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The optical theorem is a fundamental aspect of quantum scattering theory. Here, we generalize
this theorem to the case where the incident scattering state is a superposition of internal states
of the collision partners, introducing additional interference contributions and, e.g., providing a
route to control the total integral cross section. As in its standard form, forward scattering plays
an essential role in the multichannel optical theorem, but with interference terms being related to
the inelastic forward scattering amplitudes between states in the initial superposition. Using the
resultant control index, we show that extensive control is possible over ultracold collisions of oxygen
molecules in their rovibrational ground states, and of ®*Rb-8*Rb collisions, promising systems for
the first experimental demonstration of the quantum interference control of the total scattering cross

section.

I. INTRODUCTION

The multichannel optical theorem is a remarkable
result in scattering theory that relates the imaginary
part of the elastic forward amplitude to the total scat-
tering cross section [1, 2], a consequence of probabil-
ity conservation during the scattering. No matter how
complicated the scattering, all information about the
total cross section is contained in the elastic forward
scattering. Discovered first for light by Sellmeier [3]
and Rayleigh [4], the optical theorem was subsequently
extended to quantum mechanics by Feenberg [5] and
Bohr et al.[6], and has been used in many areas, such
as atomic, molecular and optical physics [7, 8], plasma
physics [9], astrophysics [8], atmospheric physics [7, 8],
nuclear physics[10-12] and high-energy physics [13].

The standard optical theorem assumes an initial pure
state of fixed energy. Here we extend this theorem to
a broader class of initial states, a superposition at a
fixed energy that generates new and interesting inter-
ference contributions. We then demonstrate the utility
of the coherent optical theorem in controlling the total
scattering cross section. Examples of efficient control of
ultracold atomic and molecular collisions are provided.

Over the past decades, progress in cooling techniques
has enabled the creation of ultracold gases of atoms
and molecules[14]. Nevertheless, loss of coherence is
caused by collisions between the atoms/molecules and
limits their use in quantum information science [15—
18]. On the other hand, such collisions are essential
for understanding ultracold chemistry [19, 20]. For-
tunately, some ultracold collisions can be controlled
due to the ability to fully define the internal states
of the atoms/molecules, and due to the small value
of the kinetic energy relative to the perturbations in-
duced by external fields. As a consequence, the vast
majority of ultracold control scenarios are based on
external fields (magnetic, electric or optical) [21, 22],
with molecules/atoms prepared in a well-defined inter-

nal state. In these strategies, the control knobs are the
field parameters (strength, frequency, etc.).

However, this approach, as noted below, has deficien-
cies, motivating a different strategy. That is, the control
of the internal degree of freedom at ultracold tempera-
ture enables the preparation of quantum superpositions
of internal states that can be used to induce interfer-
ences between scattering amplitudes, in analogy with
the double slit experiments [23, 24]. Then, instead of
control via variation of field parameters, ultracold colli-
sions are controlled by changing the nature of the initial
superposition. The resultant effect on the system is the
principle of coherent control [23].

In previous work, we demonstrated that the ultra-
cold regime is ideal for coherent control and that con-
trol can be achieved for resonant processes such as colli-
sional spin exchange [25], which can be completely sup-
pressed (or activated), via destructive (constructive) in-
terference. Control is achieved without persistent ap-
plication of external perturbations. In particular, the
collision partners (atoms or molecules) need not have
electric and(/or) magnetic dipole moments to be coher-
ently controlled. For example, collisions of nonmagnetic
homonuclear molecules, like Hy or Sry, could be manip-
ulated. Moreover, the absence of external field could
be important for high-precision measurements (for ex-
ample with Sro molecules [26, 27]) where suppressing
external perturbations is significant.

At present, contrary to the unimolecular processes
[28], the observation of coherent control of bimolecular
processes is still an open experimental challenge due to
a number of issues. First, the preparation of the ini-
tial superposition is experimentally challenging. Con-
ditions on the coherent control of scattering events re-
quire either entanglement of the external and internal
degrees of freedom [29-32], or superposition of degener-
ate magnetic sublevels (an m-superposition) [33]. How-
ever, recently, some progress has been made in preparing
m-superpositions in Hy molecules and its isotopologues



[34-36]. Secondly, our previous study of coherent con-
trol at ultralow temperatures [25] focused on state-to-
state cross sections, and indicated a need for compli-
cated coincidence measurements of the two scattered
molecules [37, 38]. On the other hand, the total cross
section, considered here, could be experimentally eas-
ier to measure and control. 0 Below we demonstrate
the utility of the coherent multichannel theorem in con-
trolling the total scattering cross section. The theorem
allows to answer the following fundamental questions:
How does the standard optical theorem generalize when
the scattering is of an initial superposition of internal
states? What are the new insights for coherent con-
trol of the total cross section arising from this general-
ization? And, with these new insights, can we iden-
tify atomic and/or molecular collisions promising for
a first experimental demonstration of coherent control
of the total scattering cross section? Answering these
questions is important for the development of this com-
pletely new control strategy for ultracold collisions and
for applications in other scattering scenarios.

The structure of the paper is as follows. We first de-
rive the coherent multichannel optical theorem (Section
II) and, in the rest of the paper, use the resultant the-
orem to address the control related issues raised above.
In Section III, we compare the derived formulas with
the standard form of the optical theorem. The coherent
optical theorem allows us to define a coherent control
index for the total integral cross section (ICS) in Sec-
tion IV, which we then use to analyze promising systems
for experiments in Section V. Exact scattering calcula-
tions are presented which show impressive control over
the total cross section for the experimentally realizable
ultracold ®Rb-8°Rb and 705-1704 collisions. We con-
clude in section VI.

II. DERIVATION

Consider an initial superposition of Ng,, degener-
ate internal states of the scattering partners denoted
|i) = |va)|ve). Here vg p are the quantum numbers
characterizing the internal states of the molecular or
atomic collision partners A+B. The initial state is:

Nsup

1=1

where the z-axis is defined along the initial relative mo-
mentum k. Here a; are the superposition coefficients,
7 = (r,0,¢) is the relative position between the two
collision partners, and £ is composed of all internal co-
ordinates contained in |).

After the collision, the system is in a superposition of
scattered spherical waves in all open channels [1]:
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where k; is the final relative momentum in the state |j)
and
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is the scattering amplitude from the initial superposi-
tion to the final state |j). Here, f,_,; is the scattering
amplitude from state |i) to |j). The overall wavefunc-
tion therefore obeys the boundary condition:
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The optical theorem can be derived by imposing con-
servation of probability via the continuity equation:

r
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where j(7) = fd{%\lf*(ﬁ E)VU(F,€) + c.c is the cur-
rent density, u is the reduced mass, é, is the unit ra-
dial vector, d2 = sin6dfd¢ is the solid angle, and c.c
denotes complex conjugate. The continuity equation
states that the scattering flux through any closed sur-
face must vanish, which is also the case for a sphere with
radius r — oo where the boundary condition (4) is im-
posed. This flux, defined as I = lim, _, ff(f').érrde,
can be expanded into three terms: the incoming term
I, the outgoing term I,,; and the interference term
Iing:

Ly + Iout + Iint =0. (6)

The terms Iy, Iou: and I;,; are derived in the appen-
dices A, B and C, respectively, and their final values
are:

hk tot
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Introducing (7),(8) and (9) in Eq. (6), one obtains
the total integral cross section (ICS):
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Consider then the dependence of the total cross sec-
tion on the relative phases (3; between the states of the
initial superposition, which can be explicitly illustrated



by writing the superposition coefficients in their polar
form: a; = |a;|e?’:
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Finally, the symmetric relation between the scattering
amplitudes f;/_,; = fi— can be exploited to obtain the
coherent multichannel optical theorem:

|a;[*Tm[f; (6 = 0)]

sup

olot = Z |a;|*Im[fi (6 = 0)]

sup

Z Z |aillay Tm[f;—i (0 = 0)] cos(Bir — Bi).
i=1 i'>3 (12)

The symmetric form is valid when the time-reversal
symmetry applies. When it does not, Eq. (11) should
be used.

Equations (11) and (12) are the central result of this
work. They establish a relation between the magnitude
of the total ICS and the preparation coefficients of the
internal superposition, enabling coherent control of the
total ICS. Note that they are of the standard coherent
control form [23], indirect scattering terms plus inter-
ference between pairs of states.

III. AN EXTENSION OF THE STANDARD
OPTICAL THEOREM

The coherent multichannel optical theorem (Eq. 12)
establishes the total ICS as composed of a direct con-
tribution (upper line) and an interference contribu-
tion (lower line). The direct contribution is related to
the elastic forward scattering amplitudes of individual
states in the superposition, weighted by their popula-
tions. This contribution would be the same for a classi-
cal mixture with |a;| given, for example by Boltzmann
populations. The standard optical theorem without su-
perposition follows from the direct contribution in the
limit Ngyp =1, a1 = 1:

ot = (10 = 0)]. (13)

k

For the purpose of control, the significance of the in-
terference contribution is that it allows control over the
total ICS by varying the amplitude product |a;||a;| and
the relative phases (8 — ;) between the states in the
initial superposition. The interference contribution is
related to the inelastic forward scattering amplitudes
between the states in the initial superposition, and is the
primary attribute of the coherent multichannel optical

theorem, corresponding to interference between scatter-
ing events in different channels. It indicates that inelas-
tic scattering between the channels involved in the initial
superposition is a prerequisite for coherent control of to-
tal ICS. Note that whatever the system, the interference
terms oscillate as cos(f;; — 3;) and, that contrary to the
elastic component Im|[f;_,;(0 = 0)], the inelastic compo-
nent Im[f;_,;(6 = 0)] can be negative.

Consider now the key quantity that determine the
magnitude of the interference contribution to the total
ICS, (??), the imaginary part of the inelastic forward
scattering amplitude:

[flﬁl (0 = O 4k‘ Z Z TZ*}] Y m/T i — 4,0 m’>»
j m’

] (14)
where Tiﬁj’el’m/ = ZZ ié\/ 20 + lTi’g’Oﬁj’[/’m/, ¢ and ¢’
are the initial and final partial wave, and T ;.0 ;¢ .m’
are the T-matrix elements.  Equation (14) pro-
vides an important perspective, that is: interfer-
ence is a result of scattering of states i) and |i')
into the same states j3,¢',m’.  Further, the sum
D25 20 Timsjorme T3y g1 18 se€1 tO be real. Equa-
tion (14) is required by conservation of probability and
the coherent multichannel optical theorem can also be
proven via this relation.

IV. COHERENT CONTROL OF THE TOTAL
CROSS SECTION

A. Two-state superpositions

The coherent multichannel optical theorem allows for
considerable new insights into the quantum control of
the total ICS. First, consider the case where the ini-
tial superposition of the scattering partners is composed
of two states, W;,(7,&) = e** (cosn|1) + sinne” [2)).
Here, control is achieved by changing the amplitude and
phase of the superposition by varying n and [, respec-
tively. The theorem [Eq. (12)] then takes the form

ottty =" o (m)Tm{ ] + sin?(n)Imf 2]} .
15
+8% cosn sinn Im[f1_2] cos 5.

Insight is afforded by minimization and maximization
of this expression. The optimization with respect to g
is straightforward; maximal for cos 8 = 1 (Bnaz = 0)
and minimal for cos 8 = —1 (Bmas = 7) if Im[f1,2(0 =
0)] is positive. It is the opposite if Im[f12(0 = 0)] is
negative. The optimization with respect to 1 gives:

1 2l )
Mlmin = 5 Areta (Im[fm]—lm[fm] 19

2[Im[f1 2]
Im[fo_,0] — Im[f1»1}> o 17

1
Nmaz = 3 arctan (



Introducing Nmin,Bmin, Mmaz and Bma. in the Eq. (15),
one obtains the minimal and maximal values of the total
ICS:

Orin =2% (Im[f1 1] + Im[f2,2])
_2%\/(Im[f2—>2] — Im[f151])% + 4Im?[f1 2]
(18)
0t =27 (1[0 + [ o]
+2%\/(Im[f2%2} — Im[fli}l])z + 4Im2 [leQ]

(19)

The extent of the control is determined by the magni-
tude of Im[f; 2], a quantity bounded between zero and
\/Im[flﬁﬂIm[fgﬁg]. That leads us to define a control
index:

= Im[f12]]
VIm{ i m[foe]’

which ranges from zero to one. When R. = 1, the
Schwartz equality (|Im[fi2]| = /Im[fi-1]Im[fo—2])
holds. In this case, the minimum value of the total
cross section o!%  vanishes while the maximal value is
the sum of the total cross sections in absence of superpo-
sition, oot = 4% (Im[f11] + Im[foya]) = ol + oot
Hence, the value of R, allows us to quantify the extent
of coherent control of the total ICS and interpret when
systems display the maximum possible degree of control
(which is realized for R.=1). An example of complete
control is the case of ideal resonance, [32], where the
resonance occurs for all final states. Another favorable
situation is when the number of channels significantly
populated in a collision is equal to (or less than) the
number of states in the superposition[39]. The latter
case is illustrated below in the section V.

(20)

B. N.up-state superpositions (Ngup>2)

The optimization can be generalized to a superpo-
sition of Ng,, states via a procedure similar to that
introduced in Ref. [39]. We define the matrix ¥;; =
4 Im[f;—;(6 = 0)] and rewrite the coherent multichan-
nel optical theorem (Eq. 12) as:

oot — a'Sa, (21)

sup

where a is a vector with the components a;.

The optimization problem of finding ¢/ and ¢/
transforms to the solution of an eigenvalue equation for
3

Ya = a,i;’fta, (22)

where the optimized coefficients are the corresponding
eigenvectors. The matrix 3 is block diagonal with re-
spect to the symmetry of the scattering. For example,

a superposition of states with different projections M;,;
of the total internal angular momentum does not dis-
play interference since the imaginary part of the inelas-
tic scattering amplitude between these states is zero.
Therefore, they occupy different blocks of the matrix
3. The resulting eigenvectors only contain the states
with the same value of M;,; and correspond to entan-
gled superpositions thereof.

The best system controllability is obtained if the low-
est eigenvalue of X is equal to zero; i.e. if the deter-
minant of 3 is null. On the other hand, in absence of
control, the determinant is equal to the product of the
diagonal elements. Then, we can define a generalized
control index R.:

N det(X)

For example, in the two-states case, the determinant is
equal to Im[f;_1]Im[fo_,o]—(Im[f1_2])?, and we recover
expression (20). For the three states case, for example,
the matrix X is then defined as:

ar [(Imlfim1] Im[fio] Im(f135]
Y= = Im[fio] Im[foso] Im[forys] | . (24)
Im([f13] Im[fz 3] Im[f3_,3]

The determinant of this matrix is given by:

det(X) = 4% (Im[flal] (Im[fzaz]lm[f:sas] - Im[fzas]Q)

—Im fiso] (Im[ 12l tm] fo] — Im{foa]Tml fiso])

+Im[f1-3] (Im[fl—>2nm[f2—>3] - Im[f2—>2]1m[f1—>3})> -
(25)

Using the definition (23), the control index takes the
form:

5 RELU’”L
.= \/IHI[f1—>1]1m[f2—>2]1m[f3—>3} 7 (26)

where:

RIM™ =2Im([ f1o]Im[ foys)Im[f1-,5] — Im[f11](Im[fo—y5))?

—Im[foryo](Im[f1-3])* — Im[f3—3] (Im[ f10])%.
(27)

As stated previously, the value of R, can be used to
interpret systems and coherent superpositions that give
large control of the total ICS, as is done in the next
section. Specifically, R, close to one indicates the most
efficient coherent control.

V. SYSTEMS WITH EXTENSIVE CONTROL
OF THE TOTAL CROSS SECTION

The theory above provides a foundation for coherent
control of the total ICS. In the next section, we consider
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FIG. 1. Coherent control of the total integral cross section for the cold 7094 1704 collisions at 10 pK from the initial

superposition ¥g (upper panels) and ¥yg (lower panels). (a) and (c):

relative phase 8 with n = 7 /4 fixed.

the coherent control of realistic atomic and molecular
collisions at ultralow temperatures. In particular, we
demonstrate the possibility of extensive coherent con-
trol of total ICS for O2+05 and Rb+Rb collisions. Note
that although the two examples correspond to collisions
of indistinguishable particles, the derived optical the-
orem is general and valid for collisions between either
indistinguishable or distinguishable particles.

A. 0O32+40; scattering

The first system considered is ultracold scattering
of two oxygen molecules in their rovibrational ground
states at 10 puK. This system has been realized experi-

Control landscape; (b) and (d): Control by the

mentally in a magnetic trap at 50 mK [40], with further
evaporative or sympathetic cooling projected to achieve
the uK regime. Hence, it is an advantageous system for
study. The oxygen molecules have spin 1, and a spin-
exchange processes can occur during the scattering. Our
calculations neglect the hyperfine structure. In addition
to computational practicability, there are some physical
arguments to support it. First, the change of hyperfine
state F requires a collisional energy of 3.7 mK and is for-
bidden at ultralow temperature. Second, the increase of
the number of m-states (the lowest hyperfine state has
F = 6) has pros and cons for the control. On the one
hand, there are more final states to control. On the
other hand, more states can be included in the initial
superposition.
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FIG. 2. Coherent control of the total cross section for the ultracold 8®Rb+3°Rb collisions in their lower hyperfine states
F =2 at 50 pK from the initial superpositions (a) ¥g and (b) Wxg. The relative phases 3, are varied, while the relative
populations n = 117 /32, € = 37/8 are fixed for achieving the best control.

The initial internal states considered here is an
entangled superposition between the symmetrized
states |Sa=1,Mg, =-1,Sp=1,Mg, =1) and
|SA == LMSA = O,SB = 17MS’B = 0>:

Up(F ) = e (cosn|1,-1,1,1) + sinne’? |1,0, 1,0)),

(28)
where Mg, . is the projection of the electronic spin
Sa/p along the space-fixed 2z axis. The symmetrized
initial states of identical bosons are defined as:

1
|S1,m1, S2,mz) = m [ [S1,m1) 4 |S2,ma) g
+‘527m2>A |Slvm1>B:|7
(29)

where mo > my, and where the subscript on, for
example, [S1,m1), denotes the states of particle A.
At ultracold temperature, the main contribution in the
total cross section only involves the s-wave. Including
higher partial wave would, however, be necessary be-
yond 5 mK, reducing the control, as shown previously
for the state-to-state cross sections [25].

The scattering results (see Appendix D for computa-
tional details) show that the control index is close to 1,
ie R. = 0.97 (Im[f11]=158.96 a.u., Im[fo_,2]=162.39
a.u. and Im[f;2]=-156.00 a.u.). Figure 1 (a) shows
the total ICS as a function of the relative population
n and phase (8 of the initial superposition (28). The
minimum value of the total ICS is seen to be 68 times
smaller than the maximum value (11745 and 795427
A2, respectively), confirming the analysis in terms of
the control index. This control can also be analyzed by
decomposing the total cross section into the different

state-to-state cross sections. The large extent of con-
trol can be explained by 3 points. First, in accord with
the Wigner threshold law [41], only two final channels
(]1,-1,1,1) and |1,0,1,0)) substantially contribute to
the total cross section. Second, there is complete control
of the state-to-state cross sections to these two channels,
as illustrated in our earlier work [25]. Thirdly, the opti-
mizing parameters are similar, allowing a simultaneous
control for both final channel.

B. Rb+RbD scattering

A second system of interest is the ultracold scat-
tering of 8Rb atoms in their lower hyperfine states
F = 2 at 50 puK. This system can be readily realized
experimentally in either an optical dipole trap [42, 43]
or an optical tweezer [44], allowing for precise con-
trol over internal and external atomic states. Here
we consider s-wave scattering, consistent with our
preliminary studies that showed that contributions
from | = 1 partial waves contribute less that 4% at
50 K. We first examine results for a scattering state
prepared in an entangled superposition of three sym-
metrized states |Fy =2,Mp = —2,F, =2, Mp, =2),

|Fy =2, Mp, = —1,F, =2 Mg, =1) and
|F1 = Q,Mpl = O,FQ = 2,]\4'172 = 0>
Ugp(F,¢&) = eikz<cosn sinel|2, —2,2,2)
+siny sinee’ 2, -1,2,1) (30)

+cose e \2,0,2,0)).

Here, M denotes the projection of the total angular
momentum F' = I + S along the z axis. The states are



chosen recognizing that only the states with the same F
value will interfere. The angles n,e € [0,7/2] determine
the relative populations, and 8,7 € [0, 27] the relative
phases of the superposition.

In this case, the value of the control index (Eq. (26))
is 0.83, showing the robustness of control. We find that
the minimum value of the total cross section (see Fig.2
(a)) is 11 times smaller than the maximal value (24,669
and 263,065 A? respectively).

Here, the control is less effective than for the case
of the scattering of oxygen molecules, but the advan-
tage of the rubidium case is in experimental implemen-
tation. That is, ultracold rubidium atoms are widely
available in optical dipole traps [42, 43] or, more re-
cently, in optical tweezer setups [44]. Furthermore, ini-
tial steps toward the creation of entangled superposition
similar to Eq.(30) between two %Rb atoms have been
demonstrated in optical tweezers[44]. However, in these
experiments a magnetic field is applied to lift the degen-
eracy, which would prevent the interference-based co-
herent control. In that case only the low-magnetic field
regime would be appropriate for control. In general,
however, the difficulty associated with coherent control
from initial entangled states is that it is a two step pro-
cess, collisional creation of the entangled state followed
by the subsequent controlled collision. Despite the ex-
perimental challenges associated with this approach we
have examined the entangled case since it is formally
and conceptually instructive.

C. Non-entangled superpositions

The preparation of entangled superpositions (Eq. 28
and 30) does pose an experimental challenge. However,
entanglement is not a necessary condition for control.
Below we consider control in the scattering of indepen-
dently prepared molecules.

For the case of 02405 collisions, the two colliding
molecules are prepared in two different superpositions:

|a) =N (\/cosn [1,-1) + Sinneig |1,0>) eihazagioa

(31)
gy =N (\/sinneig |1,0) + /cosn |1, 1)) eihB2B gian
(32)

where N = (sinn + cosn)~/? is a normalization fac-

tor. ka(kp) and z4 (zp) are the momentum and the
position of the particle A (B), respectively. a4 and ap
are global phases related to the preparation time of the
superposition. Here, for simplicity, we consider states
of A and B with population and relative phase in both
being determined by the same parameter  and . Dif-
ferent choices of control parameters in A and B are also
possible.

The initial superposition is then obtained by symmetriz-
ing the product |¢4) |#5) to give in the relative motion
frame :

\IINE('F, f) _ NQeikzei(aAJraB)

[cosn 11,-1,1,1) +sinye|1,0,1,0)

+ +/cosn sinnei§(|1, —-1,1,0) + 1,0, 1, 1))] (33)

Note that the phases a4 and ap still act as global
phases and hence do not have any effect on the control.

Preparation at the level of the individual molecules
implies that the superposition contains a range of states
with different values of M;,;. Here, there are two
states with M;,; = 0, one state with M;,; = 1, and
one state with M;,; = —1. Since these supplementary
states do not interfere, they are termed satellite states
[23]. The main difference with the entangled cases is
the elastic contributions from the initial satellite states
[1,—1,1,0) and |1,0,1,1). This elastic scattering was
absent for the control of the state-to-state cross section
to|1,—1,1,+1) and |1,0,1,0) in our previous study [25]
but must be included in the control of the total cross
section. Fortunately, the elastic cross section is equal
782.7 A2, almost two orders of magnitude lower than
the other contributions in the total cross section. For
example, with n = w/4 fixed (see Fig. 1(d)), coherent
control of the total cross section by varying the relative
phase is still extensive, with a factor of 41 between the
maximal and minimal values. Therefore, even with a
non-entangled superposition, it is possible to substan-
tially control the total cross section for Os + O scat-
tering.

As an example in the Rb 4+ Rb case, the two colliding
atoms are prepared in two different three-state super-
positions:

[a) = Ng(\/sinn sine |2, —2)

++/cosn sinecei? |2, —1) (34)
++/cosee’? |2,0) )eik“z“em*‘,

) = Na(/sinn sine [2,2)

+y/cosn sinee'® [2,1) (35)
++/cosee’ |2,0) )eiszBemB,

where N3 = (sin7 sin e + cos7 sin e + cose)~1/2.
As in the oxygen case, the initial non-entangled su-
perposition is obtained by symmetrizing the product



[Va) [¥B):

Uy (7€) = N2eikzgilaatan) {cosn sine|2,-2,2,2)
+sinn sinee” |2, -1,2,1) 4 cosee? [2,0,2,0)

+ \/sing cosy sinee'® (|2, -2,2,1) + |2, —1,2,2))
+ \/sin7 sine cosee’? (|2, —2,2,0) + |2,0,2,2))
+ +/cosm sine coseei¥(\2, -1,2,0)+2,0,2,1))|.

(36)

In this case, there are four groups of states: one group
of three states with M;,; = 0, two groups of two states
with M;,; = £1 and two groups of one state with
M;,+ = +2. The total cross section is the sum of the
ICS correspondingly to each group. The two last terms
are uncontrollable and give a large contribution due to
the elastic cross section. Moreover, the groups of initial
states with M, = £1 have a different control landscape
than the group with M;,; = 0, affecting the control.

Coherent control by varying the relative phases is
shown in Figure 2 (b). Here, the ratio max/min is signif-
icantly reduced,relative to the entangled case, to a fac-
tor of two (163,911 and 74,512 A? respectively). With
the non-entangled superposition, the quasi-vanishing of
the total cross section is lost. This difference between
the oxygen and rubidium cases arises from the number
of uncontrollable "satellite" terms [23], prevalent in Eq.
(36). Nevertheless, if the cross section can be accurately
measured, the predicted control is sufficiently large to
be experimentally measurable.

VI. CONCLUSION

We derived the coherent multichannel optical theo-
rem for the scattering of initial coherent superpositions,
a fundamental contribution to scattering theory, intro-
ducing new interference contributions. As an example,
it was then used to address three issues. The first was to
determine how the coherent multichannel optical theo-
rem reflects contributions from an initial superposition
of internal states. As in the standard form of the op-
tical theorem, the forward scattering plays an essential
role. However, the extended theorem shows that inelas-
tic scattering between the states involved in the initial
superpositions is crucial in the optical theorem and here
in applications to the coherent control of the total inte-
gral cross section.

The second issue concerned optical theorem insights
into the coherent control of the total scattering cross
section. The maximal and the minimal values of the
total cross sections were found to be directly related to
the elastic and inelastic forward scattering amplitudes.
If these quantities fulfill the Schwartz equality, the min-
imal value vanishes and complete control is possible.
Furthermore, the Schwartz equality allowed us to define
a control index through which the extent of control can

be understood. These statements were generalized to
include the initial superpositions of Ng,,; internal states
of the collision partners.

Finally, the third issue concerned identifying cold
atomic and molecular collision systems with a large ex-
tent coherent control to motivate experimental demon-
strations of coherent control of scattering. Two in-
teresting cases were examined: O5+05 scattering in
their rovibrational ground state, and the scattering of
rubidium atoms 3°Rb. To examine experimental re-
quirements on the initial state preparation, we consid-
ered both entangled and non-entangled superpositions,
where the latter could be created by preparation of the
individual molecules. Although the entangled states dis-
play greater control, the non-entangled initial superpo-
sitions show sufficient control to be both significant and
experimentally observable. Ultracold O2+04 scatter-
ing was found to allow better control, while ultracold
85Rb+3Rb collisions could be easier to probe experi-
mentally, given widespread availability of ultracold Rb
atoms in either optical dipole traps [42, 43] or optical
tweezers [44]. These two cases demonstrate that a large
degree of control can be obtained for multi-channel scat-
tering, and motivate the first experimental demonstra-
tion of the quantum interference based control of the
total cross section in ultracold atomic and molecular
collisions.
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APPENDIX A: CALCULATION OF THE
INCOMING FLUX

The incoming current density for the superposition
state takes the form:

*

N
_.’ h sup ] i ;
Jin(F) = /dfﬂ Z a;|i)e F
i—1
i @)
sup
v Z ai |i') et*? + c.c.
=1

Using the orthogonality of the channel basis states
(i]i"y = 0;, and Zfil” la;|> = 1, one obtains:

- hk
Jin(T) = o (38)

where é, is the unit vector along 7.
The integral on the closed surface gives:

hik
Iy = lim 22— / &, - 6,.dQ, (39)

r—00 'I_j/



hik g
Iip = lim > —2x / sin @ cos 0d6. (40)
0

r—00 'U,

Since foﬂ sinf cosdf = 0, the incoming contribution
vanishes:

I =0. (41)

APPENDIX B: CALCULATION OF THE
OUTGOING FLUX

The outgoing current density is:

*

zk: r
jout(F) = / QZM Z fsupﬁj ‘.7>
J
eikj/r ,
Zfsupﬂj/(eaqs) r |j > +c.c
j/

(42)

Using the orthogonality relation, equation (42) becomes:

jout(m = %Z k7 | fsup— (0 )|Qér +0 < 1 > . (43)

J

Note that the angular components of the gradient oper-
ator (included in O (T%)) have been neglected. Indeed,
when the limit of r to infinity is taken, those angular
components become negligible in comparison to the ra-
dial component.

The integrated quantity takes the form:
out Zk /‘fsup—m 0 ¢ 2dQ (44)

Using the definitions of the differential cross section ,

difg‘;!’ = | fsup—y7 (0, ¢)?, and of the total ICS, oo =

> dg“‘p dQ, I,.: becomes:

I,y = —Ogup- 45
t wo D ( )

APPENDIX C: CALCULATION OF THE
INTERFERING FLUX

The interference current density takes the form:

B, h
Gt (F) = [ / -

*
Nsup

Z a; |Z> eikz

i=1

3T

Zfsup%g 9 (b) |j>
. (46)
h eik]r )
+m ;fsup—)j(aagb) |]>
Nsup
v Z a; |1) ehk? + c.c.
=1

After the applications of the gradient and the orthogo-
nality relation, the interference current density becomes:

Nsup
7 h * ikr(l—cos
jint(’ﬁ) = [m Z a; fsup—)i(07 (b)@ kr1 %)
i (47)

k il .
L(l + cosb) + rz} ér| +c.c.

As for the outgoing contribution, only the radial com-
ponent of the gradient is considered. The integral on
the closed surface is equal to:

qup
Lint = E a; lim
T—>00

ethr(1=cos0) [11(1 4 cos 0) + ] | + c.c.

27 s
dng/ do sin 0 fsup—i(6, @)
0

(48)

Due to the uniform convergence of the limit, the order of
the integral on ¢ and the limit on 7 can be interchanged.
We focus in the 0 integral first. Then, two limits must
be calculated:

lim Tk’/ d6 sin 0 fsup—i (6, qb)eikr(l_coS 9)(1 + cosd),
T o0 0
(49)

T—00

lim i / d sin 0 feup (0, @)etri=cosd) — (50)
0

We consider the second limit(50) and we make the
changes of variables © = 1 — cosf and K = kr. We
also, for notational clarity, suppress the ¢ dependence
of fsup—i(0, ®) until Eq.(59). Eq. (50) then becomes:

lim [ d6 sin@f(f)etrri—cosd) —
T—>00
’ 2 | (51)
lim dz f(z)e"™*.

K— 00 0



By the Riemann-Lebesgue lemma, this limit vanishes:

2
lim [ dzf(z)e™™ =0. (52)

K—00 0

Now, we focus on the limit (49) and make the same
change of variables:

li)m kzr/ df sin 0 (0)e*T1=cs9) (1 4 cosf) =
T oo 0

_— (53)
lim Ii/o dz f(z)e"* (2 — x).

K— 00

After integration by parts, we obtain:

2 .
lim Ii/o def(z)e"™* (2 —x) =

K— 00

% (Klij;o [f(@)(2 — 2)e™ ] (54)

2
— lim
K— 00 O

(fla)2— x))'ei“dx> .

Using the Riemann-Lebesgue lemma, the second term
evaluates to zero:

lim Ii/ daf(z)e™™™ (2 —x) =

* (i [ - x)e“”]%) .
The first term gives:
: ? iKT _ _Qf(x = 0)
ngr()loff/o dzf(x)e™ (2 —z) = — (56)

2

lim K/ dzf(z)e™™™ (2 —x) = 2if(x =0).  (57)
0

x = 0 corresponds to 6 = 0. Therefore, one obtains:

lim kr/ df sin 0 f(0)e™* (1750 (1 4 cos ) =
0

T—00

2if(0 = 0).

(58)

Then, I;,; becomes, where we restore the ¢ dependence
in f and consider the ¢ integral:

N,
iB sup 27
ot =03 a0 [ d0fupil0 =0.0) e (59)
i 0
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The forward scattering amplitudes from the superposi-
tion foup—i(@ =0, ¢) is then expanded in state-to-state
scattering amplitudes (see Eq. (3)):

Nsup 2w
MLt Z a*ai/ / d(rbfz’—m(e = 07 (b) +c.c. (60)
1,5'=1 0
The forward scattering amplitude does not depend on
¢, so that the integral on ¢ simply gives:

omih R
Iznt - Z CL 2% .fz —>L(9_0)+CC (61)
1,5’ =1
—drh X
Lint = Z Im CL 2% fz HZ( - O)} (62)

1,1/ =1

APPENDIX D: DETAILS OF THE NUMERICAL
CALCULATIONS

02403 scattering

We perform quantum scattering calculations on
Os + O2 collisions using a coupled-channel (CC)
methodology [45] based on the expansion of the scatter-
ing wavefunction in an uncoupled symmetrized space-
fixed basis set composed of direct products of molecular
rotational and spin basis functions and the orbital angu-
lar momentum eigenstates. Most of the computational
details are essentially the same as reported in the pre-
vious work of one of the authors [45]. The CC basis
set was composed of three rotational states (N = 0—4)
and 6 partial waves (£ = 0—10) at 10 pK. The hyper-
fine structure of 7O, was neglected to make the cal-
culations computationally feasible. The CC equations
were integrated on the radial grid from Ry, = 4.0 ag to
Rax = 150 ag with a grid step of 0.04 ag. The T-matrix
elements are obtained from this CC results and are used
to calculate the forward scattering amplitudes:

fl*}j(g - 0

(63)
Finally, the total cross section is calculated using the
coherent multichannel optical theorem (Eq. 12).

Rb+Rb scattering

Quantum scattering calculations of ultracold 3Rb+
8TRb collisions were performed following the same
methodology as in the previous works [41, 46, 47]. The
CC equations were integrated on the radial grid from
Ruin = 2.0ag to Rpax = 300ap with a grid step of
0.005 ag. The calculation of the forward scattering am-
plitude and of the total cross section is the same as that
for O5-O4 scattering.

kaz /(204 1) (20 + 1) Tinos jero-
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