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Abstract

The strong field many-electron dynamics is studied via the resonance enhanced high harmonic

generation of niobium. In intense IR lights excited states of Nb with the configuration 4d35s np

plays a vital role in the enhanced HHG below the ionization potential, even though the electron

initially occupies the 5s orbital is the most active. The energies of these states increase linearly with

the laser intensity, which causes the effective ionization potential to increase as well. Above the

ionization potential, many electron effects may cause an electronic state of Nb to be in resonance

with that of Nb+, which leads to enhanced HHG and which influences the tunneling ionization as

well.

PACS numbers: 33.80.Rv,42.50.Hz,33.80.Eh,33.90.+h
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I. INTRODUCTION

High harmonic generation (HHG) not only leads to creation of ultrashort XUV pulses

[1, 2], it also functions as an attosecond probe [3–5]. Most studies focus on harmonic emis-

sions with a higher photon energy than the ionization potential (Ip), whose mechanism con-

sists of tunneling ionization, propagation of the photoelectron, and the subsequent electron

rescattering in gases exposed to intense infrared lasers [6, 7]. Rescattering of the electron

wave packet in HHG is implemented in ultrafast imaging [8–11]. Tunneling ionization is also

utilized in tracing electronic and ultrafast nuclear dynamics [12].

Mechanisms for generating harmonics with an energy lower than the Ip were described

in detail recently for single-electron systems [13, 14]. The resonance enhanced emission is

via instantaneous multiple rescattering. The AC Stark shift of a Rydberg state is similar

to the ponderomotive energy [15], and hence can be controlled by an intense infrared (IR)

light. The spatial and phase distribution of the HHG in inert gases are thus controlled via

additional IR light [16, 17].

Conventionally, the single active electron (SAE) approximation is adopted to study HHG.

In order to generalize its application in chemistry and material science, however, a funda-

mental understanding of many electron effects in HHG is required. Studies on these effects

have been focused on contributions of the inner valence orbitals [18, 19]. Different orbitals

lead to different spatial orientation effects, which are utilized in imaging and interferome-

try to advance attosecond technology [9, 20, 21]. Time-dependent density-functional theory

(TDDFT) calculations show that resonances with the cation excited states of N2 enhance

harmonics higher than the Ip [22].

Thus, resonances may enhance harmonic emissions that are both lower and higher than

the Ip. The former is subject to much larger AC Stark shifts in intense IR light than the

latter. The latter involve both the cation and the electron, and hence cannot be described

by the SAE approximation. To the best of our knowledge, resonance enhanced HHG is

rarely studied for harmonics both below and above the Ip. The difficulty lies in accurately

describing the shifted Rydberg states in the context of many-electron dynamics.

Many-electron effects are particularly prominent in tunneling ionization of transition

metal species [23], causing substantially suppressed ionization in neutral atoms and enhanced

ionization in cations relative to predictions of the SAE picture [24]. The suppression in
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neutral niobium is conspicuous and could reach the equivalence of increasing the Ip by a

few eVs in 1500 nm lasers. This is consistent with the theory that high Rydberg states,

together with the ionization threshold, move up in strong fields and the shift should be

approximately the ponderomotive energy, which increases linearly with the laser intensity.

Measured ionization yields [23], however, suggest that the apparent Ip ceases to increase

above a certain intensity. Shifts of the Ip affects the HHG spectra as well, which will help

us further understand the many-electron dynamics of transition metal atoms.

Of a n-th row transition metal element, electrons initially occupying both the ns and the

(n − 1)d orbitals are active in a light field. The (n − 1)d sub-shell is usually the last to

fill, i.e., it is the highest occupied orbital. It is known to give rise to compounds of various

oxidation states due to the low energy gap. In these compounds, the d−d electron transition

or ligand to metal charge transfer produces color. Meanwhile, it is the ns orbital, the second

highest, that loses an electron in ionization. The electron configuration of the ground state

of niobium is a 6D1/2 (4d45s). The highest occupied orbital is 4d. Without any ligands,

even though the 4d orbitals are nearly degenerate, the 4d → 5p transition spans a range of

energies due to the difference in total angular momentum. The ground state of Nb+ is 5D0

(4d4).

A TDDFT method with an optimized effective potential formalism was developed for

studying the tunneling ionization of vanadium [19, 25] and nickel [26]. In the TDDFT

analysis, the ionization suppression of the neutral atoms and the enhancement of the cations

were explained in terms of the AC Stark shifts, elevated tunneling barrier, exchange blockade,

and the large centrifugal barrier for the d orbitals [26]. Here, we further examine the effects

on HHG in IR fields. We focus in particular on the resonance-enhanced emissions both

below and abov the Ip. The AC Stark shifts and the shifts of the ionization threshold are

examined together with the electronic structure of both Nb and Nb+ to understand the

strong-field many-electron dynamics of transition-metal elements, and hence expand the

scope of attosecond chemistry.

II. METHOD

We adopt the TDDFT method developed for transition-metal atoms in intense laser

fields, which employs an optimized effective potential (OEP) formalism and a spin-restricted
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treatment [26]. The time-dependent Kohn-Sham (KS) equation is

i~
∂

∂t
ψjσ(r, t) =

[
Ĥ(0)

σ (r) + ∆vσ(r, t)−E(t) · r
]
ψjσ(r, t), (1)

where σ = α or β is the spin index, j is orbital index, r is the spacial coordinate, t is time,

Ĥ(0) is the field free Hamiltonian, E is the electric field of the laser and ∆vσ is the induced

potential.

The polarization is along the z axis and

E(t) = f(t) sinω0t, (2)

where ω0 is the angular frequency of the incident light and f(t) is the field strength. We

study the HHG for f(t) = F (t ≥ 10 optical cycles), which matches the focus intensity. The

field is gradually turned on and the field strength reaches F in 10 optical cycles:

f(t) = F sin2 ω0t

40
, t <

20π

ω0
. (3)

The time-dependent 41-electron wave function of niobium is

Ψ(r, t) =
1√
41!

det [ψ1σ1
ψ2σ2

· · ·ψ41σ41
] . (4)

Initially, both the external field and the induced potential are zero. We determine the initial

state by solving the static KS equation with the OEP formalism described in [19]. The initial

wave function is a Slater determinant of occupied orbitals corresponding to the ground state

electron configuration [Kr]4d4(5D)5s. A high-spin state is chosen to ensure representability

by a single determinant.

The set of occupied spin-orbitals is subsequently evolved by solving Eq. (1) with a gener-

alized pseudospectral method [26, 27]. An absorbing boundary is placed at a radial distance

of r = 400 a0. The maximum distance is 1000 a0. We use 400 unevenly distributed radial

grid points that are denser at the nuclear center. The orbital angular momentum quantum

numbers l = 0 to 12 are included. We adopt a split-operator method to propagate the

time-dependent orbitals, which are transformed between the representations of the spatial

grid and Hilbert space defined by the field free Hamiltonian. The time step is 0.1 atomic

units (2.419 attoseconds). Fourier transform of the induced dipole moments is converged

to the 10th decimal place at the odd harmonics of the incident light with respect to all the

parameters mentioned above.
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The time-dependent electron density is obtained as

ρ(r, t) =

β∑

σ=α

Nσ∑

i=1

ψ∗
iσ(r, t)ψiσ(r, t). (5)

In this calculation Nα = 23 and Nβ = 18.

The transient dipole moment is calculated as

d(t) =

∫∫∫
ρ(r, t)z d3r, (6)

the Fourier transform of which is

d(ω) =
1

tf − ti

∫ tf

ti

d(t)e−iωt dt. (7)

We plot the HHG spectra as |d(ω)|2.

III. RESULTS AND DISCUSSION

The a6D electronic ground state of Nb has electron configuration 4d4(5D)5s. In Table

I, the first four entries are electronic states that arise from exciting an electron from a

4d orbital to a 5p orbital, resulting in a 4d35s5p configuration, and the last two entries

correspond to the 5s → 5p excitation, which gives a 4d45p configuration. Column three

gives the experimental excitation energies [28], where we averaged over the fine-structure

states in order to remove the spin-orbit interaction, since this is not taken into account in

the TDDFT calculations. In our TDDFT method, the initial state is represented by a single

high-spin Slater determinant. We estimate the contribution of individual orbital excitations

to a state by representing the states as Clebsch-Gordan-coupled Slater determinants. Since

there are only high-spin determinants, we can represent the 4d3 configuration by two holes,

so, e.g., we have

|3d35s(5F );MF 〉 =
∑

m1m2

|4d−m1
4d−m2

5s〉〈2m12m2|3MF 〉 (8)

and subsequently the z6Go state is given by

|4d35s(5F )z6Go〉 =
∑

MF ,m

|4d35s(5F );MF 〉|5pm〉〈3MF1m|4MG〉, (9)

where the 〈. . . | . . .〉 are Clebsch-Gordan coefficients [29] and MF and MG are total or-

bital angular momentum projection quantum numbers. The initial state is represented
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Table I: Calculated orbital energy differences (∆ǫ) in eV of Nb compared to the measured excitation

energies from Ref. [28]. The contributions are given in % of the dominant one-electron excitation

relative the ground state configuration with ML = 2.

Level configuration energy orbital excitation contribution ∆ǫ

z6G◦
13/2 4d35s(5F )5p 2.172 4d0 → 5p0 43% 2.580

4d±1 → 5p±1 36% 2.711

4d−1,0 → 4d−2, 5p1 21% 2.339

z6F ◦
11/2 4d35s(5F )5p 2.416 4d±1 → 5p±1 50% 2.711

4d0 → 5p0 33% 2.580

4d−1,0 → 4d−2, 5p1 17% 2.339

z6D◦
9/2 4d35s(5F )5p 2.435 4d±1 → 5p±1 74% 2.711

4d0 → 5p0 24% 2.580

4d−1,0 → 4d−2, 5p1 2% 2.339

y6D◦
9/2 4d35s(5P )5p 3.241 4d−1,0 → 4d−2, 5p1 60% 2.339

4d1 → 5p1 40% 2.711

Average 2.566 4d → 5p 2.585

y6F ◦
11/2 4d4(5D)5p 3.019 4d−1, 5s → 4d−2, 5p1 67% 2.961

5s → 5p0 33% 3.203

x6D◦
9/2 4d4(5D)5p 3.314 5s → 5p0 67% 3.203

4d−1, 5s → 4d−2, 5p1 33% 2.961

Average 3.167 5s → 5p 3.082

by |4d−14d04d14d25s〉 with orbital angular momentum projection quantum number ML = 2.

Because there is axial symmetry and we neglect spin-orbit coupling, we must also have

MG = 2. In Eq. (8) we denote a hole in orbital 4dm1
by 4d−m1

, since it contributes −m1~ to

the orbital angular momentum projection. With these two equations, the contribution of,

e.g., the 4d1 → 5p1 orbital excitation is computed as

p(4d1 → 5p1) = 2|〈2,−1; 2, 2|3, 1〉〈3, 1; 1, 1|4, 2〉|2. (10)

The factor of two arises because interchanging m1 and m2 in Eq. (8) gives the same contri-

bution. Note that we cannot have m1 = m2, because these quantum numbers describe the
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Figure 1: Orbital contributions to the induced dipole moment of a Nb atom in a linearly-polarized

1500 nm laser field. The laser intensity is 1013 W/cm2.

holes in a high-spin 4d3 determinant.

The orbital energy differences in the last column of Table I are from our initial state

calculation. The orbital energies are ordered as

ǫ4d0 > ǫ4d1 = ǫ4d−1
> ǫ4d2 = ǫ4d−2

> ǫ5s. (11)

The highest occupied orbital is 4d0. In comparison, 4d±1 are lower by 0.127 eV, 4d±2 are

lower by 0.372 eV, and 5s is lower by 0.623 eV.

Figure 1 shows the time-dependent dipole moment, which is labeled as total, of niobium

in a pulsed 1500 nm laser with the intensity of 1013 W/cm2. We also plot diα(t) for the

orbitals that are initially 5s, 4d0, and 4d1. The following comparison is demonstrated for

the contributions of the orbitals:

d5s > d4d0 > d4d1(= d4d−1
). (12)

The 4d
2
orbital is initially unoccupied and the magnitude of d4d2 is too small to show up in
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Figure 2: The HHG power spectra of a Nb atom in a linearly polarized 1500 nm (black solid) and

1353 nm (green) calculated with the TDDFT method. The laser intensity is 1013 W/cm2. The Ip

is represented by the vertical dotted red line.

the scale used in the figure. The contributions from the other 4d orbitals are noticeable.

Even though the 5s orbital is lower than the 4d orbitals by 0.6 eV, it contributes the most

to the induced dipole because it it does not have a centrifugal barrier. This is consistent

with the observation that the ground state electron configuration for the cation Nb+ is 4d4,

which is a result of electron removal from a 5s orbital, rather than from a 4d orbital.

The corresponding HHG spectrum is plotted in Fig. 2 (the black solid line). The Keldysh

parameter is 1.3, which means the process is not considered tunneling dominant. The

measured ionization potential (IP ) of 6.76 eV is shown by the vertical red dotted line.

Below the IP , a linear decay with respect to the harmonic order is expected in a power

spectrum. However, both the fifth harmonic (H5) at 4.13 eV and H7 at 5.78 eV appear

higher, which we attribute to 5-photon resonances involving the excited states with the

configuration 4d35s5p. The photon energy of H5 is higher than the excitation energies in

Table I because of the AC Stark shifts: the ground state is lowered slightly in the field,
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Figure 3: The HHG of a Nb atom in a linearly polarized 1500 nm pulsed laser calculated with

the TDDFT method. The laser intensity is 1 (black solid) , 2 (red), and 3 (green) ×1013 W/cm2,

respectively. The Ip is represented by the vertical solid blue line.

whereas the excited state is shifted up substantially by an amount up to the value of the

ponderomotive energy, 2.10 eV.

To verify this interpretation, we change the laser wavelength to 1353 nm, while keeping

other parameters the same, and obtain another HHG power spectrum of niobium as a

comparison. In this case the Keldysh parameter is 1.4 and the ponderomotive energy is

1.71 eV. We show the peaks of the odd harmonics as green circles. With a slightly higher

photon energy, the shifts of the excited states are lowered while the photon energy of the

harmonics is increased and the resonances no longer exist. Therefore, H1 (0.916 eV), H3

(2.75 eV), H5 (4.58 eV), and H7 (6.41 eV) essentially follow the linear decay relation. The

comparison shows that the 5-photon resonance is quite narrow.

The ionization threshold may shift up by the amount of the ponderomotive energy as well.

The effective Ip thus becomes 8.9 eV in the 1500 nm laser and 8.5 eV in the 1353 nm laser of

1013 W/cm2. The HHG in these two pulses follow a consistent theme in which a minimum
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occurs at around 10 eV. Beyond the ionization threshold, ionization is a competitive process

to HHG. Ionization could contribute to this minimum. There is an apparent enhancement

at around 12 eV, which we interpret as due to a resonance with excited states of the ion.

This interpretation is based on the following numerical analysis.

First, we calculate the time profile dω=12 eV (t) via wavelet transformation [22] of d(t).

Consistent with a tunneling ionization, propagation, and recombination picture, it gives two

peaks per cycle at t = τ and t = τ + T/2, where τ is a recombination time and T is the

optical cycle. However, values of dω=12 eV (t) at other times than τ and τ + T/2 are still

significant. They are lower than the peak values by only 23% the most. Considering that

the kinetic energy accumulated by propagation of the free electron is not the right amount

for 12 eV of photon energy release, there must be alternative mechanisms at other times. To

identify the routes, we break down the expression of d(ω) in terms of the field-free electron

configurations using the following derivation.

Numerically solving the TDDFT equations gives us the set of time-dependent orbitals in

Eq. (4), and

ψi(r, t) =
∑

j

φj(r)cji(t), (13)

where φj is a field free orbital with j being the combined spin-orbital index. The summation

includes the ground state, excited states, and continuum states.

The dipole moment is a one-electron operator, and its expectation value can be written

as the sum of the contributions of the molecular orbitals of the spin-orbitals in Slater-

determinant of Eq. (4). Therefore, for the purpose of analyzing the contributions to the

dipole moment, we write the wave function as an orbital product, rather than a Slater

determinant:

Ψ̃(r, t) =
41∏

i=1

ψi(r, t). (14)

Initially Ψ̃(r, 0) =
∏41

i=1 φi(r). The time-dependent function Ψ̃(r, t) defined in Eq. (14) and

Ψ(r, t) in Eq. (4) include the single-electron, two electron,..., 41-electron excitations.

The field induced dipole is

d(t) = 〈Ψ̃(r, t)|ẑ|Ψ̃(r, t)〉

=
∑

{j′}{j}

C∗
{j′}(t)C{j}(t)z{j′}{j}, (15)

10



where ẑ is the z− component of the dipole operator, {j} is a collection of 41 indexes, j1, j2,

...,j41, and

C{j}(t) = cj11(t)cj22(t) · · · cj4141(t), (16)

which is the time-dependent coefficient of an electronic configuration {j}. The transition

dipole element between two configurations {j} and {j′} is

z{j′}{j} = 〈φj′
1
· · ·φj′

41
|ẑ|φj1 · · ·φj41〉, (17)

where

ẑ = −e
41∑

i=1

ẑi. (18)

In this format the Fourier transform of the transient dipole moment is

d(ω) =
∑

{j′}{j}

z{j′}{j}D{j′}{j}(ω), (19)

where

D{j′}{j}(ω) =
1

tf − ti

∫ tf

ti

C∗
{j′}(t)C{j}(t)e

−iωtdt. (20)

Equation (19) allows us to identify the pairs of configurations {j} and {j′} that make

the larges contribution to d(ω). The dipole moment matrix element z is zero unless {j} and

{j′} differ by one electron, and the dipole selection rule applies. While z does not depend

on either ω or the field, the D elements do. The phases of Cj′ and Cj have to differ by an

amount that is close to ωt. In other words, the shifted energies of the configurations {j′}
and {j} differ by ∼ ~ω, which limits {j} to be the ground state configuration [Kr]4d45s. As

expected the only significant contribution to d(ω = 12 eV/~) comes from the configuration

[Kr]4d4k in combination with the ground state [Kr]4d45s, where k is a p-wave free electron

orbital. It is consistent with a radiative single electron recombination from a free electron

state with energy ǫk =
~2k2

2me
to the ground state with energy ǫj = −Ip gives ~ω = ǫk−(−Ip) =

~
2k2

2me
+ Ip=12 eV.

The enhancement of this harmonic emission points to large magnitudes of

D{[Kr]4d4k}{[Kr]4d45s}(ω), which in turn is connected to large values of |C{[Kr]4d4k}(t)| [Eq.
(20)] or a significant population in [Kr]4d4k. In principle, a photon-free resonance may

populate this configuration if it couples to other populated configurations of similar energy.
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To verify this, we compute and search for two-electron excited configurations {j′} such that

|D{j′}{[Kr]4d45s}(ω = 12 eV/~)| > 10−7. Note that |D{[Kr]4d4k}{[Kr]4d45s}(ω)| is in the order of

10−6.

It turns out that both [Kr]4d35p0k1 and [Kr]4d35p±1k2, where k1 and k2 each stands

for an s-wave free electron wave function, render a |D(ω)| value that is higher by two

orders of magnitude than |D{[Kr]4d4k3}{[Kr]4d45s}(ω)|. Both [Kr]4d35p0k1 and [Kr]4d35p±1k2

are coupled to [Kr]4d4k3 via exchange. It is the coupling between the configuration of an

excited ion with a lower energy electron and a ground-state ion with a high energy electron.

Limited by the adiabatic approximation of the time-dependent exchange-correlation po-

tential, such coupling at time t will not be included if the population of [Kr]4d35p0k1 or

[Kr]4d35p±1k2 only spikes at a particular time t′ 6= t. The reason for our calculation to

render an enhanced HHG emission at ∼ 12 eV via resonance with an ion excited state

is a constant significant population of the ion excited state, which is created in multiple

channels. Some of them are ionization from the configuration [Kr]4d35s5p0,±1 created by

either excitation of the neutral atom or coupling to [Kr]4d45p0 or other configurations of

the neutral atom. Other channels include excitations of the ground state ionic configuration

with various kinetic energies of the free electron. Excitation of the neutral atom is partic-

ularly enhanced in the 1500 nm laser. Excitation of the cation takes more energy and the

energies of the excited states of Nb+ are given in Table II. The AC Stark shift of a cation

is insignificant due to the positive charge.

The intensity of the incident laser determines the Stark shifts and hence it impacts the

resonances. In Fig. 3 we plot the calculated HHG spectra in the linearly polarized 1500 nm

lasers of 1, 2, and 3× 1013 W/cm2 with the same pulse length of 20 optical cycles. They are

as expected for most harmonics: the intensity of a harmonic emission increases in a stronger

field, i.e., it is the largest in the 3× 1013 W/cm2 laser and lowest in the 1013 W/cm2 laser.

The few exceptions, however, demonstrate how the perceived resonances are influenced by

the intensity of the incident light, and hence shine some light on the Stark shifts, including

those for the ionization threshold.

One of the obvious exceptions is H5, for which the harmonic intensity is the largest in the

1013 W/cm2 pulse. This supports our interpretation that the excitation energy for 4d→ 5p

is shifted to be 4 eV in the 1013 W/cm2 laser and is substantially larger in more intense

lasers. At 5.78 eV H7 in the 1 and 2×1013 W/cm2 lasers share an almost identical intensity,
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Table II: Calculated orbital energy differences (∆ǫ) in eV of Nb+ compared to the measured

excitation energies ∆ǫexp from Ref. [28]. The contributions are given in % of the dominant one-

electron excitation relative the ground state configuration of the ion with ML = 2.

Ionic Level Conf. Ip ∆ǫexp Orbital excitation contribution ∆ǫ

5F5 4d3(4F )5s 7.137 0.356 4d0 → 5s 100% 0.709

5G◦
6 4d3(4F )5p 11.069 4.288 4d±1 → 5p±1 36% 4.604

4d0 → 5p0 43% 4.393

4d−1, 4d0 → 4d−2, 5p1 21% 4.250

5F ◦
5 4d3(4F )5p 11.366 4.585 4d±1 → 5p±1 50% 4.604

4d0 → 5p0 33% 4.393

5D◦
4 4d3(4F )5p 11.431 4.650 4d±1 → 5p±1 74% 4.604

4d0 → 5p0 24% 4.393

4d−1, 4d0 → 4d−2, 5p1 2% 4.250

5D◦
4 4d3(4P )5p 12.187 5.406 4d−1, 4d0 → 4d−2, 5p1 60% 4.250

4d1 → 5p1 40% 4.604

Average 4.732 4d → 5p 4.472

5G◦
6 4d2(3F )5s5p(3P ◦) 12.721 5.940

5F ◦
5 4d2(3F )5s5p(3P ◦) 12.977 6.196

5D◦
4 4d2(3F )5s5p(3P ◦) 13.264 6.483

5D◦
4 4d2(3P )5s5p(3P ◦) 13.972 7.191

while in 3 × 1013 W/cm2 it is only slightly more intense. Apparently, factors other than

the field strength are at play which enhance H7 in the 1013 W/cm2 laser. Most likely the 5

photon resonance with the 4d→ 5p excitation also enhances H7.

In the strongest field, H11 (at 9.11 eV) appears to be particularly enhanced. We consider

this as 11-photon resonance with the much shifted excited state x6D◦
9/2. In the 2× 1013 and

3×1013 W/cm2 lasers, H13 (at 10.7 eV) shares a similar intensity, indicating an enhancement

for the former.

We use Eq. (19) to analyze the enhancement of H13 in the 2 × 1013 W/cm2 pulse. The
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source of H13 is found to be radiative transitions from the Rydberg state configurations

[Kr]4d4np0, where n = 7 − 10, to the ground state. For a Rydberg orbital np0 with n =

7, 8, 9, 10, more than 90% of the electron density is distributed between 10 a0 and 100 a0

from the core. When n1 = 7, the last node is at 17 a0 and the furthest peak is at 26 a0. In

the 2×1013 W/cm2 pulse the Rydberg states may shift up by as much as the ponderomotive

energy of 4.2 eV, which makes them higher than the ground state by 10.7 eV, the photon

energy of H13.

We search for other excited configurations that influence the populations of [Kr]4d4np0 by

scanning the largest magnitudes among the elements ofD(ω = 10.7 eV/~), which are defined

in Eq. (20). We find that they belong to the combination of the ground state configuration

and one of the following excited configurations: [Kr]4d4n0s, where n0 = 7−11; [Kr]4d35sn1d,

where n1 = 8 − 10; and [Kr]4d35p±1n2s, where n2 = 16 − 24. Rydberg states [Kr]4d4n0s

and [Kr]4d35sn1d both couple to [Kr]4d4np0 by the dipole operator. Such couplings are not

associated with any photon absorption or emission because their energy differences are too

small.

Noticeably, [Kr]4d4n0s and [Kr]4d35p±1n2s share similar energies even though n2 > n0.

The reason is that the shift of the latter is much smaller. For n2s, n2 = 16, ..., 24, at

least 93% of the electron population is more than 100 a0 from the core, and the radial

probability density distributions do not decrease at large distances. We therefore consider

consider n2s as free electron orbitals and [Kr]4d35p±1n2s as excited configurations of Nb+,

abbreviated as 4d35p. Listed in Table II are some ion excited states with the configuration

4d35p whose energy are closed to 10.7 eV. Configurations [Kr]4d35p±1n2s and [Kr]4d4n1p0

couple by exchange. This is the resonance between the excited states of a cation and the

high Rydberg states of the neutral species.

IV. SUMMARY AND CONCLUSIONS

Using a TDDFT method, we study the many-electron dynamics in the HHG of niobium.

The computed orbital energies are consistent with the average of the measured excitation

energies. The 5s orbital contributes the most to the induced dipole. However, the resonance

enhanced HHG in the 1500 nm lasers mostly involves the 4d ↔ 5p transition. Comparing the

HHG spectra of Nb in lasers of different intensities, we confirm that the excitation energies

14



of the neutral atom increase with the laser intensity. The electron that initially occupies the

5s orbital moves further away from the core as the laser intensity increases, which causes

the 4d orbital to be more bound. Meanwhile the energies of the Rydberg states increase.

The combined effect causes the enhanced peaks shift to higher energies, and the amount of

shift is close to the quivering energy of a free electron.

Above the Ip, enhanced HHG occurs at ∼ 11-13 eV, which are the energies of the ion

excited states with configuration 4d35p. The enhancement at ∼ 11 eV is particularly promi-

nent when the laser intensity is 2×1013 W/cm2. At this intensity, a near-threshold Rydberg

state of Nb with the configuration 4d4 np, where n > 5, is in resonance with a 4d35p ionic

state.

The numerical modeling and analysis presented in this work demonstrate how the many-

electron dynamics impact the strong-field processes. The Rydberg states of Nb with the

configuration 4d35s np causes enhanced HHG below the Ip in certain IR lights. Since the

5s orbital is the most active, a 4d35s np excited state cannot be reached with a SAE in

strong field. The energy of the excited states increases linearly with laser intensity, which

is reflected in the shifts of the enhanced HHG peaks as well as in the elevated ionization

threshold which reduces ionization probability. Many-electron dynamics also creates and

transforms resonances between the neutral and the cation, which leads to enhanced HHG

or ionization.
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[12] M. Kübel, Z. Dube, A. Y. Naumov, D. M. Villeneuve, P. B. Corkum, and A. Staudte, Nat.

Commun. 10, 1042 (2019).

[13] P. C. Li, Y. L. Sheu, C. Laughlin, and S. I. Chu, Nat. Commun. 6, 7178 (2015).

[14] P. Li, Y. L. Sheu, H. Z. Jooya, X. X. Zhou, and S. I. Chu, Sci. Rep. 6, 32763 (2016).

[15] N. B. Delone and V. P. Krainov, Physics-Uspekhi 42, 669 (1999).

[16] S. Bengtsson, Larsen, E., D. Kroon, Camp, S., Miranda, M., C. Arnold, A. LH́uillier, et al.,

Nat. Photonics 11, 252 (2017).

[17] E. R. Simpson, M. Labeye, S. Camp, N. Ibrakovic, S. Bengtsson, A. Olofsson, K. J. Schafer,

M. B. Gaarde, and J. Mauritsson, Phys. Rev. A 100, 023403 (2019).

[18] X. Chu and S.-I. Chu, Phys. Rev. A 70, 061402(R) (2004).

[19] X. Chu and G. C. Groenenboom, Phys. Rev. A 94, 053417 (2016).

[20] O. Smirnova, Y. Mairesse, S. Patchkovskii, N. Dudovich, D. Villeneuve, P. Corkum, and M. Y.

Ivanov, Nature 460, 972 (2009).

[21] H. Wörner, J. Bertrand, D. Kartashov, P. Corkum, and D. Villeneuve, Nature 466, 604 (2010).

[22] X. Chu and G. C. Groenenboom, Phys. Rev. A 87, 013434 (2013).

[23] M. Smits, C. A. de Lange, A. Stolow, and D. M. Rayner, Phys. Rev. Lett. 93, 213003 (2004).

[24] E. Murakami, R. Mizoguchi, Y. Yoshida, A. Kitashoji, N. Nakashima, and T. Yatsuhashi, J.

16



Photochem. Photobiol. A 369, 16 (2019).

[25] X. Chu and G. C. Groenenboom, Phys. Rev. A 96, 013421 (2017).

[26] X. Chu and G. C. Groenenboom, Phys. Rev. A 101, 043423 (2020).

[27] X.-M. Tong and S.-I. Chu, Phys. Rev. A 57, 452 (1998).

[28] A. Kramida, Ralchenko, Yu., J. Reader, and NISTASDTeam, Nist atomic spectra database

(version 5.3), online (2015), national Institute of Standards and Technology, Gaithersburg,

MD., URL http://physics.nist.gov/asd.

[29] R. N. Zare, Angular Momentum (Wiley, New York, 1988).

17


