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It is known that a party with access to a Deutschian closed timelike curve (D-CTC) can perfectly
distinguish multiple non-orthogonal quantum states. In this paper, we propose a practical method
for discriminating multiple non-orthogonal states, by using a previously known quantum circuit
designed to simulate D-CTCs. This method relies on multiple copies of an input state, multiple
iterations of the circuit, and a fixed set of unitary operations. We first characterize the performance
of this circuit and study its asymptotic behavior. We also show how it can be equivalently recast
as a local, adaptive circuit that may be implemented simply in an experiment. Finally, we prove
that our state discrimination strategy achieves the multiple Chernoff bound when discriminating an
arbitrary set of pure qubit states.

I. INTRODUCTION

Closed timelike curves (CTCs) arise as solutions to the
Einstein field equations in general relativity. While the
existence of CTCs is unverified, they bring up the pos-
sibility of time travel and the paradoxes associated with
it [1]. To better understand the properties of these ob-
jects, several quantum information theoretic models of
CTCs have been proposed [2–5].

One such CTC model is that given by Deutsch [2],
where paradoxes associated with time travel using CTCs
are resolved by a self-consistency condition. This self-
consistency condition introduces a non-linearity in the
evolution of a quantum state through a Deustchian CTC
(D-CTC). Standard quantum mechanics demands that
the evolution of an arbitrary state is linear, which places
restrictions on physical evolutions, such as the no-cloning
theorem [6–8] and the Heisenberg uncertainty principle.

Thus, in contrast to standard quantum mechanics, this
non-linearity allows for many remarkable characteristics
associated with D-CTCs beyond what is allowed by stan-
dard quantum mechanics. D-CTCs may be utilized to vi-
olate the no-cloning theorem [9], the Holevo bound [10],
the second law of thermodynamics [11], and enable quan-
tum computers to solve problems in the computational
complexity class PSPACE [12]. (However, note that
these claims have been debated in the literature [13, 14]).

The aspect of D-CTCs that we are most interested
in here is their use in perfectly distinguishing multiple
non-orthogonal quantum states, violating Heisenberg’s
uncertainty principle [10]. We use ideas contained in the
D-CTC-assisted state discrimination method to create a
practical, iterative state discrimination circuit that works
by approximating the behavior of a D-CTC.

Even though D-CTCs are inaccessible, we may simu-
late the evolution of the state of a system traveling along
a D-CTC. Such simulations are important to us not only
because they allow us to gain a better understanding of

the properties of D-CTCs in an accessible setting, but
also because they enable us to exploit their unique char-
acteristics for applications. Simulating a D-CTC is di-
rectly related to computing the fixed point of a quan-
tum channel, which is a difficult task [12]. One D-CTC
simulation method uses polarization-encoded photons as
qubits [15], which involves computing the self-consistent
solution for the state of a system traveling along a D-
CTC. This computation is practical for simple quantum
systems, but it becomes prohibitively expensive for larger
systems. Circumventing this issue, the authors of [16]
proposed a method for simulating CTCs that uses an it-
erative quantum circuit, with the circuit approaching the
behavior of a D-CTC with an increasing number of itera-
tions. It is also “self-contained” in the sense that it does
not involve the discarding of experimental data, unlike
that in [15].

Strategies for discriminating non-orthogonal quantum
states have been analyzed in many different contexts. In
this paper, we restrict our attention to the minimum-
error discrimination of pure states. The case of discrim-
inating two quantum states has been well studied [17–
20]. Optimal minimum-error approaches for discriminat-
ing multiple quantum states have been characterized in a
variety of specific cases [21–26]. A strategy using a the-
oretical apparatus for distinguishing multiple arbitrary
quantum states has been proposed in [27]. Our method
is similar in that it applies to the general task of discrim-
inating multiple (and possibly non-orthogonal) quantum
states.

The major contribution of our paper is a practical state
discrimination strategy for multiple non-orthogonal pure
states that combines the D-CTC simulation circuit of [16]
and the CTC-assisted state discrimination strategy of
[10]. We briefly state our strategy here. Assume that the

set of states to be discriminated is {|ψi〉}N−1
i=0 and that

we are given N copies of an unknown state randomly
selected from this set. Assume that measurements are
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made in the basis {|i〉}N−1
i=0 . Suppose that we have ac-

cess to a set of unitary operations {Ui}N−1
i=0 such that

Ui|ψi〉 = |i〉. Suppose that the N copies of the unknown
state are ordered. Perform a measurement on the first
copy of the unknown state. If outcome j is obtained,
then apply the unitary operation Uj to the second copy
of the unknown state and perform a measurement on the
resulting state. If outcome k is obtained, then apply the
unitary operation Uk to the third copy of the unknown
state. Repeat this procedure until a unitary operation
has been applied to all N states. If outcome l is ob-
tained after measuring the N -th state, then claim that
the unknown state is the state |ψl〉.

Our strategy proves advantageous because it relies only
on a fixed set of local operations and may be imple-
mented by performing measurements on each copy of
a state, with each successive measurement being de-
termined by the outcome of the previous one, i.e., a
local adaptive strategy [18–20]. In this way, our state dis-
crimination strategy is amenable to be implemented in
a practical experiment. See Figure 3c for a schematic of
the method.

Further, we calculate the asymptotic rate of decay of
the average probability of error of our state discrimina-
tion circuit, which we use to show that our state discrim-
ination scheme attains the fundamental limit, i.e., the
multiple Chernoff bound [28, 29], for the general task of
discriminating an arbitrary set of pure qubit states. This
is another desirable property that our state discrimina-
tion scheme possesses.

The rest of our paper is structured as follows. We pro-
vide some preliminaries and set up notation in Section II.
Then, in Section III, we provide our state discrimination
circuit and also show how it can be implemented as a
local, adaptive circuit. In Section IV, we calculate its
average probability of error in distinguishing states. We
show that this probability of error converges to zero in the
limit of infinitely many iterations of the circuit. Finally
in Section V, we consider two examples, and show how
our scheme achieves the multiple Chernoff bound when
discriminating an arbitrary set of pure qubit states.

II. PRELIMINARIES

A. State Discrimination

We first describe the problem of state discrimination
considered in this paper. The goal is to distinguish the
states in the set {ρi}N−1

i=0 , where the state ρi is cho-
sen with probability pi. The minimum error approach
to state discrimination may be pictured as the follow-
ing game between Alice and Bob. Alice and Bob agree
on the set {ρi}N−1

i=0 of quantum states and probability
distribution {pi}i that they will use. Alice prepares a
state ρj from that set with probability pj and sends it to
Bob. Bob then, in an attempt to identify Alice’s state,
performs a measurement described by the set {Mi}i of

measurement operators. He guesses that the state Al-
ice prepared is ρk if he measures outcome k. Bob’s goal
is to find the measurement that minimizes his average
probability of error, defined as follows:

pe :=

N−1∑
k=0

pk
∑
j 6=k

Tr
{
Mjρk

}
= 1−

N−1∑
k=0

pk Tr
{
Mkρk

}
.

(1)
In the case when N = 2, the Helstrom measurement is
an optimal measurement [17].

An alternative approach to the state discrimination
problem is to assume that Bob has n available copies
of the state ρj that Alice selects. In this case, an optimal
measurement is a collective measurement on all n states
ρ⊗nj . In the limit of large n, the optimal error probability

popt
e decays exponentially as

popt
e ∼ e−nξopt , (2)

where the value ξopt is known as the multiple Chernoff
bound [29] and is given by

ξopt = − log

[
max
i 6=j

min
0≤s≤1

Tr{ρsiρ1−s
j }

]
. (3)

The multiple Chernoff bound places a fundamental limit
on how fast the error probability decays for a multiple-
copy state discrimination scheme [29]. See [28] for the
special case when all of the states in the set {ρi}i are
pure.

B. Deutschian Closed Timelike Curves

Next, we describe the model for CTCs that is ap-
plicable to our work—namely, the Deutschian (D-CTC)
model [2]. We note that there also exist other models for
quantitatively describing the behavior of CTCs, namely
post-selected quantum teleportation CTCs (P-CTCs) [4]
and transition probability CTCs (T-CTCs) [5].

The D-CTC model involves two sub-systems: the
chronology-respecting (CR) system S, which does not
travel through the CTC, and the chronology-violating
(CV) system C, which does travel through the CTC.
The different CTC models differ in the manner in which
they resolve or avoid causality paradoxes. In the D-CTC
model, this is accomplished by enforcing the state of the
chronology-violating system to be a fixed point of the
unitary evolution that takes place between the CR and
CV systems.

Let σC be the state of the CV system, and let ρS be the
state of the CR system. In Deutsch’s model, systems S
and C are assumed to be in a tensor-product state ρS⊗σC
before they interact unitarily via the CTC. They then in-
teract according to an interaction unitary VSC before the
CV system enters the future mouth of its wormhole, so
that the state of the composite system after the evolu-

tion is VSC(ρS ⊗ σC)V †SC . We refer to states of the CR
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system as the CV system emerges from the past mouth
of its wormhole and as it enters the future mouth of its
wormhole as “initial” CR states and “final” CR states,
respectively. We define “initial” CV states and “final”
CV states similarly.

The evolution of the CV system is represented by the
quantum channel

NV,ρ : σC 7→ TrS
{
VSC(ρS ⊗ σC)V †SC

}
, (4)

which maps each possible initial CV state to its cor-
responding final CV state when the initial CR state
is ρS . Furthermore, as stated earlier, the D-CTC model
enforces a self consistency condition so as to avoid
“grandfather-like” causality paradoxes. This requires
that an arbitrary state σC of the CV system is a fixed
point of the quantum channel NV,ρ, i.e.,

NV,ρ(σC) = σC . (5)

A solution σC to (5) always exists, although it is not
necessarily unique [2]. The evolution of the CR system
is represented by

MV : ρS 7→ TrC
{
VSC(ρS ⊗ σC)V †SC

}
, (6)

which maps every possible initial CR state to its corre-
sponding final CR state whenever the CV state is σC .
Note that MV (ρS) depends not only on ρS , but also on
σC , whose dependence on ρS is given by (5). Therefore,
MV is not a linear map. The nonlinear nature of this
evolution leads to the host of interesting properties men-
tioned earlier in Section I.

III. CTC-INSPIRED STATE DISCRIMINATION
CIRCUIT

Before we provide our CTC-inspired state discrimina-
tion circuit, we recall how to discriminate multiple non-
orthogonal pure states using a D-CTC [10]. The set of

states to be discriminated is {|ψi〉〈ψi|}N−1
i=0 , and at the

end of the D-CTC-assisted interaction, one may per-
form a measurement in the orthonormal basis {|i〉}N−1

i=0 .

To do so, we require a set of unitaries {Ui}N−1
i=0 such

that Ui|ψi〉 = |i〉 and 〈j|Ui|ψj〉 6= 0 for all 0 ≤ i, j ≤
N − 1, i 6= j. Such a set of unitaries exists for every set
{|ψi〉〈ψi|}N−1

i=0 of states [10]. Let the interaction unitary
VSC of the D-CTC be

VSC =

(
N−1∑
i=0

|i〉〈i|S ⊗ (Ui)C

)
◦ SWAP, (7)

where SWAP is the unitary operator that swaps sys-
tems S and C. The circuit representation of this unitary
is shown in Figure 1. The authors of [10] demonstrated
that σC = |i〉〈i| is the unique, self-consistent solution to
(5) whenever ρS = |ψi〉〈ψi|. That is, the D-CTC-assisted

Ui

VSC

ρS

σC NV,ρ(σC)

Figure 1: The upper system is the CR system and the lower system is the CV
system. The past and future mouths of the wormhole are represented by the
double bars on the left and right. The CR and CV systems interact according to
the unitary VSC before the CV system enters the future mouth of the wormhole.

1

FIG. 1. The upper system is the CR system, and the lower
system is the CV system. The past and future mouths of
the wormhole are represented by the double bars on the left
and right. The CR and CV systems interact according to the
unitary VSC , defined in (7), before the CV system enters the
future mouth of the wormhole.

circuit can be used to map non-orthogonal states to dis-
tinct orthogonal basis states, and hence one can perfectly
discriminate the non-orthogonal states in question.

To outline the functioning of the circuit, we briefly
explain why each σC = |i〉〈i|, for 0 ≤ i ≤ N − 1, is
a fixed point of NV,ρ, i.e., a solution to (5). Suppose
that ρS = |ψi〉〈ψi| and σC = |i〉〈i|. The SWAP gate acts
first and transforms the CR system to the state |i〉〈i|.
Next, the Ui unitary is triggered. The unitary Ui acts
on |ψi〉〈ψi|, which leads to the self-consistency condition
NV,ρ(σC) = |i〉〈i|. Now, if one performs a measurement in
the basis {|i〉}i on the final CR state, one may determine
ρS with certainty. Measurement outcome j corresponds
to the initial state ρS = |ψj〉〈ψj |. Thus, using the D-
CTC, in principle, we are able to discriminate perfectly
the possibly non-orthogonal states {|ψi〉〈ψi|}N−1

i=0 .
The construction outlined above works if we have ac-

cess to a D-CTC. In its absence, we can only construct
iterative circuits that approximate its behavior. Our
major contribution is one such circuit; i.e., we combine
the CTC-assisted state discrimination scheme described
above with a version of a quantum circuit given by [16]
that simulates the behavior of a D-CTC. The circuit
consists of multiple copies of three registers whose nth
copies we label Gn, Sn, and Cn (Figure 2). We will
initialize each of the Gn registers to the state vector√
γ |0〉+

√
1− γ |1〉. We find, however, that for our pur-

poses, it suffices to set γ = 0. Each of the Sn registers is
initialized to the initial CR state ρS , and the C0 register
is initialized to a state ω. At every step of the circuit,
the Gn, Sn and Cn systems interact via the controlled
unitary

|0〉〈0|Gn ⊗ ISnCn + |1〉〈1|Gn ⊗ VSnCn , (8)

where VSnCn
is the interaction unitary in (7) acting on

the Sn and Cn registers. In other words, the procedure



4

G0

G1

G2

S0

C0

√
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Figure 1: The upper system is the CR system and the lower system is the CV
system. The past and future mouths of the wormhole are represented by the
double bars on the left and right. The CR and CV systems interact according to
the unitary VSC before the CV system enters the future mouth of the wormhole.

1

FIG. 2. This circuit simulates a D-CTC with interaction uni-
tary VSC . This figure shows three rounds of interaction. As
the number of rounds n increases, the simulation approaches
the behavior of a D-CTC.

is the following:

1. Apply the controlled unitary between the Gn, Sn,
and Cn registers,

2. discard the Sn and Gn registers, and

3. load the resulting state of the Cn system into the
Cn+1 register, increment n by one, and repeat.

By applying this procedure, for every ρS , the state of
the Cn register converges to the fixed point of NV,ρ as
n→∞ [16]. Note that the rate of convergence is depen-
dent on VSC and the state ω to which C0 is initialized.
We will discuss how to optimize the rate of convergence
with respect to them.

To use this circuit, which is also shown in Figure 2,
in order to discriminate the set {|ψi〉〈ψi|}i of states, the
interaction unitary VSC is set to the one in (7) and the in-
put state ρS is restricted to belong to the set {|ψi〉〈ψi|}i.
Since the state of the Cn register converges to the fixed
point of NV,ρ, the Cn register converges to the state |j〉〈j|
if ρS = |ψj〉〈ψj | [10]. Therefore, by implementing a stan-
dard basis measurement on the Cn register after a suit-
ably chosen n, we have a method for approximately dis-
criminating the states in the set {|ψi〉〈ψi|}i.

One of our major contributions is an equivalent recast-
ing of our state discrimination circuit as a local, adaptive
circuit. The adaptive circuit, which we describe below,
consists of repeated iterations of a fixed two-register pro-
tocol and lends itself directly to experimental implemen-
tation. Another benefit of the adaptive circuit is that it is
not necessary to update a quantum memory throughout
the length of the circuit. The only information necessary
to store in a quantum memory are the n copies of the
unknown state |ψi〉.

We now explain how the original circuit in Figure 2 can
be recast in the simple, adaptive form of Figure 3c. To
perform the state discrimination in an adaptive manner,
we first assume that we have n copies of the unknown
state |ψi〉. By expanding out the VSC unitaries defined

σC

|ψi〉S Ui

|ψi〉S

|ψi〉S

Ui

Ui

. . .

1

(a)

σC

|ψi〉S Ui

|ψi〉S Ui

|ψi〉S Ui

. . .

1

(b)

σC

|ψi〉S Ui

1

(c)

FIG. 3. A series of simplifications of the original state dis-
crimination circuit in Figure 2 that ultimately leads to the
simple iterative circuit in Figure 3c. First, we explicitly ex-
pand out VSC and set the state of the Gn registers to |1〉〈1|, as
this is optimal for performing our state discrimination scheme.
This leads to the circuit in Figure 3a. We also note that the
controlled-Ui gate is short for the gate

∑
i |i〉〈i|⊗Ui. Further,

as the controlling registers are effectively classical, the circuit
can be simplified to Figure 3b. Finally, the iterative circuit
is rewritten in the compact form of Figure 3c. The arrows
do not depict a time-travel loop, but instead depict that the
output of the unitary Ui at one time interval is fed as input
to the C system at the next time interval.

in (7) and by applying the fact that the state |1〉 suf-
fices for each of the Gn registers in Figure 2, it can be
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simplified to the circuit in Figure 3a. We then note that
since the various S registers are traced out at the end
of the circuit, the coherent controls in Figure 3a can be
equivalently replaced with classical controls. That fur-
ther means that the classical control is effectively im-
plemented by first performing a measurement and then
choosing the corresponding Ui gate using the measure-
ment outcome. What we are applying here is the well
known principle of deferred measurement [30]. This en-
ables a further simplification of the circuit to that in Fig-
ure 3b.

Finally, we note that the circuit in Figure 3b consists
of iterations of a single atomic unit, which we denote con-
cisely in Figure 3c. This depiction of our state discrim-
ination scheme is of particular import: to perform our
state discrimination circuit, one only needs two quantum
registers, the ability to perform a standard basis mea-
surement, and classical control. This makes it directly
amenable to experimental implementation.

IV. ERROR ANALYSIS OF THE STATE
DISCRIMINATION CIRCUIT

Here, we define the average probability of error in our
state discrimination scheme. Next we demonstrate how
it decays with n, the number of iterations of the state
discrimination circuit in Figure 2. Finally, we show how
the error probability exponentially converges to zero in
the asymptotic limit.

A. Calculating the Error Probability

As earlier, we assume that we are given a set {|ψi〉}N−1
i=0

of states, a set {|i〉}N−1
i=0 of basis states and a set {Ui}N−1

i=0
of unitaries such that Ui|ψi〉 = |i〉 for 0 ≤ i ≤ N − 1. We

assume that the states {|ψi〉}N−1
i=0 are to be discriminated

using the circuit shown in Figure 2 with

VSC :=

(
N−1∑
i=0

|i〉〈i| ⊗ Ui
)
◦ SWAP . (9)

First, we provide an expression for the average probabil-
ity of incorrectly discriminating the set of states after n
iterations of the circuit.

Definition 1. For each 0 ≤ k ≤ N − 1, let σn,k be
the state of the Cn system when ρS = |ψk〉〈ψk|. (That
is, σn,k is the state obtained after n rounds of executing
the circuit in Figure 2 with ρS set equal to |ψk〉〈ψk|.)
We define the average probability of error p

(n)
e and the

average probability of success p
(n)
s after n iterations as

follows:

p(n)
e :=

N−1∑
k=0

∑
j 6=k

pk Tr
{
|j〉〈j|σn,k

}
, (10)

p(n)
s :=

N−1∑
k=0

pk Tr
{
|k〉〈k|σn,k

}
. (11)

Our goal now is to quantitatively describe the behavior

of p
(n)
e with the number n of iterations. We will find that

the functioning of our circuit, particularly the error and
success probabilities, possesses a Markov property. To
obtain this property, for each 0 ≤ k ≤ N − 1, we define
the N ×N stochastic matrix Pk to be

Pk :=

 |〈0|U0|ψk〉|2 . . . |〈0|UN−1|ψk〉|2
...

. . .
...

|〈N − 1|U0|ψk〉|2 . . . |〈N − 1|UN−1|ψk〉|2

 .

(12)
Also, we define, for 0 ≤ k ≤ N − 1, the N × 1 column

vector u
(n)
k such that its ith element is

Tr
{
|i− 1〉〈i− 1|σn,k}. (13)

Define u(0) to be u
(0)
k for any 0 ≤ k ≤ N − 1. The vector

u(0) is well defined since ρ0,k = ω for all 0 ≤ k ≤ N − 1,
where ω is defined just before (8).

Proposition 1. The average probability of error and

success after n iterations, denoted p
(n)
e and p

(n)
s , are re-

spectively given by

p(n)
e =

N−1∑
k=0

N−1∑
j=0,
j 6=k

pke
T
j+1P

n
k u

(0), (14)

p(n)
s =

N−1∑
k=0

pke
T
k+1P

n
k u

(0), (15)

where ej is the standard basis column vector with a one
in the jth row and all other elements set to zero.

Proof. The probability of measuring outcome j on the
(n + 1)-th iteration of the circuit, assuming the unitary
VSC always acts on the Sn and Cn registers, is

Tr
{
|j〉〈j|NV,ρ(σn,k)

}
= Tr

{
|j〉〈j|

(
TrS

{
VSC(|ψk〉〈ψk| ⊗ σn,k)V †SC

})}
= Tr

{
|j〉〈j|

(
N−1∑
l=0

Tr
{
|l〉〈l|σn,k

}
Ul|ψk〉〈ψk|U†l

)}

=

N−1∑
l=0

Tr
{
|l〉〈l|σn,k

}
|〈j|Ul|ψk〉|2,

(16)

where we used the definition of NV,ρ given in (4) in the
first equality and the definition of VSC given in (7) (in-
cluding the SWAP operation) in the second equality.
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It follows from (16) that u
(n+1)
k = Pku

(n)
k . From this,

we conclude that

u
(n)
k = Pnk u

(0). (17)

Since, Uk|ψk〉 = |k〉, the (k+ 1)-th column of Pk consists
of zeroes except for a one in the (k + 1)-th row.

Hence, we have

p(n)
e =

N−1∑
k=0

N−1∑
j=0:j 6=k

pk Tr{|j〉〈j|σn,k} (18)

=

N−1∑
k=0

N−1∑
j=0:j 6=k

pke
T
j+1u

(n)
k (19)

=

N−1∑
k=0

N−1∑
j=0:j 6=k

pke
T
j+1P

n
k u

(0). (20)

In the above, the first equality arises due to the definition

of p
(n)
e . The second equality is due to the definition of

u
(n)
k , and the final equality is due to (17). We also have

that

p(n)
s =

N−1∑
k=0

pk Tr
{
|k〉〈k|σn,k

}
(21)

=

N−1∑
k=0

pke
T
k+1u

(n)
k (22)

=

N−1∑
k=0

pke
T
k+1P

n
k u

(0). (23)

This concludes the proof.

The functioning of our quantum circuit has a Markov
property, which we explain here. Recall from earlier that
the state discrimination circuit in Figure 2 can be im-
plemented as an adaptive quantum state discrimination
scheme (Figure 3). The adaptive scheme is as follows:
one starts with n copies of ρS . If one obtains outcome k
after measuring the nth copy of ρS , then one applies the
unitary Uk to the (n+ 1)-th copy of ρS , and repeats the
procedure. Suppose that we have ρS = |ψk〉〈ψk| and that
we obtain outcome i after measuring the nth copy. The
probability of obtaining the outcome j after measuring
the (n + 1)-th copy is |〈j|Ui|ψk〉|2. That is, the proba-
bility of obtaining each successive measurement outcome
given the previous measurement outcome depends only
on the previous measurement outcome. Thus, we may
view each successive measurement outcome as an element
of a Markov chain with transition matrix Pk as defined
in (12).

We now state and prove a simple result that allows us
to maximize the probability of success after n iterations
with respect to ω, the initial state of the C0 register.

Proposition 2. For each 0 ≤ i ≤ N − 1, let p
(n)
s,i be

the average probability of success after n iterations given

that ω = |i〉〈i|. Then the average probability of success
(for arbitrary ω) is

p(n)
s =

N−1∑
i=0

Tr
{
|i〉〈i|ω

}
p

(n)
s,i . (24)

Proof. It follows from Proposition 1 that

p(n)
s =

N−1∑
k=0

pke
T
k+1P

n
k

(N−1∑
i=0

Tr{|i〉〈i|ω}ei+1

)
(25)

=

N−1∑
i=0

Tr{|i〉〈i|ω}
(N−1∑
k=0

pke
T
k+1P

n
k ei+1

)
(26)

=

N−1∑
i=0

Tr{|i〉〈i|ω}p(n)
s,i . (27)

The first equality arises due to Proposition 1 and the
definition of u(0). The second equality arises due to al-
gebraic manipulation, and the final equality follows from

identifying that p
(n)
s,i =

∑N−1
k=0 pke

T
k+1P

n
k ei+1.

It follows from Proposition 2 that the success probabil-
ity after n iterations is maximized if ω is simply a basis
state of the form |j〉〈j|. The particular optimal basis state

is dependent on the value of j that maximizes p
(n)
s,j .

B. Asymptotic Analysis of Error Probability

We now consider how the average probability of er-
ror decays with n. First we recall that each Pk is the
transition matrix of the Markov chain of successive mea-
surement outcomes. We are interested in the equilib-
rium state, or steady state, of this Markov chain. It is
a standard fact in Markov chain theory that the rate of
convergence is determined by the second largest eigen-
value of the transition matrix. To utilize this fact, for
0 ≤ k ≤ N − 1, we construct the (N − 1)× (N − 1) ma-
trix Qk by deleting the (k+ 1)-th row and the (k+ 1)-th
column of Pk. We will also construct, for 0 ≤ k ≤ N − 1,

column vectors v
(n)
k by deleting the (k + 1)-th entry in

u
(n)
k . The vector v(0) is similarly constructed from u(0).

This construction enables us to write the expression for

p
(n)
e in a more useful way.

Proposition 3. After n iterations of the state discrim-
ination circuit, the average probability of error is given
by

p(n)
e =

N−1∑
k=0

N−1∑
j=1

pke
T
j Q

n
kv

(0). (28)

Proof. We indicate here that this is a rewriting of Propo-
sition 1, in which we make use of the definitions intro-
duced directly above. For completeness, we provide de-
tails below.
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First, we have as a direct consequence of (25) that

v
(n)
k = Qnkv

(0). (29)

Hence we have

p(n)
e =

N−1∑
k=0

N−1∑
j=0
j 6=k

pk Tr{|j〉〈j|σn,k} (30)

=

N−1∑
k=0

N−1∑
j=1

pke
T
j v

(n)
k (31)

=

N−1∑
k=0

N−1∑
j=1

pke
T
j Q

n
kv

(0). (32)

In the above, the first equality is due to the definition of

p
(n)
e . The second equality is due to the definition of v

(n)
k .

The final equality is due to the fact that v
(n)
k = Qnkv

(0),
which is a direct consequence of (17).

Before we state our next result that quantifies the rate

of decay of p
(n)
e , we establish some notation that we will

use to prove it. First, for each 0 ≤ k ≤ N − 1, let sk
denote the number of distinct eigenvalues of Qk and let
λ1,k, . . . , λsk,k be the distinct eigenvalues of Qk. That is,
each Qk has eigenvalues λ1,k, λ2,k, . . . , λsk,k, and let mi,k

denote the algebraic multiplicity of eigenvalue λi,k. Also,
let

τ := max
i,k
|λi,k|. (33)

That is, τ is the largest absolute value of the eigenvalues
of all the Qk matrices taken together for 0 ≤ k ≤ N − 1.

Proposition 4. The asymptotic error exponent of the
state discrimination scheme outlined above is not smaller
than the negative logarithm of τ , defined in (33). That
is, the following inequality holds:

ξ := lim
n→∞

− log p
(n)
e

n
≥ − log τ. (34)

Proof. We begin by denoting the mi,k×mi,k Jordan block
of Qk with eigenvalue λi,k by Hm(λi,k), for each 1 ≤ i ≤
sk. For each 0 ≤ k ≤ N − 1, define the (N − 1)× (N − 1)
block-diagonal matrix

Jk =


Hm1,k

(λ1,k) 0 . . . 0
0 Hm2,k

(λ2,k) . . . 0
...

...
. . .

...
0 0 . . . Hmsk,k

(λsk,k)


(35)

such that Qk = SkJkS
−1
k where Sk is an invertible (N −

1) × (N − 1) matrix. Such a matrix exists since Jk is

the Jordan form of Qk. Recall the expression for p
(n)
e in

(30). We are interested in the matrix Qnk . Using the fact

that Qk = SkJkS
−1
k , we have that Qnk = SkJ

n
k S
−1
k . We

then write, for 0 ≤ k ≤ N − 1, 1 ≤ i ≤ sk, the following
[31, p. 618]:

Hn
mi,k

(λi,k) =

λni,k
(
n
1

)
λn−1
i,k

(
n
2

)
λn−2
i,k . . .

(
n

mi,k−1

)
λ
n−mi,k+1
i,k

λni,k
(
n
1

)
λn−1
i,k . . .

(
n

mi,k−2

)
λ
n−mi,k+2
i,k

. . .
. . .

...

0 . . .
. . .

...
λni,k

(
n
1

)
λn−1
i,k

λni,k


(36)

where we have used the fact that, for j > n,
(
n
j

)
= 0.

Since for each integer n, we have

Jnk =


Hn
m1,k

(λ1,k) 0 . . . 0

0 Hn
m2,k

(λ2,k) . . . 0
...

...
. . .

...
0 0 . . . Hn

msk,k
(λsk,k)

 ,

(37)

it follows from (14) and (36) that for sufficiently large n,
we have

p(n)
e =

N−1∑
k=0

sk∑
i=1
λi,k 6=1

mi,k−1∑
j=0

ai,j,k

(
n

j

)
λn−ji,k (38)

for some set {ai,j,k}i,j,k of constants, where ai,j,k ∈ C for
all i, j, k. To understand the above, we recall that

p(n)
e =

N−1∑
k=0

N−1∑
j=1

pke
T
j Q

n
kv

(0) (39)

=

N−1∑
k=0

N−1∑
j=1

pke
T
j SkJ

n
k S
−1
k v(0). (40)

That is, p
(n)
e is a linear combination of the elements of the

matrices Jnk for 0 ≤ k ≤ N − 1, and hence also a linear
combination of powers of the eigenvalues λi,k. Further,
by inspecting the elements of (36), the linear combination
takes the form in (38).

We then have that

ξ := − lim
n→∞

log p
(n)
e

n
(41)

= − lim
n→∞

1

n
log

τn
∑
i,j,k

ai,j,k

λji,k

(
n

j

)(
λi,k
τ

)n (42)

= − log τ − lim
n→∞

1

n
log

∑
i,j,k

ai,j,k

λji,k

(
n

j

)(
λi,k
τ

)n
(43)

≥ − log τ. (44)
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In the above, the first equality is due to (38). The second
equality is due to algebraic manipulation. To establish
the final inequality, consider the following chain of rea-
soning: ∑

i,k

∑
j

ai,j,k

λji,k

(
n

j

)(
λi,k
τ

)n

=

∣∣∣∣∣∣
∑
i,k

∑
j

ai,j,k

λji,k

(
n

j

)(
λi,k
τ

)n∣∣∣∣∣∣ (45)

≤
∑
i,k

∑
j

|ai,j,k|
|λi,k|j

(
n

j

)( |λi,k|
τ

)n
(46)

=
∑

(i,k)∈L

∑
j

|ai,j,k|
|λi,k|j

(
n

j

)( |λi,k|
τ

)n
+

∑
(i,k)/∈L

∑
j

|ai,j,k|
|λi,k|j

(
n

j

)( |λi,k|
τ

)n
(47)

=
∑

(i,k)∈L

∑
j

|ai,j,k|
|λi,k|j

(
n

j

)
+ e−Ω(n) (48)

= O(poly(n)) + e−Ω(n), (49)

where L denotes the set of pairs (i, k) for which |λi,k| = τ
(thus, if (i, k) /∈ L, then |λi,k| < τ). In the above, we
have employed the triangle inequality and the fact that(
n
j

)
≤ nj

j! . By applying the negative logarithm and using

its anti-monotonicity, normalizing, and taking the limit
n→∞, it follows that

− lim
n→∞

1

n
log

∑
i,k

∑
j

ai,j,k

λji,k

(
n

j

)(
λi,k
τ

)n ≥
− lim
n→∞

1

n
log
(
O(poly(n)) + e−Ω(n)

)
= 0. (50)

This establishes the desired inequality

ξ ≥ − log τ (51)

and concludes the proof.

In Appendix A, we state and prove simple lower
bounds on ξ in terms of the unitaries {Ui}i and the states
{|ψi〉}i.

V. EXAMPLES

We now discuss how to optimize the performance of our
state discrimination circuit in specific cases. To optimize
the performance of our state discrimination circuit, it is
necessary to find a set of unitaries that minimizes the
probability of error. We may find expressions for these
unitaries in simple cases, but this becomes difficult in
the general case. An alternative route is to maximize the

error exponent ξ := − limn→∞
log p(n)

e

n . In the following,
we discuss explicit state discrimination schemes for sets
of qubit states.

A. Two Qubit States

Our first example is the simplest possible, where we
consider that we are to discriminate between two pure
qubit states |ψ0〉 and |ψ1〉.

To perform the state discrimination, we require uni-
taries U0 and U1 such that U0|ψ0〉 = |0〉 and U1|ψ1〉 = |1〉.
We may write the two unitaries U0 and U1 in the form

U0 = eiφ0 |0〉〈ψ0|+ eiφ1 |1〉〈ψ⊥0 |
U1 = eiφ2 |1〉〈ψ1|+ eiφ3 |0〉〈ψ⊥1 |

(52)

where |ψ⊥0 〉 and |ψ⊥1 〉 are pure states orthogonal to |ψ0〉
and |ψ1〉, respectively. We then have

Q0 = |〈1|U1|ψ0〉|2 = |〈ψ0|ψ1〉|2 and

Q1 = |〈0|U0|ψ1〉|2 = |〈ψ0|ψ1〉|2.
(53)

From Proposition 4 and the Chernoff bound [28, 29],
we have ξ = − log |〈ψ0|ψ1〉|2. We see that the average

error probability p
(n)
e is independent of the choice of the

unitaries, as expected from Proposition 1. Further, the

error probability p
(n)
e scales according to the Chernoff

bound in (3).

B. Arbitrary Set of Qubit States

We now show how to construct a set of unitaries for
discriminating an arbitrary set of more than two pure
qubit states, and we find that our construction ensures

that the probability of error p
(n)
e scales according to the

multiple Chernoff bound, generalizing what we showed
above for two qubit states. This means that the prob-
ability of error decays at the optimal rate, so that that
our state discrimination scheme will perform better than
or as well as any other scheme designed to discriminate
qubit states in the asymptotic case.

Let {|ψi〉}N−1
i=0 be a set of N > 2 qubit states, each

of which is in a two-dimensional Hilbert space H. Let
{|i〉}N−1

i=0 be a basis for an N -dimensional Hilbert space
H′. We will use the following isometries to perform our
state discrimination protocol:

Vi = |i〉〈ψi|+ |i⊕ 1〉〈ψ⊥i |, (54)

where |ψ⊥i 〉 is a pure state orthogonal to |ψi〉. Note that
each Vi is an isometry mapping H to H′ and satisfies
Vi|ψi〉 = |i〉. Given each isometry Vi, let Ui be its unitary
extension, satisfying

Vi |ψ〉 = Ui |ψ̃〉 (55)

for every |ψ〉 ∈ H and where |ψ̃〉 ∈ H′ denotes an embed-
ding of |ψ〉 in H′. Note that if N = 2` for some integer `,

then we can set |ψ̃〉 = |ψ〉 |0〉⊗(`−1)
.
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We then get that for 0 ≤ k ≤ N − 1, the matrix Pk
takes on the form

Pk =
|〈ψ0|ψk〉|2 0 . . . 1− |〈ψN−1|ψk〉|2

1− 〈ψ0|ψk〉|2 |〈ψ1|ψk〉|2 0

0 1− |〈ψ1|ψk〉|2
. . .

...
...

...
. . . 0

0 0 . . . |〈ψN−1|ψk〉|2

 .

(56)

To construct each matrix Qk, we delete the (k + 1)-
th rows and columns from Pk. Recall that the (k + 1)-
th column of each Pk contains all zeroes except for a
one in the (k + 1)-th row. This means that Q0 and
QN−1 will be lower-triangular matrices. The other Qk
matrices will consist of a diagonal, a sub-diagonal con-
taining a zero element, and a non-necessarily-zero ele-
ment (Qk)1,(N−1), with all other elements set to zero.
For such matrices, the eigenvalues are given by their
diagonal entries. This can be seen by writing out the
characteristic polynomial of the matrix, and taking care
to expand out the determinant along the row or col-
umn containing the zero element of the sub-diagonal.
Therefore, the largest eigenvalue of each matrix Qk
is equal to max(i,j) |〈ψi|ψj〉|2. By Proposition 4 and
the multiple Chernoff bound [28, 29], it follows that
ξ = − log maxi 6=j{|〈ψi|ψj〉|2}.

Therefore, by appending sufficiently many ancillary
qubits, our state discrimination circuit can be used to
discriminate an arbitrary set of qubit states with the op-
timal scaling of the probability of error given by the mul-
tiple Chernoff bound in (3). This result only concerns
the scaling of the probability of error in the asymptotic
case. Investigating how close to optimal the probability
of error is when only a finite number of copies of the input
state are available may prove to be a fruitful direction for
future work.

Note that one may not extend in a straightforward way
the above procedure for constructing a set of unitaries
{Ui} that produce optimal scaling of the probability of
error to states in a Hilbert space of dimension greater
than two. Observe that the above procedure hinges on
the matrices Qk having eigenvalues given by their diago-
nal. By the definition of the Qk matrix, specifying a set
of isometries in a way similar to that of (54) for a higher
dimensional system would require that other elements
besides (Qk)1,N−1 and the elements on the diagonal and
subdiagonal of Qk be nonzero. In general, such matrices
do not have eigenvalues equal to their diagonal elements.

When simulating a D-CTC with unitary interaction

given by VSC = (
∑N−1
k=0 |k〉〈k| ⊗ Uk) ◦ SWAP, it follows

for our choice of the set {Uk}k that |j〉〈j| is the unique
solution for σC in (5) whenever ρS = |ψj〉〈ψj |. In Ap-
pendix B, we provide a proof inspired by the argument
given in [10] that this is indeed true for the example con-
sidered above, consisting of discriminating an arbitrary

set of qubit states.

C. BB84 States

Here, we study how our state discrimination circuit can
be used to discriminate a specific set of non-orthogonal
states, i.e., the BB84 states |0〉, |1〉, |+〉, and |−〉. In gen-
eral, identifying or performing the set of unitaries {Ui}
described above may be difficult. The authors of [10]
identified a set of unitaries that can discriminate the
BB84 states, which we restate here. Building off of these
authors’ work, we show that the probability of error using
this construction scales according to the multiple Cher-
noff bound in (3). This is of significance because these
operators provide an example of unitaries that both pro-
duce a probability of error that saturates the multiple
Chernoff bound and are constructed from well-studied,
standard quantum logic gates.

As we described in the example earlier, we encode these
four states into a four-dimensional Hilbert space. Let
|ψ0〉 ≡ |00〉, |ψ1〉 ≡ |10〉, |ψ2〉 ≡ |+0〉, and |ψ3〉 ≡ |−0〉.
That is, we obtain the set of states {|ψi〉}3i=0 by ap-
pending an ancillary qubit in the |0〉 state. Let |0〉 ≡
|00〉, |1〉 ≡ |01〉, |2〉 ≡ |10〉, |3〉 ≡ |11〉. Now let

U0 = SWAP,

U1 = X ⊗X,
U2 = (X ⊗ I) ◦ (H ⊗ I),

U3 = (X ⊗H) ◦ SWAP .

(57)

Then Ui|ψi〉 = |i〉 for i ∈ {0, 1, 2, 3}. It may be seen

that the probability of error p
(n)
e scales according to the

Chernoff bound by constructing the Qk matrices for 0 ≤
k ≤ 3 and checking that their largest eigenvalues are each
maxi 6=j |〈ψi|ψj〉|2 = 1/2.

Since an arbitrary set of four geometrically uniform
qubit states is simply a rotation of the BB84 states on the
Bloch sphere, one may saturate the Chernoff bound when
using our state discrimination circuit to distinguish any
set of four geometrically uniform qubit states using only
compositions of the standard qubit gates X, H, SWAP,
and rotations.

VI. CONCLUDING REMARKS

In this paper, we have proposed a method for discrim-
inating multiple non-orthogonal states, which is inspired
by a construction considered in the context of closed
timelike curves [10]. Our state discrimination method
can be equivalently recast as a local, iterative circuit
whose simplicity lends itself to experimental implementa-
tion. Furthermore, we studied the average probability of
error for our scheme and showed that in the general case
of discriminating an arbitrary set of pure qubit states, it
achieves the multiple Chernoff bound.
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We would like to point out three aspects of our work
that require further investigation. It has been shown that
a two-state local adaptive state discrimination scheme
may be optimal for any number of copies [18]. It remains
open whether there exists a way to configure some as-
pect of our cirucit differently so that it is possible for our
scheme to be optimal for any number of copies. Also,
while sets of unitaries do exist that optimize the per-
formance of our circuit in the asymptotic limit for an
arbitrary set of qubit states, it is unknown whether there
exists a set of optimal unitaries for any set of qubit states.
Furthermore, it is worth investigating this aspect of our
work to see whether there exist a set of product unitaries
to optimize, or even make the performance of our cir-
cuit sub-optimally efficient, in the asymptotic limit. This
would be beneficial because product operators are more
convenient to implement experimentally.

Finally, any attempt at practical state discrimination
will be subject to noisy conditions. Noise may have the

ability to enhance or worsen the performance of a state
discrimination scheme. A recent result due to [20] has
shown that the optimal measurement in the discrimina-
tion of two pure qubit states is no longer optimal when
these qubit states are subject to perturbations. Study-
ing the behavior of our state discrimination circuit in the
presence of noise remains a topic for future work.
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Appendix A: Upper and Lower Bounds on the Multiple Chernoff Exponent ξ

We now state a result that allows us to bound the scaling of the average probability of error in terms of the set
{Ui}i of unitaries and the set {|ψi〉}i of states.

Proposition 5. The following inequalities hold:

ξ ≥ − log

(
1− min

j,k:j 6=k
|〈k|Uj |ψk〉|2

)
(A1)

ξ ≥ − log

 max
j,k:j 6=k

∑
i 6=k

|〈j|Ui|ψk〉|2
 , (A2)

where ξ is defined in (41).

Proof. Let 0 ≤ k ≤ N − 1. The maximum column sum of Qk is

max
j 6=k

∑
i 6=k

|〈i|Uj |ψk〉|2 = 1−min
j 6=k
|〈k|Uj |ψk〉|2. (A3)

It follows from the Gerschgorin Circle Theorem [32] that the largest eigenvalue of Qk is bounded from above by the
maximum column sum of Qk. We recall that τ := maxi,k |λi,k|, i.e. τ is the largest of the absolute values of the
eigenvalues of all of the Qk matrices. It follows that

τ ≤ 1− min
j,k:j 6=k

|〈k|Uj |ψk〉|2. (A4)

Then using Proposition 4, we have

ξ ≥ − log τ ≥ − log

(
1− max

j,k:j 6=k
|〈k|Uj |ψk〉|2

)
. (A5)

It also follows from the Gerschgorin Circle Theorem that for 0 ≤ k ≤ N − 1, the largest eigenvalue of Qk is bounded
from above by the maximum row sum of Qk. Hence, we have

τ ≤ max
j,k
j 6=k

∑
i 6=k

|〈j|Ui|ψk〉|2, (A6)

so that

ξ ≥ − log τ ≥ − log

 max
j,k:j 6=k

∑
i6=k

|〈j|Ui|ψk〉|2
 (A7)

This concludes the proof.
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Appendix B: Uniqueness of the Fixed Point of the Channel NV,ρ

Here, we show the uniqueness of the fixed point of the channel NV,ρ when discriminating an arbitrary set of qubit
states, which we studied in Section V B.

Proposition 6. Let N ≥ 3. For each 0 ≤ i ≤ N − 1, let Ui be a unitary extension of the isometry Vi defined in (54).
Let VSC = (

∑
k |k〉〈k| ⊗ Uk) ◦ SWAP. Then for 0 ≤ a ≤ N − 1, |a〉〈a| is the unique solution for σC in (5) whenever

ρS = |ψa〉〈ψa|.

Proof. We argued that |a〉〈a| is a solution for σC whenever ρS = |ψa〉〈ψa| in Section III. It remains to show uniqueness.
Suppose ρS = |ψa〉〈ψa| and σ is a solution for σC in (5). Then we have

σ = TrS

{
VSC(|ψa〉〈ψa| ⊗ σ)V †SC

}
(B1)

= TrS

{(∑
k

|k〉〈k| ⊗ Uk
)

(σ ⊗ |ψa〉〈ψa|)
(∑

l

|l〉〈l| ⊗ U†l
)}

=
∑
k,l

TrS

{
|k〉〈k|σ|l〉〈l| ⊗ Uk|ψa〉〈ψa|U†l

}
=
∑
k

〈k|σ|k〉 · Uk|ψa〉〈ψa|U†k .

In the above, the first line is due to the self-consistency condition (5). The following equalities come from explicitly
writing out VSC and algebraic manipulation.

Hence, the matrix elements of σ are given by

〈m|σ|n〉 =
∑
k

〈k|σ|k〉〈m|Uk|ψa〉〈ψa|U†k |n〉. (B2)

We now show that all diagonal elements of σ other than 〈a|σ|a〉 are zero. We will proceed by induction to show
that 〈a 	 s|σ|a 	 s〉 = 0 for all 1 ≤ s ≤ N − 1. (Here, 	 denotes subtraction modulo N .) We first show that
〈a	 1|σ|a	 1〉 = 0. It follows from (B2) that

〈a|σ|a〉 = 〈a|σ|a〉+
∑
k 6=a

〈k|σ|k〉|〈a|Uk|ψa〉|2, (B3)

which implies that
∑
k 6=a〈k|σ|k〉|〈a|Uk|ψa〉|2 = 0. It follows that

〈a	 1|σ|a	 1〉(1− |〈ψa	1|ψa〉|2) = 〈a	 1|σ|a	 1〉|〈ψ⊥a	1|ψa〉|2

= 〈a	 1|σ|a	 1〉|〈a|Ua	1|ψa〉|2

=
∑
k 6=a

〈k|σ|k〉|〈a|Uk|ψa〉|2

= 0.

(B4)

Since 1 − |〈ψa	1|ψa〉|2 6= 0, we then have that 〈a 	 1|σ|a 	 1〉 = 0. Now suppose 1 ≤ s < N − 1 is such that
〈a	 s|σ|a	 s〉 = 0. Using (B2) and the definition of the unitaries {Ui}, we have

〈a	 s|σ|a	 s〉 =
∑
k

〈k|σ|k〉|〈a	 s|Uk|ψa〉|2

= 〈a	 s|σ|a	 s〉|〈a	 s|Ua	s|ψa〉|2 + 〈a	 (s+ 1)|σ|a	 (s+ 1)〉|〈a	 s|Ua	(s+1)|ψa〉|2.
(B5)

Since 〈a	 s|σ|a	 s〉 = 0, it follows that

0 = 〈a	 (s+ 1)|σ|a	 (s+ 1)〉|〈a	 s|Ua	(s+1)|ψa〉|2

= 〈a	 (s+ 1)|σ|a	 (s+ 1)〉|〈ψ⊥a	(s+1)|ψa〉|2

= 〈a	 (s+ 1)|σ|a	 (s+ 1)〉(1− |〈ψa	(s+1)|ψa〉|2).

(B6)
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Since 1 ≤ s < N − 1, we must have a	 (s+ 1) 6= a, so that 1− |〈ψa	(s+1)|ψa〉|2 6= 0. It then follows from (B6) that
〈a 	 (s + 1)|σ|a 	 (s + 1)〉 = 0. By induction, we have 〈a 	 s|σ|a 	 s〉 = 0 for 1 ≤ s ≤ N − 1. Hence, all diagonal
elements of σ other than 〈a|σ|a〉 are zero.

Consequently, we must have 〈k|σ|k〉 = δka since Tr[σ] = 1. Any density operator of this form has off-diagonal
elements that are all zero. Therefore, we have σ = |a〉〈a|. Hence, |a〉〈a| is the unique solution for σC in (5).
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