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Neutral alkaline earth(-like) atoms have recently been employed in atomic arrays with individual
readout, control, and high-fidelity Rydberg-mediated entanglement. This emerging platform offers a
wide range of new quantum science applications that leverage the unique properties of such atoms:
ultra-narrow optical “clock” transitions and isolated nuclear spins. Specifically, these properties
offer an optical qubit (o) as well as ground (g) and metastable (m) nuclear spin qubits, all within a
single atom. We consider experimentally realistic control of this omg architecture and its coupling
to Rydberg states for entanglement generation, focusing specifically on ytterbium-171 (171Yb) with
nuclear spin I = 1/2. We analyze the S-series Rydberg states of 171Yb, described by the three
spin-1/2 constituents (two electrons and the nucleus). We confirm that the F = 3/2 manifold – a
unique spin configuration – is well suited for entangling nuclear spin qubits. Further, we analyze the
F = 1/2 series – described by two overlapping spin configurations – using a multichannel quantum
defect theory. We study the multilevel dynamics of the nuclear spin states when driving the clock or
Rydberg transition with Rabi frequency Ωc = 2π×200 kHz or ΩR = 2π×6 MHz, respectively, finding
that a modest magnetic field (≈ 200 G) and feasible laser polarization intensity purity (. 0.99) are
sufficient for gate fidelities exceeding 0.99. We also study single-beam Raman rotations of the nuclear
spin qubits and identify a “magic” linear polarization angle with respect to the magnetic field at
which purely σx rotations are possible.

I. INTRODUCTION

Individually trapped neutral atoms with interactions
mediated by highly-excited Rydberg states have become
a prominent platform for quantum science [1–3]. Most
research to date with arrays of neutral atoms has been
conducted with alkali species, but alkaline earth(-like)
atoms (AEAs) are gaining prominence after bosonic (I =
0) [4–16] and fermionic (I > 0) [17–19] isotopes recently
joined this field. AEAs offer qualitative differences and
quantitative advantages over alkalis. For example, they
offer long-lived metastable states useful for applications
including optical metrology [20]; high-fidelity, lossless,
state-resolved detection via “shelving” [7–9]; and high-
fidelity Rydberg-mediated entanglement [12, 14, 15].

Fermionic isotopes have two potential advantages over
their bosonic counterparts: (1) their optical “clock” tran-
sition is significantly stronger due to hyperfine mix-
ing [21], and (2) the ground and metastable “clock”
states have a nuclear spin degree of freedom decou-
pled from electronic spin, which was recently utilized
as a high-fidelity qubit [17–19]. These optical and nu-
clear degrees of freedom can be identically trapped at
a “magic” wavelength [7, 8, 22] where coherence times
approach the minute scale [13, 17]. Such access to mul-
tiple highly coherent qubit types within a single atom
may obviate the need for heterogeneous qubit architec-
tures, which have become ubiquitous in myriad quantum
science platforms [23–27]. We extend the term omg (“op-
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tical, metastable, and ground”) from a recent trapped ion
proposal [28] to describe neutral fermionic AEAs in this
context.

Here, we analyze the Rydberg-based omg architecture
for 171Yb nuclear spins. We consider a “g” qubit {↓g, ↑g}
encoded in the ground state 1S0 and a “m” qubit {↓m, ↑m
} encoded in the metastable clock state 3P0 [see Fig 2(a)].
These nuclear qubits can be manipulated by stimulated
Raman transitions via other states [17, 18], as is com-
mon for hyperfine qubits in neutral alkali atoms [29] and
trapped ions [28]. The “g” and “m” qubits are connected
via the “o” qubit on the clock transition, and identical
trapping conditions for all four states can be realized at
the clock-magic wavelength of 759 nm where long coher-
ence times are available [20, 22]. We propose an archi-
tecture centered around the “m” qubit to leverage these
degrees of freedom. We show that the combination of a
modest magnetic field (B ≈ 200 G) and optical polar-
ization intensity purity (≈ 99%) is sufficient to perform
> 0.99-fidelity operations on the nuclear qubits via the
clock, Rydberg, and Raman transitions – approaching
the fault-tolerance threshold [30, 31]. We assume a co-
herence time of T ∗2 ≈ 1 sec, limited by mG-level mag-
netic field noise (see Appendix D) as well as off-resonant
scattering from the tweezer traps (see Appendix E). This
decoherence rate (∼ 2π × 1 Hz) can be compared to the
limiting gate operation rate, the anticipated optical qubit
Rabi frequency (Ωc ≈ 2π×200 kHz), suggesting a promis-
ing platform for Rydberg-based entanglement in quan-
tum computers and simulators [32–36], networks [37, 38],
and optical clocks [39–41].
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FIG. 1. Overview of the 171Yb omg architecture. (a) The relevant level structure, showing the metastable (“m”) and
ground (“g”) qubit encoded in the “clock” and ground states, respectively, as well as the “clock” (yellow arrow) and Rydberg
(purple arrow) transitions. Qubit rotations can be performed with stimulated Raman processes via other, strong transitions
(green and red arrows). (b) Overview of operations for “m” qubits. (i) State preparation begins with cooling and optical
pumping (solid arrows are laser pulses and wiggly arrows are emitted photons) in the ground state via an auxiliary transition to
1P1 or 3P1 (green), followed by a global π-pulse on the optical qubit transition (yellow). (ii) Qubit rotations of “m” qubits (red)
are performed with stimulated Raman transitions via other states. (The case is identical for “g” qubits). (iii) Rydberg-mediated
two-qubit gates (purple), where targeted operations can be achieved in two ways (see text). (iv) Global readout is performed
with the “o” qubit, where only the “g” sector fluoresces (translucent green) from light resonant with the auxiliary transition
(green). (v) The “m” qubit can be used for storage that is immune to operations on the “g” qubit, including readout or
rotations. (vi) The “m” qubit must be mapped to the “o” qubit (yellow) to perform readout with state-dependent fluorescence.
There are two ways to perform a targeted read enable operation (see text).

II. THE OMG ARCHITECTURE

There are countless ways to use the “o”, “m”, and
“g” qubits, and the optimal variant of the omg architec-
ture depends critically on the application. For example,
an optical atomic clock [20] with programmable entan-
glement [16] for achieving precision below the standard
quantum limit [39–41] will primarily focus on the “o”
qubit. In this work, we focus on an architecture centered
around the “m” qubit for three reasons: (1) the clock
state is well suited for high-fidelity, single-photon cou-
pling to Rydberg states in the 3S1 series [12, 14, 16], ob-
viating the need for two-photon transitions limited by off-
resonant scattering from the intermediate state [19, 29];
(2) the clock state is well suited for shelving of quantum
information during readout based on fluorescence from
the ground state [7, 42, 43]; and (3) the clock state of Yb
has strong, telecom-band transitions to the 3DJ series
that offer opportunities for quantum networking [37, 38].

For concreteness and to motivate the following analysis,
we focus on the operations shown in Fig. 1(b). The “m”
qubit will be used for computation and storage. Qubits
will be globally initialized by cooling and optical pump-
ing in the ground state via 1P1 or 3P1 followed by a
π-pulse on the clock transition to generate a fiducial reg-
ister in |↑m〉. Rotations of “m” qubits will be performed
with single-beam [18] stimulated Raman transitions via
3S1 or 3D1, which can be applied at the individual-qubit

level via a tightly-focused beam [17] (see Appendix J for
an assessment of technical challenges with tightly-focused
beams). Two- and multi-qubit gates will be performed by
coupling |↑m〉 to a Rydberg state |r〉, which can be ap-
plied at the individual-qubit level with tightly-focused
beams to drive the transition [44] or Stark-shift individ-
ual sites [15, 19], or with coherent transport techniques
based on the 1/r6 scaling of the Rydberg-Rydberg inter-
actions that map proximity onto connectivity [45–47]. Al-
though the latter approach excites all qubits to |r〉 which
introduces a larger error rate, the use of only global pulses
offers an elegant simplicity. Lossless, state-resolved read-
out is performed by mapping qubits to the “o”-type and
then collecting fluorescence from the ground state via its
transition to 1P1 or 3P1 [7, 8, 12, 17]. Fluorescence in the
“g” manifold does not affect quantum information in the
“m” manifold, and thus storage in “m” enables parallel
processes in “g” such as single-qubit readout [42, 43] and
remote entanglement generation [38].

Control of the “o” qubit plays a crucial role for
type-casting and read-enabling. Single-qubit, mid-circuit
readout requires a π-pulse on the clock transition to
be performed at the individual qubit level. This can
be accomplished with a tightly-focused beam or with
a global [8, 9], two-component pulse combined with
coherent transport of the target qubit. Specifically, this
technique would leverage the spatial variation of the
optical phase combined with the ability to move a single
atom by half a wavelength, corresponding to a π phase
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FIG. 2. The S-series Rydberg structure of 171Yb. (a)
The energy levels and spin configurations of the two S-series
described by total angular momentum F = {1/2, 3/2} ver-
sus principal quantum number (n). They asymptotically ap-
proach the hyperfine levels of the core ion fc = {0, 1} split
by 12.6 GHz. The F = 3/2 series is uniquely described by
Stot = 1 since all three spins must be aligned. The F = 1/2
series results from two configurations of the three spins, so
Stot is not a good quantum number in this case. (b) The two
series at small n, where the hyperfine splitting of the 3S1 term
into F = {1/2, 3/2} is smaller than the singlet-triplet split-
ting. (c) The two series at n∗ ≈ 50 − 65 (n ≈ 55 − 70) using
multichannel quantum defect theory for the F = 1/2 series.
The lower inset shows a separation of ≈ ∆HFS between the
two series at n∗ ≈ 55, while the upper inset shows a near
degeneracy at n∗ ≈ 65.

shift, to perform a net 1π-pulse on the target atom
and a net 0π-pulse on the spectator atoms [48, 49].
While we leave further analysis of this approach for
future work, we note that the spatial precision available
with adaptive optical elements such as Acousto-Optic
Deflectors (AODs) is sufficient. Typical AOD-based
tweezer systems have a position-to-radio frequency
(RF) conversion of ≈10 µm/MHz [7, 50], and thus
the ≈10 nm precision required for this protocol to
be performed with a fidelity at the 0.99 fidelity level
corresponds to only kHz-level precision of the RF signals.

III. THE RYDBERG TRANSITION

We now discuss the required operations of this archi-
tecture in detail, beginning with the Rydberg-based op-
erations. Inspired by recent work [12, 14, 16], we consider
Rydberg-mediated entanglement via the 3P0 ↔ 3S1 tran-
sition, where the latter has a principal quantum number
of n ≈ 60 [see Fig 1(a)]. However, we note that a two-
photon transition from the 1S0 ground state could be
used instead [10, 15, 19, 51] at the expense of higher op-
tical power and additional complexity, and was recently
used to perform two-qubit gates on the nuclear spin qubit
in the ground state of 171Yb at low field (≈ 4 G) [19]. We
require a protocol by which only one of the qubit states
couples to the Rydberg level [29, 52]. Although we specif-
ically consider the “m” qubit, the requirements on the
isolation of the Rydberg drive from unwanted “specta-
tor” states is stringent for all qubit choices. The nuclear
spins present a unique challenge due to their relatively
small energy splittings (≈ kHz/G). Hence, the develop-
ment of a high-fidelity two- or mutli-qubit gate protocol
for fermionic AEAs will require a detailed understand-
ing of the Rydberg level structure [19, 51, 53–55]. We
use multichannel quantum defect theory [56] (see Ap-
pendix A) to gain new insight on this structure. We con-
sider S-series Rydberg states (L = 0), but our analysis
can be applied to L > 0.

The presence of a nuclear spin in an AEA creates a
scenario that is qualitatively different from both alkali
and bosonic AEA Rydberg structures. In the case of al-
kali species, the electron-nucleus coupling is small due
to the large orbit of the Rydberg electron, and thus the
total electron angular momentum J is a good quantum
number. In the case of bosonic AEAs, there are two elec-
tron spins but no nuclear spin, so electron total spin S
(i.e. singlet and triplet) and J are good quantum num-
bers. Fermionic AEAs present a system in which there are
three coupled spins: two electrons and a nucleus. Indeed,
the hyperfine structure of the ionic core describes the
Rydberg ionization thresholds [see Fig. 2(a)]. The Ry-
dberg series corresponding to total angular momentum
F = 1/2 is not well described by Stot – meaning that the
singlet/triplet designation is inappropriate – since two
configurations (fc = 0 and fc = 1) both contribute, and
a multichannel quantum defect theory [56] is required.
Conversely, the series corresponding to F = 3/2 can only
be obtained from one configuration (fc = 1) and is thus
well described by Stot = 1. Due to its clean structure
for all n (assuming no perturbers) and its designation
as a “spin triplet,” we target this F = 3/2 series as be-
ing ideally suited for our two- or multi-qubit entangling
operations [19].

Figure 2(b) and (c) shows the spectrum of the F = 1/2
and F = 3/2 series of the S manifold at low principal
quantum number n and effective principal quantum num-
ber near n∗ ≈ 55, respectively. In the small-n limit [57],
the singlet-triplet splitting is much larger than the hy-
perfine splitting of F = {1/2, 3/2} in the 3S1 manifold
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FIG. 3. Analysis of the Rydberg transition. (a) The
six-level system showing the nuclear qubit {↓m, ↑m} in the
clock state and the four mF states in the F = 3/2 Rydberg
state. We target the σ+ “stretched” transition |↑m〉 ↔ |r〉,
but imperfect polarization creates off-resonant couplings to
other states. We parameterize the strengths of these couplings
with

√
χ/2, since polarization intensity purity is associated

with optical power, P , and Ω ∼
√
P . Weighting by Clebsch-

Gordan coefficients is included. (b) The magnetic field maps of
the clock (including hyperfine interaction [21]) and Rydberg
(including the diamagnetic shift [12]) states. (c) Single-atom
π-pulse infidelity, initialized in |↑m〉, under various polariza-
tion impurities χ and magnetic fields B. The color scale is
the population not in |r〉, 1 − Pr. The shapes indicate the
conditions under which Rabi oscillations are shown in Fig. 4.
(d) Single-atom relative phase accrual on the {↓m, ↑m} qubit
resulting from a 2π-pulse on the |↑m〉 ↔ |r〉 transition under
various χ and B. The color scale shows the phase accrual in
units of π radians, where π is expected in the ideal case. (e)
Two-atom π-pulse infidelity, initialized in |↑m↑m〉, under var-
ious χ and B. The color scale is the population not in the |B〉
Bell state, PB (see text). The black lines in (c) and (e) show
where P = 0.99.

(≈ 10 GHz [57]). Near n∗ = 55, the two configurations of
F = 1/2 – analyzed with multichannel quantum defect
theory [56] (see Appendix A) – follow the same trend
line before separating to asymptotically approach the
fc = {0, 1} limits [see Fig. 2(a)]. The F = 3/2 series
has only a single configuration asymptotically approach-
ing fc = 1. The state energies in this series can thus
be modeled using the known energies of the 3S1 series
in the bosonic isotope 174Yb (obtained from Ref. [10])
plus the hyperfine splitting ∆HFS = 2π×12.6 GHz of the
171Yb ionic core (see Appendix B). Figure 2(c) shows
both the F = 1/2 and F = 3/2 series near n∗ = 55,
where the figure of merit is the energy separation be-
tween the two series and the associated resolvability of

(c)

(d)

(a)

(b)

m
r

FIG. 4. Single-atom Rydberg Rabi oscillations. Popula-
tions |↑m〉 (blue) and |r〉 (orange) versus time under various χ
and B conditions. Note that population is not conserved due
to leakage to other states in the six-state system when χ > 0.
(a) χ = 2/3 (fully unpolarized) and B = 0 G. (b) χ = 10−2

and B = 0 G. (c) χ = 2/3 and B = 150 G. (d) χ = 10−2 and
B = 150 G. Note that dephasing mechanisms (see text) are
not included to avoid obfuscating the atomic structure con-
siderations.

a given state. Near n∗ = 55 (lower inset), the ≈ 13 GHz
separation of the states in the F = 3/2 series from the
closest ones in the F = 1/2 series suggests excellent iso-
lation in the presence of strong laser coupling. However,
there are near-degeneracies between the two series, such
as near n∗ = 65 (upper inset), that must be avoided. This
is quantified more precisely by Lu-Fano plots [58] of the
two series (see Appendix A).

We consider the use of the σ+-polarized “stretched”
transition between 3P0 |mF = 1/2〉 ≡ |↑m〉 and 3S1

(n ≈ 60) |mF = 3/2〉 ≡ |r〉 [see Fig. 3(a)] to obviate
the coupling with |↓m〉 in the presence of a slight polar-
ization impurity [dashed arrows in Fig. 3(a)]. (See Ap-
pendix H for analysis of the π-polarized case.) The na-
ture of the F = 3/2 series allows for the standard Landé
g-factors to be used to compute Zeeman splittings. We
find ∆Z/(2π) = mF × 1.9 MHz/G in the low-field limit
and we include the well-known [12] mF -independent dia-
magnetic interaction ∆DM ∼ |d×B|2 that dominates at
B & 800 G. We neglect hyperfine mixing between Ryd-
berg manifolds as there is no significant contribution for
the conditions considered here (see Appendix B). The
magnetic field shifts of the Rydberg states and the 3P0

clock states are shown in Fig. 3(b).
To assess the prospect of gate operations on the |↑m〉 ↔
|r〉 transition, we numerically simulate a drive of strength
ΩR = 2π × 6 MHz on the six-level system (see Ap-
pendix D) for various magnetic fields B and polarization
intensity impurities χ [defined in Fig. 3(a)]. We assume
magnetic field magnitude and orientation uniformity at
the 10−4 level in a well-designed Helmholtz field [59, 60].
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This value of ΩR was chosen based on similar work with
global Rydberg pulses for strontium [12]; tightly-focused
pulses would require less power, albeit with added tech-
nical challenges (see Appendix J). The π-pulse infidelity
(population not in |r〉, 1−Pr) for a single atom is shown
in Fig. 3(c), where even 90% polarization intensity pu-
rity (χ = 10−1) at B = 100 G gives a transfer fidelity of
F ≈ 0.99. The shapes included in Fig. 3(c) denote the
plots in Fig. 4 showing Rabi oscillations during a pro-
longed pulse under those conditions.

We also consider the accrued relative phase on the
{↓m, ↑m} qubit due to the undesired couplings during
a |↑m〉 ↔ |r〉 pulse. Although finite phase accrual due
to light shifts during gates can be tolerated, fluctua-
tions in this phase due to, e.g., intensity fluctuations can
have deleterious effects on the quantum circuit. To ob-
viate this problem, it is clearly optimal to minimize the
phase accrual due to parasitic couplings. To probe this
effect in our system, we consider the accrued phase dur-
ing a 2π pulse on |↑m〉 ↔ |r〉 (see Appendix D 3) for
various magnetic fields and polarization intensity impu-
rities [Fig. 3(d)]. We find that the accrued phase relative
to the ideal case with zero coupling to other Rydberg
states, is ∆φ . 0.01π for B & 150 G for a wide range of
χ. Percent-level fluctuations in this phase are negligible,
and the phase itself is expected to be sufficiently small
for a fidelity approaching 0.99 in intolerant applications.

Finally, we consider the prospects for two-qubit en-
tanglement. Although we are interested in entanglement
of low-lying states such as {↓m, ↑m} via protocols such
as in Refs. [16, 29, 52, 61], we consider only the {↑m, r}
qubit here since operation of this transition is required
in any protocol and thus presents a fidelity limit. We
look at the pulse fidelity in the two-atom case, assuming
C6(n∗ = 55) ≈ 300 GHz · µm6 based on recently mea-
sured values [19] that give a Rydberg interaction shift
UVdW/~ ≈ 2π× 160 MHz (≈ 27Ω) for an inter-atom sep-
aration of r = 3.5µm – deep within the Rydberg block-
ade limit. We consider the entangled “bright” Bell state
|B〉 ≡ (|↑m r〉+|r ↑m〉)/

√
2, where the two elements in the

state refer to the two atoms [12, 62]. We study the pop-
ulation not in |B〉, 1 − PB , after a π-pulse from |↑m ↑m〉
to |B〉 for various magnetic fields and polarization in-
tensity purities [Fig. 3(e)]. Resonances with the Ryd-
berg states |{r⇓, r↓, r↑}〉 ≡ |mF = {−3/2, −1/2, +1/2}〉
occur at magnetic fields where UVdW = [∆z(mF =
3/2)−∆z(mF )]×B. The resonances corresponding to |r↓〉
and |r↑〉 manifest in Fig. 4(e) as regions with low pulse
fidelity, exacerbated by high χ, while the resonance with
|r⇓〉 is not apparent only because the initial state |↑m↑m〉
does not couple to it. This effect is irrelevant at fields of
B & 200 G that we later identify as optimal, and can be
entirely removed by instead driving the |↓m〉 ↔ |r⇓〉 (σ+)
transition since UVdW > 0.

This analysis suggests that our nuclear spin qubit
is a viable platform for quantum science with Ry-
dberg states, enabling two-qubit entanglement and
many-body dynamics at or beyond the current fi-

delity record [12, 14, 29, 63]. We briefly consider in Ap-
pendix K the well-known limitations to coherent Ry-
dberg excitation: laser frequency noise, finite Rydberg
state lifetime, DC Stark and Zeeman shifts, and ran-
dom Doppler shifts due to finite atom temperature. There
are also challenges associated with individual-qubit ad-
dressing [17, 44], which we consider in Appendix J. How-
ever, these technical limitations are ubiquitous across
species and qubit encodings and are thoroughly ad-
dressed elsewhere [10, 12, 62, 64], but some are perhaps
easier to mitigate with AEAs due to their access to higher
Rydberg-excitation Rabi frequencies and colder temper-
atures [12, 15, 16, 18]. The point of this analysis is rather
to demonstrate that the nuclear spin qubit is not limited
by atomic structure under the correct conditions.

IV. THE CLOCK TRANSITION

We now turn to a discussion of the optical clock
transition. As discussed above, global clock pulses are
needed for initialization in the “m” qubit. Also, tar-
geted clock operations for read-enabling can be per-
formed with either tightly-focused clock beams, or poten-
tially with global pulses combined with targeted position
shifts [48, 49]. For the purposes of this discussion, the
most important parameters are the Rabi frequency Ωc

and the trapping frequency ω along the k-vector of the
clock pulse. In either case we assume Ωc ≈ 2π × 200 kHz
is realistic (see Appendix E), which naturally requires
more optical power in the global addressing case. Specif-
ically, based on the well-known transition strength [65],
P = 50 mW would be required for a beam of waist radius
w0 = 20µm aligned along a one-dimensional array [8, 9].
The relevant level structure is shown in Fig. 5(a). We
again choose to drive a σ+-transition to limit the possible
undesired couplings. The Zeeman energies of the nuclear
states are shown in Fig. 5(b), where hyperfine interac-
tions affect the trend in the 3P0 state. The differential
g-factor at low field is ≈ 200 Hz/G (see Appendix C), so
we are reliant on polarization selectivity since the drive
bandwidth will exceed the energy separation.

We analyze a π-pulse of the clock transition, initial-
ized in |↓g〉, for various polarization intensity purities and
magnetic fields. In Appendix F, we consider phase noise
since it constitutes a liability unique to optical qubits.
However, we neglect phase noise here to avoid obfuscat-
ing the internal dynamics and to keep the results general.
Fig. 5(c) shows the population not in |↑m〉, 1−P↑m , and
we find that a field strength of B & 200 G with χ & 10−2

polarization intensity purity is sufficient for population
transfer exceeding 0.99. As a more stringent requirement
than the π-pulse fidelity, we again consider relative phase
accrual, now on the {↓g, ↑g} qubit, resulting from unde-
sired couplings (see Appendix D 3). Specifically, we con-
sider a 2π-pulse on the |↓g〉 ↔ |↑m〉 transition. We find
a relative phase accrual of ∆φ . 0.01π for B & 200 G
and χ & 10−2, sufficient for operations with a fidelity of
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shows where P↑m = 0.99. (d) Relative phase accrual on the
{↓g, ↑g} qubit resulting from a 2π-pulse on the |↑g〉 ↔ |↓m〉
transition under various χ and B. The color scale shows the
phase accrual in units of π radians, where π is expected in
the ideal case. (e) Infidelity due to finite temperature effects
in the four-level system (not including phase noise). 1− P↑m
versus temperature and Rabi frequency. The shapes refer to
Fig. 6.

& 0.99.
Finally, the analysis in Figs. 5(c) and (d) was per-

formed without considering motional degrees of freedom.
We now consider finite temperature and atomic motion
effects. For concreteness, we now assume a global pulse
with k-vector along the radial direction of the tweezer
traps. In Appendix J, we consider pulses propagating in
the axial direction, where the performance in this re-
spect is improved due to the larger disparity between
Ωc and ω. Other technical challenges naturally emerge,
however (see Appendix J). We assume a radial trap
frequency in the tweezer of ωr = 2π × 70 kHz (corre-
sponding to a tweezer with 1/e2 waist radius of 700
nm and depth of 500 µK), which is significantly smaller
than the Rabi frequency Ωc = 2π × 200 kHz. These
trap conditions correspond to a Lamb-Dicke parameter

of ηr = 0.22, where η = kx0 depends on the wavenum-
ber k of the driving laser and the harmonic oscillator
length x0 =

√
~/(2mYbωr) of the atom in the trap. In the

Ωc � ωr limit with “magic” trapping conditions (under
which the trap frequency in the ground and clock state
are equal [7, 22]), we choose the basis states [18, 66] to be

|g, n〉 = |g〉 ⊗ |n〉 and |e, ξ(n)〉 = |e〉 ⊗ eiη(â+â†)|n〉, where
g (e) are the electronic ground (excited) state and n is
the motional quantum number. We perform this analy-
sis with all four states in the ground-clock manifold, but
only list two here for brevity. This basis greatly simpli-
fies the calculation for the case of a strong driving field
since the Hamiltonian becomes sparse. See Appendix G
for details.

At B = 500 G and χ = 10−2, we study the depen-
dence of the π-pulse fidelity on temperature over the
range of T ∈ [2, 20]µK (where temperatures of T . 5µK
are expected [7, 8, 18, 19]), studied for Rabi frequencies
Ω ∈ 2π× [100, 200] kHz [see Fig. 5(e)]. Intuitively, higher
Ωc is more forgiving of higher T , and we predict pulse
fidelities exceeding 0.99 with Ωc = 2π × 200 kHz for
T . 10µK. Note that although we focus here on a single,
relatively high trap frequency [8, 9, 13, 17], the situation
improves with lower ωr, as shown nicely in Ref. [18]. Con-
ceptually, a lower trap frequency gives slower atomic mo-
tion which decreases the Doppler shift. Figure 6 shows
Rabi oscillations under the conditions indicated with
shapes in Fig. 5. Indeed, we find the limit Ωc � ωr
to be relatively immune to thermal effects, as shown for
T = 20µK in Fig. 6(d). Note that, depending on B,
the π-pulse fidelity will begin to decrease with increas-
ing Ω simply because of the increasing coupling to the
“spectator” states. We study this interplay of Ω and B
in Appendix I.

V. SINGLE-BEAM RAMAN GATES

We now turn to a discussion of rotations of the nu-
clear qubits (single-qubit gates) via stimulated Raman
pulses. Inspired by recent work demonstrating Raman-
based control of the “g” qubit [18], we focus on single-
beam Raman gates. Crucially, the splitting of the nu-
clear qubits is much smaller – even in modest field
(. kHz/G) – than the target effective Rabi frequency of
Ωeff ≈ 2π× 1 MHz [18, 28, 29]. Thus, a single beam with
a linear polarization tilted by an angle θ with respect
to the quantization axis (magnetic field) [see Fig. 7(a)]
can provide components that drive both the π- and σ-
transitions of the Raman coupling [18] [see Fig. 7(b)].
As shown in Fig. 1(a), the “g” and “m” qubits can be
controlled identically, only via a different intermediate
state. For clarity, and to match our proposed architecture
shown in Fig. 1(b), we focus on the “m” qubit which can
be controlled via the 3D1 or 3S1 state.

The analysis of the clock transition suggests that oper-
ation at a magnetic field of & 200 G is required for effec-
tive implementation of the omg architecture. This large
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(a)

(b)

(c)
m g
m g

(d)

FIG. 6. Clock Rabi oscillations. The population in |↑m〉
(blue) and |↓g〉 (orange) versus time under various χ and B
conditions. Note that population in these two states is not
conserved as it leaks to |↑g〉 (purple) and |↓m〉 (yellow) when
χ > 0. (a) χ = 2/3, B = 100 G, and Ω/2π = 200 kHz; no
motion. (b) χ = 10−2, B = 500 G, and Ω/2π = 200 kHz;
no motion. (c) χ = 10−2, B = 500 G, and Ω/2π = 100 kHz;
with motion (T = 20µK). (d) χ = 10−2, B = 500 G, and
Ω/2π = 200 kHz; with motion (T = 20µK).

field significantly affects the gate operation – not because
of the Zeeman shift of “m” qubit itself, but because of
the shift on the intermediate state which has electronic
angular momentum (∼ MHz/G). Crucially, the detuning
from the intermediate state ∆R is approximately equal
to the Zeeman splitting on its sublevels ∆e under the
conditions considered here [see Fig. 7(b)]. Therefore, the
use of a F = 3/2 level for the intermediate state at high
field would be drastically different than the low-field case
studied recently where ∆R � ∆e [18].

Instead, we consider a F = 1/2 level, which is available
for both 3S1 and 3D1. At a high field where ∆R ≈ ∆e,
the intermediate state coupling via mF = −1/2 is sig-
nificantly stronger than via mF = 1/2 for a red-detuned
laser, which also means that mF = −1/2 contributes
more to the light shifts on the “m” qubit from the Ra-
man pulse. This presents a unique opportunity: we pre-
dict a “magic” polarization angle θ = θm(B) for which
the differential light shift on the “m” qubit, ∆LS, ex-
actly cancels its Zeeman splitting, ∆g. Performing the
Raman gates at this magic angle constitutes a pure σx
rotation on the Bloch sphere, obviating complications
due to the inevitable ασx + βσz nature of the rotation
when ∆g is left uncompensated. Fig. 7(c) shows the π-
pulse infidelity for the “m” qubit versus θ and the mag-
netic field, clearly showing excellent transfer in a region
around θm(B) that narrows as B increases. This data
uses ∆R = 2π × 200 kHz, and Ωeff ≈ 2π × 1 MHz. Fig-
ure 7(d) shows Ωeff and P↑m and Pe1 (populations in
the target “m” state and intermediate state |e1〉, respec-
tively) after a π-pulse versus ∆R for constant intensity

3P0

3S1 ⁄ 3D1

B-�eldθ

E-�eld

(a)

(b)

(c)

(d)

mm

m

E   = Ecos(θ)V

HE   = Esin(θ)

ΩV

HΩ

Δ  e

Δ  R

Δ  g LS+ Δ

e1

e2
m

e1

FIG. 7. Single-beam Raman gates. (a) The polarization
axis (electric field) of the linearly-polarized Raman beam with
respect to the quantization axis (magnetic field), given by θ,
determines the projections of the electric field onto the ver-
tical and horizontal axes (parallel and perpendicular to the
magnetic field, respectively). (b) The “m” qubit in the clock
state is off-resonantly coupled to an additional excited state
(3S1 or 3D1) via its F = 1/2 level. The vertical and horizontal
components of the electric field drive π and σ transitions with
Rabi frequencies ΩV and ΩH, respectively (see Appendix D).
(c) The π-pulse infidelity of the “m” qubit versus θ and mag-
netic field with constant drive strength of the Raman beam,
detuned from |e1〉 by ∆R = 2π × 200 MHz. The “magic” re-
gion showing improved transfer depends on B and narrows
for larger fields. The contour lines show the 10−2 and 10−3

infidelity levels. (d) Ωeff and P↑m and Pe1 (populations in the
target “m” state and intermediate state |e1〉, respectively) af-
ter a π-pulse versus ∆R for constant intensity corresponding
to ΩV = 2π × 20 MHz when θ = 0.

corresponding to ΩV = 2π×20 MHz when θ = 0 (See Ap-
pendix D). Technical challenges for targeted gates with
a tightly-focused beam are considered in Appendix J.

We focus on ∆R = 2π × 200 kHz, which is used
in Fig. 7(c). As shown in Fig. 7(d), the population
in |e1〉 is Pe1 ≈ 4 × 10−3 under this value of ∆R.
Since the intermediate state has a total decay rate of
Γe ≈ 2π × 500 kHz for 3D1, the effective scattering
rate from |e1〉 is Γeff

e . 2π × 2 kHz, which we should
compare to Ωeff . 2π × 1 MHz, suggesting that Raman
π-pulse fidelities well above 0.99 are possible. Arbitrary
rotations on the Bloch sphere can be accomplished by
using additional pulses with θ = 0 or π/2 such that
there is no Raman condition and the pulse only provides
a light shift for the |↓m〉 or |↑m〉 state, respectively,
thereby providing a controlled σz rotation [18].
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VI. CONCLUSION AND OUTLOOK

This analysis demonstrates that the structure of 171Yb
is well suited for high-fidelity quantum circuits featur-
ing multiple qubit modalities within the same atom.
For concreteness, we focus on ground-clock and clock-
Rydberg Rabi frequencies of Ωc = 2π × 200 kHz and
ΩR = 2π × 6 MHz, respectively, and we show operation
fidelities on both transitions exceeding 0.99 under mag-
netic fields of B & 200 G and polarization impurities of
χ & 10−2. Additionally, we analyze temperature effects
on the clock transition (and refer to Refs. [12, 64] and
Appendix K for consideration of such effects on the Ry-
dberg transition), finding that T . 10µK is sufficient for
clock pulses with fidelity exceeding 0.99. Finally, we an-
alyze single-beam Raman gates for rotations of nuclear
spin qubits and identify a “magic” linear polarization
angle where the pulse-induced light shift perfectly can-
cels the nuclear Zeeman shift. We show the feasibility of
purely σx rotations with Ωeff ≈ 2π × 1 MHz at fidelities
exceeding 0.99. All these conditions are readily available
in current experiments.

We specifically considered 171Yb to exploit its I = 1/2,
built-in nuclear spin qubits; however, other isotopes in-
cluding 173Yb and 87Sr with larger I offer similar op-
portunities albeit with additional control fields required
to isolate only two nuclear spin states [17]. Nevertheless,
larger-I isotopes offer unique opportunities for SU(N)
physics [34, 67] and higher-dimensional computational
spaces such as qudecimals [68] that could be leveraged
for robust encoding [69]. In terms of the structure of S-
series Rydberg states for isotopes with I > 1/2, we ex-
pect a similar behavior where the 3S1 Fmax = 1 + I is
well-behaved since it is a unique configuration of electron
and nuclear spins [51, 53–55].

The omg architecture discussed in this work
uniquely enables new opportunities for shelving-based
readout [7, 17, 42, 43] as well as remote entangle-
ment [37, 38]. However, we note that other variants
of this versatile omg architecture offer additional op-
portunities not discussed here. More generally, this
platform holds promise for programmable entanglement
in atomic clocks [39–41], quantum networking [37, 38],
and quantum computation [32–34, 36]. A similar omg
architecture has recently been proposed [28] and demon-
strated [70] for trapped ions, where the additional
required primitive operations are already compatible
with existing large-scale systems. We believe the same is
true for the neutral AEA-based platform [13–15, 17–19].
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APPENDIX A: Multichannel quantum defect theory

Previous studies of neutral Yb Rydberg levels have de-
termined a multichannel quantum defect theory (MQDT)
representation of the energy level spectrum, including
perturbing levels of valence character (such as 6p2 or
4f135d26p). For the spin 0 isotopes of Yb, this provides
a nearly complete characterization of many symmetries
of the Rydberg series in the energy range extending to
approximately 0.05 eV (12.1 THz) below the lowest ion-
ization threshold. However, for a nuclear spin I = 1/2
isotope such as 171Yb, the hyperfine splitting can couple
different J channels, and in particular the hyperfine in-
teraction causes a strong coupling between the 6sns 1S0

and 6sns 3S1 Rydberg series that gets very strong for Ry-
dberg state binding energies that are comparable to the
hyperfine splitting in the Yb+ ion.

The basic theory that describes hyperfine-induced cou-
pling of different electronic angular momentum channels
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in an atom follows the basic ideas of the frame transfor-
mation theory introduced into MQDT (FT-MQDT) by
Fano, Lu, and Lee [58, 72, 73]. The theory was adapted
to the specific context of hyperfine coupling by Sun and
Lu [74, 75] and extended to heavier complex atoms by
Robicheaux et al. [53]. Our implementation of the the-
ory in the present context focuses on the two channels
that have singlet and triplet character mixed primarily
by the hyperfine splitting of the Yb+(6s1/2) ionic core.

We omit the closed subshell 4f14 from our notation ex-
cept in contexts where its open-shell excitations arise. In
FT-MQDT, the key quantity to determine is the reac-
tion matrix K, in an appropriate representation of the
long-range channels.

For the 6sns Rydberg states of interest here, the only
angular momentum quantum numbers are the ionic core
spin sc = 1/2, the Rydberg electron spin s = 1/2,
and the nuclear spin, I = 1/2 for 171Yb. The reac-
tion matrix is first determined for each value J = S
of the electronic angular momentum, which is a good
quantum number when neglecting the hyperfine interac-
tion altogether. The singlet quantum defect µ0 used here
has been taken from Ref. [76], while the triplet µ1 is
taken from Ref. [10]. Specifically, the electronic reaction
matrix is diagonal in the singlet-triplet representation,
i.e. KSS′ = δSS′ tanπµS . Note that we have approxi-
mated the singlet and triplet quantum defects as energy-
independent, but this could easily be improved to obtain
spectroscopic accuracy for these calculations. When the
nuclear spin Hilbert space is included, this “eigenchannel
representation” [56] of the reaction matrix for the quan-
tum number F = 1/2 characterizing the total angular
momentum F = I + S has the structure:

〈[I(scs)S]FMF |K|[I(scs)S
′]FMF 〉. (A1)

The first step of the FT-MQDT is application of a
straightforward recoupling into a representation that in-
cludes the total angular momentum quantum number of
the core. That is needed because the ionization thresh-
olds depend on the ionic core total angular momentum
fc = 0 or 1, where fc = I + sc. The recoupling coefficient
looks like 〈(Isc)fc|[I(scs)S]〉(F ), which is proportional to
a 6-j coefficient as in standard references. The resulting
2-channel FT-MQDT K-matrix which can be viewed as
energy-independent for sufficiently high Rydberg states
with n & 35 is equal to:

K =

(
4.1088 1.6922
1.6922 2.1549

)
, (A2)

where the first channel corresponds to the lower ionic
hyperfine threshold fc = 0 and the second channel cor-
responds to the upper threshold fc = 1. If we set the
zero of our energy scale to the degeneracy-weighted av-
erage of the two hyperfine thresholds, the two thresh-
old energies Efc are given in terms of the hyperfine
splitting ∆HFS = 2π × 12.6428121 GHz as {E0/h =
−9.482109, E1/h = 3.160703}GHz.

At this point, bound state energies En are determined
by solving for roots of the following equation:

det {K + tanπν} = 0, (A3)

where the diagonal matrix ν consists of effective quantum
numbers in the two channels, defined for energies below
the lower threshold, by:

νfc(E) =

√
Ry(171Yb)

Efc − E
. (A4)

Here, Ry(171Yb) is the Rydberg constant for this
electron-ion system, i.e. the infinite mass Rydberg con-
stant multiplied by the ratio between the reduced
electron-171Yb+ mass and the bare electron mass.

The resulting bound state Rydberg energy levels are
displayed in the form of Lu-Fano plots [58] in Figure 8.
These Lu-Fano plots illustrate the behavior of the F =
1/2 Rydberg series as the principal quantum number in-
creases. The energy levels with respect to the ground
state are obtained by inverting (A4) to calculate Efc , and
subsequently shifting them by the energy of the lower
ionic hyperfine threshold relative to the ground state.
These values are plotted in Figure 2(d). We note that
near-degeneracies occur between the two series in the re-
gion where they begin to diverge and then slip by modulo
1 in Fig. 8. It is thus best to avoid this regime, which is
why we focus on n∗ ≈ 55.

It should be noted that the present 2-channel model
of the 6sns Rydberg series does not include some of the
channels that can cause additional perturbations, as have
been studied in the literature. See Figures 4 and 5 of
Ref. [76], for example, which shows that level pertur-
bations such as 4f146p2 and 4f135d6s6p occur for low
principal quantum numbers below about n ≈ 25, but
these are unlikely to occur for any of the Rydberg series
considered in the present study. Strictly speaking, the
F = 1/2 Rydberg series and Lu-Fano plot should include
the 6snd3D1 Rydberg series as well, but our estimates
suggest that the amplitude of mixing with the 6sns3S1

series is small and only of order 10−3, and for this reason
the 6snd series are not included in our MQDT model.
Moreover, the 3D1 and 3D2 quantum defects are in the
range 0.72-0.76 and thus well separated from the 6sns
levels of interest here. Similarly, an exact treatment of
the F = 3/2 series would include the coupling of 3S1

states to 1D2,
3D1, and 3D2 series, but those are also ne-

glected here because the coupling is expected to be small
for this total angular momentum as well.

APPENDIX B: The F = 3/2 3S1 Rydberg series

1. Bare energies relative to F = 1/2

The F = 3/2 3S1 Rydberg series is a simpler series to
handle than the F = 1/2 series due to the fact that it
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is a single channel converging to the fc = 1 ionization
threshold. In order to calculate the energy levels, how-
ever, we require the knowledge of the quantum defect
of the 3S1 Rydberg series. Due to a lack of experimen-
tal spectroscopic data for 171Yb, we draw upon available
data for the bosonic 174Yb isotope to deduce the quan-
tum defect. In particular, the 3S1 series has been mapped
out in Ref. [10]. The energy levels for the 171Yb F = 3/2
3S1 series are obtained by finding the effective quantum
numbers from the measured levels and applying them in
(A4). Note that we use the fc = 1 ionization thresh-
old. This shows that the F = 3/2 and F = 1/2 series
are well-separated by at least ≈ 10 GHz over the range of
effective quantum number n∗ shown in Figure 2(d), even-
tually widening to the hyperfine splitting of the ionic core
of ∆HFS = 2π × 12.6 GHz.

2. g-factor of the F = 3/2 series

Due to the simplicity of the single channel nature of
this series, the respective Stotal, J , and F angular mo-
menta are well-defined, with the caveats mentioned at
the end of Appendix A. This permits the use of the stan-
dard result for calculating the g-factor for this series at
low magnetic fields. At low fields, the total angular mo-
mentum F precesses about the applied field. Thus, we
aim to write

EZ = −〈µ ·B〉 = gFmFµBB, (B1)

where gF is the g-factor of interest.
The magnetic moment depends on the total spin of the

electrons S and the nuclear spin I. Since F = S + I, we
can project the respective angular momenta onto F to
evaluate the matrix element:

〈A〉 =
〈A · F〉
F (F + 1)

〈F〉, (B2)

The dot product can be evaluated easily as

〈S · F〉 =
~mF

2F (F + 1)
[F (F + 1) + S(S + 1)− I(I + 1)] ,

(B3)

〈I · F〉 =
~mF

2F (F + 1)
[F (F + 1) + I(I + 1)− S(S + 1)] .

(B4)

Packaging everything together gives

gF = gS
F (F + 1) + S(S + 1)− I(I + 1)

2F (F + 1)

− gI
µN
µB

F (F + 1)− S(S + 1) + I(I + 1)

2F (F + 1)

(B5)

With gS = 2, gI = 0.4919, F = 3/2, S = 1, I = 1/2, the
g-factor evaluates to 1.9 MHz/G.

3. Diamagnetic shift of the Rydberg series

As mentioned in the main text, the Rydberg states ex-
perience an additional diamagnetic shift in its energy due
to a magnetic field. The diamagnetic Hamiltonian, given
by

HDM =
1

8me
|d×B|2 , (B6)

arises from the term quadratic in the vector potential A
in the Hamiltonian for a charged particle in an external
electromagnetic field. This quadratic term is typically ne-
glected in comparison to the linear term (A · p), which
is responsible for the linear Zeeman effect. However, due
to the scaling of d as n2 for Rydberg atoms, we antici-
pate that the quadratic term is comparable or even larger
than the linear term. Thus, it is important to explicitly
determine the energy shift due to the diamagnetic inter-
action.

To calculate the diamagnetic shift, it will be fruitful
to expose the angular dependence of the Hamiltonian by
writing it in terms of spherical harmonics Ylm(θ, φ). Since
the cross product squared yields a factor of sin2 θ = 1−
cos2 θ, we can rewrite it as

∆EDM =
e2B2

8me
〈r2 sin2 θ〉, (B7)

=
e2B2

8me

4
√
π

3

〈
r2

(
Y00 −

1√
5
Y20

)〉
. (B8)

An application of the Wigner-Eckart theorem reduces the
problem to calculating the reduced matrix element of the
r2 operator and the factors arising from the angular de-
pendence. The former can be dealt with using a variety
of numerical tools developed in recent years to calculate
matrix elements of Rydberg states. In particular, we uti-
lize the “Alkali.ne Rydberg Calculator” (ARC) 3.0 pack-
age [77] as the code has been expanded recently to sup-
port calculations for AEAs. For the angular-dependent
factors, we find that for the 3S1, F = 3/2 manifold, only
Y00 contributes a non-zero value. Moreover, it is indepen-
dent of the mF values. It follows that the four Zeeman
states experience the same diamagnetic shift which scales
as

∆EDM/h = 2.4 kHz/G2. (B9)

Comparing with the linear Zeeman shift of 1.9 MHz/G,
we see that the two shifts become comparable at ∼ 800 G.
Thus, we may neglect the diamagnetic shifts for most
purposes. In any case, the diamagnetic shift does not af-
fect the energy selectivity due to the equal shifts of all
mF states.

4. Hyperfine mixing between Rydberg series

We address the possibility of hyperfine mixing within
the 3S1 Ryberg manifold by diagonalizing the full Zee-
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man Hamiltonian for the Rydberg atom, treating the nu-
cleus, the 6s core electron, and the Rydberg electron as
separate entities. The basis of choice is the hyperfine basis
|[(Isc)fcs]FMF 〉. We find that the Zeeman shift is linear
for the mF = ± 1

2 states in the two series, up to 1000 G,
indicating that there is no significant mixing between the
Rydberg series.

Another possible mixing channel is the diamagnetic
coupling between the 3S1 and 3DJ manifolds. This
arises from the Y20 term in the diamagnetic Hamil-
tonian. We assume that the coupling is significant
when

∣∣〈3S1|HDM|3DJ〉
∣∣ / ∣∣E(3DJ)− E(3S1)

∣∣ & 0.1, cor-
responding to ≈ 10% amplitude admixture. To get an
order of magnitude estimate, we neglect the angular de-
pendency in 〈r2 sin2 θ〉 by taking 〈r2〉 ∼ 5n4/2, effec-
tively setting an upper bound for the matrix element,
and use

∣∣E(3DJ)− E(3S1)
∣∣ ∼ 0.3/n3 (atomic units).

For n∗ ≈ 55, the 10% amplitude admixture occurs at
B ≈ 600 G, rendering this effect negligible at ≈ 200 G.

APPENDIX C: Hyperfine mixing in the “clock”
state

For the bosonic species of AEAs, the clock transition is
typically doubly-forbidden as it is a J = 0 to J ′ = 0 tran-
sition, with ∆S = 1. On the other hand, the fermionic
species has a weak admixture of the 3P0 clock state with
the 1P1 state arising from the hyperfine mixing of states
with the same F . This small 1P1 character in the clock
state enables a non-zero electric dipole coupling between
the clock and ground states.

Although the hyperfine mixing allows us to drive the
transition between the ground and clock states at large
Rabi frequencies (∼ 200 kHz as stated in the main text),
the hyperfine mixing complicates the Zeeman effect ex-
perienced by the clock hyperfine sublevels in the presence
of a magnetic field. The full Zeeman effect is described
by the total Hamiltonian

Htotal = HZ +HA +HQ, (C1)

where we have the usual Zeeman Hamiltonian

HZ = −µ ·B, (C2)

and the corrections from the hyperfine and quadrupole
effects

HA+HQ = AI·J+Q
3
2I · J(2I · J + 1)− IJ(I + 1)(J + 1)

2IJ(2I − 1)(2J − 1)
.

(C3)
We will need to diagonalize (C1) in order to describe the
Zeeman effect across all values of the applied magnetic
field. We adopt the methods and convention of [21] to
calculate the Zeeman map of the clock state across a large
range of magnetic field values. Accordingly, the Zeeman
Hamiltonian of (C2) is written as

HZ = (gsSz + glLz − gIIz)µ0B, (C4)

where gs ≈ 2, gl = 1, gI = µI

µB |I| are the g factors of the

electron spin, orbital angular momentum, and nuclear
spin respectively; and µ0 = µB/h is the Bohr magne-
ton in units of Hz/T. The angular momentum operators
here are dimensionless. The quadrupole Hamiltonian can
be dropped as Q = 0 for I = 1/2 [57]. Thus, the only
correction that we need to include is HA.

For the 1S0 ground state, it experiences only a linear
Zeeman shift due to the fact that J = 0, hence there is
no hyperfine correction. Thus, the energy shift (in units
of Hz) is

∆ν(1S0,mF ) = −gImFµ0B. (C5)

For the 3P0 clock state, the hyperfine mixing between
the 3P0 and 3P1 states leads to a Breit-Rabi expression
given by

ν(3P0,mF ) =
1

2

(
ν(3P0) + ν(3P1)

)
+

1

2

(
ν(3P0)− ν(3P1)

)
×

√
1 + 4

∑
F ′ α

2|〈3P0
0, F |HZ |3P1, F ′〉|2

(ν(3P0)− ν(3P1))
2

,

(C6)

where

ν(3P0) = ν(3P0
0) + 〈3P0

0|HZ |3P0
0〉

+ 2(α0α− β0β)〈3P0
1, F = I|HZ |3P0

0〉,
(C7)

ν(3P1) = ν(3P0
1) +

∑
F ′

(
α2〈3P0

1, F
′|HZ |3P0

1, F
′〉

+ β2〈1P0
1, F

′|HZ |1P0
1, F

′〉
)
.

(C8)

The matrix elements are taken between states of pure LS
nature, as denoted by the superscript 0. The constants
{α, β} and {α0, β0} are known as the intermediate cou-
pling and hyperfine mixing coefficients as they character-
ize the extent of the admixture of the atomic states:

|3P0〉 = |3P0
0〉, (C9)

|3P1〉 = α|3P0
1〉+ β|1P0

1〉, (C10)

and

|3P0, I, F 〉 = |3P0
0〉+ (α0α− β0β)|3P0

1〉
+ (α0β + β0α)|1P0

1〉.
(C11)

Most importantly, these coefficients are related to exper-
imentally measurable quantities:

τ(3P1) =

(
ν(1P1)

ν(3P1)

)3
α2

β2
τ(1P1); (C12)

τ(3P0) =

(
ν(3P1)

ν(3P0)

)3
β2

(α0β + β0α)2
τ(3P1); (C13)

δg = (α0α− β0β)

√
8

3I(I + 1)
, (C14)
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Table I. Table of parameters for 171Yb. Parameters with †

are taken from [78].

Parameter Value

|α|† 0.996

|β|† 0.125

δg† 2.73×10−4

|α0| 1.41×10−4

|β0| 3.33×10−5

where τ is the lifetime of the state, and δg is the differ-
ential g-factor for the clock state, such that gI(

3P0) =
gI + δg at weak magnetic fields. These expressions can
be used to estimate the values of the coupling constants,
which are summarized in Table I.

APPENDIX D: Numerical simulation of multilevel
dynamics

1. Method overview

We employ a numerical model to analyze the dynam-
ics of the clock and Rydberg multilevel systems. For a
general system of n states composing the basis S =
{|1〉, . . . , |n〉} with energies ~ × {ω1, . . . , ωn}, we write
the total, time-dependent state |ψ(t)〉 as

|ψ(t)〉 =

n∑
k=1

ak(t)e−iωkt|k〉, (D1)

where its “free-evolving” components have been explic-
itly divided out from the amplitudes a1, . . . , an. This
choice is convenient for the later computation of phases
discussed in Appendix D 3. In this frame, the Hamilto-
nian for the system in the presence of a drive of strength
Ω and frequency ω has only off-diagonal components,

Ĥ(t) = ~
n∑
b=1

∑
a<b

Ω

2
gba(χ, q)ei(ω−ω0−ω̃b

a)t|b〉〈a|+ H.c.,

(D2)
where the usual rotating wave approximation comparing
ω to some chosen reference energy ω0 (e.g. the differ-
ence in mean energies of the ground and clock or clock
and Rydberg manifolds) has been used, and ω̃ba is the
energy of the a↔ b transition relative to it. We also con-
sider a transition-dependent factor gba(χ, q) modulating
the “principal” drive strength Ω of the targeted tran-
sition. gba(χ, q) provides the correct couplings for spe-
cific polarizations q ∈ {0,±1} of the drive field, with
additional weighting for impurities χ therein as well as
Clebsch-Gordan coefficients, as discussed in the main
text. In general, Ω and ω may be time-dependent as well
to account for intensity and/or phase noise, respectively

Table II. Table of Clebsch-Gordan weighting factors for all
transitions of interest in this work in the presence of a σ+

(q = 1) drive, according to Eq. (D5).

F a ma
F F b mb

F W (F a,ma
F , F

b,mb
F , 1)

Ground-clock (1S0 ↔ 3P0)

1/2

+1/2

1/2

+1/2
√

1/2

+1/2 −1/2 1

−1/2 +1/2 1

−1/2 −1/2
√

1/2

Clock-Rydberg (3P0 ↔ 3S1)

1/2

+1/2

3/2

+3/2 1

+1/2 +1/2
√

2/3

+1/2 −1/2
√

1/3

−1/2 +1/2
√

1/3

−1/2 −1/2
√

2/3

−1/2 −3/2 1

(see Appendix F), in which case we take ωt → φ(t) =∫ t
0
ω(t′) dt′ .

Expanding further on the transition-dependent drive
strength modulation factor gba(χ, q), we formally define
this quantity in terms of two distinct parts,

gba(χ, q) = ρ(χ;ma
F ,m

b
F , q)

×W (F a,ma
F , F

b,mb
F , q).

(D3)

The first, ρ(χ;ma
F ,m

b
F , q), accounts for effects due to po-

larization impurity in terms of the parameter χ intro-
duced in the main text. With q held fixed for a given
drive polarization, the corresponding weighting factor is√

1− χ for transitions satisfying mb
F −ma

F = q, while for

all other, “parasitic” transitions, the factor is
√
χ/2 to

conserve total power in the drive across all three possible
polarizations,

ρ(χ;ma
F ,m

b
F , q) =

{√
1− χ if mb

F −ma
F = q√

χ/2 otherwise
. (D4)

The second,W (F a,ma
F , F

b,mb
F , q), imposes weighting by

Clebsch-Gordan coefficients and dipole selection rules on
all non-principal transitions, normalized to that for the
targeted transition. This factor is conveniently defined in
terms of the usual Wigner 3-j symbols,

W (F a,ma
F , F

b,mb
F , q) =

(
F b 1 F a

mb
F ma

F −mb
F −ma

F

)
(
F b 1 F a

m̄b
F −q −m̄a

F

)
(D5)

where m̄a
F and m̄b

F = m̄a
F +q are the quantum numbers of

the principal transition. The values of this function used
for our calculations are shown in Table II.
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With these definitions, we include as an example the
form of the Hamiltonian for the six-level clock-Rydberg

manifold, subject to a σ+ drive on resonance with the
|↑m〉 ↔ |r〉 transition:

Ĥc↔R = ~
Ω

2



0 0 H.c. H.c. H.c. 0

0 0 0 H.c. H.c. H.c.√
χ
2w
(
− 1

2 ,−
3
2

)
ei(3∆+δ)t 0 0 0 0 0√

χ
2w
(
− 1

2 ,−
1
2

)
ei(2∆+δ)t

√
χ
2w
(
+ 1

2 ,−
1
2

)
ei2∆t 0 0 0 0

√
1− χw

(
− 1

2 ,+
1
2

)
ei(∆+δ)t

√
χ
2w
(
+ 1

2 ,+
1
2

)
ei∆t 0 0 0 0

0
√

1− χ 0 0 0 0



|↓m〉

|↑m〉

|r⇓〉

|r↓〉

|r↑〉

|r〉

. (D6)

Here, we write the six-state basis for the clock-Rydberg
manifold as {|↓m〉, |↑m〉, |r⇓〉, |r↓〉, |r↑〉, |r〉}, where the
Rydberg states |rX〉 are ordered by their mF values. For
brevity, we also use w(ma

F ,m
b
F ) ≡ W (1/2,ma

F , 3/2,m
b
F )

and define ∆ and δ as the differences in energy (up to
a factor of ~) between the adjacent mF states in the
Rydberg and clock manifolds, respectively.

For the multi-atom case of the clock-Rydberg tran-
sition, we generate the appropriate Hamiltonian for N
atoms in the product-state basis S = SN using the single-
atom form in Eq. (D2):

ĤN (t) =

N∑
k=1

Î⊗
k−1

⊗ Ĥk ⊗ Î⊗
N−k

+
∑

|A〉,|B〉∈S

VA,B |A〉〈B|
(D7)

where Î is the n×n identity operator for a single atom, Ĥk

is the single-atom Hamiltonian for the k-th constituent,
and ⊗ denotes the Kronecker product. VA,B encodes in-
teractions at the atom-atom level between the N -atom
states |A〉 and |B〉 including, for instance, the UVdW Ry-
dberg interaction.

Numerical simulation is accomplished using the stan-
dard fourth-order Runge-Kutta integration scheme [79]

for the Schŕ’odinger equation. We define the grid of dis-
cretized times tk = k dt , k = 0, . . . , Nt over which
the state vector is integrated using the time-discretized
Hamiltonian Ĥk = Ĥ(tk) for dt � 2π/Ω suitably short
and Nt dt appropriately long.

2. Magnetic field noise

We are additionally interested in analyzing the effect
of magnetic field noise on the atomic dynamics. We first
note that fluctuations should occur over time scales cor-
responding to . kHz frequencies due to large inductances
expected in coils found in realistic experimental appara-
tuses. Thus we can assume that the field noise is slow

compared to our laser pulses, and hence we consider a
field that varies only on a shot-to-shot basis. To simulate
this, we average the time evolution of the state vector
over a series of N trials (we use N = 30 in our calcula-
tions), for each of which the magnetic field strength B
is sampled from a Gaussian distribution with standard
deviation 1 mG and variable mean value held fixed for all
trials. We choose the standard deviation as a good ap-
proximation to the Johnson white noise found in servos
that are typically used to control the current in magnetic
coils [59, 60].

We consider magnetic field noise in this way for the
analyses of both the ground-clock and clock-Rydberg dy-
namics. We find that in both cases the effect of this noise
is negligible, and in the latter it is indiscernible. We there-
fore only include it in this work for the ground-clock dy-
namics. The main effect of this noise, as stated in the
main text, is to reduce the coherence time of the nuclear
spin qubits to T ∗2 & 1 s. However, this effect can be miti-
gated by e.g. dynamical decoupling.

3. Relative phase accrual on a qubit

Since we calculate the full evolution of the state vec-
tor, the integration scheme described above may also be
used to find the relative phase accrued between two basis
states over some time interval. Given the calculated time-
dependent state vector |ψk〉 = |ψ(tk)〉, it is straightfor-
ward to find the relative phase between two components
|a〉 and |b〉 of |ψk〉 as

∆ϕka,b = arg

(
〈a|ψk〉
〈b|ψk〉

)
. (D8)

We note here that, recalling Eq. (D1), the free-evolving
components of the phase have already been explicitly re-
moved, and hence Eq. (D8) gives the accrued phase due
only to externally applied drives to the dynamics.

For use in our numerical analysis of both the clock and
Rydberg transitions, we are interested in calculating this
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relative phase between the two mF states of the ground
(clock)-state manifold after an effective 2π-pulse has been
applied on the ground-clock (clock-Rydberg) transition.
While the dynamics governing the value of this phase are
in general complicated for the systems featured in this
work, it is useful to consider the limit of strong magnetic
field and small polarization impurity. In this limit, there
are essentially no undesirable couplings, and hence both
transitions simplify to a two-level system (states |g〉, |e〉
representing one state of a qubit and its corresponding
excited state) undergoing Rabi oscillations with dressing
from a third, uncoupled spectator state |s〉 (representing
the other state of the qubit). We model the time depen-
dence of the total state as

|ζ(t)〉 = cos

(
θ0

2

)[
cos

(
Ω

2
t

)
|g〉+ sin

(
Ω

2
t

)
eiγ(t)|e〉

]
+ sin

(
θ0

2

)
eiϕ0 |s〉

(D9)

where Ω is the Rabi frequency (defined in terms of oscil-
lations in probability, not amplitude), and γ(t) depends
on the polarization and detuning of the drive. The con-
stants θ0 and ϕ0 describe the initial state dressing, and
we note that it is necessary to have 0 < θ0 < π (i.e. to
have non-zero initial population in both |g〉 and |s〉) in
order for the desired relative phase to be well defined.
For the targeted case of a resonant drive in this work,
we also take γ(t) = 0. From this, it is easily seen that at
the targeted 2π time τ2π = 2π/Ω, the relative phase ac-
crued between the ground and spectator states over the
duration of the drive is invariably π for all θ0, ϕ0,

|ζ(τ2π)〉 = −
[
cos

(
θ0

2

)
|g〉+ sin

(
θ0

2

)
ei(ϕ0+π)|s〉

]
.

(D10)
We note that, as seen in Figs. 3 and 5, the numerical
calculations agree well with this expected behavior.

4. Modeling the single-beam Raman transitions

In order to show the existence of the “magic angle”
for the single-beam Raman transitions between adjacent
“m”-qubit states as in Fig. 7, we now move to a model
featuring an atom in the presence of a driving field that
has well-defined polarization. In this model, we consider
a linearly polarized plane wave incident on an atom with
k-vector perpendicular to a surrounding magnetic field.
Rather than its impurity χ, we parameterize the wave’s
polarization by modified Stokes parameters θ, the an-
gle between the electric and magnetic fields. Computa-
tionally, this amounts to replacing the weighting factor
ρ defined in Eq. (D4) with another formulation ρ̃ to be
derived below.

We considering a cylindrically symmetric system
(spanned by orthogonal unit vectors r̂, ϕ̂, and ẑ in the

typical fashion) with magnetic field oriented along the
z-axis. The incident plane wave is then defined to have
k-vector pointed along r̂ and polarization vector

ε̂(θ) = ϕ̂ sin θ + ẑ cos θ. (D11)

Next, we define an additional set of orthogonal unit vec-
tors ε̂q to describe the space of possible ways that a clas-
sical dipole moment may rotate,

ε̂±1 =
1√
2

(
ϕ̂± ir̂

)
, ε̂0 = ẑ, (D12)

where the first two correspond to right-hand (parallel to
ẑ) and left-hand (anti-parallel to ẑ) rotation about the
z-axis, associated with σ± transitions, and the last to
simple oscillation on the axis, associated with the π tran-
sition. Without loss of generality we may associate ε̂+1

with the σ+ transition specifically, and find the appro-
priate form for ρ̃ as

ρ̃(θ;ma
F ,m

b
F ) = ε̂∗mb

F−ma
F
· ε̂(θ) (D13)

=

{
1√
2

sin θ if |mb
F −ma

F | = 1

cos θ if mb
F −ma

F = 0
. (D14)

This modified polarization weight ρ̃ is then inserted into
Eq. (D3), replacing each instance of ρ.

To produce the results shown in Fig. 7(c) and (d), we
consider driving the Raman transition specifically be-
tween the two “m” qubits, using the 3D1 F = 1/2, mF =
−1/2 state as the intermediary, although this system is
easily mapped to cases where the use of a 3S1 intermedi-
ary may be desirable, or when driving the “g” qubits (for
equivalent F and mF quantum numbers of the interme-
diary state), as shown in Fig. 1(a). In our simulations, we
use a drive strength corresponding to ΩV = 2π×20 MHz
when the angle θ between the driving electric and sur-
rounding magnetic fields is zero. Estimating the reduced
dipole matrix element for the 3P0 ↔ 3D1 transition from
a mixture of past determinations [80], said drive strength
requires approximately 2 mW of power in a beam of 1 mm
waist radius. Of course, the required power will be much
lower for targeted Raman gates with a tightly-focused
beam.

The subsequent analysis of the simulated dynamics of
this system is identical to that for the clock and Ryd-
berg transitions above – we evolve the system initialized
to the |↓m〉 clock state using a Hamiltonian of the form
given by Eq. (D2) and calculate π-pulse fidelity based
on the resulting Rabi oscillations of the target |↑m〉 state
– with the exception that here the effective Rabi fre-
quency Ωeff is also computed. Due to programmatic con-
siderations, this is done in two ways. Specifically, we find
that conditions corresponding to large regions of the con-
sidered parameter space give dynamics featuring high-
frequency probability oscillations of sufficient amplitude
as to make the determination of the effective 2π time (and
by extension the effective Rabi frequency) difficult using
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FIG. 9. Off-resonant light shifts and scatter from clock
pulses and tweezers. (a) The Rabi frequency Ωc and off-
resonant differential light shift of the clock transition versus
the clock laser power for a global readout beam (20 µm beam
waist). (b) & (c) The off-resonant scattering rate of ground
(1S0) and metastable (3P0) states versus the clock laser power
(b) and tweezer power (c).

only the time-domain oscillations. To combat this effect,
we compute Ωeff by two methods: The first-maximum
(FM) method is to simply find the time corresponding to
the first local maximum in the probability oscillations of
the initial state and invert it to find the corresponding
frequency. The second method (FT) is to find the fre-
quency as the lowest-frequency component of the Fourier
transform of either the target or initial states. The FM
method is cheap to compute with good precision, but
strongly affected by the aforementioned problem with
high-frequency oscillations. On the other hand, the FT
method escapes this problem, but requires one to sim-
ulate the dynamics out to longer times in order to give
good resolution at low frequencies. For each set of condi-
tions, Ωeff is obtained via both methods; if the two results
agree to within 5% of the FT value, then the FM result
is preferred, otherwise the FT. We find that simulating
to 25µs gives good low-frequency resolution under the
range of conditions considered.

APPENDIX E: Off-resonant light shifts and scatter
from clock pulses and tweezers

Beyond magnetic field stability, another important con-
sideration for the fundamental limitation on coherent
evolution is off-resonant dressing and scattering of the
atoms from both the optical pulses and the tweezers. We
focus on the clock pulse in particular since the proposed
use case is novel, while this effect from the Rydberg pulse
is universal and similar to other recent work [12, 19].

When an atom is placed into a laser beam, the electri-
cal field E causes the atomic dipole moment p to oscillate
at the driving frequency according to p = αE, where α
is defined as the polarizability of the atom. The real part
of the polarizability introduces the light shift and the
imaginary part gives the scattering of the photons. The
calculation of the atom’s polarizability gives us the eval-

uation of both the light shift and scattering rate, which
we consider for both the clock pulse and tweezers.

As we discussed in the previous section, a Rabi fre-
quency Ωc = 2π × 200 kHz for the clock transition is a
realistic value with reasonable polarization purity, tem-
perature and magnetic field stability requirement. On
the other hand, as we increase the Rabi frequency it is
also accompany with the sharp increasing of the clock
pulse intensity due to the relation Ωc ∝

√
Pc, where Pc

is power of the clock laser. Since the light shift is pro-
portional to the intensity, the increasing of the Rabi fre-
quency will also introduce a significant differential light
shift between the ground and clock states that comes
from the off-resonant coupling of the clock laser to all
the other transitions. For the tweezers, this differential
light shift is fully canceled under the given clock-magic
wavelength [22].

In Figs. 9 (a), we calculate both the Rabi frequency and
the differential light shift introduced by the clock laser
under various laser power for an assumed beam waist ra-
dius of w = 20µm. (We focus on global pulses here, but
will return to tightly-focused pulses in Appendix J.) This
suggests the off-resonant light shift is comparable to the
Rabi frequency under our typical experiment condition,
and thus laser intensity noise can be converted into a no-
ticeable noise of laser detuning ∆. To evaluate the effect
of this power fluctuation, we consider a simple two-level
system, where a π-pulse of Ωc = 2π × 200 kHz indicates
a square pulse length of τ = 2.5µs, which corresponds
to a window function W (δ) = (sin(δτ/2)/(δτ/2))2 that
filters out all the noise with a frequency significant higher
than 1/τ , where δ is the frequency of the noise. Within
this noise bandwidth, a stability better than 1% is trivial
for an active power stabilization setup. For the atom’s
transition under this effective frequency noise, a shot-
to-shot population fluctuation of the excited state is
(∆/Ωc)

2 < (0.01)2 where the differential off-resonant
light shift is significantly smaller than the Rabi frequency.
Thus the effect of this differential off-resonant light shifts
is negligible under our usual conditions, but would be-
come significant as Ωc/2π approaches the MHz scale. On
the other hand, a laser pointing error of 1.4µm will also
cause a 1% change of a laser intensity for a beam waist
around 20µm. This pointing error noise can either be re-
moved by the occasionally checking the Rabi frequency
during the experiment or by adding the active position
feedback to the mirrors.

Beyond the effect of the differential light shift, the life-
time and the coherent time of the atom will be limited
by the off-resonance scattering from both the clock pulse
and tweezers. Figs. 9 (b) shows the calculation of the
scattering rate on the relevant states of the atoms. The
upper plot shows the calculated scattering rate from the
clock laser to the ground and clock state. Under typical
clock pulse intensity, we can find this off-resonance scat-
tering rate is negligible compared to the Ωc. Figure 9(c)
gives the scattering rate of the tweezers at the clock-
magic wavelength, which indicates a more than 1 sec-
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ond lifetime for both the ground and metastable state
atoms under the typical power of the tweezers. This off-
resonance scattering is also negligible for a 2.5µs clock
pulse, and we again emphasize that clock pulses are the
slowest operation in our proposed architecture.

APPENDIX F: Phase noise analysis

Here we are interested in the dephasing effect of laser
phase noise on Rabi oscillations [64] occurring within the
ground-clock manifold. To analyze this effect under re-
alistic conditions and demonstrate the robustness of our
scheme, we characterize the phase noise from one of our
own lasers, tuned to the |↓g〉 ↔ |↑m〉 clock transition dis-
cussed in the main text, and use the measured data in a
simulated drive of the four-state ground-clock manifold
following the procedure described in Appendix D.

First, we describe the procedure to characterize the
phase noise in the laser. Our “clock” laser (λ = 578 nm)
is generated from the second harmonic of an infrared
“master” laser at λIR = 1156 nm, which is locked via the
Pound-Drever-Hall (PDH) technique to an ultra-stable
cavity system produced by Stable Laser Systems. We
then use the slope of the in-loop PDH error signal from
light reflected from the cavity to obtain the locked laser’s
frequency as a function of time and hence compute Al-
lan deviation and the power spectral density (PSD) of
this signal. The measured cavity response is limited by
its linewidth νc ≈ 5 kHz, which gives significant attenua-
tion of the signal near the frequency band of interest at
≈ 100 kHz. We could correct for this effect by including
a “cavity roll-off factor” [81] to accurately portray the
phase noise on our laser, but in this work we consider us-
ing the transmitted light through the cavity to filter this
phase noise [62]. Hence, the phase noise of the transmit-
ted light is accurately represented by our measurement
of the reflected light directly, without including the cav-
ity roll-off factor. We believe this approach will make our
analysis more generally applicable. With this procedure
we calculate the Allan deviation of the measured signal
to be σ . 2 × 10−15 at a τ = 1 s averaging time and
estimate the linewidth of the laser to be ∆ν ≈ 2 Hz from
the PSD, shown in Fig. 10(a), using the β-separation line
method [82].

The phase noise data was then used to generate a re-
alistic, time-dependent drive to a simulated four-level
ground-clock manifold. This is accomplished by taking
a sum over Fourier components that are weighted by
the calculated PSD with random phase shifts sampled
from a uniform distribution. When applied in simula-
tion following the description given in Appendix D, we
find that high-contrast Rabi oscillations can be sustained
over more than 20 cycles with this drive, as shown in
Fig. 10(b).

(a) (b)

FIG. 10. Phase noise effects from the clock laser. (a)
Measured frequency noise spectrum from our cavity reflection
without correcting for cavity roll-off. This is an approximation
of the transmitted signal through the cavity that filters phase
noise above the cavity bandwidth (≈ 5 kHz). (b) We simulate
the ground-clock manifold in the presence of a drive with
a time-dependent frequency as described in Section IV and
Appendix D. This drive is measured data, which was used to
generate the noise spectrum in (a). We find that high-contrast
oscillations can be sustained for & 20 cycles before dephasing
causes decay.

APPENDIX G: Finite temperature modeling

We now incorporate finite-temperature effects in our
analysis of single-atom dynamics. In an optical tweezer,
a single atom at non-zero temperature is delocalized over
lengths comparable to the wavelength of the laser; hence
we must include a position-dependent motional phase
factor exp(ik·x) into the drive Ω, where k is the wavevec-
tor of the driving laser. η = kx0 is the Lamb-Dicke pa-
rameter (see the main text). For simplicity, we approxi-
mate the tweezer with a one-dimensional harmonic trap-
ping potential [18, 66] and write the motional phase fac-
tor as exp(iη(â + â†)), where â and â† are ladder op-
erators operating on the Fock basis {|n〉} correspond-
ing to the usual harmonic oscillator states. For brevity,
we denote the motional phase factor and its adjoint as

ξ̂ = exp(iη(â + â†)) and ξ̂† = exp(−iη(â + â†)). For the
case of a “magic” wavelength trap (where the atomic
ground and excited states experience the same trap fre-
quency), the Hamiltonian of the system is [18, 66]

Ĥ = ~
∑
g,e

Ω

2

(
geg(χ, q)e

i(ω−ω0−ω̃e
g)ξ̂ ⊗ |e〉〈g|+ H.c.

)
+ ~ωt

(
â†â+

1

2

)
⊗ Î

(G1)

where |g〉 ∈ {|↓g〉, |↑g〉} and |e〉 ∈ {|↓m〉, |↑m〉}. Î is the
4 × 4 identity operator for the four-level ground-clock
manifold. Ωgeg(χ, q) is the driving term which includes
both the effects of polarization impurity and Clebsch-
Gordan weighting factor (see Appendix D).

For our purposes, we consider Ω � ωr for a high-

fidelity state transfer. The higher-order terms of ξ̂ are
also no longer strongly suppressed and couple a single
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motional state to many other excited motional states at
the same time. To simplify calculations we rewrite the
basis states of the combined atom-Fock Hilbert space as

|g, n〉 = |g〉 ⊗ |n〉 and |e, ξ(n)〉 = |e〉 ⊗ ξ̂|n〉. We then
rewrite the Hamiltonian by inserting the identity resolved
in this basis to the left and right,

Ĥ →

 ∑
n′,g′,e′

|g′, n′〉〈g′, n′|+ |e′, ξ(n′)〉〈e′, ξ(n′)|

 Ĥ

×

(∑
n,g,e

|g, n〉〈g, n|+ |e, ξ(n)〉〈e, ξ(n)|

)
,

(G2)

and define a four-level state vector Gn for the n-th mo-
tional state

Gn =
(
|↑m, ξ(n)〉, |↓m, ξ(n)〉, |↑g, n〉, |↓g, n〉

)
. (G3)

Thus the Hamiltonian can be simplified as:

Ĥ →

(∑
n′

Gn′G
†
n′

)
Ĥ

(∑
n

GnG
†
n

)
=
∑
n,n′

G†n′
(
Gn′ĤG

†
n

)
Gn,

(G4)

where Gn′ĤG
†
n is a 4 × 4 matrix. The Hamiltonian can

then be understood as a 4× 4 matrix under N2 different
conditions that describe the transitions between differ-
ent motional states. These individual 4× 4 matrices can
then be assembled into a N×N table to reduce computer
memory usage in numerical computation, where N is the
highest motional state we want to include in the calcula-
tion. For our calculations, we use N = 100 � kBT/~ωr.
For a given temperature, we use the appropriate Boltz-
mann distribution to construct an initial state vector,
and numerical simulation is accomplished by the method
described in Appendix D.

APPENDIX H: Linearly-polarized drives

In this analysis, we compare the cases of driving
the aforementioned transitions with linearly-polarized
(π) and circularly-polarized (σ+) light. The π-polarized
drives target the ground-clock |↓g〉 ↔ |↓m〉 and clock-
Rydberg |↑m〉 ↔ |r↑〉 transitions, giving ∆mF = 0 as
opposed to ∆mF = +1 for the σ+ transitions. Fig. 11
shows the π-pulse infidelities for both cases, providing a
direct comparison between the π and σ+ transitions un-
der various polarization impurities χ and magnetic field
strengths B.

The π drives introduce greater sensitivity to polariza-
tion impurity, particularly for the clock-Rydberg case,
because a resonant Raman condition exists between the
two nuclear spin states for χ > 0. In contrast, this con-
dition does not exist for the clock-Rydberg case with σ+

(a)

(b)

c

FIG. 11. Comparison of π-pulse infidelity for linearly
(π) and circularly (σ+) polarized drives. (a) Infidelity
for the clock-Rydberg transition case for the linear (left) and
circular (right) drive. (b) Infidelity for the ground-clock tran-
sition case for the linear (left) and circular (right) drive. The
black line indicates where the infidelity crosses 0.01.

drives since the target state is stretched to maximum mF .
Hence, driving the π transition with high fidelity requires
very low polarization impurity (χ < 10−2) and shows
minimal improvement with larger magnetic fields. In con-
trast, σ+ drives yield significantly greater populations in
the target state |r〉 while exhibiting a much higher tol-
erance to impurity. Driving the four-level ground-clock
transition with π-polarization is also inferior to σ+ with
similar reasoning. Fig. 11(b) highlights important dis-
tinctions between the drives across lower magnetic fields.
We find that π-driven clock transitions with χ > 10−2

require larger magnetic field for the same pulse fidelity
compared to the σ+ case.

APPENDIX I: Varying the clock-transition Rabi
frequency

In the main text, we primarily consider the use of
Ω/2π = 200 kHz for the clock transition Rabi frequency.
Here, we vary Ω, neglecting motion and thermal effects,
to identify conditions under which the nuclear spin split-
ting will limit the π-pulse fidelity and Rabi coherence
time. We study the population P↑m in |↑m〉 after a π-
and 9π-pulse from |↓g〉 versus magnetic field and Rabi
frequency with χ = 10−2 (see Fig. 12). For sufficiently
high Ω, the pulse fidelity after 9π is worse than that of
π, which indicates the onset of non-negligible coupling
to the spectator states. Interestingly, we observe non-
monotonic behavior with respect to varying Ω, which we
attribute to resonance effects where the Zeeman shift of
the spectator transition (which depends on B) is within
the bandwidth of Ω. For higher χ this effect would be-
come crippling even for relatively short pulses.
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FIG. 12. Driving the clock transition for various Rabi
and trap frequencies. (a) π-pulse and (b) 9π-pulse, ini-
tialized in |↓g〉, under various magnetic field (B) and Rabi
frequency (Ω) with χ = 10−2. We neglect motion and ther-
mal effects. The color scale is the population in |↑m〉, P↑m . (b)
shows that some non-monotonic behavior develops at high Ω
due to increased coupling to the spectator states. (c) Diagram
of targeted and global pulses and the corresponding relevant
tweezer trapping axes. (d) The infidelity due to the finite tem-
perature effects for a clock beams on the axial direction.

APPENDIX J: Axial addressing & driving the clock
transition at lower trap frequency

Besides the global clock pulse, a tightly-focused beam
could be useful for single-qubit, mid-circuit readout. In a
tweezer system, this can be accomplished by overlapping
the clock laser together with a tweezer. Since a tweezer
has much weaker confinement on the axial direction com-
pared to the radial direction, the consideration of the
motional states change dramatically.

Similar to the calculation for the radial direction in
Appendix G and assuming a Gaussian beam profile with
fixed waist-Rayleigh length relationship, we assume an
axial trap frequency in the tweezer of ωz = 2π × 17 kHz
[corresponding to the same tweezer parameter in the
main text; see Fig. 12(c)]. Under this lower trap fre-
quency, the simulation shown in Fig. 12(d) indicates a
significantly higher fidelity for most cases when compared
with the radial direction. This result can be understood
by considering that an atomic transition is mostly af-
fected by phase noise around the Rabi frequency. The
atomic sloshing motion can introduce an effective phase
noise around the trap frequency, which is particularly
deleterious when the trap frequency is still comparable
to the Rabi frequency. For the case of axial addressing,
since the Rabi frequency is much higher than the trap fre-
quency, the atom is nearly static during the clock pulse
time.

However, other technical problems arise when we ap-
ply the axial driving beam, which also pertain to focused
Raman-based single-qubit gates and focused Rydberg-
mediated two-qubit gates [see Fig. 1(b)]. One issue is
the motional stability of the tweezers and clock laser
beams, which requires a relative displacement smaller
than 0.1µm for an intensity fluctuation smaller than 1%
assuming a waist of 800 nm. This issue can be solved
by adding a flat-top beam shaper, which gives a homo-
geneous clock laser intensity within the beam diameter.
Another potential problem is the crosstalk between the
target atom and its neighbors. However, considering a
tweezer spacing of 2 (3)µm and an addressing beam waist
radius of 800 nm, the laser Rabi crosstalk of the neigh-
boring atoms is ≈ 10−3 (≈ 10−6), which suggests that
the operations in our architecture can exceed the 0.99
fidelity level.

Another insidious technical issue for tightly focused
beams of highly constrained polarization (especially if
it is circular such as the clock and Rydberg beams) is
the need to maintain this polarization for all sites to be
addressed by the tightly focused beams. However, this
may be accomplished by carefully designing the optical
system to put polarizers in the appropriate plane, per-
haps combined with the use of metallic mirrors rather
than dielectric mirrors. Additionally, the Pockels electro-
optic effect could be used to adjust the polarization in
a calibrated map via a polarimeter. Although we leave a
careful study of this effect for future work, we note that
trapped ion systems have been engineering solutions to
such problems for over a decade [83].

APPENDIX K: Technical limitations for the
Rydberg transition

As stated above, we believe that the technical lim-
itations of driving ground-Rydberg transitions for use
in Rydberg-mediated entanglement are thoroughly de-
scribed elsewhere [12, 62, 64], but we briefly consider
them in the context of our architecture. A recurring
theme is the disparate timescales between the clock drives
and Rydberg drives (ΩR > 10Ωc), rendering the Rydberg
drives less sensitive to several technical limitations.

1. Laser frequency noise

Closed-loop frequency stabilization systems introduce
noise peaks, called “servo bumps”, that typically span
≈ 100 kHz to ≈ 1 MHz. This frequency noise gives rise to
a ∆(t)σz term that must be considered in addition to the
Ωσx Rabi drive term, and is well known to have particu-
larly deleterious effects when its characteristic timescale
τ matches 1/Ω [12, 62, 64]. As described above, we con-
sider Ωc = 2π × 200 kHz for the clock transition and
ΩR = 2π× 6 MHz for the Rydberg transition. Therefore,
the clock drive is substantially more sensitive to laser fre-
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quency noise than the Rydberg drive. Indeed, this setting
for the Rydberg transition was recently used in a nearly
identical system with 88Sr [12], showing long-time Rabi
coherence with contrast exceeding 0.99.

2. Motional and trapping effects

Unlike the clock transition for which the differential
polarizability is zero at 759 nm, there is a significant dif-
ferential polarizability at this wavelength for the Rydberg
transition [12]. It is common to blink the traps off dur-
ing Rydberg pulses. (The intended Rydberg-based gates
will not leave population in the Rydberg state after the
pulse.) With the atom in free flight, its motion gives rise

to random Doppler shifts given by ∆ω = 2π/λ
√
kBT/m,

where λ is the optical wavelength, T is the temperature,
kB is Boltzmann’s constant, and m is the mass. Assuming
a temperature of 500 nK at a trap depth of 5 µK (adi-
abatically ramping down from a temperature of 5 µK in
a 500 µK-deep trap), ∆ω ≈ 2π × 16 kHz. This effect is
negligible compared to ΩR = 2π × 6 MHz.

Alternatively, one could leave the tweezer traps on dur-
ing the pulses. As discussed above, the trap frequencies
in a 500 µK-deep trap are at most ≈70 kHz. While this
is comparable to Ωc, it is much smaller than ΩR. More-
over, it is common to ramp the trap depth down by a
factor of 100 bringing us to U = 5 µK ≈ 100 kHz, for
which this frequency is ≈7 kHz. In this setting, ΩR � U .
In this limit, the dominant effect from the trap is the
random differential light shift due to the deviation of
the atomic position from the trap bottom. Similar to the
free-space case, this corresponds to ∆ω ≈ 2π × 15 kHz
when assuming an atomic temperature of 500 nK in the
5 µK-deep trap, and assuming a relative polarizability
of αR/αc ≈ −0.5 [10, 12]. The recent work with Sr [12]

also studied the case with the traps on, finding minimal
difference versus blinking them off.

3. Rydberg state lifetime

Here again, large ΩR helps to mitigate the effects of
decay from the Rydberg state, which again has been dis-
cussed in detail [64]. We consider the use of a Rydberg
state with n∗ ≈ 55, for which we anticipate a lifetime
of τ ≈ 100 µs. The 2π-pulse of our Rydberg gates is
τ2π = 2π/ΩR = 167 ns, which suggests that pulses with
fidelity up to &0.999 are possible when integrating over
the population of the Rydberg state during the pulse.
Working at cryogenic temperatures can further improve
the Rydberg state lifetimes.

4. DC Stark and Zeeman effects

Finally, we consider DC drifts in the resonance fre-
quency of the Rydberg transition originating from mag-
netic and electric field instability. The former is already
considered in Appendix D where we assumed a 1 mG
field instability and showed negligible effects, again ow-
ing to the large separation between ΩR = 2π×6 MHz and
∆B = 2π × 1.9 MHz/G · 10−3 G = 2π × 1.9 kHz. We do
not anticipate DC Stark shifts that are significantly dif-
ferent than those of other atomic species with comparable
n∗ [12, 29], and thus we do not anticipate limitations even
well beyond the 0.99 level due to this effect for n∗ ≈ 55,
albeit perhaps requiring interleaved lineshape measure-
ments or active atomic locking [12, 14]. In-vacuum elec-
trode systems [10, 64, 84] can further suppress the effect
of electric field transients, and so can operation at cryo-
genic temperatures.
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