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It is recognized that Grover arrived at his original quantum search algorithm inspired by his
comprehension of the interference of classical waves originating from an array of antennae. It is also
known that quantum-mechanical characterization of electromagnetic radiation is isomorphic to the
treatment of the orientation of a spin-1/2 particle. In this paper, motivated by Grover’s original
intuition and starting from this mathematical equivalence, we present a quantitiative link between
the geometry of time-independent optimal-speed Hamiltonian evolutions on the Bloch sphere and
the geometry of intensity-preserving propagation of light with maximal degree of coherence on the
Poincaré sphere. Finally, identifying interference as the fundamental physical ingredient underly-
ing both physical phenomena, we propose that our work can provide in retrospect a quantitative
geometric background underlying Grover’s powerful intuition.

PACS numbers: Quantum computation (03.67.Lx), Quantum information (03.67.Ac), Quantum mechanics
(03.65.-w).

I. INTRODUCTION

One of the main goals of quantum information science (QIS), including quantum nanoengineering and quantum
optics, is the development of devices capable of reliably processing quantum information [1–3]. When considering
the implementation of such quantum technologies, it becomes especially relevant engineering a suitable Hamiltonian
that evolves an initial source state into a final target state. An essential condition for these quantum information
processing devices is the capacity of having total control on the state of a single qubit on time scales much shorter than
the coherence time. For such reasons, the conceptual understanding of controlled quantum dynamics along with their
limits is becoming increasingly important in QIS. The cost functional that quantifies the efficiency of getting to the
target state from a given initial state depends on the physical scenario being considered. In the simplest case, one can
focus on an unconstrained Hamiltonian time-evolution, except for a bound on the energy resource. Then, regarding
time-optimality as the cost functional, the problem becomes finding the time-independent Hamiltonian that generates
maximum speed of evolution. However, there can be a range of constraints that forbids the implementation of such
an elementary protocol in more realistic scenarios. Indeed, in real laboratory settings needed for the implementation
of quantum technologies, one would need to apply various optimization techniques available within the more general
framework of optimal quantum control theory [4] to identify suitable time-dependent Hamiltonians that generate the
dynamics achieving required quantum tasks. The transition to time-dependent Hamiltonians can be motivated by
several reasons, including the presence of time-varying external magnetic fields [5] or, alternatively, the existence of
dissipation due to a coupling between the quantum system and the environment [6]. From this wide range of physical
scenarios that one could take into consideration, we shall focus in this paper on the simplest case, namely that of
time-optimal quantum mechanical unitary evolution in the presence of a bound on the energy resource.

It is known that the quantum-mechanical treatment of photon polarization is mathematically equivalent to the
treatment of the orientation of a spin-1/2 particle [7]. In particular, focusing on the physics of two-level quantum
systems and classical polarization optics in two-dimensions, the concepts of Bloch vector and Bloch sphere [8] are the
analogues of the notions of Stokes vector and Poincaré sphere [9], respectively.

A remarkable link between quantum mechanics and classical optics is represented by the interpretation of Pan-
charatnam’s optical phase that appears in the context of interference of polarized light [10] as an early example of
Berry’s (nondynamical) geometric phase that emerges in the context of cyclic and adiabatic quantum mechanical evo-
lutions [11]. For an in-depth discussion on the relation between Pancharatnam’s phase and Berry’s phase, we refer to
Refs. [12, 13]. The work in Ref. [12] is especially illuminating since Berry, starting from the description of polarization
in terms of the Poincaré sphere, expresses Pancharatnam’s classical optics analysis in quantum mechanical language
and, moreover, clarifies the relation between the classical optical phase and the quantum adiabatic phase. Interest-
ingly, this mutual interaction between quantum mechanics and classical optics has been rather beneficial in science.
For example, borrowing ideas from Pancharatnam’s work on the classical interference of polarized light, Samuel and
Bhandari extended the concept of Berry’s phase to nonunitary and noncyclic quantum mechanical evolutions in Ref.
[13]. Furthermore, just as Pancharatnam’s theory was tested in an experimental fashion with the detection of the
predicted phase shifts by interference, the first experimental manifestation of Berry’s phase was carried out in an op-
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tical experiment [14] where the Berry phase measured corresponded to an angle of rotation of a plane of polarization
of light [15]. A second close similarity between quantum mechanics and classical optics is the correspondence between
the degree of polarization of beams of light and the parity of qubits as reported in Refs. [16, 17]. The origin of this
similarity can be explained as follows. In the quantum mechanical Bloch sphere formalism, the origin represents a
maximally mixed state, whereas points on the surface of the sphere are pure states. In the Poincaré sphere formalism
in classical optics, the origin represents a completely unpolarized light beam, whereas points on the surface of the
sphere are completely polarized beams.

In quantum mechanics, there are several ways in which one can derive an expression of time-independent optimal-
speed Hamiltonians evolving an initial state |A〉 into a final state |B〉. For instance, a simple derivation can rely
on finding Hamiltonians {H} that evolve |A〉 into |B〉 in the least time subject to the constraint that the difference
between the largest and the smallest eigenvalues of H is held fixed [18]. Another straightforward derivation, instead,
can put the emphasis on choosing the Hamiltonian so that the uncertainty in energy is maximized [19]. In any case,
the trajectories connecting |A〉 and |B〉 generated by such optimal-speed unitary evolutions {U} can be viewed as
geodesic curves on the Bloch sphere (or, alternatively, the two-sphere S2). For this reason, it is especially interesting

the geometric interpretation of these unitary operators {U} with |A〉 U→ |B〉 in terms of rotations of the Bloch sphere
around the axis that is orthogonal to the hemispherical plane containing the origin along with |A〉 and |B〉. In
particular, the Hamiltonian that generates the rotation takes the form H = E+ |E+〉 〈E+| + E− |E−〉 〈E−| for a pair
of real parameters E± with the axis of rotation corresponding to a pair of orthogonal states |E±〉 [20, 21]. More
generally, given that the dynamics induced by a optimal-speed unitary evolution can be regarded as a rigid rotation
of the two-sphere S2, if there exists a unitary evolution transforming |A〉 into |B〉 with 〈A|B〉 = 0 along a geodesic
path, then there must exist a pair of energy eigenstates |E+〉 and |E−〉, say at the equator of S2, such that |A〉 and
|B〉 lie at the poles of S2 [22]. Moreover, in terms of an efficiency measure defined by means of the ratio between the
distance along the shortest geodesic path joining |A〉 and |B〉 and the distance along the actual dynamical trajectory

traced by the state vector |ψ (t)〉 def
= e−

i
} Ht |A〉, these optimal-speed unitary quantum mechanical evolutions exhibit

unit “quantum geometric efficiency” [23, 24].
In classical polarization optics, it is known that the degree of polarization of a light wave propagating along the

ẑ-direction does not depend on the choice of the x̂- and ŷ-directions. Furthermore, such a degree of polarization is
an upper bound for the so-called degree of coherence between the electric vibrations in the x̂- and ŷ-directions [9].
Interestingly, it can be demonstrated that there always exists a pair of orthogonal directions for which the degree of
coherence has its maximum value and this value is equal to the degree of polarization of the light wave [25]. Therefore,
considering the ratio between the degree of coherence and the degree of polarization as some sort of “classical optical
efficiency”, it happens that there is always an optimal optical configuration in which the propagation of polarized
light occurs with maximal degree of coherence.

In this paper, we wish to investigate an unexplored link between optimal-speed quantum mechanical evolutions and
propagation of light with maximal degree of coherence. Our investigation is inspired by the above mentioned existing
links between quantum mechanics and classical optics. Furthermore, we rely on our familiarity with both digital and
analog quantum search algorithms [24, 26–30]. In addition, our proposed investigation finds additional motivation
by recalling that Grover’s original intuition that helped him creating his quantum search algorithm [31] was based
upon a classical optics phenomenon. Specifically, Grover arrived at his quantum search algorithm by observing the
interference of classical waves originating from an array of antennae [32]. This way, by mimicking the interference of
classical waves, Grover arrived at his quantum search scheme.

Therefore, motivated by this intriguing similarity between the existence of a convenient pair of orthogonal energy
eigenstates in the geometrical description of optimal-speed quantum evolutions and the existence of a suitable pair
of orthogonal directions for the electric field in the geometric description of propagation of polarized light with
optimal-coherence, we provide in this paper a quantitative link between quantum mechanics and classical polarization
optics. Specifically, starting from the mathematical equivalence between the quantum-mechanical characterization
of electromagnetic radiation and the treatment of the orientation of a spin-1/2 particle, we discuss in a quantitative
manner the connection between the geometry of time-independent optimal-speed Hamiltonian evolutions on the Bloch
sphere and the geometry of intensity-preserving propagation of light with maximal degree of coherence on the Poincaré
sphere. Identifying interference as the essential physical ingredient underlying both phenomena being studied in our
paper, we conclude by arguing that our work can provide a quantitative geometric background underlying Grover’s
powerful intuition.

To summarize, we are aware of the following known links: i) Connection between interference in
classical wave theory and interference in quantum mechanics; ii) Equivalence between the Bloch sphere
and the Poincaré sphere. In this paper, however:

• We provide a novel and unnoticed link between the geometry of the unitary dynamics of time-
independent optimal-speed Hamiltonians on the Bloch sphere and the geometry of intensity-
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preserving propagation of light with maximal degree of coherence on the Poincaré sphere. Our
finding establishes a new bridge between the physics of two-level quantum systems and the physics
of classical polarization optics via the discovery of this previously unknown connection.

The layout of the remainder of this paper is as follows. In Section II, we discuss two alternative characterizations
of optimal-speed Hamiltonians. The first analysis focuses on minimizing the evolution time subject to the energy
eigenvalue constraint. The second one, instead, relies on the maximization of the energy uncertainty that yields
the spectral decomposition of the optimal Hamiltonian. We conclude Section II with a discussion on unit geometric
efficiency on the Bloch sphere. In Section III, after providing some motivational background, we characterize the
propagation of light in terms of the polarization ellipse, the Stokes parameters, and the Poincaré sphere. Then, we
briefly present the concepts of coherence of electric vibrations along with degree of coherence, coherency matrix, and
degree of polarization of a light wave. In Section IV, we discuss the propagation of polarized light with maximal
degree of coherence, that is propagation of light with unit optical efficiency on the Poincaré sphere. The quantitiative
link between the geometry of time-independent optimal-speed Hamiltonian evolutions on the Bloch sphere and the
geometry of intensity-preserving propagation of light with maximal degree of coherence on the Poincaré sphere is
carried out throughout Sections II and IV. In Section V, we discuss the physical origin of our proposed link. Our
concluding remarks appear in Section VI. A number of technical details and remarks appear in Appendices A, B, C,
and D. Specifically, in Appendix A we place some specific properties of the Mueller matrices in optics. In this Appendix
B, we employ the Poincaré sphere formalism to describe the dependence of the modulus of the complex degree of
coherence of a partially polarized light beam in terms of the ellipticity and orientation angles. In this Appendix C,
we report some mathematical details on the parametrization of qubits and polarization states regarded as points on
the Bloch sphere and the Poincaré sphere, respectively. Finally, we present in Appendix D a discussion on the role
played by interference effects in light propagation, quantum searching, and optimal-speed quantum evolutions.

II. QUANTUM EVOLUTIONS WITH UNIT GEOMETRIC EFFICIENCY

In this section, we discuss two alternative descriptions of optimal-speed Hamiltonians. The first characterization
focuses on minimizing the evolution time subject to the energy eigenvalue constraint. The second one, instead, depends
on the maximization of the energy uncertainty that leads to the spectral decomposition of the optimal Hamiltonian.
We conclude this section with a discussion on unit geometric efficiency on the Bloch sphere.

When studying the geometric characterization of unit efficiency [23] quantum mechanical unitary evolutions specified
by time-independent Hamiltonians {H} under which a normalized initial state vector |A〉 evolves into a normalized
final state vector |B〉, one notices at least two alternative approaches in the literature. In a first approach, researchers

aim to find an expression of the Hamiltonian by minimizing the evolution time ∆t
def
= TAB needed for evolving |A〉

into |B〉 subject to the constraint that the difference between the largest (E+) and smallest (E−) eigenvalues of the

Hamiltonian is kept fixed [18], E+ − E−
def
= E0 = fixed. In a second approach, instead, investigators seek for an

expression of the Hamiltonian by maximizing the uncertainty in energy ∆E of the system [19]. This approach is
motivated by the fact that the (angular) speed of the minimal-time evolution v of the quantum system is proportional

to ∆E, v
def
= dsFS/dt ∝ ∆E, with sFS denoting the Fubini-Study distance between the two points on the projective

Hilbert space P (H) that corresponds to the selected initial and final states |A〉 and |B〉, respectively. Despite the
fact that these two quantum approaches are essentially equivalent since the constraint on the difference between the
largest and the smallest eigenvalues of the Hamiltonian is similar to upper bounding the energy uncertainty ∆E
since ∆Emax = (E+ − E−) /2, they do put the emphasis on distinct features that will help us better understanding
the details of the optimal evolution Hamiltonian. Ultimately, these complementary features will help us describing
the formal analogies between the geometry of quantum evolutions with unit quantum geometric efficiency and the
geometry of classical polarization optics for light waves with degree of polarization P that equals the degree of
coherence |jxy| between the electric vibrations in any two mutually orthogonal directions of propagation of the wave

[25]. Unit quantum geometric efficiency means here that ηQM
def
= s0/s = 1, where s0 is the distance along the shortest

geodesic joining the initial and final points of the evolution that are distinct on the projective Hilbert space while s is
the distance along the effective evolution of the system in the projective Hilbert space as measured by the Fubini-Study

metric. Finally, unit classical optical efficiency means here ηoptics
def
= |jxy| /P= 1.
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A. Minimizing the evolution time

The starting point of the first approach can be summarized as follows. Given a time-independent Hamiltonian H

with a corresponding unitary time-evolution operator U (t)
def
= e−

i
} Ht, one wishes to evolve a state |A〉 into a state

|B〉 in the shortest possible time subject to the constraint that the difference E+ −E− between the largest (E+) and
the smallest (E−) eigenvalues of H is kept fixed. In summary, we wish to find the optimal Hamiltonian acting in the
two-dimensional subspace spanned by |A〉 and |B〉 that yields the optimal time evolution subject to the constraint

E+ − E−
def
= E0 = fixed.

We begin by considering the following unitary evolution scheme,

|A〉 =

(
α1

α2

)
e−

i
}Ht

→ |B〉 =

(
β1

β2

)
, with H

def
=

(
h11 h12e

−iφ

h12e
iφ h22

)
(1)

and, where h11, h12, h22, and φ are four real quantities. We assume that |A〉 and |B〉 are normalized to one so

that |α1|2 + |α2|2 = 1 and |β1|2 + |β2|2 = 1. The spectral decomposition of H in Eq. (1) can be recast as H =
E+ |E+〉 〈E+|+ E− |E−〉 〈E−| with the energy eigenvalue constraint given by,

(E+ − E−)
2

= (h11 − h22)
2

+ 4h2
12 = constant

def
= E2

0 . (2)

In view of our interest in studying the action of e−
i
} Ht onto |A〉, it is convenient to observe that H in Eq. (1) can be

decomposed in terms of the Pauli matrices ~σ
def
= (σx, σy, σz) as

H =
h11 + h22

2
I +

E0

2
â · ~σ. (3)

In Eq. (3), I denotes the identity matrix while â
def
= ~a/ ‖~a‖ with ‖~a‖ = E0/2 is a unit vector defined as,

â
def
=

2

E0

(
h12 cos (φ) , h12 sin (φ) ,

h11 − h22

2

)
. (4)

We emphasize at this stage that finding the optimal evolution Hamiltonian reduces to finding the optimal set of the
four real parameters {h11, h12, h22, φ} in Eq. (1) or, equivalently, the optimal â that appears in Eq. (3). Using Eq. (3)

along with algebraic manipulations that are typical in quantum mechanics with Pauli matrices, the action of e−
i
} Ht

onto |A〉 leading to the state |B〉 in a time TAB yields

(
β1

β2

)
= e−

i
}
h11+h22

2 TAB

(α1

[
cos
(
E0

2} TAB
)
− ih11−h22

E0
sin
(
E0

2} TAB
)]

+ α2

[
−ie−iφ 2h12

E0
sin
(
E0

2} TAB
)]

α1

[
−ieiφ 2h12

E0
sin
(
E0

2} TAB
)]

+ α2

[
cos
(
E0

2} TAB
)

+ ih11−h22

E0
sin
(
E0

2} TAB
)] ). (5)

At this point, we note that the components of the states |A〉 and |B〉 depend on the choice of the basis of the two-
dimensional subspace spanned by these two vectors. Therefore, for the sake of computational simplicity and without
loss of generality, we choose a basis so that |A〉 = (1, 0) and |B〉 = (α, β). With this choice, Eq. (5) reduces to(

α

β

)
= e−

i
}
h11+h22

2 TAB

(
cos
(
E0

2} TAB
)
− ih11−h22

E0
sin
(
E0

2} TAB
)

−ieiφ 2h12

E0
sin
(
E0

2} TAB
) )

. (6)

Considering the modulus of β as expressed in Eq. (6), we note that the expression of the evolution time TAB becomes

TAB =
2}
E0

sin−1

(
E0 |β|
2h12

)
. (7)

We observe that the sin−1 (x) function is a monotonic increasing function of its argument x with sin−1 (0) = 0.
Therefore, since E0 and |β| are held fixed, the minimum value of TAB in Eq. (7) is reached when h12 assumes its
maximum possible value. The maximum possible value hmax

12 of h12 compatible with the eigenvalue constraint in Eq.
(2) is reached when h11 = h22 and equals hmax

12 = E0/2. Therefore, the optimal evolution time Tmin
AB = TAB (hmax

12 ) is
equal to

Tmin
AB =

2}
E0

sin−1 (|β|) , (8)
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or, equivalently, Tmin
AB = (2}/E0) cos−1 (|α|) using the normalization condition |α|2 + |β|2 = 1 along with properties

of the sin−1 (x) function. So far, we have realized that the optimal set of the four real parameters {h11, h12, h22, φ}
is specified by hmax

12 = E0/2 and h11 = h22. Therefore, it remains to find the explicit expressions for the optimal h11

and φ. These expressions can be found as follows. Let us set α
def
= |α| eiϕα and β

def
= |β| eiϕβ with ϕα and ϕβ in R.

Inserting Eq. (8) into Eq. (6), we obtain

(
|α| eiϕα
|β| eiϕβ

)
= e−

i
}h11T

min
AB

(√
1− |β|2

−ieiφ |β|

)
. (9)

With the help of some algebra, Eq. (9) yields

h11 = −ω0

2

ϕα

sin−1 (|β|)
, and φ = ϕβ − ϕα +

π

2
. (10)

In conclusion, recalling the hmax
12 = E0/2 and h11 = h22 together with Eq. (10), the optimal evolution Hamiltonian

can be recast as [33]

H =
E0

2

(
ϕα

sin−1(|β|) e−i(ϕβ−ϕα−
π
2 )

ei(ϕβ−ϕα−
π
2 ) ϕα

sin−1(|β|)

)
. (11)

Interestingly, we note that the expectation value of the Hamiltonian 〈A|H|A〉 is equal to (ϕαE0) /2 sin−1 (|β|) while the

energy uncertainty of H in Eq. (11) is given by ∆E
def
=
[〈
A|H2|A

〉
− 〈A|H|A〉2

]1/2
= E0/2. Using the energy eigenvalue

constraint in Eq. (2), we also notice that ∆E = (E+ − E−) /2. As a final remark, we point out that since overall
phases of state vectors have unobservable effects in quantum mechanics, the Hamiltonians H and H−(1/2)tr (H) I
assume an identical maximal value ∆Emax of energy uncertainty ∆E. Therefore, despite having different expectation
values, these Hamiltonians generate the same physics of quantum evolutions. For this reason, for example, one may
set the phase ϕα in Eq.(11) equal to zero.

Starting from a traceless Hamiltonian with ∆Emax = (E+ − E−) /2 will be the starting point in the second approach
to optimal quantum evolutions that we treat in our paper. This second approach is based upon maximizing the energy
uncertainty rather than minimizing the time evolution and will be discussed in the next subsection.

B. Maximizing the energy uncertainty

The starting point of the second approach can be summarized as follows. Consider a time-independent and traceless
Hamiltonian H with a spectral decomposition given by H= E− |E−〉 〈E−| + E+ |E+〉 〈E+|, where E+ ≥ E− and
〈E+|E−〉 = δ+,−. One wishes to evolve a state (not necessarily normalized) |A〉 into a state |B〉 in the shortest

possible time by maximizing the energy uncertainty ∆E
def
=
[〈
A|H2|A

〉
/ 〈A|A〉 − (〈A|H|A〉 / 〈A|A〉)2

]1/2
and obtain

∆E = ∆Emax.
For the sake of simplicity, we denote |E±〉 = |E2,1〉 and E± = E2,1 in what follows. To find the value of ∆Emax, we

note that an arbitrary unnormalized initial state |A〉 can be decomposed as |A〉 = α1 |E1〉+ α2 |E2〉 with α1, α2 ∈ C.
Then, after some algebra, we get

∆E =
E2 − E1

2

1−

(
|α1|2 − |α2|2

|α1|2 + |α2|2

)2
1/2

. (12)

From Eq. (12), we note that the maximum value of ∆E is obtained for |α1| = |α2| (with α1 and α2 given by 〈E1|A〉
and 〈E2|A〉, respectively) and equals ∆Emax

def
= (E2 − E1) /2 as mentioned in the previous subsection. The main

underlying idea in this second approach is that of recasting H= E1 |E1〉 〈E1|+E2 |E2〉 〈E2| in terms of the initial and
final states |A〉 and |B〉 while keeping,

∆E = ∆Emax
def
=

E2 − E1

2
. (13)
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Observe that in terms of the eigenvectors of the Hamiltonian, |A〉 and |B〉 can be decomposed as |A〉 = α1 |E1〉+α2 |E2〉,
and |B〉 = β1 |E1〉+ β2 |E2〉, respectively. To ensure minimum travel time Tmin

AB (that is, ∆E = ∆Emax), we need to
set |α1| = |α2| and |β1| = |β2|. Therefore, let α2 = eiϕαα1 and β2 = eiϕββ1 with ϕα,β ∈ R. Then, |A〉 and |B〉 become

|A〉 = α1 |E1〉+ α2 |E2〉 = α1 |E1〉+ eiϕαα1 |E2〉 , (14)

and,

|B〉 = β1 |E1〉+ β2 |E2〉 = β1 |E1〉+ eiϕββ1 |E2〉 , (15)

respectively. From Eqs. (14) and (15), we obtain |E1〉 + eiϕα |E2〉 = α−1
1 |A〉

def
=
√

2 |A〉 and |E1〉 + eiϕβ |E2〉 =

β−1
1 |B〉

def
=
√

2e−i
ϕα−ϕβ

2 |B〉. After some matrix algebra, we get

(
|E1〉
|E2〉

)
=

√
2

ei
ϕα+ϕβ

2 − eiϕαei
ϕα−ϕβ

2

(
ei
ϕα+ϕβ

2 −eiϕα

−ei
ϕα−ϕβ

2 1

) α−1
1√
2
|A〉

β−1
1√
2
ei
ϕα−ϕβ

2 |B〉

 . (16)

For the sake of completeness, we emphasize that

|〈A|B〉|2 =
|〈A|B〉|2

〈A|A〉 〈B|B〉
= cos2

(
ϕα − ϕβ

2

)
= cos2

(
θ

2

)
, (17)

with θ
def
= ϕα−ϕβ = 2sFS = sgeo where sFS and sgeo denote the Fubini-Study and the geodesic distances, respectively.

Finally, using Eq. (16) along with noting that E2 = −E1
def
= E since the Hamiltonian is assumed to be traceless, we

obtain after some simple but tedious algebra that the spectral decomposition H= E1 |E1〉 〈E1|+E2 |E2〉 〈E2| becomes
[34]

H =
iE

sin
(
ϕα−ϕβ

2

) [|B〉 〈A| − |A〉 〈B|] . (18)

In terms of the original initial and final states |A〉 and |B〉, after some additional simple but laborious algebra, the
Hamiltonian in Eq. (18) can be finally recast as

H = iE cot

(
ϕα − ϕβ

2

)[
|B〉 〈A|
〈A|B〉

− |A〉 〈B|
〈B|A〉

]
, (19)

while the geodesic line |ψ (t)〉 = e−
i
} Ht |A〉 with H in Eq. (19) connecting the two states |A〉 and |B〉 can be written

as

|ψ (t)〉 =

cos

(
E

}
t

)
−

cos
(
ϕα−ϕβ

2

)
sin
(
ϕα−ϕβ

2

) sin

(
E

}
t

) |A〉+
ei
ϕα−ϕβ

2

sin
(
ϕα−ϕβ

2

) sin

(
E

}
t

)
|B〉 , (20)

where 0 ≤ t ≤ Tmin
AB with Tmin

AB = }θ/ (2E). For the sake of completeness, we note that for H in Eq. (19), we correctly

get 〈A|H|A〉 / 〈A|A〉 = 0 and ∆E =
[〈
A|H2|A

〉
/ 〈A|A〉

]1/2
= E = ∆Emax. In conclusion, the Hamiltonians in Eqs.

(11) and (19) are optimal-speed Hamiltonians yielding unit quantum geometric efficiency ηQM = 1. For clarity, we
emphasize that Hamiltonians in Eqs. (11) and (19) are both optimal speed Hamiltonians. However, the Hamiltonian
H in Eq. (11) is not traceless and its applicability is formally limited to connecting the initial state |A〉 = (1, 0) to
an arbitrary final state |B〉. The Hamiltonian H in Eq. (19), instead, is traceless and can connect an arbitrary initial
state |A〉 to an arbitrary final state |B〉.

Having discussed in detail the two main constructions of Hamiltonians yielding unit quantum geometric efficiency,
in the next section we focus on the geometric characterization of the propagation of polarized light with maximal
degree of coherence. As we present this classical optics description, we will emphasize analogies and determine exactly
correspondences with the above mentioned quantum mechanical characterizations.
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III. PROPAGATION OF POLARIZED LIGHT AND DEGREE OF COHERENCE

In this section, we describe the propagation of light by means of the polarization ellipse, the Stokes parameters,
and the Poincaré sphere. Then, we briefly define the notions of coherence of electric vibrations, degree of coherence,
coherency matrix, and degree of polarization of a light wave. We end this section with a discussion on propagation of
polarized light with maximal degree of coherence, that is, unit classical optical efficiency on the Poincaré sphere. How-
ever, before beginning with our formal descriptions, we present some motivational background that helps explaining
our underlying motivations for presenting this material of polarization optics.

A. Motivational background

Two important quantities in optics when studying the physics of polarized light are the degree of polarization P of
the wave and the degree of coherence |jxy| of the electric vibrations. The quantity P is defined as [9],

P
def
=

Ipol

Itot
, (21)

with Itot
def
= Ipol + Iunpol denoting the total intensity of the wave and Ipol being the intensity of the monochromatic

(hence, polarized) part of the wave. The quantity P with 0 ≤ P ≤ 1 expresses the “amount of polarization” present
in the wave. In particular, the wave is completely unpolarized when P = 0 and completely polarized when P = 1.
When 0 < P < 1, the light is partially polarized. The degree of coherence |jxy|, instead, is defined as the modulus of
the complex degree of coherence jxy [9],

jxy
def
=

Jxy√
Jxx
√
Jyy

. (22)

In Eq. (22), Jij
def
=
〈
Ei (t)E∗j (t)

〉
are the matrix coefficients of the so-called coherency matrix J and the sharp

brackets denote the time average operation. The quantity |jxy| with 0 ≤ |jxy| ≤ |jxy|max, instead, measures the
degree of correlation of the electric vibrations. When |jxy| = 0, the electric vibrations are uncorrelated and they may
be said to be incoherent. Furthermore, when |jxy| = |jxy|max, the vibrations may be said to be coherent. Finally,
when 0 < |jxy| < |jxy|max, vibrations are known as partially coherent. The quantity P can be fully expressed in
terms of the determinant and the trace of the coherency matrix J as shown in Ref. [9]. Therefore, it is a quantity
whose value does not change under arbitrary rotations of the orthogonal Cartesian axes used to describe the electric
vibrations. However, unlike the degree of polarization of the wave, the degree of coherence |jxy| between the electric
vibrations in any two mutually orthogonal directions of propagation of the wave is generally affected by the specific
choice of the two orthogonal directions [9]. In particular, it is possible to show that there always exist a pair of
orthogonal directions for which the degree of coherence |jxy| of the electric vibrations reaches its maximum value
|jxy|max and, in addition, this value equals the degree of polarization P of the wave [25]. Interestingly, this particular
pair of orthogonal directions has a clear geometrical interpretation. Indeed, representing the wave as an incoherent
mixture of a wave of natural radiation and a wave of monochromatic (hence, completely polarized) radiation, it can
be shown that these directions for which the degree of coherence |jxy| equals the degree of polarization P are the
bisectors of the principal directions (that is, major and minor axes) of the polarization ellipse of the polarized portion
of the wave [35].

The existence of a pair of directions (x̂′, ŷ′) rotated around the ẑ-axis (that is, the axis that specifies the direction
of propagation of the wave) by a specific angle ϕopt that affects the electric vibrations in such a manner that the

quantity ηopt
def
= |jxy| /P, that we name classical optical efficiency in this paper, equals one is reminiscent of the

existence of a pair of orthogonal states (|E+〉 , |E−〉) that defines the axis of rotation of the Bloch sphere orthogonal
to the hemispherical plane containing the initial and final unit states |A〉 and |B〉 as discussed in the previous section.
In the quantum case, this rotation around the n̂E+ -axis by an angle 2 cos−1 [|〈A|B〉|] is essentially the unitary evolution

operator emerging from the optimal-speed Hamiltonian that yields efficiency ηQM
def
= s0/s equal to one. Furthermore,

just as these directions (x̂′, ŷ′) for which |jxy| = P are the bisectors of the principal directions
(
ξ̂, η̂

)
corresponding

to the major and minor axes, respectively, of the polarization ellipse, in a similar fashion, the pair of orthogonal states
(|E+〉 , |E−〉) for which s0 = s lie in the equatorial plane when the pair of states (|A〉 , |A⊥〉) are assumed to lie at
the poles. Finally, the angle ϕopt seems to be replaced in the quantum case by the azimuthal angle ϕE+

that serves
to specify the location of |E+〉 on the Bloch sphere. We shall devote the rest of this paper to make these formal
analogies as quantitative as possible. We shall begin by observing that to better characterize the propagation of the
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Bloch Sphere Polarization Ellipse Poincaré Sphere

(|A〉 , |A⊥〉)
(
ξ̂, η̂

)
~Sinitial(

|E+〉sub−optimal , |E−〉sub−optimal

)
(x̂, ŷ) ~Ssub−optimal(

|E+〉optimal , |E−〉optimal

)
(x̂′, ŷ′) ~Soptimal

H = a0I + ~a · ~σ ~E J = 1
2
~S · ~σ

â = â (θ, ϕ) ~E = ~E (β, χ) ~S = ~S (2β, 2χ)

e−i
‖~a‖TAB

} â·~σ Rẑ (α) MROT (α)

s0, fixed ~E, fixed P, fixed

s (0)→ s (TAB)
[
~E
]
{x̂, ŷ}

→
[
~E
]
{x̂′, ŷ′}

|jxy| → |jx′y′ |

ηQM
def
= s0/s 〈ExE∗x〉 −

〈
EyE

∗
y

〉
ηoptics

def
= |jxy| /P

TABLE I: Schematic depiction of the most relevant quantities that specify optimal-speed unitary quantum time evolutions
on the Bloch sphere together with the analogue quantities that characterize the propagation of light with maximal degree of
coherence by means of the polarization ellipse and the Poincaré sphere representations of polarized light.

effects of this simple two-dimensional rotation of the canonical Cartesian axes (x̂, ŷ) on the electric vibrations along
with the coherency matrix J and, ultimately, on the degree of coherence |jxy|, we need to better understand how to
visualize and perform calculations when considering polarized light. For this reason, we shall introduce the concepts
of polarization ellipse along with that of the Poincaré sphere.

To better motivate the definitions and concepts of polarization optics in what follows, we present in Table I a
schematic depiction of the most relevant quantities that specify optimal-speed unitary quantum time evolutions on
the Bloch sphere together with the analogue quantities that characterize the propagation of light with maximal degree
of coherence by means of the polarization ellipse and the Poincaré e sphere representations of polarized light. Clearly,
these correspondences will become more transparent as we go through the next subsections and Section IV.

B. Polarization of a light wave

In the previous section, we have explained how the Hamiltonian operator affects the path of evolution of a quantum
system (specifically, a spin-1/2 particle) in terms of geometric evolutions on a Bloch sphere. In this section, keeping
the directions of rays of light constant during its propagation, we focus on the state of polarization and the intensity of
the light as it passes through an optical system. In this case, the three fundamental types of optical elements are wave
plates, rotators, and polarizers. These elements give rise to phase shifting, rotations, and anisotropic attenuation,
respectively. More specifically, we are interested here in intensity-preserving linear optical transformations which
quantify the effect of rotators on polarized light in a geometric fashion. For such a quantification, we need to arrive
at the Poincaré sphere description of polarized light. The way we plan to pursue this goal can be outlined as
follows. Firstly, we begin with the polarization ellipse representation of polarized light [9]. Secondly, we introduce
the Stokes parameters from the polarization ellipse [36]. Finally, we introduce the Poincaré sphere by attaching a
geometric interpretation to the Stokes parameters [37]. We remark that the traditional language for studying the
two-component electric vector of the light is the so-called Jones-matrix formalism based upon the use of 2×2 complex
matrices [38]. Alternatively, regarding the Stokes parameters as the components of a column matrix or 4-vector and
optical devices as represented by 4×4 matrices [39], the so-called Mueller matrix method can be employed to quantify
the effect of optical devices on polarized light. For further details on the Mueller matrices in optics, we refer to
Appendix A.

Polarization ellipse. Assume that the electric vector field ~E of the light propagating along the ẑ-axis is given

by ~E = Ex (t) x̂ + Ey (t) ŷ with Ex (t) and Ey (t) defined as Ex (t)
def
= E0x (t) cos [ωt+ δx (t)] and Ey (t)

def
=

E0y (t) cos [ωt+ δy (t)], respectively. The quantities ω, δx (t), and δy (t) specify the plane wave and denote the in-
stantaneous angular frequency and the two instantaneous phases, respectively. After some algebraic manipulations of
the two relations involving Ex (t) and Ey (t), one arrives at an equation of an ellipse in a nonstandard form given by

E2
x (t)

E2
0x (t)

+
E2
y (t)

E2
0y (t)

− 2Ex (t)Ey (t)

E0x (t)E0y (t)
cos [δ (t)] = sin2 [δ (t)] , (23)

with δ
def
= δx − δy [36]. The ellipse defined by Eq. (23) is not in its standard from since Ex (t) and Ey (t) are not

directed along the x̂- and ŷ-axes. Instead, they are directed along the ξ̂- and η̂-directions obtained from the canonical
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Cartesian axes via a rotation around the ẑ-axis by an angle χ. This angle is known as the orientation angle with
0 ≤ χ < π and, clearly, it describes how tilted is the ellipse with respect to the canonical Cartesian axes. For the sake
of completeness and later use, we also introduce at this point the so-called ellipticity angle β with −π/4 < β ≤ π/4

defined as tanβ
def
= b/a with a and b being the major and minor axes of the polarization ellipse, respectively. This

angle specifies the shape of the ellipse. In what follows, we introduce the Stokes parameters from the polarization
ellipse.

The Stokes parameters from the polarization ellipse. Focusing on monochromatic radiation with E0x, E0y, δx, and
δy constant in time, Eq. (23) reduces to

E2
x (t)

E2
0x

+
E2
y (t)

E2
0y

− 2Ex (t)Ey (t)

E0xE0y
cos δ = sin2 δ. (24)

To represent Eq. (24) in terms of observables of the electromagnetic radiation, one needs to consider a time average
over an infinite time interval. However, given the periodic behavior of Ex (t) and Ey (t), averaging over a single period
of vibration T will suffice. Specifically, define the time average of Ei (t)Ej (t) as

〈Ei (t)Ej (t)〉 def
=

1

T

∫ T

0

Ei (t)Ej (t) dt. (25)

Using Eq. (25), it can be shown following Ref. [36] that the time-averaged version of Eq. (24) can be recast as

S2
0 = S2

1 + S2
2 + S2

3 , (26)

with S0
def
= E2

0x + E2
0y, S1

def
= E2

0x − E2
0y, S2

def
= 2E0xE0y cos δ, and S3

def
= 2E0xE0y sin δ. The four parameters {Si}

with 0 ≤ i ≤ 3 are the observables of the polarization ellipse with S0 being the total intensity of the radiation while
{S1, S2, S3} specify the state of polarization of the light beam. These are the so-called four Stokes polarization
parameters [40]. Eq. (26) holds for completely polarized light and S0 is redundant in this case. Instead, for partially
polarized light, S2

0 ≥ S2
1 +S2

2 +S2
3 and S0 is no longer redundant. The excess S2

0−
(
S2

1 + S2
2 + S2

3

)
indicates the amount

of unpolarized light present in the beam. More specifically, for completely polarized light beams, S0
def
= Itot = Ipol.

Instead, for partially polarized light, S0
def
= Itot > Ipol. We refer to Appendix B for details on the behavior of |jxy|

for partially polarized waves using the Poincaré sphere formalism.
In what follows, we introduce the Poincaré sphere by attaching a geometric interpretation to the Stokes parameters.
The Poincaré sphere from the Stokes parameters. It can be verified by a straightforward but tedious computation as

mentioned in Refs. [37, 41] that for a fixed value of S0, we have for completely polarized light S1
def
= S0 cos (2β) cos (2χ),

S2
def
= S0 cos (2β) sin (2χ), and S3

def
= S0 sin (2β) with β and χ being the ellipticity and orientation angles, respectively,

as previously defined. Setting S0 = 1, the quantities {S1, S2, S3} have the following geometric interpretation. Con-

sider the vector ~s
def
= (S1, S2, S3) with length ‖~s‖ = S0 = 1. The vector ~s is located on a sphere of unit length with its

location determined by the azimuth angle 2χ and the latitude angle 2β. Thus, a beam of elliptically polarized light
can be specified by the vector ~s an mapped on the sphere as originally pointed out by Poincaré in Ref. [42]. For a
graphical depiction of the Bloch and Poincaré spheres, we refer to Fig. 1. For more details on the parametrization of
qubits and polarization states viewed as points on the Bloch sphere and the Poincaré sphere, respectively, we refer to
Appendix C.

C. Coherence of the electric vibrations

Having discussed the basics of polarized light, in this subsection we present the essentials concerning the notion of
coherence of the electric vibrations.

Given the electric vector of the incident light wave in its complex form, the so-called coherency matrix J is defined
as [25],

J =

(
Jxx Jxy
Jyx Jyy

)
def
=

(
〈ExE∗x〉

〈
ExE

∗
y

〉
〈EyE∗x〉

〈
EyE

∗
y

〉 ) , (27)

where the sharp brackets denote time average. The coherency matrix J is an Hermitian matrix with J∗xy = Jyx
and characterizes the incident wave. In particular, tr(J) represents the intensity of the incident wave and its off-

diagonal coefficients describe the correlation between the x- and y-components of ~E. We observe that employing the
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FIG. 1: In (a), we depict the Bloch sphere for pure quantum states of a single qubit. A point P = P (θ, ϕ) on the surface

of the Bloch sphere is defined by the Bloch vector ~r
def
= (rx, ry, rz) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) with ‖~r‖ = 1. Mixed

states are specified by ‖~r‖ ≤ 1, with the origin representing a maximally mixed state. The angles θ and ϕ are the polar
and the azimuthal angles, respectively. In (b), we depict the Poincaré sphere of unit radius for the polarized state of a

beam of light. A point P = P (β, χ) on the surface of the Poincaré sphere is defined by the vector ~s
def
= (S1, S2, S3) =

(S0 cos 2β cos 2χ, S0 cos 2β sin 2χ, S0 sin 2β) where ~S
def
= (S0, S1, S2, S3) with S2

1 + S2
2 + S2

3 = S2
0 ≡ 1 is the Stokes vector

specified by the four Stokes parameters {S0, S1, S2, S3}. The parameter S0 denotes the total intensity of the beam while the
remaining three parameters S1, S2 and, S3 specify the polarization state of the beam. A partially polarized beam of light is
specified by S0 ≤ 1, with the origin being a completely unpolarized beam. Finally, β and χ are the ellipticity and the orientation
angles, respectively.

Schwarz inequality for integrals, it follows that |Jxy| ≤
√
Jxx
√
Jyy and |Jyx| ≤

√
Jyy
√
Jxx. Therefore, det (J)

def
=

JxxJyy − JxyJyx ≥ 0. The Stokes parameters can be expressed in terms of the coherency matrix coefficients by the

relations S0
def
= Jxx + Jyy, S1

def
= Jxx − Jyy, S2

def
= Jxy + Jyx, and S3

def
= i (Jyx − Jxy). Inverting these equations, one

gets Jxx = (S0 + S1) /2, Jyy = (S0 − S1) /2, Jxy = (S2 + iS3) /2, and Jyx = (S2 − iS3) /2. Therefore, the relation
between the Stokes parameters {S0, S1, S2, S3} and the coherency matrix J can be recast in the following compact
form [7, 25],

J =
1

2

3∑
i=0

Siσi, (28)

where in Eq. (28) σ0 = I2×2, σ1 = σz, σ2 = σx, σ3 = −σy with {σx, σy, σz} being the usual Pauli spin matrices in
quantum mechanics. To quantify the electric vibrations in the x̂- and ŷ-directions, we introduce the so-called complex
degree of coherence

jxy = |jxy| eiβxy
def
=

Jxy√
Jxx
√
Jyy

. (29)

In Eq. (29), |jxy| is the modulus of the complex degree of coherence ( we shall call it, degree of coherence) and measures
the degree of correlation of the vibrations. The phase βxy ∈ R, instead, specifies the effective phase difference between
the vibrations. As a side remark, we note that det (J) ≥ 0 implies |jxy| ≤ 1. We notice that J in Eq. (27) will
change if the x̂- and ŷ-axes are rotated about the direction of propagation of the wave. Therefore, since |jxy| is not
expressed in terms of rotation-invariant terms, it depends on the choice of the x̂- and ŷ-axes. Unlike |jxy|, the degree
of polarization P in Eq. (21) of a wave can be expressed in terms of rotation-invariant quantities built from the
coherency matrix as we shall see in the next subsection.

D. Degree of polarization and coherency matrix

To express the degree of polarization of a wave in terms of the coherency matrix, we proceed as follows. Recall that
a general coherency matrix Jgeneral can be formally recast as,

Jgeneral =

(
Jxx Jxy
Jyx Jyy

)
def
=

(
α1 γ1 − iδ1

γ1 + iδ1 β1

)
, (30)
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Type of Sphere Constraint Description Constraint Equation

Bloch bounded energy of the system (E+ − E−)2 = (h11 − h22)2 + 4h12h21 = fixed

Bloch maximal energy dispersion ∆E = ∆Emax, and ∆t = ∆tmin

Poincaré bounded intensity of light I2pol = (Jxx − Jyy)2 + 4JxyJyx = fixed

Poincaré maximal correlations between Ex and Ey S2
2 =

(
S2
2

)
max

, and S2
1 = 0

TABLE II: Schematic summary of the main constraint equations yielding unit efficiency geodesic paths on the Bloch sphere
and optical paths leading to polarization states with maximal degree of coherence on the Poincaré sphere.

with α1, β1, γ1, δ1 ∈ R. Moreover, recall that any wave can be represented as a superposition of a wave of natural

radiation with coherency matrix Jnatural
def
=
[
D2, 0; 0, D2

]
and a completely elliptically polarized (monochromatic)

wave with coherency matrix Jpol
def
=
[
A2, − iAB; iAB, B2

]
with A, B, D ∈ R. Then, it can be shown that all light

is a case or limiting case of partially elliptically polarized light with coherency matrix given by Jtot
def
= Jnatural + Jpol,

Jtot =

(
A2 +D2 −iAB
iAB B2 +D2

)
. (31)

To prove this statement, it is sufficient to show there exists a transformation that allows us to set Eq. (31) equal

to Eq. (30). Indeed, it turns out that Jtot = T (χ) · Jgeneral · T−1 (χ) where T (χ)
def
= [cosχ, sinχ; sinχ, − cosχ] is

a real unitary transformation with χ being the angle (that is, the orientation angle for the polarization ellipse that
corresponds to the light beam) defined by the condition [43],

tan (2χ) =
2γ1

α1 − β1
=
Jxy + Jyx
Jxx − Jyy

. (32)

For further details on how to express A, B, and D in terms of α1, β1, γ1, δ1, we refer to Ref. [43]. Now, setting

Jxx
def
= A2 +D2, Jxy

def
= −iAB, Jyx

def
= iAB, and Jyy

def
= B2 +D2, we finally have

P
def
=

Ipol

Itot
=

tr (Jpol)

tr (Jtot)
=

[
1− 4 det (Jtot)

[tr (Jtot)]
2

]1/2

. (33)

From Eq. (33), we note that P does not depend on the choice of the x̂- and ŷ-directions. Furthermore, from Eq. (33)
and the definition of |jxy|, we obtain after some algebra that |jxy| ≤ P [25]. The equality |jxy| = P holds iff Jxx = Jyy.
It can be shown that a pair of orthogonal directions x̂′ and ŷ′ always exist for which this is the case.

The fact that |jxy| depends on the choice of the x̂ and ŷ directions while P does not, along with the definition of
the angle χ in Eq. (32), will play a major role in our discussion of unit optical efficiency in the next section.

IV. PROPAGATION OF LIGHT WITH UNIT OPTICAL EFFICIENCY

In this section, we finally describe the propagation of polarized light with maximal degree of coherence.
Let us define a measure of optical efficiency as the ratio between the degree of polarization of the wave and

the degree of coherence of the electric vibrations, ηopt
def
= |jxy| /P. This quantity achieves its maximum value 1

when |jxy| = P, that is to say, when Jxx = Jyy. For a fixed value of P or, analogously, for a fixed value of

Ipol
def
= tr (Jpol) =

[
(Jxx + Jyy)

2
+ 4 det (Jpol)

]1/2
=constant [25], we wish to find a new pair of orthogonal directions

{x̂′, ŷ′} such that Jx′x′ = Jy′y′ and, consequently, ηopt = 1. First, using the definition of det (Jtot), we note that the
constraint on Ipol can be recast as

I2
pol = (Jxx − Jyy)

2
+ 4JxyJyx = constant. (34)

Therefore, from Eq. (34) we have that the optimal coherency matrix J ′ is specified by Jx′x′ = Jy′y′ and |Jx′y′ | = Ipol/2.
Observe that Eq. (34) is the analogue of Eq. (2). Furthermore, the quantum conditions h11 = h22 and hmax

12 = E0/2
correspond to the optical conditions Jx′x′ = Jy′y′ and |Jx′y′ | = Ipol/2, respectively.
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Alternatively, in terms of the Stokes vector components, unit optical efficiency demands

S2
1 →

(
S2

1

)
min

= 0, with S2
2 →

(
S2

2

)
max

. (35)

Note that the minimization of S2
1 and the maximization of S2

2 correspond to the minimization of the evolution time and
the maximization of the energy uncertainty, respectively. In Table II, we present a schematic of the main constraint
equations yielding unit efficiency geodesic paths on the Bloch sphere (that is, Eqs. (2) and (13)) and optical paths
leading to polarization states with maximal degree of coherence on the Poincaré sphere (that is, Eqs. (34) and (35)).

To find the pair of orthogonal directions {x̂′, ŷ′}, we assume they are obtained from the canonical Cartesian

directions {x̂, ŷ} via a rotation Rẑ (ϕopt)
def
= [cosϕopt, sinϕopt; − sinϕopt, cosϕopt] around the ẑ-axis by an angle

ϕopt to be determined. Specifically, the components of the electric field ~E with respect to the basis {x̂′, ŷ′} satisfy[
~E
]
{x̂, ŷ}

→
[
~E
]
{x̂′, ŷ′}

def
= Rẑ (ϕopt) ·

[
~E
]
{x̂, ŷ}

. (36)

The transformation laws for the coherency matrix and the Stokes vector emerging from Eq. (36) are given by [44],

J → J ′
def
= Rẑ (ϕopt) · J ·Rẑ (−ϕopt) , (37)

and [45],

S → S′
def
= MROT (ϕopt)S = U · [R∗ẑ (ϕopt)⊗Rẑ (ϕopt)] · U†, (38)

respectively, where U is a (4× 4)-unitary matrix and MROT (ϕopt) is a (4× 4)- Mueller matrix given by

U def
=

1√
2


1 0 0 1

1 0 0 −1

0 1 1 0

0 i −i 0

 , and MROT (ϕopt)
def
=


1 0 0 0

0 cos (2ϕopt) sin (2ϕopt) 0

0 − sin (2ϕopt) cos (2ϕopt) 0

0 0 0 1

 , (39)

respectively. Imposing that Jx′x′ = Jy′y′ , from Eq. (37) we get that ϕopt is such that

tan (2ϕopt) =
Jyy − Jxx
Jxy + Jyx

. (40)

Since Jxx, Jyy, and Jxy + Jyx = 2 Re (Jxy) ∈ R, Eq. (40) has a real root. In conclusion, there always exists a pair

of orthogonal directions {x̂′, ŷ′} with x̂′
def
= x̂ cosϕopt + ŷ sinϕopt and ŷ′

def
= −x̂ sinϕopt + ŷ cosϕopt for which the two

intensities Jxx and Jyy are equal. For this pair of directions, the degree of coherence |jxy| reaches its maximum value
|jxy|max with |jxy|max = P. This particular pair of directions {x̂′, ŷ′} has a neat geometric interpretation. Indeed,
using Eqs. (32) and (40), it follows that

tan (2ϕopt) tan (2χ) = −1, (41)

that is, ϕopt − χ = π/4 or 3π/4. Therefore, the directions {x̂′, ŷ′} for which ηopt
def
= |jxy| /P = 1 are the bisectors

of the principal directions
{
ξ̂, η̂

}
with ξ̂

def
= x̂ cosχ + ŷ sinχ and η̂

def
= −x̂ sinχ + ŷ cosχ of the polarization ellipse

of the polarized portion of the wave [25]. Therefore, given that x̂′ = ξ̂ cos (ϕopt − χ) + η̂ sin (ϕopt − χ) and ŷ′ =

−ξ̂ sin (ϕopt − χ) + η̂ cos (ϕopt − χ) with ϕopt − χ = π/4 or 3π/4, we have∣∣∣x̂′ · ξ̂∣∣∣ = |x̂′ · η̂| =
∣∣∣ŷ′ · ξ̂∣∣∣ = |ŷ′ · η̂| = 1/2, (42)

since x̂′ =
(
ξ̂ + η̂

)
/
√

2 and ŷ′ =
(
η̂ − ξ̂

)
/
√

2. Observe that the optical conditions in Eq. (42) correspond to the

quantum conditions

|〈E+|A〉| = |〈E−|A〉| = |〈E+|A⊥〉| = |〈E−|A⊥〉| = 1/2, (43)

obtained when maximizing the energy uncertainty in Eq. (12). In Table III, we provide a schematic description of
quantities of interest on the Bloch and the Poincaré spheres. In particular, we characterize the points P (θ, ϕ) and
P (β, χ) on the two surfaces in terms of their spherical coordinates. Moreover, we specify the rotation operations

yielding unit efficiency on the two spheres by means of their axes of rotation (that is, Ê+ and ẑ, respectively) and
their angles of rotation (that is, cos−1 [|〈A|B〉|] and ϕopt, respectively). Finally, we determine the two angles ϕE+

and
ϕopt to be compared within the two geometric frameworks of unit efficiency quantum evolutions and unit efficiency
polarized light propagation.

In the next section, we discuss the physical root that is underlying our proposed formal analogy.
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Quantity of Interest Bloch Sphere Poincaré Sphere

angles (θ, ϕ) (β, χ)

range of angles 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π −π/4 < β ≤ π/4, 0 ≤ χ < π

point on the sphere P (θ, ϕ)
def
= (sin θ cosϕ, sin θ sinϕ, cos θ) P (β, χ)

def
= (cos 2β cos 2χ, cos 2β sin 2χ, sin 2β)

axis of rotation Ê+ = Ê+

(
θE+ , ϕE+

)
ẑ, fixed

angle of rotation cos−1 [|〈A|B〉|], fixed ϕopt

angles to be compared ϕE+ = ϕE+ (|A〉 , |B〉) ϕopt = ϕopt (P ), with P = P (β, χ)

TABLE III: Schematic description of quantities of interest on the Bloch and the Poincaré spheres. In particular, we compare the
description of points P (θ, ϕ) and P (β, χ) on the two surfaces in terms of their spherical coordinates. Moreover, we describe the

rotation operations yielding unit efficiency on the two spheres in terms of their axes of rotation (that is, Ê+ and ẑ, respectively)
and their angles of rotation (that is, cos−1 [|〈A|B〉|] and ϕopt, respectively). Finally, we identify the two angles ϕE+ and ϕopt

to be compared within the two geometric frameworks of unit efficiency quantum evolutions and polarization optics.

V. PHYSICAL ORIGIN BEHIND THE FORMAL ANALOGY

The formal analogy between quantum evolutions with unit geometric efficiency and propagation of light with unit
optical efficiency, discussed in this paper and summarized in Tables I and II, is yet another example of the close
relationship that exists between certain classes of quantum mechanical and classical optical phenomena. Is this
analogy completely unexpected? What is the physical reason that underlines such a formal similarity? This analogy
is not completely unexpected. After all, as mentioned in the Introduction, Grover exploited his knowledge on the
interference of classical light waves in order to construct his quantum search algorithm. Furthermore, the set of
unit-speed quantum mechanical evolutions includes as a special case the Farhi-Gutmann search Hamiltonian [46], an
analog version of Grover’s digital quantum search scheme. Both Grover’s and the Farhi-Gutmann search schemes rely
heavily on the interference phenomenon for achieving their quadratic speedup. The phenomenon of interference, either
constructive or destructive, plays a key role in both light propagation [43, 47] and quantum searching [48, 49]. For
additional details on the role played by interference effects in light propagation, quantum searching, and optimal-speed
quantum evolutions, we refer to Appendix D.

In what follows, we briefly discuss the role played by interference as the physical root underlying the formal analogy
between propagation of light with maximal degree of coherence and optimal-speed unitary quantum propagation
proposed in this paper.

A. Interference of classical light waves

In the framework of coherent light propagation [43], two rays of light originating from the same source can interfere.
Specifically, the two rays can be combined in such a manner to give rise to a light more intense than is ordinarily created
by two light beams of their respective intensities (constructive interference). Alternatively, the superimposition of the
two rays of light can yield a darkness (destructive interference). Therefore, coherent light propagation is characterized
by interference effects where, in addition, the degree of coherence is equal to the degree of indistinguishability of
the particle trajectories that yield the interference pattern [47]. When the photon pattern becomes identifiable, the
interference effects disappear, and the light propagation becomes incoherent. In the study of coherence properties
of partially polarized electromagnetic radiation [25], there is a proper angle that specifies a pair of directions for
which the degree of coherence of the electric vibrations has its maximum value (which, in turn, equals the degree
of polarization of the wave). As discussed in this paper, this angle ϕopt is determined by a specific value of the
orientation angle χ that characterizes the polarization ellipse used to describe the light propagation (see Eq. (41)).

From a more quantitative standpoint, consider a quasi-monochromatic light wave that propagates in the ẑ-direction

specified by an electric field ~E (t) = Ex (t) x̂+Ey (t) ŷ. Assume that the component Eθ = ~E · θ̂ of the electric field in

the θ̂-direction is given by, Eθ (t; θ, ε)
def
= Ex (t) cos (θ)+Eye

iε sin (θ), with ε denoting the phase delay between Ex and
Ey. The interference law of light waves can be expressed by calculating the intensity I (θ, ε) of the light vibrations in
the direction which makes an angle θ with the positive x̂-direction. A straightforward calculation yields [25],

I (θ, ε) = Ix + Iy + 2
√
Ix
√
Iy |jxy| cos (βxy − ε) . (44)

In Eq. (44), I (θ, ε)
def
= 〈Eθ (t; θ, ε)E∗θ (t; θ, ε)〉 where sharp brackets denote time average, Ix

def
= Jxx cos2 (θ), Iy

def
=

Jyy sin2 (θ), Jij are the coefficients of the coherency matrix, and jxy
def
= |jxy| eiβxy is the complex degree of coherence
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of the electric vibrations in the x̂- and ŷ-directions. Recall that |jxy| in Eq. (44) is an indicator of the degree of
correlation of the vibrations, while βxy in Eq. (44) is an effective phase difference between the electric vibrations in the
x̂- and ŷ-directions. In modern terminology, we emphasize that Jij are known as the coefficients of the polarization
matrix [50]. Moreover, in the context of the classical theory of optical fluctuations and coherence, the analogue of
|jxy| is the so-called degree of first order coherence [51]. Regardless of notation and modern terminology, what is most
important for us here is the contribution of jxy with the interference term |jxy| cos (βxy − ε) into the expression of the
total intensity I (θ, ε) in Eq. (44).

Interestingly, when studying the superposition of two coherent beams of light in different states of elliptic polariza-
tion, Pancharatnam showed in Ref. [10] that if A and B represent the states of polarization on the Poincaré sphere
of the given interfering beams, and C that of the resultant beam, the intensity of the resultant beam can be recast as

IC = IA + IB + 2
√
IA
√
IB cos

(
θPoincaré
AB

2

)
cos (δ) . (45)

In Eq. (45), θPoincaré
AB is the angular separation of states A and B on the Poincaré sphere, while δ is not quite the

absolute difference of phase between the two beams and is defined as the phase advance of the first beam being in a
state of polarization A over the A-component of the second beam being in a state of polarization B. If we set ε = εy
in Eq. (44) and consider a nonvanishing phase εx, δ can be formally identified with εx− (εy − βxy). For more details,
we refer to Ref. [10].

B. Interference of quantum probability amplitudes

In the framework of quantum searching viewed in the context of quantum computing as multi-particle interference
[48, 49], the role of interference is fundamental since it permits the evolution from a source state to a target state
by manipulating the intermediate multi-particle superpositions in a convenient way. Specifically, quantum searching
can be regarded as inducing a proper relative phase between two eigenvectors to generate constructive interference
on the searched elements and destructive interference on the remaining ones. As pointed out in this paper, this phase
is quantified by a specific value of the azimuthal angle ϕE+ that specifies the location on the Bloch sphere of the
eigenstates |E±〉 used to geometrically construct the optimal evolution (search) Hamiltonian H.

Therefore, interference appears to be the essential physical phenomenon that underlies both propagation of light
with maximal degree of coherence and continuous-time quantum search evolution with minimum search time (i.e.,
optimal-speed). Interference is optimally exploited in the two above mentioned tasks so that unit optical and quantum
efficiencies can be achieved by identifying suitable angles. These are the orientation and azimuthal angles in the
optical and quantum search cases, respectively. The orientation angle ϕopt specifies the optimal unitary operation
(Mueller rotation, MROT (ϕopt)) that connects the two initial and final polarization states on the Poincaré sphere.
The azimuthal angle ϕE+

, instead, characterizes the optimal unitary operation (Bloch rotation, RÊ+
(θAB) with

θAB
def
= cos−1 [|〈A|B〉|] and Ê+

def
= Ê+

(
θE+ , ϕE+

)
) that connects the source and the target states |A〉 and |B〉 on the

Bloch sphere.
As mentioned earlier, the essential prerequisite for achieving speedups in quantum searching is interference of

quantum probability amplitudes [52, 53]. This occurs in both Grover’s original quantum search algorithm [31] and in
the Farhi-Gutmann continuous version of Grover’s algorithm [46]. Indeed, as pointed out by Lloyd in Ref. [32], Grover
arrived at the formulation of his quantum search algorithm inspired by the interference of classical waves emitted by
an array of antennae.

From an explicit viewpoint, consider a quantum state |ψ〉 written as the superposition of two normalized quantum

states |A〉 and |B〉 with complex probability amplitudes a
def
= |a| eiϕa and b

def
= |b| eiϕb , respectively, with ϕa and ϕb in

R. Furthermore, let us assume that 〈A|B〉 = 〈B|A〉∗ def
= |〈A|B〉| eiϕAB with ϕAB ∈ R. Then, the interference law of

probability amplitudes a and b can be expressed in terms of their corresponding probabilities calculated by taking a
modulus squared of the probability amplitudes. After some simple algebra in which we consider the inner product of
|ψ〉 with itself, the quantum interference law becomes

pa+b = pa + pb + 2
√
pa
√
pb |〈A|B〉| cos [ϕAB − (ϕa − ϕb)] , (46)

where pa+b
def
= 〈ψ|ψ〉, pa

def
= |a|2, and pb

def
= |b|2. In Eq. (46), |〈A|B〉| can be viewed as cos

(
θBloch
AB /2

)
with θBloch

AB
being the geodesic distance on the Bloch sphere between the states |A〉 and |B〉, while ϕa − ϕb is the absolute
phase difference between the interfering probability amplitudes a and b. Interestingly, we remark the contribution

of 〈A|B〉 def
= |〈A|B〉| eiϕAB with the interference term |〈A|B〉| cos [ϕAB − (ϕa − ϕb)] into the expression of the total

probability pa+b in Eq. (46).
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Considering Eqs. (44), (45), and (46), we note that 〈A|B〉 def
= |〈A|B〉| eiϕAB corresponds to jxy

def
= |jxy| eiβxy . In

particular, we get

|Jxy|√
Jxx
√
Jyy

def
= |jxy| ↔ cos

(
θPoincaré
AB

2

)
↔ cos

(
θBloch
AB

2

)
def
=

|〈A|B〉|√
〈A|A〉

√
〈B|B〉

. (47)

Eq. (47) is especially relevant since the degree of correlation of the electric vibrations (|jxy|) viewed in terms of the
angular separation on the Poincaré sphere (θPoincaré

AB ) can be regarded as corresponding to the geodesic distance on the
Bloch sphere (θBloch

AB ). In the analysis carried out in our paper, both cos
(
θBloch
AB /2

)
and |jxy| played a major role in

the proposed definitions of quantum geometric efficiency ηQM
def
= s0/s and classical optical efficiency ηopt

def
= |jxy| /P.

In summary, we have discussed the link between propagation of light with maximal degree of coherence and optimal-
speed quantum propagation by performing a punctual comparative analysis of geometric flavor. The emergence of
this formal analogy is physically motivated by the existence of a key physical phenomenon that underlies both types
of evolutions at their best, i.e., interference. This link among |jxy|, θPoincaré

AB , and θBloch
AB in Eq. (47) that emerges

while thinking of interference of classical waves (classical optics) and interference of probability amplitudes (quantum
mechanics) should be kept in mind as a constant (hidden) theme underlying our discussion in the main paper.

VI. CONCLUDING REMARKS

We present here a summary of our main findings along with a discussion on possible future applications of our
work.

A. Summary of results

In this paper, we identified and discussed in a quantitative manner a link between the geometry of time-independent
optimal-speed Hamiltonian quantum evolutions on the Bloch sphere and the geometry of intensity-preserving propa-
gation of light with maximal degree of coherence on the Poincaré sphere.

Specifically, we carried out a detailed comparative analysis between the quantum and optical scenarios. In the
quantum case, we focused on the main constraint equations (Eqs. (2) and (13)) leading to the construction of the

optimal unitary evolution operator e−
i
} HTAB (that is, a rotation of a Bloch vector on the Bloch sphere) with the

optimal Hamiltonian given in Eqs. (11) and (19). In the optical case, similarly, we focused on the main constraint
equations (Eqs. (34) and (35)) leading to the construction of the optimal Mueller matrix MROT (ϕopt) (see Eq. (39)
with ϕopt in Eq.(40). This Mueller matrix acts on a Stokes vector on the Poincaré sphere (see Eq. (38)) and leads
to the propagation of light with maximal degree of coherence in analogy to the geodesic path defined in Eq. (20)
and generated by the Hamiltonian in Eq. (19). In particular, in Table I we presented an explicit correspondence
between the main quantum and optical quantities that enter the two phenomena. In Table II, we pointed out the
two main constraint relations that specify the two physical scenarios. Finally, in Table III, we concluded with the
correspondence between axes and angles of rotations that specify the two optimal operations yielding unit quantum
geometric efficiency and classical optical efficiency, respectively.

Our main achievement in this paper is bringing to light this fascinating analogy between optimal-speed quantum
evolutions and polarized light propagation with maximal degree of coherence. This link was never noticed before and,
to the best of our knowledge, it constitutes a new connection between the quantum physics of two-level systems and
classical polarization optics. To a certain extent, we think that our investigation is not only relevant from a pure
theoretical perspective, it can also be regarded (in retrospect) as providing a sort of conceptual and quantitative geo-
metric background underlying Grover’s powerful intuition about constructing a quantum search scheme by mimicking
interference of classical waves [32].

Clearly, it could be worthwhile exploring the possibility of extending our work to higher-dimensional
quantum systems since a single two-level quantum system is so simple that connecting it to classical
wave propagation may not necessarily make the two-level system more intuitive. A richer Hilbert
space structure would be more appropriate to fully gain physical insights emerging from our pro-
posed analogy. Therefore, we expect that it would be very helpful outlining the needed formalism
to generalize our current result to multi-qubits quantum systems and demonstrate, for instance, that
classical optics is an intuitive way to understand entangled quantum systems. This is a crucial step
that we leave to future scientific efforts since it goes beyond the scope of the paper. However, in the
next subsection, we do explore in a qualitative manner some possible future line of investigations that
emerge from our analysis.
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B. Outlook

In addition to its intrinsic conceptual and pedagogical values, our theoretical study paves the way to several
intriguing explorative physics questions that require more attention.

• First, regarding the time-optimal Hamiltonian analysis within the general setting specified by the so-called
quantum brachistochrone problem (QBP, [54, 55]), it may be of interest investigating similarities between
propagation of light with maximal degree of coherence and the QBP. In this context, one may think of extending
our investigation to higher-dimensional spin systems [56] and to constraint equations specifying cost functions
other than time-optimality [57, 58]. In our paper, we have provided the optical analogue of a QBP via its
analogy with the propagation of light with maximal degree of coherence. The QBP was characterized by a cost
functional defined in terms of time-optimality to be optimized by imposing a single constraint, a bound on the
energy resource. In general, defining the cost functional, an efficiency measure of getting to a target state from
a given initial state by a suitable choice of a Hamiltonian, is a nontrivial task that depends on the physical
scenario being investigated. As pointed out in the Introduction, there is a variety of cost functionals that one
may consider in QBPs and, in addition, the optimization procedure may by specified by multiple constraints to
be simultaneously satisfied. A typical set of examples includes minimization of the total amount of time [54], the
heating rate [6], the energy dispersion rate [6], and the entropy production rate [59, 60]. It would be certainly
interesting from a physics perspective uncovering possible optical analogues of such more general QBPs. We
think that identifying suitable optical constraints would be a key step in this direction and one may need to go
beyond considering constraints expressed in terms of the intensity of light.

• Second, being in the framework of quantum speed limit (QSL) problems concerning the minimum time needed to
transfer a given initial quantum state to a final one [61–63], it appears that changes in coherence have significant
dynamical effects on the evolution speeds of the reduced state of certain families of quantum gases viewed as
interacting many-particle systems [64]. More specifically, in Ref. [64] the authors study the dynamics of the
reduced single-particle density matrix (RSPDM) of a strongly correlated bosonic quantum gas in one dimension
and a gas of spinless fermions. They focus on two dynamical processes, a sudden quench, and the efficient control
of the system by means of a shortcut to adiabaticity. The physics of the gases is characterized in terms of the
time-averaged Schatten-1 norm of the dynamics, that is the speed of evolution of the system. Furthermore, the
coherence of the gases is specified by means of the largest eigenvalue of the RSPDM, a good measure of the
presence of off-diagonal long-range order. The authors state in Ref. [64] that coherences play an essential role
in the evolution of the reduced state of the systems. In the case of strongly interacting bosons, they find larger
average speeds (thus, smaller quantum speed limit times) due to the presence of off-diagonal excitations emerging
from the scattering between particles. In our work, the minimum quantum speed limit time is achieved in the
presence of maximal energy dispersion with the speed of evolution of the quantum system being proportional
to the energy dispersion of the Hamiltonian operator. Furthermore, our results suggest that maximal energy
dispersion corresponds from an optical standpoint to maximal correlations between the orthogonal electric field
components of the light wave that appear as off-diagonal terms in the coherency matrix. Thus, the minimum
quantum speed limit time appears to correspond to a maximal correlational structure in the field components
specifying the electromagnetic radiation. Given these formal similarities between our work and the one in Ref.
[64], it seems rather intriguing exploring if our analysis might help further understanding the role played by
coherence in the control of many-body quantum states. We believe that a first significant step in this direction
would be exploring the possible existence of a quantitative connection between the degree of coherence employed
in our work and the coherence specified by means of the largest eigenvalue of the RSPDM.

• Third, when studying quantum resources, it happens that the quantum Fisher information and the super-
radiant quantity attributed to coherence are antithetical resources. Specifically, there is a trade-off between
the quantum Fisher information and the super-radiant quantity [65]. The trade-off emerges in a coherence
limited scenario where optimizing one quantity seems to suggest less quantum resources that can be utilized
for the other. Interestingly, identifying the energy uncertainty and the degree of coherence with the quantum
Fisher information and the super-radiant quantity, respectively, we also find there appears to be a conflicting
behavior between these two quantities. Indeed, considering the unit efficiency scenario where time-optimality
is the resource to be optimized, to an increase of one of these two quantities there corresponds necessarily a
decrease of the other one for a fixed minimum total amount of time for the evolution. To further elaborate
on this point, we remark that in Ref. [66] the authors study the Dicke model of superradiance specified by a
system of N identical two-level atoms with transition frequency ω and interacting in a collective fashion with
the surrounding electromagnetic field in the vacuum state at zero temperature. They find that the l1 norm
of coherence of the single-atom density operator is proportional to the square root of the normalized average
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radiation intensity emitted in a cooperative manner by the whole superradiant system. This radiation intensity,
in turn, can be recast in terms of the coherence of the normalized total electric dipole moment of the system.
Thus, an important link between the l1 norm of coherence of the single-atom density operator and the coherence
of the normalized total electric dipole moment of the system is emphasized. This link leads to the validation of
the l1 norm of coherence as a figure of merit of the superradiance phenomenon in the mean-field approach. As
a main finding, the authors showed that the evolution of the system is faster when more coherence is stored in
the single-atom state. Interestingly, our investigation also leads to the conclusion that optimal evolution speed
corresponds to maximal degree of coherence. Our work could be potentially relevant for better understanding
the reason why quantum coherence speeds up the evolution of superradiant systems. We anticipate that a
basic preliminary step in this direction would be that of clarifying the relation between the degree of coherence
employed in our work and the l1 norm of coherence, a very intuitive and easy to use coherence measure related
to off-diagonal elements of a quantum state with the key feature of being the most general coherence monotone
introduced in Ref. [67] and discussed with emphasis on its applications in Ref. [68].

• Fourth, it is pointed out in Ref. [68] that quantum coherence can also be used as a resource in quantum
algorithms. For instance, it is emphasized that the success probability in the analog Grover algorithm depends
on the amount of coherence, quantified via the l1 norm of coherence, in the corresponding quantum state [69, 70].
Uncovering possible links between our current work and the findings presented in Refs. [69, 70] could be yet
another intriguing avenue to explore in future investigations. Given the physically intuitive link with off-diagonal
elements of both the l1 norm of coherence and the degree of coherence used in our work, we remark once again
that a much needed step in this direction would be investigating the possibility of quantifying light propagation
by means of the l1 norm of coherence.

We hope our work will inspire other scientists and pave the way toward further investigations in this fascinating
research direction. For the time being, we leave a more in-depth quantitative discussion on these potential extensions
and applications of our theoretical findings to quantum brachistochrone problems, quantum speed limits questions,
and quantum resources analyses to future scientific efforts.
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Appendix A: Mueller matrices

In this Appendix, we provide further details on the Mueller matrices mentioned in subsection B of Section III.
Furthermore, we devote special emphasis on their relation with the Jones matrices. Finally, we emphasize how points
on the surface of the Poincaré sphere are rotated by means of specific types of Mueller matrices.

In the traditional approach to polarization optics, the light propagates along the ẑ-axis and one considers the
electric vector field components along the x̂- and ŷ-directions. The polarization state is determined by the amplitude
ratio and phase difference of the electric field components. Therefore, polarization can be modified either by changing
the amplitudes or by tuning the relative phases, or both. Within the Jones calculus [38, 71], the Jones vector in C2

represents the polarized light by means of the amplitude and the phase of the electric field in the x̂- and ŷ-directions.
Furthermore, linear optical elements (for instance, beam splitters, lenses, and mirrors) are represented by 2× 2 Jones
matrices. Within the Mueller calculus [39], employing the concepts of Stokes parameters and Poincaré sphere, the
change of polarization due to the interaction of light with an optical device can be described by the action of a 4× 4
matrix that represents a linear transformation acting upon a 4× 1 matrix corresponding to the Stokes vector. Within
the Mueller calculus, there are three fundamental optical elements: wave plates, rotators, and polarizers. A wave plate
and a rotator produce phase shifts and rotations of the Stokes vector, respectively. They are described by unitary
matrices since they do not change the intensity of the light. Polarizers cause anisotropic attenuation and do change the
intensity of light passing through them. Therefore, unlike wave plates and rotators, they are described by nonunitary
matrices. The matricial representation of optical devices is very useful. Indeed, the composite effect of a series of
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optical devices crossed by a light beam is represented by the product of the matrices corresponding to the various
optical elements in the series. Mueller matrices can be grouped into two main categories [72]: Nondepolarizing and
depolarizing Mueller matrices. Nondepolarizing Mueller matrices can modify the degree of polarization of partially
polarized light. However, they do not change the degree of polarization of perfectly polarized light. Depolarizing
Mueller matrices, instead, while maintaining the total intensity of the light beam, do reduce the degree of polarization
of completely polarized light. Furthermore, nondepolarizing Mueller matrices have equivalent Jones matrices. On
the other hand, depolarizing Mueller matrices have no equivalent Jones matrices. For a discussion on necessary and
sufficient conditions for a Mueller matrix to be derivable from a Jones matrix, we refer to Ref. [73]. Interestingly,
it is possible to show that any Mueller matrix can be decomposed into a sequence of three matrix factors [74]: a
diattenuator, followed by a retarder, then followed by a depolarizer. Diattenuators and retarders are described by
Hermitian Jones matrices and change only the amplitudes of the components of the electric field vector. A polarizer
is an example of a diattenuator. Retarders, instead, are described by unitary Jones matrices and change only the
phases of components of the electric field vector. A wave plate is an example of a retarder. As mentioned earlier, there
are Mueller matrices with no corresponding Jones matrices. However, it turns out that any Jones matrix J acting

on the electric field ~E can be transformed into the corresponding Mueller matrix M given by M
def
= A (J ⊗ J∗)A−1,

where “∗” and “⊗” denote the complex conjugate and the tensor product, respectively. Moreover, A is a 4× 4 matrix
defined as,

A
def
=


1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0

 . (A1)

Observe that the four rows
{
RiA
}

1≤i≤4
of A in Eq. (A1) are given by the coefficients of the identity matrix I and the

three Pauli matrices {σx, σy, σz} with R1
A ↔ I, R2

A ↔ σz, R
3
A ↔ σx, and R4

A ↔ σy. It is well-known that there is a
two-to-one homomorphism between the complex special unitary group SU(2) and the real group of three-dimensional
pure rotations O+ (3) [75],

SU(2) 3 ei~σ·n̂ θ2 ↔ ei
~J·n̂θ ∈ O+ (3) . (A2)

In Eq. (A2), n̂ denotes the axis of rotation, θ is the angle of rotation, ~σ
def
= (σ1, σ2, σ3) is the Pauli matrix vector,

and ~J
def
= (J1, J2, J3) is the generator vector for O+ (3). Interestingly, it can be shown that the matrix coefficients

Rij of any rotation matrix R in O+ (3) can be recast as [76],

Rij =
1

2
tr
(
U† · σi · U · σj

)
, (A3)

where U is a two-dimensional unitary matrix with determinant equal to one specified by three free (real) parameters.
From Eqs. (A2) and (A3), we note there is a global topological difference between SU(2) and O+ (3). For example,
increasing the angle θ by 2π in Eq. (A2), we get U → −U in SU(2) while R→ R in O+ (3). Therefore, both U and
−U in SU(2) correspond to the same R in O+ (3). Thus, there exists a two-to-one mapping of elements of SU(2)
onto O+ (3). Exploiting the SU (2)-O+ (3) homomorphism, it happens that to a SU (2) matrix U acting on the vector

field ~E there corresponds a 4× 4 Mueller matrix viewed as an augmented form of a O+ (3) matrix R [77],

M
def
=

(
11×1 O1×3

O3×1 R3×3

)
, (A4)

where the coefficients Mij of the matrix M are given by,

Mij
def
=

1

2
tr
(
U† · Ξi · U · Ξj

)
, (A5)

with ~Ξ
def
= (I, σz, σx, σy). For completeness, we remark that Eq. (A5) can also be extended by considering arbitrary

complex (scattering) matrices Ucomplex in place of SU (2) matrices. In this case, the effect of the Mueller matrix with

coefficients Mij
def
= 1/2tr

(
U†complex · Ξi · Ucomplex · Ξj

)
is to combine a rotation of the Stokes vector with a change of

its length (which, in turn, corresponds to a change in the degree of polarization). For more details on polarization
algebra with Mueller matrices, we refer to Ref. [77].
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Appendix B: Degree of coherence of partially polarized waves

In this Appendix, we use the Poincaré sphere formalism to describe the behavior of the modulus |jxy| of the complex
degree of coherence jxy of partially polarized light beams in terms of the ellipticity and orientation angles. Appendix
B helps better understanding the content of subsection B of Section III with regard to partially polarized light waves
with P< 1.

Partially polarized waves can be regarded as points that are inside the Poincaré sphere of radius Itot (i.e., the total
intensity of the wave) and at a distance Ipol (i.e., the intensity of the polarized part of the wave) from the origin of
the sphere itself. Using the Stokes parameters {S0, S1, S2, S3}, we note that the degree of polarization P and |jxy|
can be recast as,

P =

(
S2

1 + S2
2 + S2

3

)1/2
S0

, and |jxy| =
(
S2

2 + S2
3

S2
0 − S2

1

)1/2

, (B1)

respectively. From Eq. (B1), we have that if S2
0 = S2

1 + S2
2 + S2

3 then P= |jxy| = 1. Instead, if S2
0 > S2

1 + S2
2 + S2

3

then P< 1 and |jxy| ≤P. Furthermore, using the two relations in Eq. (B1) along with setting S0
def
= Itot, S1

def
=

Ipol cos (2β) cos (2χ), S2
def
= Ipol cos (2β) sin (2χ), and S3

def
= Ipol sin (2β), we get

|jxy| = |jxy| (β, χ; P)
def
= P

[
1− cos2 (2β) cos2 (2χ)

1− P2 cos2 (2β) cos2 (2χ)

]1/2

, (B2)

where P
def
= Ipol/Itot, −π/4 < β ≤ π/4, and 0 ≤ χ < π. Finally, we note from Eq. (B2) that for a given value of P < 1

and for any value of the ellipticity angle β ∈ (−π/4, π/4], the maximum of |jxy| equals P and is achieved when the
orientation angle χ equals π/4.

Appendix C: Parametrizations of qubits and polarization states

In this Appendix, we report for completeness some mathematical details on the parametrization of qubits and
polarization states viewed as points on the Bloch sphere and the Poincaré sphere, respectively. These details help
comprehending the schematic depictions in Fig. 1.

In terms of the computational basis vectors |0〉 and |1〉, a normalized qubit is a point on the Bloch sphere that can
be parametrized as

|ψ (θ, ϕ)〉 def
= cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 , (C1)

with 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. The Bloch sphere metric is given by ds2
Bloch

def
= dn̂B · dn̂B = dθ2 + sin2 (θ) dϕ2

with n̂B
def
= 〈ψ (θ, ϕ) |~σ|ψ (θ, ϕ)〉 = (sin θ cosϕ, sin θ sinϕ, cos θ) and ~σ

def
= (σx, σy, σz) being the usual vector of Pauli

matrices.
In terms of the orthonormal circular basis states êRC (right circular) and êLC (left circular), the general equation

of a normalized state of polarization ê (β, χ) viewed as a point on the Poincaré sphere is given by

ê (β, χ)
def
=

cos (β) + sin (β)√
2

êRC + ei2χ
cos (β)− sin (β)√

2
êLC, (C2)

with −π/4 < β ≤ π/4 and 0 ≤ χ < π. The Poincaré metric is given by ds2
Poincaré

def
= dn̂P·dn̂P = 4

[
dβ2 + cos2 (2β) dχ2

]
where n̂P

def
= 〈ê (β, χ) , ~σê (β, χ)〉C = (cos (2β) cos (2χ) , cos (2β) sin (2χ) , sin (2β)), with 〈·, ·〉C denoting the usual

complex inner product. From Eq. (C2), note that points on the poles specify circularly polarized light, êRC
def
=

ê (π/4, 0) and êLC
def
= ê (−π/4, 0). Furthermore, points on the equator correspond to linearly polarized light, êVL

def
=

ê (0, π/2) (vertical linear) and êHL
def
= ê (0, 0) (horizontal linear). Ignoring an overall phase, we remark that êRC

def
=

(êHL − iêVL) /
√

2 and êLC
def
= (êHL + iêVL) /

√
2. Finally, the remaining points on the Poincaré sphere represent other

elliptical polarization states.
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Appendix D: Interference effects in propagation of light, quantum searching, and optimal-speed quantum
evolutions

In this Appendix, we present some comments on the role played by interference effects in light propagation, quantum
searching, and optimal-speed quantum evolutions. These remarks integrate those presented in Section V.

In the study of propagation of light, coherent sources are required for producing interference patterns. In particular,
interference of light beams appear in the calculation of the total intensity of the resultant beam obtained in terms of
a superposition of two coherent beams. In this context, the objective is to obtain propagation of light with maximal
degree of coherence. Maximization of the absolute value of the complex degree of coherence, interpreted as a measure
of the degree of correlation of the electric vibrations of the wave, yield more visible interference patterns. Indeed, the
degree of coherence establishes in a formal manner how distinctly visible is the interference pattern [78]. We note
that to have a nonzero degree of coherence, the coherency matrix has to have nonvanishing off-diagonal terms [9, 25].
This observation becomes especially interesting when we recall that quantum computation derives its power from
entanglement and quantum interference. In particular, the degree of interference in a N -qubit register is specified by
the coherences, that is, the off-diagonal elements ρlm with l 6= m of the density operator in the computation basis.
Therefore, the role played by coherences in quantifying the degree of quantum interference viewed as a source of power
for quantum computing can be grasped in a straightforward manner [52]. These considerations lead us to the following
question: Where does the phenomenon of quantum interference manifest itself in the quantum computational tasks
considered in our paper?

In Grover’s digital quantum search algorithm [31], the interference of quantum probability amplitudes appears in
the calculation of the transition probability from the (known) source state to the (unknown) target state. Indeed,
in quantum searching, the goal is to achieve unit transition probability (defined as the modulus squared of the
quantum overlap between the target state and the source state acted upon by a number of iterations of Grover’s
operator) with the smallest number of iterations of Grover’s operator. More specifically, quantum searching can be
explained as inducing a desired relative phase between two eigenvectors of Grover’s operator to yield constructive
interference on the target state (that is, use quantum interference to nudge up the searched state) and destructive
interference on the remaining states [48, 49]. In the Farhi-Gutmann analog quantum search evolution viewed as the
continuous-time version of Grover’s search scheme [46], the interference of quantum probability amplitudes emerges in
the computation of the transition probability from the (known) source state to the (unknown) target state. The goal
there is to achieve unit transition probability in the shortest amount of time. The Farhi-Gutmann search Hamiltonian
specifies the dynamical process of quantum interference which, in turn, allows one to evolve from the source state to
the target state in the smallest possible time by modifying the explored intermediate superpositions of quantum states
in a suitably prescribed manner so that time optimality [54, 79] is achieved. Finally, in the optimal-speed quantum
Hamiltonian evolutions [18, 19], interference of quantum probability amplitudes can be identified in the maximization
of the energy uncertainty (that is, the dispersion of the Hamiltonian operator). This maximization is required in
order to evolve from a (known) source state to a (known) target state with optimal-speed (that is, the maximum
energy uncertainty and the smallest travel time). The optimal-speed time-independent Hamiltonian specifies, via its
eigenvector decomposition, the process of quantum interference. The latter, in turn, allows us to transition from
the source to the target states in the shortest possible time by navigating through a path of quantum states while
preserving maximal energy uncertainty. Interestingly, we pointed out the correspondence between intensity of light
and energy of the quantum system in the constraint equations that appear in Table II.


