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Optical two-dimensional coherent spectroscopy (2DCS) has become a powerful tool for studying
energy level structure, dynamics, and coupling in many systems including atomic ensembles. Various
types of two-dimensional (2D) spectra, including the so-called single-quantum, zero-quantum, and
double-quantum 2D spectra, of both D lines (D1 and D2 transitions) of potassium (K) atoms have
been reported previously. For rubidium (Rb), a major difference is that the D-lines are about 15
nm apart as opposed to only about 3 nm for K. Simultaneously exciting both D-lines of Rb atoms
requires a broader laser bandwidth for the experiment. Here, we report a broadband optical 2DCS
experiment in an Rb atomic vapor. A complete set of single-quantum, zero-quantum, and double-
quantum 2D spectra including both D-lines of Rb atoms were obtained. The experimental spectra
were reproduced by simulated 2D spectra based on the perturbation solutions to the optical Bloch
equations. This work in Rb atoms complements previous 2DCS studies of K and Rb with a narrower
bandwidth that covers two D-lines of K or only a single D-line of Rb. The broadband excitation
enables the capability to perform double-quantum and multi-quantum 2DCS of both D-lines of Rb
to study many-body interactions and correlations in comparison with K atoms.

I. INTRODUCTION

Optical two-dimensional coherent spectroscopy
(2DCS) [1, 2] is an optical analog to two-dimensional
nuclear magnetic resonance (NMR) spectroscopy [3].
The idea of implementing 2DCS in the optical regime
was proposed by Tanimura and Mukamel in 1993 and
was realized experimentally first by using infrared
ultrafast pulses [4, 5]. Since then, various approaches
[6–15] have been developed in the near-infrared and
visible range. By unfolding a potentially congested 1D
spectrum onto a 2D plane and correlating the dynamics
in two different frequency dimensions, optical 2DCS
excels in studying optical response of complex systems.
The technique has become a powerful spectroscopic tool
to study energy level structure, dynamics, and coupling
in various systems, such as structural information in
proteins [5], dynamics of hydrogen bond in water [16],
energy transfer processes in photosynthesis [17–21],
many-body interactions and correlations in atomic
ensembles [22–29], ultrafast dynamics and couplings
of excitons in semiconductor quantum wells [30–36],
quantum dots [37–40], 2D materials [41, 42], and per-
ovskites [43–50]. 2DCS proves to be a robust technique
for studying a broad range of physics from atomic to
solid-state physics.
Potassium (K) and rubidium (Rb) atomic vapors were

initially used as model systems to validate optical 2DCS
techniques. The energy level structures and other pa-
rameters are well characterized and the D-lines can be
excited by a typical Ti:sapphire femtosecond oscillator,
making K and Rb ideal samples to test optical 2DCS im-
plementations. Several early approaches of optical 2DCS
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were first demonstrated in Rb [13, 51] and K [52] va-
pors. Atomic vapors were also used to develop new ad-
vances such as optical 3D coherent spectroscopy [53] and
frequency-comb based optical 2DCS [54, 55], and quanti-
tative analyses such as pulse propagation effects [56, 57]
and line shape analysis [58] in 2D spectra.

Despite being considered initially as a model system,
later optical 2DCS measurements of atomic vapors pro-
vided interesting insights into many-body interaction and
correlation in atoms. Double-quantum 2DCS revealed
two-atom collective resonances due to dipole-dipole in-
teraction in both K [22] and Rb [23, 24] vapors. The
method provides an extremely sensitive and background-
free detection to probe interatomic dipole-dipole inter-
action even in a dilute vapor with a density as low as
4.81 × 108 cm−3, corresponding to a mean interatomic
separation of 15.8 µm [26]. The technique was also
extended to multi-quantum 2DCS to probe multi-atom
Dicke states with up to eight atoms [25, 27]. Optical
2DCS can potentially be a useful tool to study many-
body physics in cold atoms. For K vapor, a complete set
of single-quantum, zero-quantum, and double-quantum
2D spectra involving both D1 and D2 lines have been re-
ported [22, 52]. However, previous 2DCS studies of Rb
vapor measured only single-quantum 2D spectra [13, 51]
of both D-lines or double-quantum 2D spectra of an in-
dividual D-line [23, 24]. Compared to K, a major differ-
ence in Rb is that the D-lines are 15 nm apart, requiring
a broader laser bandwidth to cover both D-lines simulta-
neously.

Here, we implemented broadband optical 2DCS in an
Rb atomic vapor and obtained a complete set of single-
quantum, zero-quantum, and double-quantum 2D spec-
tra of both D-lines of the Rb atom. The single-quantum
and zero-quantum 2D spectra show the coherent coupling
between the two D-line transitions, while the double-
quantum 2D spectrum reveals the collective resonances
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involving both 5P1/2 and 5P3/2 states. We also present a
theoretical treatment based on the perturbative solution
to the optical Bloch equation (OBE). The simulated 2D
spectra agree well with the experimental spectra. The
rest of the paper is organized as the following. Section
II describes the experimental setup of a collinear 2DCS
implementation. Section III introduces the theoretical
approach based on the OBE. Section IV describes the
experimental and theoretical details of single-quantum
and zero-quantum 2D spectra. Section V the experimen-
tal and theoretical details of double-quantum 2D spectra.
Section VI is a conclusion.

II. EXPERIMENTAL SETUP

The optical 2DCS experiment was performed in
a collinear setup based on acousto-optic modulators
(AOM) [11]. As shown in Fig. 1, the primary appa-
ratus consists of an interferometer of two Mach-Zehnder
interferometers. This nested interferometer splits an in-
put fs laser pulse into four pulses (A, B, C, and D) and
then combines them in one beam with three time delays
between the pulses. The delays are controlled by three
translation stages. Each pulse goes through an AOM
and is phase modulated at a slightly different frequency
Ωi (i =A, B, C, and D). The first-order diffraction from
the AOM output is used for the experiment while the
zeroth-order output is terminated. Meanwhile, the out-
put of a continuous-wave (CW) laser (an external cavity
diode laser) is injected into the interferometer and prop-
agates through the same optical path and the AOMs as
the fs laser pulses. The fs laser and CW laser beams are
offset such that they can be separated after exiting the
interferometer at beamsplitter 6 (BS6). The CW laser
signal is detected by a photodetector (PD1). The CW
signal carries the AOM modulation frequencies and their
beating frequencies, which can be used as the reference
for lock-in detection. The CW laser beam also monitors
the optical path fluctuations in real time. The fs pulse se-
quence is incident on the window of an Rb atomic vapor
cell which is placed in an oven for temperature control.
The resulting fluorescence signal is collected and directed
to a photodetector (PD2) by a pair of lenses.
The fourth-order nonlinear fluorescence signal can be

measured by lock-in detection using a proper combina-
tion of CW laser beating frequencies as the reference.
The nonlinear signal associated with different pulse se-
quences and phase-matching conditions can be selectively
detected by referencing to the proper mixing frequency.
For instance, for the rephasing single-quantum signal in
the phase-matched direction kS = −kA+kB +kC −kD,
where kA,B,C,S are the wave vectors for pulses A, B, C,
and the signal, the reference frequency for lock-in de-
tection should be ΩS1 = −ΩA + ΩB + ΩC − ΩD. To
obtain this reference frequency, the CW laser signal is
processed by a digital wave mixer so that the beating
frequencies ΩAB = ΩA − ΩB and ΩCD = ΩC − ΩD are

FIG. 1. Schematic of the collinear optical 2DCS experimental
setup. BS: Beamsplitter. AOM: Acousto-optic modulator.
PD: Photo detector.

extracted by filtering and subsequently mixed to generate
ΩS1 = ΩCD−ΩAB. The rephasing single-quantum signal
can be measured by lock-in detection referencing to ΩS1.
Other types of 2DCS signal can be obtained similarly
by using different mixing frequencies as the lock-in refer-
ence. The time delay of each pulse can be controlled in-
dependently. There are three time periods, τ between the
first and second pulse, T between the second and third
pulse, and t between the third and fourth pulse. During
the experiment, the signal is recorded while scanning two
or three time delays. For instance, if both τ and t are
scanned, the signal can be represented in the time do-
main as S(τ, t) with a fixed T . A 2D spectrum S(ωτ , ωt)
is generated by 2D Fourier-transforming the time-domain
signal S(τ, t) into the frequency domain. Depending on
the time ordering of the excitation pulses and which time
delays are scanned, the experiment can generate single-
quantum, zero-quantum, and double-quantum 2D spec-
tra. The experimental detail and interpretation of these
2D spectra are described in the following sections.

In the current work, the fs laser pulse is provided by
a Ti:sapphire oscillator (Coherent Vitara). The output
pulse spectrum has a bandwidth (FWHM) of 67.45 nm
with a central wavelength of 810.89 nm. The repetition
rate is 80 MHz. The fs laser power at the sample is 18
mW in total. The fs pulses have sufficient bandwidth to
simultaneously excite two D-lines of Rb atoms to obtain
2D spectra of both D-lines.

III. THEORETICAL APPROACH

Using the density matrix formalism, the light-matter
interaction in this experiment can be described by the
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equation of motion [59]

ρ̇ij = −
i

~

∑

k

(Hikρkj − ρikHkj)− Γijρij , (1)

where ρij are the density matrix elements. The Hamilto-
nian has matrix elements Hij = ~ωiδij − µijE(t), where
~ωi is the energy of state |i〉, E(t) is the electric field,
µij (i 6= j) is the dipole moment of the transition be-
tween |i〉 and |j〉, and δij is the Kronecker delta func-
tion. The relaxation operator Γ has matrix elements

Γij = 1
2 (γi + γj) + γ

ph
ij , where γi and γj are the pop-

ulation decay rates for states |i〉 and |j〉, respectively,

and γ
ph
ij is the pure coherence dephasing rate (γph

ij = 0

for i = j).
The equations of motion represented by Eq. (1) in-

clude a series of coupled differential equations. To solve
these equations perturbatively, we substitute E with λE
and expand the density matrix elements as

ρij = ρ
(0)
ij + λρ

(1)
ij + λ2ρ

(2)
ij + λ3ρ

(3)
ij + · · · , (2)

where λ is a constant to track the order. Plug them into
Eq. (1) and collect coefficients of λn (n = 0, 1, 2, · · · ),
we can find the perturbative solutions for each order. In
general, the n-th order solution of density matrix element
is related to the (n − 1)-th order solution. Under the

excitation of a field E(t) = Êne
ikn·r−iωnt + c.c., the (n−

1)-th order density matrix element ρ
(n−1)
ik evolves to the

n-th order density matrix element ρ
(n)
jk or ρ

(n)
il . There are

four possibilities that can be calculated by the following
integrals

(a) ρ
(n)
jk =

iµij

2~
eikn·r

∫ t

−∞

Ên(t
′)e−iωnt

′

e−iΩjk(t−t′)ρ
(n−1)
ik (t′)dt′, (3)

(b) ρ
(n)
jk =

iµij

2~
e−ikn·r

∫ t

−∞

Ê∗

n(t
′)eiωnt

′

e−iΩjk(t−t′)ρ
(n−1)
ik (t′)dt′, (4)

(c) ρ
(n)
il = −

iµkl

2~
e−ikn·r

∫ t

−∞

Ê∗

n(t
′)eiωnt

′

e−iΩil(t−t′)ρ
(n−1)
ik (t′)dt′, (5)

(d) ρ
(n)
il = −

iµkl

2~
eikn·r

∫ t

−∞

Ên(t
′)e−iωnt

′

e−iΩil(t−t′)ρ
(n−1)
ik (t′)dt′, (6)

where Ωij = ωi − ωj − iΓij . A convenient way to track
the time evolution of density matrix elements in the per-
turbation calculation is to use double-sided Feynman di-
agram. The interaction with a field is described by the
vertex of an arrow with a vertical line. These four in-
tegrals can be represented by four vertices, as shown in
Fig. 2(a-d), respectively. An arrow represents a field
that changes one index of the density matrix element. A

photon is absorbed (emitted) if the arrow points towards
(away from) the vertical lines. An arrow pointing to the
right indicates that the field isE(t), while an arrow point-
ing to the left means that the field is conjugated, E∗(t).

FIG. 2. Four different types of vertices in double-sided Feyn-
man diagrams.

A doubled-side Feynman diagram representing an ex-
citation quantum pathway may include multiple orders of
these four vertices. The corresponding nonlinear signal
can be calculated order by order by using the integrals
in Eqs. (3-6). In an experiment, the nonlinear signal
usually includes contributions from multiple excitation
pathways represented by multiple double-sided Feynman
diagrams. The contributions from individual diagrams
can be calculated separately and added together to ob-
tain the overall nonlinear signal.

IV. SINGLE-QUANTUM AND

ZERO-QUANTUM 2D SPECTRA

Single-quantum and zero-quantum rephasing 2D spec-
tra were obtained by using the pulse sequence shown in
Fig. 3(a), in which pulses A and D are considered conju-
gated. The Rb atom is considered a three-level V system
with the relevant energy levels shown in Fig. 3(b). A
fourth-order nonlinear signal is generated in the sample
by the excitation of the four-pulse sequence. Briefly, the
first pulse, A, creates coherence between the ground and
excited states. The second pulse, B, converts the coher-
ence to a population in either the ground state or the
excited states, depending on the relative phase between
the first pulses. For a three-level V system, the first
two pulses also create a Raman-like coherence between
the two excited states. The third pulse, C, converts the
population and the “Raman” coherence to a third-order
coherence between the ground and excited states. The
fourth pulse, D, converts the third-order coherence to a
population in the excited states which emits fluorescence
as the fourth-order nonlinear signal. The dynamics mea-
sured during the first time delay τ reveal the time evo-
lution of the coherence between the ground and excited
states and the corresponding coherence dephasing time
T2. During the second time delay T , the dynamics in-
clude the population decay term and the “Raman” term.
The population term leads to a spectral signal at ωT = 0
which can reveal the population decay time T1, while
the “Raman” term results in a signal at ωT = ±ωe2e1 .
The process consists of eight specific excitation quantum
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pathways represented by the double-sided Feynman dia-
grams shown in Fig. 3(c).
Pulse D can be seen as a local oscillator for heterodyne

detection of the third-order coherence within the sample
itself. The resulting signal is fluorescence emitted by the
fourth-order population. To selectively detect the fourth-
order fluorescence signal that is a specific response to the
pulse sequence in Fig. 3(a), the output of PD2 in Fig.
1 is demodulated by a lock-in amplifier referenced to the
mixing signal ΩS1 = −ΩA+ΩB+ΩC−ΩD generated from
the CW laser signal. The AOM modulation frequencies
used in this experiment are ΩA = 80 MHz, ΩB = 80.0173
MHz, ΩC = 80.104 MHz, and ΩD = 80.107 MHz so the
reference frequency is ΩS1 = 14.3 kHz.
Single-quantum rephasing 2D spectra can be obtained

by scanning time delays τ and t, while fixing the sec-
ond time delay T , and 2D Fourier-transforming the sig-
nal into the frequency domain. A typical single-quantum
2D spectrum is shown in Fig. 4 (a), where the spec-
tral amplitude is plotted with the maximum normalized
to 1. The x and y axes are the emission frequency ωt

and the absorption frequency ωτ corresponding to the
time delays t and τ , respectively. The absorption fre-
quency has a negative sign because the excitation pulse
A is conjugated. The dotted diagonal line indicates that
the absorption and emission frequencies have the same
absolute value (|ωτ | = ωt). Peak SA (SB) on the di-
agonal line is due to the D1 (D2) transition, absorbing
and emitting at the same frequency. In contrast, the off-
diagonal peak SC (SD) absorbs at the D1 (D2) frequency
and emits at the D2 (D1) frequency, revealing the cou-

pling between the D1 and D2 transitions. Each peak has
contributions from two of the double-sided Feynman dia-
grams in Fig. 3(c) which are grouped and labeled accord-
ingly. For peaks SA and SB, the two diagrams represent
similar processes. For peaks SC and SD, the two dia-
grams describe two different dynamics, ground state de-
pletion and “Raman” coherence, during the second time
delay T . The process involving “Raman” coherence can
be isolated in a zero-quantum 2D spectrum.
Zero-quantum 2D spectra can be obtained by scan-

ning time delays T and t, while fixing the first time delay
τ , and 2D Fourier-transforming the signal into the fre-
quency domain. A typical zero-quantum 2D spectrum is
shown in Fig. 5 (a), where the amplitude is plotted with
the maximum normalized to 1. The x axis is the emis-
sion frequency ωt. The y axis is the mixing frequency
ωT corresponding to the second time delay T . There are
four peaks in the spectrum. Peaks ZA and ZB are lo-
cated on the ωT = 0 line. They each are contributed by
the three pathways involving a population decay during
the second time delay T , as labeled in Fig. 3(c) accord-
ingly. Peak ZC (ZD) has a mixing frequency of ωT = 7.12
(ωT = −7.12) THz, the frequency difference between the
52P1/2 and 52P3/2 states.
The experimental 2D spectra can be reproduced in

simulation based on the theoretical approach described
in Section III. The contribution from each pathway in
Fig. 3(c) needs to be calculated. As an example, as-
suming the excitation pulses are Delta pulses, the signal
from the fourth diagram (SD2 shown in Fig. 3-b) can be
calculated by using the integrals in Eqs. (3-6) as:

ρ(4)e1e1(τ, T, t) = S0µ
2
e1gµ

2
e2ge

−Γe1e1
τ
′

e(−iωe1g−Γe1g)te(−iωe1e2
−Γe1e2

)T e(−iωge2
−Γge2

)τΘ(τ
′

)Θ(t)Θ(T )Θ(τ), (7)

where

S0 = −
EAEBECED

16~4
ρ(0)gg e

−i(kD−kC−kB+kA)·r. (8)

Here τ ′ is the fluorescence emission time, Ei (i =
A,B,C,D) is the electric field amplitude for each pulse,

ρ
(0)
gg is the initial population in the ground state, ki is

the wave vector, and Θ is Heaviside step function. Tak-
ing the 2D Fourier Transform (2DFT) of Eq. (7) gives
the fourth-order frequency-domain signal with τ ′ = 0 as
the following:

S(4)
e1e1(ωτ , ωT , ωt) = S0µ

2
e1gµ

2
e2g

[

1

ωt − ωe1g + iΓe1g
×

1

ωT − ωe1e2 + iΓe1e2

×
1

ωτ − ωge2 + iΓge2

]

(9)

Repeating the above derivation for each pathway
shown in Fig. 3(c) and summing each contribution gives
the overall nonlinear signal in the frequency domain.
Evaluating the 2DFT of the time-domain expression at

T = 0 gives the single-quantum 2D frequency-domain
spectrum solution shown in Eq. (10), while evaluating
at τ = 0 gives the zero-quantum 2D frequency-domain
solution shown in Eq. (11). Simulations for each spectra
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FIG. 3. (a) Time ordering of excitation pulses for performing zero-quantum and single-quantum 2DCS. (b) Relevant energy
levels of Rb atoms. (c) Double-sided Feynman diagrams representing possible excitation quantum pathways in zero-quantum
and single-quantum 2DCS using the pulse sequence in (a).

are shown in Fig. 4(c) and Fig. 5(b), respectively.

S
(4)
1Q(ωτ , ωt) =

2S0µ
4
e1g

ωt − ωe1g + iΓe1g
×

1

ωτ − ωge1 + iΓge1

+
2S0µ

2
e1gµ

2
e2g

ωt − ωe1g + iΓe1g
×

1

ωτ − ωge2 + iΓge2

+
2S0µ

2
e1gµ

2
e2g

ωt − ωe2g + iΓe2g
×

1

ωτ − ωge1 + iΓge1

+
2S0µ

4
e2g

ωt − ωe2g + iΓe2g
×

1

ωτ − ωge2 + iΓge2

(10)

S
(4)
0Q(ωT , ωt) =

µ4
e1g + µ2

e1gµ
2
e2g

ωt − ωe1g + iΓe1g
×

S0

ωT − ωgg + iΓe1e2

+
µ4
e1g

ωt − ωe1g + iΓe1g
×

S0

ωT − ωe1e1 + iΓe1e2

+
µ2
e1gµ

2
e2g

ωt − ωe1g + iΓe1g
×

S0

ωT − ωe1e2 + iΓe1e2

+
µ2
e1gµ

2
e2g

ωt − ωe2g + iΓe2g
×

S0

ωT − ωe2e1 + iΓe2e1

+
µ4
e1g + µ2

e1gµ
2
e2g

ωt − ωe2g + iΓe2g
×

S0

ωT − ωgg + iΓe1e2

+
µ4
e1g

ωt − ωe2g + iΓe2g
×

S0

ωT − ωe2e2 + iΓe1e2

(11)

To conduct the single-quantum and zero-quantum sim-
ulations, the center frequencies for each resonance (ωij)
and their associated relaxation linewidths (Γij) were ex-
tracted from the experimental spectra. A diagonal slice
centered on each resonance in a 2D spectra is fitted
with a Lorentzian curve to extract Γij and ωij . Emis-
sion center frequencies ωe1g = 2π × 377.210 THz and
ωe2g = 2π × 384.245 THz were extracted for resonances
SA and SB shown in Fig. 4. The relaxation linewidths
Γe1g = 2π × 0.2446 THz and Γe2g = 2π × 0.1450 THz
were extracted by slicing along the diagonal of SA and
SB respectively. Slicing along the diagonal through SC
and SD extracted parameters Γe1e2 = 2π × 0.1446 THz
and Γe2e1 = 2π × 0.0716 THz respectively. The zero-
quantum simulated spectra utilized the same parame-
ters as the single-quantum simulation. The transition
dipole moments were µe1g = 2.537 × 10−29 C·m and
µe2g = 3.584× 10−29 C·m.

V. DOUBLE-QUANTUM 2D SPECTRA

Double-quantum 2D spectra were acquired by using
the pulse sequence shown in Fig. 6(a), where the conju-
gated pulses A and D arrive after pulses B and C. The
first two pulses can excite double-quantum coherence be-
tween the ground state and doubly excited states. The
relevant energy levels, as shown in Fig. 6(b), include the
ground state |g〉, two singly excited states |e1〉 = |52P1/2〉

and |e2〉 = |52P3/2〉, and three doubly excited states

which are two-atom states |d1〉 = |52P1/2, 5
2P1/2〉, |d2〉 =

|52P1/2, 5
2P3/2〉, and |d3〉 = |52P3/2, 5

2P3/2〉. For conve-
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FIG. 4. (a) Red curve shows the laser spectrum between
375.107 THZ and 386.23 THz. Note that the laser spectrum
is much broader than the spectra range shown here. The pro-
jection of the single-quantum spectra onto the emission axis is
shown as the blue curve. The D1 and D2 transitions are shown
respectively. (b) Experimental measured single-quantum 2D
spectrum of Rubidium vapor at 160 ◦C. (c) Simulated single-
quantum 2D spectrum matched to experimental data.

nience, the frequencies of |e1〉 and |e2〉 are labeled D1 and
D2, respectively. The frequencies of the doubly excited
states |d1〉, |d2〉, and |d3〉 are 2D1, D1+D2, and 2D2,
respectively. Using this pulse sequence, the excitation
process is different from the single-quantum excitation.
The first pulse, B, creates single-quantum coherence be-
tween the ground state and the singly excited states.
The second pulse, C, converts the single-quantum coher-
ence to double-quantum coherence between the ground
state and the doubly excited states. The third pulse, A,
converts the double-quantum coherence back to single-
quantum coherence. The fourth pulse, D, converts the
single-quantum coherence to a population in the singly
or doubly excited states, which emits a fluorescence sig-
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FIG. 5. (a) Experimental and (b) simulated zero-quantum
2D spectra of a Rb vapor. The spectral amplitude is plotted
with the maximum normalized to 1.

nal. To detect the double-quantum signal, the fluores-
cence is measured by PD2 and its output is demodu-
lated by a lock-in amplifier referenced to the mixing sig-
nal ΩS2 = ΩB + ΩC − ΩA − ΩD. For the energy levels
in Fig. 6(b), this excitation process includes 18 path-
ways represented by the double-sided Feynman diagrams
shown in Fig. 6(c). In all pathways, a double-quantum
coherence between the ground state and one of the dou-
bly excited states evolves during the second time delay
T . The dynamics of double-quantum coherence can be
measured by scanning T in double-quantum 2DCS. For
two independent, non-interacting Rb atoms, the contri-
butions from all 18 pathways cancel out, leading to a van-
ishing double-quantum signal. However, the cancellation
is not complete if there is the interaction between the
Rb atoms that breaks the symmetry, resulting in a non-
zero double-quantum signal. Double-quantum 2DCS has
been proven to be extremely sensitive detection to dipole-
dipole interactions and collective resonances in dilute K
and Rb atomic vapors [22–24, 26, 27, 29].

The double-quantum signal was measured as time de-
lays T and t are scanned while time delay τ is fixed.
Fourier-transforming the signal into the frequency do-
main generates double-quantum 2D spectra. A typical
double-quantum 2D spectrum is shown in Fig. 7(a),
where the spectral amplitude is plotted with the maxi-
mum normalized to 1. The x and y axes are the emission
frequency ωt and the double-quantum frequency ωT , cor-
responding to the time delays t and T . There are four
peaks in the double-quantum 2D spectrum. The double-
quantum frequencies of these peaks match the frequen-
cies of the two-atom doubly excited states 2D1, D1+D2,
and 2D2, since the double-quantum coherence oscillates
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FIG. 6. (a) Time ordering of excitation pulses for performing double-quantum 2DCS. (b) Relevant energy levels of Rb atoms
including single-atom (e1,e2) and two-atom states (d1,d2,d3). Two-atom interactions cause an energy shift (∆ω) to the two-
atom states shown as the green dashed lines. No interactions would be described by the solid black lines. Shown are two
example transitions between states g→ d1 with energy ωd1g and another transition between states e2 → d2 with energy ωd2e2 .
(c) Double-sided Feynman diagrams representing possible excitation quantum pathways in double-quantum 2DCS using the
pulse sequence in (a).

at these frequencies during time delay T . The emission
frequencies of these peaks are D1 and D2. Each peak
has contributions from multiple pathways represented by
double-sided Feynman diagrams labeled accordingly in
Fig. 6(c). The double-quantum 2D spectrum reveals the
two-atom collective resonances and dipole-dipole inter-
actions involving both 52P1/2 and 52P3/2 states. For Rb
atoms, there is also a single-atom doubly excited state
52D at 2π × 770.5 THz. The double-quantum signal as-
sociated with 52D has been observed before [23] as two
off-diagonal peaks with the double-quantum frequency
at ωT = 2π × 770.5 THz and the emission frequency at
ωt = 2π×384.2 and 2π×386.3 THz. However, in the cur-
rent experiment, the laser spectrum was centered at∼810
nm and does not have sufficient intensity at the wave-
length required for exciting 52D. The double-quantum
signal associated with 52D was not observed here.
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FIG. 7. (a) Experimental and (b) simulated double-quantum
2D spectra of a Rb vapor. The spectral amplitude is plotted
with the maximum normalized to 1.

The experimental frequency-domain double-quantum
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2D spectrum can be reproduced by calculating contribu-
tions from all pathways in Fig. 6(c).

S
(4)
DA(ωT , ωt)=

S0(µe1gµd2e1 + µe2gµd2e2)

ωT − ωd2g + iΓd2g
(12)

×

(

µe2gµd2e2

ωt − ωd2e2 + iΓd2e2

−
µd2e1µge1

ωt − ωe1g + iΓe1g

)

S
(4)
DB(ωT , ωt)=

S0(µe1gµd2e1 + µe2gµd2e2)

ωT − ωd2g + iΓd2g
(13)

×

(

µe1gµd2e1

ωt − ωd2e1 + iΓd2e1

−
µd2e2µe2g

ωt − ωe2g + iΓe2g

)

S
(4)
DC(ωT , ωt)=

S0µ
2
e2gµ

2
d3e2

ωT − ωd3g + iΓd3g
(14)

×

(

1

ωt − ωd3e2 + iΓd3e2

−
1

ωt − ωe2g + iΓe2g

)

S
(4)
DD(ωT , ωt)=

S0µ
2
e1gµ

2
d1e1

ωT − ωd1g + iΓd1g
(15)

×

(

1

ωt − ωd1e1 + iΓd1e1

−
1

ωt − ωe1g + iΓe1g

)

The simulated double-quantum spectra used param-
eters extracted from the experimental spectra with fit-
ted Lorentzian curves. The double-quantum center fre-
quencies extracted from the experimental spectra were
ωd1g = 2π× 754.213 THz, ωd2g = 2π× 761.358 THz, and
ωd3g = 2π× 768.509 THz. The emission center frequen-
cies (ωe1g, ωe2g) were identical to those extracted from
the single-quantum spectra. The remaining frequency
terms are

ωd3e2 = ωe2g −∆ω (16)

ωd2e2 = ωe1g −∆ω (17)

ωd2e1 = ωe2g −∆ω (18)

ωd1e1 = ωe1g −∆ω (19)

where ∆ω = 2π×100 MHz. The terms ωe1g and ωe2g are
the same used for the single-quantum spectra simulation.

The remaining relaxation terms are

Γd3e2 = Γe2g +∆Γ (20)

Γd2e2 = Γe1g +∆Γ (21)

Γd2e1 = Γe2g +∆Γ (22)

Γd1e1 = Γe1g +∆Γ (23)

where ∆Γ = 2π × 15 GHz. The terms Γe1g and Γe2g

were the values extracted from the experimental single-
quantum spectra.
The energy splitting ∆ω and relaxation shift ∆Γ are

brought about by the interaction of individual atoms. A
case where ∆ω = ∆Γ = 0 would suggest no interactions
between individual atoms. This would lead to a double-
quantum spectra with S

(4)
DD = S

(4)
DC = 0 and S

(4)
DA = S

(4)
DB 6=

0 which is not reflected by the spectra in Fig. 7.
VI. CONCLUSION

In conclusion, we have implemented a broadband
collinear optical 2DCS experiment on Rb atoms and ob-
tained a complete set of single-quantum, zero-quantum,
and double-quantum 2D spectra including both D-line
transitions of Rb. The single-quantum 2D spectrum
shows the coherent coupling between two D-line transi-
tions. The zero-quantum 2D spectrum reveals the coher-
ence between two excited states. The double-quantum
2D spectrum is a result of the dipole-dipole interaction
and collective resonance between two atoms. Simulated
2D spectra based on the perturbative solutions to the
OBEs agree well with the experimental spectra. The
measurements in Rb atoms complement previous 2DCS
studies of K and Rb with a narrower bandwidth that cov-
ers two D-lines of K or only a single D-line of Rb. The
broadband excitation enables the possibility of double-
quantum and multi-quantum 2DCS of both D-lines of
Rb to study many-body interactions and correlations in
comparison with K atoms.
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