will significantly reduce
the ultimate sensitivity of the measured frequency, while 5.7
pT/
√

Hz dressing field noise is acceptable.

in the measurement to find the standard deviation of the
phase at that time, then dividing this phase uncertainty
by the time in the measurement to find the frequency
uncertainty. The per-run sensitivity of nEDM@SNS ac-
cording to reference [9] is also shown for comparison. If
we define SNR to be

SNR = Psignal/Pnoise = (Asignal/Anoise)2, (77)

where P is the power of the signal or noise and A is the
corresponding amplitude, we find that for 80 dB SNR,
and a perfect band-pass filter around the dressing fre-
quency, the phase uncertainty is comparable in magni-
tude to the statistical sensitivity of nEDM@SNS.

Lastly, we find an absence of run-to-run signal vari-
ance for neutrons and 3He, Varcl(σn ·σ3), from magnetic
fluctuations arising from motion in a static magnetic gra-
dient of any field along any direction, assuming that the
gradient field does not change from run to run. This is
due to two effects: first, for each run σn · σ3 is averaged
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over many particles as each neutron and 3He samples
a different magnetic field; and second, the neutron and
3He trajectories are uncorrelated, and so equation (72)
(which is derived under the assumption that the neutron
and 3He are exposed to the same field) does not apply.
Instead, because these trajectories are uncorrelated, the
decay rate of the signal during a run can be computed
from the relaxation rate of each individual species using
the formalism of reference [3]. The relaxation rate and
frequency shifts for each species are given by the expec-
tation value of σ+:

Re(〈σ+〉) = 1− t

T2
, (78)

Im(〈σ+〉) = δωt. (79)

Therefore, keeping only terms to second order in mag-
netic gradients after computing the expectation value of
σ+ and σz with the perturbed wave function we find

Re(〈σ+n
〉 〈σ−3

〉) = 1− t

T2n

− t

T23

, (80)

〈σzn〉 〈σz3〉 ≈ 0. (81)

Using the identity σn · σ3 = σznσz3 + Re(σ+nσ−3), we
derive

d 〈σn · σ3〉
dt

1

cos(φn − φ3)
= −

(
1

T2n

+
1

T23

)
≈ − 1

T23

.

(82)

Transverse relaxation, T2, for both species can be calcu-
lated from reference [3]. Typically, because the trajec-
tories of UCN are ballistic, and highly oscillatory in the
measurement cell resulting in significant motional nar-
rowing, the contribution of the transverse relaxation of
the neutron to the signal decay is small. This result shows
that there is no run-to-run phase fluctuation if gradients
of all magnetic fields remain the same run-to-run. Gradi-
ents in magnetic fields diminish the statistical sensitivity
by decreasing the coherence time of a single measure-
ment, and the effect is predictable without stochastic
variations, contrary to the case with dressing field am-
plitude fluctuations.

III.5. The feasibility of dressing with a cosine
waveform.

In order to minimize the variance in equation (72),
both spins should start in the plane of precession at t = 0.
However, in deriving equation 72 we assumed a magnetic
field with a cosine dependence, i.e. Bx(t) = B1 cos(ωt).
This poses a problem, as such a dressing pulse would
require an instantaneous change in magnetic field at t =
0, which is impossible to achieve due to the inductance of
the dressing coil and limited slew rates of power supplies.
Instead, the same dynamics can be achieved with sine
dressing, i.e. Bx(t) = B1 sin(ωt), by having the neutron

φn3 φn θn φ3 θ3

0 -0.99650 1.81020 -1.00759 1.85511
π/4 -0.59186 1.84162 -1.40374 1.77373
π/2 -0.18485 1.83092 -1.78485 1.66284

TABLE I. Optimized parameters for the starting position
on the Bloch sphere for neutrons and 3He to achieve cosine
dressing with a sine dressing field described in section III.5.
φn3 = φn − φ3 is the relative azimuthal angle of the neutron
and 3He that is desired during critical dressing, φn,3 and θn,3
are the absolute azimuthal angle and absolute polar angle of
the neutron and 3He respectively. When the neutron and 3He
start at these positions with sine dressing, the result is cosine
dressing dynamics for the respective relative phase φn3. All
units are in radians. Values are for the fiducial nEDM@SNS
experiment parameters for critical dressing, where the dress-
ing field amplitude is 40.2497 µT oscillating at 1 kHz with
a static uniform field strength of 5.2 µT in the ẑ direction.
Optimization of the fiducial nEDM@SNS parameters are dis-
cussed in reference [9].

and 3He spins start outside the plane of precession. The
polar angle θn,3 and absolute phase φn,3 of neutron and
3He required at t = 0 to achieve this are specified in table
I.

IV. SIMULATION

The calculations in the previous section are verified
by numerically integrating the Bloch equations with an
adaptive Runge-Kutta integrator. Ensembles of spins
are simulated using the fiducial critical spin dressing pa-
rameters for the nEDM@SNS experiment (B1 ≈ 40 µT,
ω ≈ 2π × 1 kHz, ω′0 ≈ 2π × 100 Hz), with the addition of
a noisy magnetic field with amplitude spectral density of
57 pT/

√
Hz. This assumed spectral density corresponds

to a 0.01% rms variation in B1 over a bandwidth of 5 kHz.
While this is a reasonable figure for the power supplies
being considered for nEDM@SNS, it should be noted that
the noise power spectrum for the dressing field will gen-
erally be peaked around the dressing field frequency, and
therefore S(ω = 1 kHz) may be significantly larger than

the assumed value of 57 pT/
√

Hz. The noise power spec-
trum is varied by changing the cutoff frequency of a simu-
lated high-pass filter. In computing the theoretical values
we assume that this high-pass filter is ideal, so that

S(ω) =


(

57 pT/
√

Hz
)2

|ω| > ωcutoff

0 otherwise
(83)

We substitute this power spectrum into equations (70)
and (71) to obtain the theory line in figures 2 and 3.
Figure 2 shows the simulated and theoretical relaxation
times for different values of the high-pass filter cutoff. As
evidenced by a sharp decrease in relaxation rate as the
cutoff frequency is swept pass 2πω′0 and 2πω, T2 depends
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FIG. 2. Predicted and simulated values of Γφ for various high-
pass filter cutoffs. The theory line is calculated from equations
(70) and (83). Each simulated point represents 200 neutrons.
Note that cutoff values beyond the dressing frequency (1000
Hz) are only achievable in simulation, and are shown here for
comparison to the theory.

FIG. 3. Predicted and simulated frequency shifts, with mag-
netic field noise given by equation (83), for various high-pass
filter cutoffs. The theory line is calculated from equations (71)
and (83). Each simulated point represents 100,000 neutrons.

only on the power spectral density at a set of discrete
frequencies. Figure 3 compares the simulated and the-
oretical frequency shifts. The frequency shift decreases
logarithmically as the high-pass filter cutoff is increased
past the dressed Larmor frequency. Therefore, if a phys-
ical high-pass filter is employed to reduce the run-to-run
phase variation due to current fluctuations, its cutoff fre-
quency should be chosen to be well above the Larmor
frequency in order to mitigate the frequency shift. It
should be noted however that for the case of nEDM@SNS
experiment, a frequency shift caused by current fluctua-
tions can be corrected for by comparing the signal from
the two measurement cells for the same run, or by com-
paring the signal after reversal of the electric field.

IV.1. Discussion of Results

The results derived in section III and verified in sec-
tion IV apply generally to any time-dependent mag-
netic field perturbation parallel to the dressing field.
For nEDM@SNS, these perturbations can arise primar-
ily from two sources: current fluctuations in the dress-
ing coil, or gradients in the magnetic field coupled with
the random motion of neutrons and 3He atoms in the
measurement cells. We first consider the case of current
fluctuations, in which all spins are exposed to the same
fluctuating magnetic field. As shown in figures 2 and 3,
the effect of these fluctuations can be separated into two
components: the run-to-run variation in phase caused
by the stochastic nature of the fluctuations, and a sys-
tematic frequency shift. The frequency shift is relatively
harmless for nEDM@SNS, as this shift is eliminated by
reversal of the electric field. However, the variation in
phase over the course of multiple runs can pose a prob-
lem, as this contributes directly to the statistical uncer-
tainty of the nEDM measurement, as evidenced by figure
1. Because the phase accumulated by this effect varies
from run to run, electric field reversal will not nullify
this effect. One could also attempt to correlate the scin-
tillation signals from each of the two measurement cells
under the assumption that the perturbing magnetic field
is identical between the two cells. However, this approach
also has limitations, as we discuss in the following sec-
tion. Especially problematic is noise at the dressing field
frequency, as the results of equation (72) indicate that
the primary contribution to phase variance for spins pre-
cessing in the plane orthogonal to the static field comes
from noise at this frequency. This is compounded with
the results from tests with the power supply used in sec-
tion V.2, which indicate that the noise power spectrum
is peaked around the dressing field frequency. Thus, to
reduce the statistical uncertainty caused by fluctuations
in the dressing field, the following section will explore
several techniques to mitigate this type of noise.

V. MITIGATION STRATEGIES

The considerations in the previous sections show that
fluctuations in the nEDM signal due to current fluctua-
tions in the dressing coil would arise primarily due to the
noise power spectrum at S(ω), which corresponds to am-
plitude fluctuations in the dressing field. We discuss two
strategies to mitigate this effect. First, one can leverage
the fact that the two measurement cells of nEDM@SNS
are exposed to opposite electric fields in order to elimi-
nate this effect during data postprocessing; however, as
we show, this approach has limitations when there are
static field gradients between the two cells. An alter-
native approach is to directly reduce S(ω) by applying
feedback to the dressing coil in order to maintain the
dressing field amplitude close to its target value.
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V.1. Cross-Cell Correlation

In order to combat systematic effects, the nEDM@SNS
experiment uses two measurement cells which will be ex-
posed to opposite electric fields [9]. Under the assump-
tion that the magnetic field noise δB(t) is identical in
the two cells, it may be possible to correlate the effects
of dressing field noise in the two cells and thus elimi-
nate its effect on the measurement of the neutron EDM.
One confounding factor for this strategy is the presence
of static magnetic field gradients. Due to imperfections
in the static and dressing field coils, the dressed Larmor
frequencies between the two cells may differ by a small
amount. In this case, the same noise field δB(t) may
affect the two cells differently, hampering our ability to
correlate the two cells. In order to determine the correla-
tions between the spins in different cells, we compute the
expectation value 〈~σ1 · ~σ2〉, where ~σ1 and ~σ2 represent
two spins of the same species in opposite cells. Let ω1

and ω2 be the dressed Larmor frequencies in the two cells.
In this case, calculating the expectation value is compli-
cated by the fact that ω1 and ω2 may be very close in
frequency, and thus we can no longer use the approxima-
tion that cross-frequency terms may be neglected. These
terms are calculated in the appendix (section A). The
expectation value 〈~σ1 · ~σ2〉 is then given by

〈~σ1 · ~σ2〉 = 1− γ2

2
S(ω̄)

(
t− sin(2∆ωt)

2∆ω

)
(84)

We see that decorrelation between the two cells may only
be neglected if either S(ω̄) is small, or ∆ωt remains small
over the course of the experiment.

V.2. Feedback Control

In situations where decorrelation between the two cells
is too large to apply the strategy of the previous section,
we can instead employ feedback control on the dressing
field. As we are primarily concerned with amplitude fluc-
tuations in the dressing field, we regard the instantaneous
dressing amplitude as a constant ideal value B1,ideal, plus
a small fluctuating δB1(t), so that the dressing field is
given by B(t) = (B1,ideal + δB1(t)) cos(ωt). Under criti-
cal dressing, the phase accumulated between the neutron
and 3He is, to first order in δB1(t), proportional to the in-
tegral of δB1(t) over time. Thus, one way to limit the im-
pact of current fluctuations would be to employ feedback
control to minimize the deviation of this integral from
a target value. Using a Kepco four-quadrant 400 36-12
power supply and a DT9837A digital signal analyzer, we
demonstrate a proof-of-concept for using feedback con-
trol in the nEDM@SNS experiment. The signal analyzer
outputs a 1000 Hz sine wave, which we feed into the volt-
age control input of the power supply. The power supply
drives a cosine coil, at the center of which is a pickup
coil. The voltage across this pickup coil is measured by

the signal analyzer, and the output of the signal analyzer
is adjusted based on this measurement using a digital PI
loop to maintain the integral of the signal amplitude near
its target value. We then use the measured fluctuating
magnetic field to simulate the motion of neutron and 3He
spins, using the CODATA values for their gyromagnetic
ratios [12]. The measured magnetic field is postprocessed
with a high-pass filter to remove lower-frequency noise,
and a single global scaling factor is applied to the field to
replicate the CSD parameters of the nEDM@SNS exper-
iment. Figures 4 and 5 show the resulting rms deviation
of the relative phase shift between neutron and 3He spins.
In figure 5, we also plot the phase accumulation estimated
by applying equation (76) to the measured noise power
spectrum of the Kepco power supply. Assuming a 400
pT/
√

Hz white noise spectrum which is then high-pass
filtered at 500 Hz, we can see that this approach under-
estimates the actual phase accumulation. This indicates
that, as expected, the noise power spectrum is peaked
around the dressing field frequency. Nonetheless, these
results show that introducing the feedback loop substan-
tially reduces the run-to-run phase variation caused by
amplitude fluctuations in the dressing field. There are a
number of ways to implement this type of feedback loop
in the nEDM@SNS experiment. A simple scheme would
be to place a shunt resistor in series with the dressing
coil to measure the current. Alternatively, pickup coils
may be used, as was done in this section. The advantage
of this approach for nEDM@SNS is that multiple pickup
coils can be used to detect spatial inhomogeneities in the
dressing field. This latter approach also enables us to
detect changes in the dressing field that are not due to
the current; for example, temperature fluctuations may
affect the conductivity of the copper flux return, which
would in turn alter the dressing field amplitude even if
the current amplitude remains constant.

VI. ROBUST DRESSING

While feedback and cross-cell correlation can be em-
ployed to reduce the impact of magnetic field fluctuations
which are homogeneous across the measurement cells,
these strategies do not mitigate decoherence caused by
magnetic field gradients in either the static or dressing
field. Thus, we now turn our attention to strategies to
amplify coherence times of systems undergoing fluctuat-
ing fields, particularly in the presence of magnetic field
gradients. The dressing scheme presented in this section
is a novel technique which, among other applications, can
be used to mitigate gradient decoherence of the dressed
spins. In this scheme, we apply modulation with angu-
lar frequency ωm to the dressing parameter x = γB1/ω,
where ωm is faster than the dressed Larmor precession
ω′0. This differs from the modulated CSD presented in
references [8, 9, 13] in that our modulation frequency is
much higher. We find that by tuning the rate and ampli-
tude of modulation in conjunction with the dressing pa-
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FIG. 4. The root mean squared deviation of the angle be-
tween the neutron and 3He spins (φn3) as a function of time,
with dressing field powered by a Kepco four-quadrant 400
36-12 power supply, for magnetic fields generated with (solid
line) and without (dashed line) feedback control. The dataset
without feedback consists of 28 runs, while the dataset with
feedback consists of 50. Data are smoothed for clarity.

FIG. 5. Phase standard deviation with feedback control ap-
plied from the field powered by a Kepco four-quadrant 400
36-12 power supply (solid line). The rms phase deviation
rises for a period of less than five seconds, then appears to
settle near a fixed value. For comparison, the theoretical esti-
mate (dotted line) is computed assuming 400 pT/

√
Hz noise

high-pass-filtered at 500 Hz. Data are smoothed for clarity.

rameters B1 and ω so that there is no phase accumulation
in the lab frame, we can significantly decrease decoher-
ence, similar to what is found in references [4, 5, 7]. In
a system with two spin species, these parameters can be
selected such that both states on a short timescale are
rapidly oscillating but on average are effectively frozen
in time with respect to the lab frame. With this com-
bination of fast oscillation and no phase accumulation
in the lab frame, quantum states become especially ro-
bust to field fluctuations. On average, both spin species
remain fixed on the Bloch sphere in the lab frame for
arbitrary long timescales limited by the coherence. This

technique may prove useful in storing quantum informa-
tion by keeping the state static and robust to electromag-
netic fluctuations.

For the nEDM@SNS experiment, the extended coher-
ence time afforded by robust dressing is a valuable tool to
rapidly identify and compensate for large magnetic field
gradients. The nEDM@SNS experiment is performed in
a large cryogenic apparatus; as such, modifications to
the apparatus require a long dead time to allow the ap-
paratus to warm, and then cool to its operating tem-
perature (T<500 mK). Thus, it is crucial to be able to
mitigate gradients in the measurement cell without the
need to make modifications to the apparatus. Aside from
robust dressing, nEDM@SNS has two techniques avail-
able to measure static magnetic field gradients. First,
for stray static field gradients in the precession volume,
gradients can be determined by the cryogenic probe array
described in reference [14]. This array consists of 39 flux-
gate magnetometers which will reconstruct the magnetic
field by fitting the coefficients of a harmonic scalar po-
tential expansion to the magnetic field values measured
by the probes. However, if the ideal static uniform field
is distorted by magnetic materials within the volume of
interest, the probe array described will not be sufficient
to reconstruct the field due to the reconstruction condi-
tion that there be no magnetic sources within the vol-
ume of interest. Second, gradients can be determined by
measuring transverse relaxation rates versus the applied
field. However, during the initial phases of the exper-
iment, there may be static field gradients large enough
that the scintillation signal decays too quickly to be mea-
sured effectively. Such gradients may be caused, for ex-
ample, by an unknown nickel flash (nickel coating) on an
electric connection close to the measurement cell. In the
following sections we first outline a form of precession-
free dressing which we call robust dressing because it is
particularly robust against relaxation and dressing field
noise. This is due to the fact that a spin undergoing ro-
bust dressing does not accumulate phase in the lab frame,
and remains fixed on the Bloch sphere. The longer re-
laxation time of the robustly dressed system allows us to
measure larger gradients than would normally be possi-
ble. These results are similar to those obtained for mul-
tiple field dressing in references [6, 7]. While these refer-
ences consider dressing fields acting along multiple axes,
here we limit ourselves to a single dressing field in the
x̂ direction, as is the case for nEDM@SNS experiment.
We apply this technique to find precession-free dressing
for both 3He and neutron simultaneously, which we call
robust critical dressing (RCD).

VI.1. Description within the Bessel function
approximation

The dressed system of a single species can be held
at a value where no phase accumulates in the lab
frame, around the zero crossing of the Bessel function,
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J0(γB1/ω) ≈ 0. This is described in detail in reference
[15] for a number of multiple spin systems to achieve a
Zeeman-insensitive optical clock atomic transition. Al-
ternatively, the dressing parameter can be modulated
between values that achieve a system where no phase
accumulation occurs in the lab frame. For example, the
effective absolute phase of the neutron is approximately

φn(t) =

∫ t

0

γnJ0

(
γnB1(t)

ω

)
B0dt. (85)

There are many possible choices for B1(t). Here we
choose B1(t) to be a constant plus a cosine of frequency
ωm, so that

φn(t) =

∫ t

0

γnJ0

{
γnB1

ω

[
x0 +

x1

2
(1 + cosωmt)

]}
B0dt,

(86)

for dimensionless parameters x0 and x1. Robust dressing
is achieved when there is no phase accumulation in the
lab frame,

〈φn(t)〉 = 0, (87)

parameters for which can be found numerically. The
parameters required to achieve robust dressing in sim-
ulations with cosine modulation can be estimated from
equation (86) and (87) by integration of the modulation
function over a modulation period; moderate deviations
from the values predicted analytically are expected due
to violation of the Landau-Zener approximation. This is
described in the context of spin dressing in reference [16].
It is found that the shorter the modulation period, the
further the RCD parameters deviate from the analytic
prediction. In the simple analytic formulation it is found
that if x0 = 1.2 and x1 ≈ 3.17 then 〈φn(t)〉 ≈ 0 (for both
the neutron and 3He.) Despite violation of the Landau-
Zener approximation, detailed simulations of the Bloch
equation find a continuum of values for x0 and x1 that
satisfy the robust dressing condition,〈φn(t)〉 = 0. Devi-
ations away from the average phase can be made small
when ω′0 < ωm. The average projection of the spin on
the Bloch sphere remains fixed, with fluctuations on the
order of the modulation period and the instantaneous
precession rate.

VI.1.1. Robustness

Robust dressing suppresses transverse relaxation due
to field fluctuations in Bz and By. For Bz, this can be
seen from the dressing approximation - the effective gy-
romagnetic ratio under precession-free dressing is zero,
and therefore the local static field strength is irrelevant.
Likewise, a variation in By can be viewed as a rotation of
the static field, which in the case where the effective gy-
romagnetic ratio is zero has no effect on the spins’ overall
behavior. Thus, the only static gradients and field off-
sets which contribute to the transverse relaxation rate

are those in Bx along any direction. To analyze these, it
is useful to consider a simplified model of robust dressing.

VI.2. An Intuitive Model of Robust Dressing

While we are not aware of any purely analytical so-
lutions for the robust dressing field, robust dressing has
several properties that allow for a convenient approxi-
mation. We have chosen the modulation frequency ωm
such that it evenly divides the dressing field frequency ω.
Thus, the pulse is periodic with frequency ωm, and its
behavior is entirely defined by its action on a spin during
the interval t = 0 to t = 2π/ωm. This property allows us
to analyze this pulse using Floquet theory, described in
reference [17]. In short, Floquet’s theorem allows us to
write the time evolution operator of robust dressing as

T (t) = M(t)e−iΛt, (88)

where M(t) is a unitary operator with period 2π/ωm and
Λ is a time-independent Hermitian operator. The oper-
ator, Λ, can then be written in the form

Λ = −1

2
γ ~Beff · ~σ. (89)

The overall rotation under robust dressing can thus be

treated as arising due to an effective magnetic field ~Beff.

The effective magnetic field, ~Beff, can be computed by
numerical integration of the Bloch equations over a single
period, or approximated perturbatively as in references
[6] and [7].

Numerically, we find that robust dressing corresponds
to a weak (|γBeff| ≈ 1 Hz) magnetic field whose primary
component is in the x̂ direction. The precise orientation

of ~Beff may be adjusted by careful selection of the robust
dressing parameters.

In light of this, we analyze relaxation in the robust

dressing scenario by treating ~Beff as an effective static
uniform field which lies along x̂ and redefining T1 and T2

accordingly. We also define φ to be the angle between the
spin and x̂. A geometrical representation of the robust
dressed system for a neutron is shown in figure 6.

VI.3. Robust dressing applications

Before presenting an analysis of relaxation under ro-
bust dressing, we describe several applications of robust
dressing for an nEDM search such as the nEDM@SNS
experiment.

VI.3.1. Gradient metrology through spin relaxation

Because the effects of gradients in By and Bz along any
direction are suppressed by robust dressing, T2 is always
much shorter than T1 for the nEDM@SNS experiment’s
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FIG. 6. A classical visualization of the neutron spin trajectory
undergoing robust dressing on the Bloch sphere in the labora-
tory frame, with arrows representing the static uniform field,
B0, the dressing field, B1, and the robust dressing effective
field Beff.

expected operating and initial commissioning conditions.
This will lead to a fast initial decay dominated by T2,
followed by a slower decay whose rate is given by T1. In
general, the polarization of spins decays as

P (t) =

√
e−

2t
T1 cos2 φ0 + P 2

T2
(t) sin2 φ0, (90)

where PT2
(t) is the component of the polarization trans-

verse to x̂ and φ0 is the value of φ at the onset of robust
dressing. The transition between fast and slow decay
then occurs at polarization P0 ≈ cos(φ0). This behav-
ior can be applied for gradient metrology, as a gradient
in Bx will cause the spins to relax quickly to a known
value, while robust dressing extends the coherence of the
system from gradients in By or Bz. For the nEDM@SNS
experiment, a static magnetic gradient of any field trans-
verse to the static uniform field direction along the dress-
ing axis represents the largest potential systematic ef-
fect by generating a frequency shift linear in the applied
electric field, as evidenced by references [11, 13, 18–24].
If this precise gradient measurement technique is used
to feedback on magnetic gradient shimming, a powerful
mitigation strategy for this linear-in-E frequency shift is
achieved.

VI.4. Relaxation under robust dressing

The longitudinal relaxation of the system can be de-
composed into two contributions. One contribution
arises from the Redfield-like longitudinal decay, which
is generated from field imperfections in By and Bz, and
which we compute by evaluating the system in the in-
teraction picture, similar to the dual harmonic dressing

treatment provided by reference [7], but with the oscil-
lating field in only the x̂ direction. A derivation is found
in appendix F. The model predicts relaxation to be ex-
tended beyond the T1 time found in reference [25, 26] for
the corresponding static uniform field of the nEDM@SNS
experiment’s operating parameters, discussed in refer-
ence [9]. This is because the integral over the field cor-
relation function is shifted in frequency according to the
harmonics of the dressing field and not the static uniform
field as is the case in reference [25]. An expansion of the
spin’s reaction to the applied field into a Fourier series
is used to formulate the longitudinal relaxation rate. In
the diffusion limit we find

1

T1
≈ γ2

(
G2
y +G2

z

)
D
∑
n

|an|2

n2ω2
m

, (91)

where an are the Fourier coefficients of the series and are
found numerically. This result can be extended beyond
the diffusion limit by using the spectrum of the trajectory
autocorrelation function; this is described in appendix F.

An additional source of longitudinal relaxation arises
from the field imperfections in Bx, which generate lon-
gitudinal relaxation by rotating the local effective field
off of the x direction, resulting in a contribution of the
effective field along y and/or z. This in turn will cause
relaxation according to

1

T1
≈ (G⊥,eff)

2 D

|B0,eff|2
, (92)

≈ γ2

(
∂B⊥,eff

∂Bx

)2

G2
x

D

|B0,eff|2
, (93)

where G⊥,eff and B⊥,eff refer to components of the effec-
tive gradient and magnetic field orthogonal to the effec-
tive static uniform field B0,eff. Validity of this estimate
depends on the magnitude of gradients in Bx in the cell.
In particular, if Lx is the length of the cell along the
x direction, then this approximation breaks down when
|GxLx/2| & |Beff | because the scaling of B⊥,eff with Bx
becomes non-linear. The longitudinal relaxation will not
be proportional to G2

x, but will scale with a higher power
of Gx due to the non-linearity in the effective field scal-
ing. To find the exact scaling in closed form is difficult.
However, it is found from simulations that the robust
dressing parameters can be tuned to mitigate this source
of relaxation, even for large gradients in Bx. By tuning
the robust critical dressing parameters to minimize the
relaxation rate, we can mitigate the contribution from
the Bx field imperfections to the level of the contribu-
tion from the other field directions. With this optimized
tuning, the relaxation rate from this gradient returns to
G2
x scaling, implying a return to the linear scaling of the

effective field under optimized robust dressing. Due to
the ability to mitigate or increase relaxation by tuning
the robust dressing parameters, we find that this modu-
lation technique is a useful form of quantum control.

In practice, because Maxwell’s equations require a gra-
dient contribution in at least two directions, this opti-
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mization procedure to minimize relaxation obtains di-
minishing returns when the relaxation from the gradient
in Bx becomes comparable in magnitude to the relax-
ation contributed from gradients in By and/or Bz. Due
to the nonlinear scaling, and the precision of the robust
dressing parameters required, we expect that in the large
gradient regime the relaxation from gradients in Bx can
be mitigated to parity with the contribution from By and
Bz. However, in the small gradient regime, where tuning
need not be as precise, we may more easily find optimized
robust dressing parameters where the contribution from
the gradient in Bx can be ignored. The prediction is
formulated as

1

T1
= CdBx

G2
x + γ2(G2

y +G2
z)D

∑
n

|an|2

n2ω2
m

, (94)

where CdBx
is determined from specifics of the parame-

ters, but in general, it can be estimated to be of magni-
tude

CdBx
≤ γ2D

∑
n

|an|2

n2ω2
m

. (95)

The relaxation from simulations of a linear gradient,
where Gx = dBx/dx = −dBz/dz, is shown in figure 7
for all regimes of robust dressing, as well as the theoreti-
cal prediction after optimization for both limits of CdBx

.
The smallness of Beff compared to B0 and the nonlin-
ear dependence on Gx lead naturally to three different
regimes depending on the magnitude of the Gx gradient
relative to Beff.

VI.4.1. Small gradient regime

If |GxLx/2| � |Beff|, the magnetic field gradient across
the cell is smaller in magnitude than the effective static
uniform field. The tuning of the parameters need not be
terribly precise (δx0,1 ∼ x0,1 × 10−3) to achieve the T1

relaxation time shown in equation (91). Additionally, the
Gx contribution to T1 may be found using the effective
magnetic field formalism using equation (92).

Similar to traditional NMR transverse relaxation, the
RCD analog can be predicted from references [25, 26];
however, only gradients in Bx contribute significantly.
Thus, for the transverse polarization we find

PT2
(t) = e−

t
T2 , (96)

where in the diffusion limit,

1

T2
= γ2G2

x

L4
x

120D
. (97)

Outside the diffusion limit, the transverse relaxation can
be found from the spectrum of the trajectory autocorre-
lation function at zero frequency.

VI.4.2. Intermediate gradient regime

If |GxLx/2| ∼ |Beff|, then the gradient magnetic field
nearly cancels Beff in a significant portion of the cell.
For untuned robust dressing parameters, the effective
magnetic field may have a nonzero Bz,eff component in
this region, leading the local magnetic field here to be
misaligned with the x-axis. This drastically increases
the longitudinal relaxation rate for this gradient regime.
While no theoretical prediction exists for the dynamics
of the spins in this regime, a thorough investigation is
presented in reference [27]. The strong dependence of
T1 on Gx in the vicinity of the intermediate gradient
regime can be employed for gradient metrology. Specifi-
cally, a gradient large enough to induce this regime could
be identified by measuring the T1 relaxation of the spin
species under study. Although the gradients in Bx re-
quired to achieve this regime are a couple orders of mag-
nitude larger than the initial gradients expected at the
onset of commissioning of the nEDM@SNS experiment,
they are in the realm of possibility if there is an unac-
counted for magnetized material - for example, a nickel
flash (nickel coating) on an electrical connection, or other
unknown magnetic material close to the measurement
cell. Note that while precise (δx0,1 ∼ x0,1×10−5) tuning
of the robust dressing parameters can eliminate the Bz,eff

component in the misaligned region, thus recovering the
T1 of equation (91), this is not required nor useful for
gradient metrology.

VI.4.3. Large gradient regime

As |GxLx/2| becomes large compared to |Beff|, the re-
gion of low magnetic field shrinks in volume, and the ef-
fect of misalignment becomes less significant. The treat-
ment of T1 and T2 is straightforward. Longitudinal relax-
ation can be computed from equation (91). Transverse
relaxation under gradients of this magnitude behave ac-
cording to the adiabatic regime described in reference
[28], as the spins dephase on a shorter timescale than the
diffusion time. This results in a relatively fast relaxation,
given by

PT2
(t) =

2

γGxLxt
sin(γGxLxt/2), (98)

= sinc

(
γGxLxt

2

)
, (99)

where sinc(x) = sin(x)
x .

VI.4.4. Robust dressing and dressing field noise

From the simple model that describes robust dressing,
we expect that robust dressing is also robust to fluctu-
ations of the dressing field, because the integral of the
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FIG. 7. Relaxation after optimization of robust dressing pa-
rameters for 200 Hz robust dressing and a wide range of gra-
dient magnitudes. The gradients in this simulation arise from
the divergence theorem, dBz

dz
= − dBx

dx
.

total phase accumulated on average is zero. In simu-
lations of noise we find that after an initial relaxation
period on the timescale of the modulation frequency, the
random phase accumulation nearly ceases, and dressing
field fluctuations arising from power supply noise can
typically be ignored with commercial linear amplifiers.
The polarization of a robust dressing waveform gener-
ated according to equation 86, where B1 = 40.2497 µT
and ωm = 2π × 200 rad/s with amplitude noise ranging
from 20 to 80 dB SNR is shown in figure 8. In that figure
it is shown that at 20 dB SNR, where the amplitude of
the field noise is 10% of the amplitude of the pulse, po-
larization can be observed for a long time, and the rate
in equation (91) is still achievable after an initial loss.

VI.4.5. Robust critical dressing

There exists a non-trivial solution that satisfies the ro-
bust dressing conditions for both the neutron and 3He at
the same time. Robust critical dressing is achieved when

〈φn〉 ≈ 〈φ3〉 ≈ 0. (100)

Table II shows optimized robust dressing parameters for
the CODATA values of the magnetic moments of the neu-
tron and 3He. We find that robust critical dressing sig-
nificantly reduces relaxation from field fluctuations in the
static uniform field and dressing fields.

Figure 9 shows a simulation of the robust critical dress-
ing signal for ωm = 2π×200 Hz in a large gradient, along
with the theoretical estimation for robust critical dress-
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FIG. 8. 1- Polarization for robust dressing modulated accord-
ing to equation 86, where B1 = 40.2497 µT and ωm = 200 Hz,
with simulated noise power varied from 20 dB SNR to 80 dB
SNR

ing based on

〈σn · σ3〉 ≈ P 2
0 exp

(
γ2

3G
2
zDt

∑
n

|an|2

nωm

)
. (101)

We have ignored neutron relaxation in this prediction,
as it is expected to be small because neutrons exhibit
strong motional narrowing. The applied gradient sat-
isfies Maxwell’s equations with dBz/dz = −dBx/dx =
2 × 10−2B0/cm. For comparison, unmodulated critical
dressing is also simulated in the same gradient, and the
signal is found to decay rapidly compared to the robust
case.

VI.4.6. Mitigation of linear-in-E effects

Perhaps the most troublesome systematic effects of
EDM experiments is the linear-in-E frequency shift. The
linear-in-E frequency shift arises from correlated fluctu-
ations due to the motion of the spin in magnetic field
gradients perpendicular to the applied static field, cou-
pled with the v×E motional magnetic field arising from
the motion of the spin within the measurement cell.
The effect can be described from second order pertur-
bation theory in terms of the spectrum of the spin’s
position-velocity correlation function. An abundance of
detail concerning this shift is presented by references
[11, 13, 18–24].

Nominally for nEDM@SNS, the electric field is applied
parallel to the static uniform field. In this case, robust
dressing cannot be used to detect an nEDM. However, if
the electric field is instead applied along x̂, robust criti-
cal dressing can be employed to measure an nEDM and
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ωm/2π (Hz) x0 x1

√
〈∆θ2

n3〉 (rad)
200 1.0470 3.1224 0.68
300 1.1005 3.6645 0.41
500 1.3290 3.4435 0.25

TABLE II. Optimized parameters for robust critical dressing.
All values are calculated for a static uniform field of 5.2 µT
and amplitude modulation of a nominal critical dressing field
of 40.2497 µT oscillating at 1000 Hz.

0 5 10 15 20
Time (s)

0

0.2

0.4

0.6

0.8

1

FIG. 9. Simulated signal for highly tuned RCD modulated
at 200 Hz (red) and CSD (green), with theoretical estimation
for RCD (blue). The starting phase for 3He is φ3 = π/8,
and it is the same for neutrons, φn = π/8. Signal is observ-
able for a long time in the RCD scenario, while the signal is
indistinguishable from noise in a traditional critical dressing
scenario.

simultaneously mitigate linear-in-E frequency shifts aris-
ing from the v×E motional magnetic field via the same
mechanism that mitigates the longitudinal relaxation;
specifically, the response of the spin precession system
to magnetic field fluctuations is determined by the power
spectrum of the noise evaluated at integer multiples of
the modulation frequency rather than at the Larmor fre-
quency. Due to the 1/ω2 dependence of the trajectory
correlation functions in this regime, described in refer-
ence [11], the contribution to the linear-in-E frequency
shift is significantly mitigated.

VII. CONCLUSION

In this work, we developed a model to evaluate the
effect of magnetic field noise on a critically dressed
system of neutrons and 3He atoms in the case where
the Larmor frequency is a non-negligible fraction of the
dressing field frequency. Applying this model to the case
of magnetic field fluctuations parallel to the dressing
field, we find that the relaxation time is given by an
infinite sum over the noise power spectrum evaluated
at discrete frequencies, with higher frequency terms
suppressed by higher-order Bessel functions. For the
purpose of calculating the impact of current fluctuations
in the dressing field coil, these results demonstrate that
the primary concern is amplitude fluctuations in the
dressing field. These results were verified by numerical
integration of the Bloch equations.
With these results as motivation, we propose several
strategies to increase coherence and sensitivity for sys-
tems of dressed spins. Feedback control of the dressing
amplitude, for example, can substantially reduce the
phase uncertainty in the presence of current fluctuations
in the dressing field coil, while correlating the signal
rate from opposing cells allows for rejection of noise
sources which are common to both cells. We emphasize
that while these strategies are proposed in the context
of the nEDM@SNS experiment, these techniques are
generally applicable to systems where precise control of
dressed spins is required. Of particular interest is robust
dressing, which sets the effective Larmor frequency of
each species to zero by modulating the dressing field.
This substantially reduces relaxation due to magnetic
field fluctuations, and effectively freezes a state in time
which is useful for extending the coherence of quantum
information. Measuring the relaxation of a robustly
dressed system allows for precise determination and
feedback on gradients parallel to the dressing field, and
thus can be applied as gradient metrology for funda-
mental physics measurements which require a uniform
magnetic field. For the nEDM@SNS experiment, this
effect can be leveraged to measure or shim relatively
large spatial gradients in a critically dressed system of
neutrons and 3He. Furthermore, robust dressing allows
for mitigation of linear-in-E frequency shifts in EDM
experiments where the electric field is chosen to be
parallel to the dressing field.
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Appendix A: Near-Frequency Terms

Suppose VI(t) contains a pair of terms with frequencies ωj and ωk which are very close in frequency, such that
|ωj − ωk| ∼ 1/t. Then the cross-frequency term can no longer be neglected. Define the integral

vjk ≡
∫ t

0

dt′
∫ t′

0

dt′′e−iωjt
′
eiωkt

′′
〈δB(t′)δB(t′′)〉 . (A1)

Using equation (9), vjk can be written in terms of the noise power spectrum as

vjk =
e−2i∆ωt − 1

−2i∆ω

(
1

2
S(ω̄)− i

2π

∫ ∞
−∞

dω′
S(ω′)

ω′ − ω̄

)
.

Then the cross terms of T †AT are

∫ t

0

∫ t

0

dt′dt′′(Qje
−iωjt

′′
+Q†je

iωjt
′′
)A(Qke

−iωkt
′
+Q†ke

iωkt
′
)

−
∫ t

0

dt′
∫ t′

0

dt′′(Qje
−iωjt

′′
+Q†je

iωjt
′′
)(Qke

−iωkt
′
+Q†ke

iωkt
′
)A

−
∫ t

0

dt′
∫ t′

0

dt′′A(Qke
−iωkt

′
+Q†ke

iωkt
′
)(Qje

−iωjt
′′

+Q†je
iωjt

′′
)

+ (j ↔ k)

= QjAQ
†
k(vjk + v∗kj) +Q†jAQk(vkj + v∗jk)

−QjQ†kAv
∗
kj −Q

†
jQkAvkj

−AQkQ†jvkj −AQ
†
kQjv

∗
kj

+ (j ↔ k),

= vjk(QjAQ
†
k +Q†kAQj −Q

†
kQjA−AQjQ

†
k)

+ v∗jk(QkAQ
†
j +Q†jAQk −QkQ

†
jA−AQ

†
jQk)

+ (j ↔ k),

= vjk[Q†k, [A,Qj ]]

+ v∗jk[Qk, [A,Q
†
j ]]

+ (j ↔ k).

1. Explicit Calculation for Case of Static Gradients

We first consider noise near the dressed Larmor frequency ω′0. Using Qj = γ
2σ+,1 and Qk = γ

2σ+,2, we get

〈~σ1 · ~σ2〉 = 1− γ2

4
(v1 + v∗1 + v2 + v∗2)− γ2

4
(v∗kj + vkj + vjk + v∗jk),

= 1− γ2

2
tS(ω̄)− γ2

4

sin(2∆ωt)

∆ω
S(ω̄),

= 1− γ2

2
S(ω̄)

(
t− sin(2∆ωt)

2∆ω

)
.

Next, we consider the contribution of noise near ω, the dressing field frequency. In this case, static gradients do
not affect the time-dependence of the noise Hamiltonian - that is, the frequency of the complex exponential eiωt is
unaffected by a change in ω0 or B1 (see equation (III.3)). Therefore, there are no cross-frequency terms to consider,
and so noise near ω which applies equally to both cells cannot cause the spins between the two cells to decorrelate.
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Appendix B: Transformation of the Signal Rate into the Interaction Picture

Computing the variance of σ1 · σ2 in the lab frame corresponds to computing the variance of U1U2e
iHtσ1 ·

σ2e
−iHtU†2U

†
1 in the interaction picture. We begin by calculating U1U2σ1 · σ2U

†
2U
†
1 .

From the definition of U1,

U1 = D(η1/2) |+x〉 〈+x|+D†(η1/2) |−x〉 〈−x| , (B1)

=
1

2
D(η1/2)(1 + σx) +

1

2
D†(η1/2)(1− σx). (B2)

The Pauli spin operators then transform as

U1σxU
†
1 = σx, (B3)

U1σyU
†
1 =

1

2
(D(η1) +D†(η1))σy +

1

2
i(D(η1)−D†(η1))σz, (B4)

U1σzU
†
1 =

1

2
(D(η1) +D†(η1))σz −

1

2
i(D(η1)−D†(η1))σy. (B5)

So the observable σ1 · σ2 transforms as

U1U2(σ1 · σ2)U†2U
†
1 = (U1σx1U

†
1 )(U2σx2U

†
2 ) + (U1σy1U

†
1 )(U2σy2U

†
2 ) + (U1σz1U

†
1 )(U2σz2U

†
2 ) (B6)

= σx1σx2 (B7)

+
1

2
(D(∆η) +D†(∆η))(σy1σy2 + σz1σz2) (B8)

− i

2
(D(∆η)−D†(∆η))(σy1σz2 − σz1σy2). (B9)

where ∆η = η1 − η2.
Applying the approximation in equation (51), we have that

D(∆η) ≈
∑
n,q

Jq(x1 − x2) |n+ q〉 〈n| . (B10)

For the fiducial nEDM@SNS experimental parameters, the dressing parameters of the neutrons and 3He atoms are,
respectively,

xn ≈ −1.184,

x3 ≈ −1.317.

Because |xn − x3| is significantly smaller than 1, the magnitude of Jq(xn − x3) is small for |q| > 0. For example,

J0(xn − x3) = 0.9956,

J1(xn − x3) = 0.0662,

J2(xn − x3) = 0.0022.

We therefore make the approximation that

U1U2(σ1 · σ2)U†2U
†
1 ≈ σ1 · σ2. (B11)

Next, we need to compute eiHU tσ1 · σ2e
−iHU t, where we define HU = U2U1HU

†
1U
†
2 . We make use of the identity

eiHU tσ1 · σ2e
−iHU t =

∑
n,n′,s1,s′1,s2,s

′
2

˜|n, s1, s2〉 ˜〈n′, s′1, s′2| ˜〈n1, s1, s2|σ1 · σ2
˜|n′, s′1, s′2〉ei∆ωt, (B12)

where as before ∆ω is the frequency difference between the states ˜|n, s1, s2〉 and ˜|n′, s′1, s′2〉. We make two simplifi-
cations to this expression. First, we are concerned with the time-averaged signal, and therefore we ignore any terms
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where ∆ω 6= 0. Second, we consider only the leading-order terms in ω′0/ω, and therefore make the approximation

that ˜|n, s1, s2〉 ≈ |n〉 |s1〉 |s2〉. The expression in (B12) then becomes(
eiHU tσ1 · σ2e

−iHU t
)

∆ω=0
=

∑
n,n′,s1,s′1,s2,s

′
2

|n〉 |s1〉 |s2〉 〈n′| 〈s′1| 〈s′2| 〈n1| 〈s1| 〈s2|σ1 · σ2 |n′〉 |s′1〉 |s′2〉

× δn,n′δs1+s2,s′1+s′2
.

(B13)

It turns out that 〈s1| 〈s2| 〈n|σ1 · σ2 |n′〉 |s′1〉 |s′2〉 = 0 for n 6= n′, and for s1 + s2 6= s′1 + s′2. Therefore,(
U1U2e

iHtσ1 · σ2e
−iHtU†2U

†
1

)
∆ω=0

= σ1 · σ2. (B14)

Appendix C: Calculation of Variance

If a random variable X can be written as a Taylor expansion in some small parameter λ, i.e.

X =

∞∑
n=1

λnYn. (C1)

where Yn are random variables, then to second order in λ the variance of X is simply Var(X) = λ2 Var(Y ). Therefore,
to compute the variance of T †AT we need only compute the variance of the terms of T †AT which are linear in δB(t).
We get

Varcl(T
†AT ) = Varcl

(
i

∫ t

0

dt′VI(t
′)A−AVI(t′)

)
, (C2)

= Varcl

(
i

∫ t

0

dt′(Qe−iωt +Q†eiωt)A−A(Qe−iωt +Q†eiωt)

)
δB(t′), (C3)

= Varcl(i([Q,A]u+ [Q†, A]u∗)). (C4)

(C5)

Using the fact that 〈u〉δB = 0, we re-write this expression as

Varcl(T
†AT ) =

〈∣∣〈[Q,A]u+ [Q†, A]u∗
〉∣∣2〉

δB
, (C6)

=
〈(
〈[Q,A]〉

〈
[A†, Q†]

〉
+
〈
[Q†, A]

〉
,
〈
[A†, Q]

〉)
uu∗

〉
δB
, (C7)

= 2
(
〈[Q,A]〉

〈
[A†, Q†]

〉
+
〈
[Q†, A]

〉
,
〈
[A†, Q]

〉)
Re(v). (C8)

If A is Hermitian, then this can be further simplified to

Varcl(T
†AT ) = 4

〈
[Q†, A]

〉
〈[A,Q]〉Re(v). (C9)

Appendix D: Signal Variance Calculation

For Qω′0 = γ1
2 σ−,1 + γ2

2 σ−,2, we need to calculate

[ ~σ1 · ~σ2, σ−,1] = σz1σx2 − σx1σz2 + i(σy1σz2 − σz1σy2). (D1)

Then

[ ~σ1 · ~σ2,
γ1

2
σ−,1 +

γ2

2
σ−,2] =

1

2
(γ1 − γ2)(σz1σx2 − σx1σz2 + i(σy1σz2 − σz1σy2)). (D2)

Since ~σ1 · ~σ2 is Hermitian, we compute the magnitude squared of the above quantity to find Varcl(T
† ~σ1 · ~σ2T ):

Varcl(T
† ~σ1 · ~σ2T )ω′0 = 4

〈
[Q†ω′0

, A]
〉 〈

[A,Qω′0 ]
〉

Re(v), (D3)

=
1

2
(γ1 − γ2)2

(
〈σz1σx2 − σx1σz2〉2 + 〈σy1σz2 − σz1σy2〉2

)
S(ω′0)t, (D4)

=
1

2
(γ1 − γ2)2|ẑ × {〈 ~σ1〉 × 〈 ~σ2〉}|2S(ω′0)t. (D5)
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For Qω = γ1J1(x1)ω1

2ω σz1 + γ2J1(x2)ω2

2ω σz2, we get

[ ~σ1 · ~σ2, σz1] = 2i(σx1σy2 − σy1σx2). (D6)

Then [
~σ1 · ~σ2,

γ1J1(x1)ω1

2ω
σz1 +

γ2J1(x2)ω2

2ω
σz2

]
= i

(
γ1J1(x1)ω1 − γ2J1(x2)ω2

ω

)
(σx1σy2 − σy1σx2). (D7)

Thus

Varcl(T
† ~σ1 · ~σ2T )ω = 4

〈
[Q†ω, A]

〉
〈[A,Qω]〉Re(v), (D8)

= 2

(
γ1J1(x1)ω1 − γ2J1(x2)ω2

ω

)2

〈σx1σy2 − σy1σx2〉2 S(ω)t, (D9)

= 2

(
γ1J1(x1)ω1 − γ2J1(x2)ω2

ω

)2

|ẑ · {〈 ~σ1〉 × 〈 ~σ2〉}|2S(ω)t. (D10)

Appendix E: Initial State of Magnetic Field

In this analysis, we assume that the magnetic field oscillates sinusoidally with amplitude B1. However, this leaves
some freedom in choosing the phase of magnetic field at time t = 0. A magnetic field B(t) = B1cos(ωt−φ) corresponds

to the coherent state
∣∣∣√λeiφ〉 where λ is the average photon number. Because calculations in this work take place in

the displaced basis (which is obtained by applying the unitary transformation U to operators in the lab frame), we
must also apply U to the initial state |α〉 |s〉. We first show that for |η| � 1 and |α| � 1,

D(η) |α〉 ≈ eηα
∗−η∗α |α〉 . (E1)

We use the identity that for any complex numbers α and η,

D(η)D(α) = eηα
∗−η∗αD(α)D(η). (E2)

Therefore,

D(η) |α〉 = D(η)D(α) |0〉 , (E3)

= eηα
∗−η∗αD(α)D(η) |0〉 , (E4)

= eηα
∗−η∗αD(α) |η〉 . (E5)

Coherent states are given explicitly in terms of the Fock states by

|η〉 = e−|η|
2/2

∞∑
k=0

ηk√
k!
|k〉 . (E6)

For η � 1 all but the k = 0 terms are small, and so we make the approximation |η〉 ≈ |0〉. From this we conclude that

D(η) |α〉 ≈ eηα
∗−η∗αD(α) |0〉 , (E7)

≈ eηα
∗−η∗α |α〉 . (E8)

Now we examine what happens when we apply

U = D(η) |+x〉 〈+x|+D(η)† |−x〉 〈−x| , (E9)

where η = Ω/2ω to the state |α〉 |s〉. We get

U |α〉 |s〉 = D(η) |α〉 |+x〉 〈+x| |s〉+D(η)† |α〉 |−x〉 〈−x| |s〉 , (E10)

= |α〉
(
eiθ |+x〉 〈+x| |s〉+ e−iθ |−x〉 〈−x| |s〉

)
, (E11)

= |α〉
(
eiθ |+x〉 〈+x|+ e−iθ |−x〉 〈−x|

)
|s〉 , (E12)

= |α〉 eiθσx |s〉 , (E13)

where θ = Im(2η∗α). We thus see that an initial phase φ corresponds to a rotation by an angle θ about the x axis.
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Appendix F: Robust dressing relaxation due to a relatively strong gradient field.

The dynamics of the system can be described by

U̇I = eiϕxσx/2ω0 · σe−iϕxσx/2UI , (F1)

where

ϕx = γi

∫ t

0

B1(t′)dt′. (F2)

Within this interaction picture we can write longitudinal relaxation as the decay rate of 〈σx〉, which is given by
time-dependent perturbation theory as

〈σx〉 = 1− γ2 Re

{∫ t

0

dt′
∫ t′

0

dt′′e−iϕx(t′)eiϕx(t′′) 〈δB(t′)δB(t′′)〉

}
, (F3)

where δB(t) in this case represents fluctuations in either Bz or By. In writing this approximation, we have taken the
static uniform field to be small, which allows us to neglect the contribution to T1 relaxation from Bx. The integral
can be evaluated in terms of the Fourier transform of e−iϕx(t), given by

e−iϕx(t) =

∞∑
n=−∞

ane
inωmt, (F4)

where ωm is the modulation frequency. By the same reasoning as in section III.1, we need only consider terms that
are the same frequency. Thus we get

〈σx〉 = 1− γ2 Re

{∫ t

0

dt′
∫ t′

0

dt′′
∑
n

|an|2einωm(t′−t′′) 〈δB(t′)δB(t′′)〉

}
, (F5)

= 1− 2t
∑
n

|an|2S(nωm). (F6)

Therefore we get

1

T1
=
γ2

2

∑
n

|an|2S(nωm), (F7)

≈ γ2(G2
z +G2

y)D
∑
n

|an|2

(ωmn)2
, (F8)

where in the last step we took the diffusion approximation to evaluate S(nωm). If the system is not in the diffusion
limit a more exact formulation can be implemented, for example, the spectrum of the correlation function presented
in reference [11] would allow accurate predictions from the ballistic through the diffusive regimes.
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