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Graph states are a central resource in measurement-based quantum information processing. In the
photonic qubit architecture based on Gottesman-Kitaev-Preskill (GKP) encoding, the generation
of high-fidelity graph states composed of realistic, finite-energy approximate GKP-encoded qubits
thus constitutes a key task. We consider the finite-energy approximation of GKP qubit states given
by a coherent superposition of shifted finite-squeezed vacuum states, where the displacements are
Gaussian distributed. We present an exact description of graph states composed of such approxi-
mate GKP qubits as a coherent superposition of a Gaussian ensemble of randomly displaced ideal
GKP-qubit graph states. Using standard Gaussian dynamics, we track the transformation of the
covariance matrix and the mean displacement vector elements of the Gaussian distribution of the
ensemble under tools such as GKP-Steane error correction and fusion operations that can be used
to grow large, high-fidelity GKP-qubit graph states. The covariance matrix elements capture the
noise in the graph state due to the finite-energy approximation of GKP qubits, while the mean dis-
placements relate to the possible absolute shift errors on the individual qubits arising conditionally
from the homodyne measurements that are a part of these tools. Our work thus pins down an exact
coherent error model for graph states generated from truly finite-energy GKP qubits, which can
shed light on their error correction properties.

I. INTRODUCTION

Photonic quantum technologies [1–4] provide a promis-
ing avenue for realizing quantum information processing
in practice. A number of scalable architectures [5–8] for
fault-tolerant universal quantum computation using re-
alistically imperfect, noisy photonic elements, are being
actively pursued experimentally [9–11]. Photonic, noisy
intermediate-scale quantum (NISQ) processors are being
utilized for demonstrations of quantum advantage over
classical computations, e.g., in the boson sampling prob-
lem [12, 13]. Moreover, photonics is ubiquitously used in
quantum communications [14] and quantum sensing [15]
since photons form the most natural choice for carriers
of quantum information.

Quantum information is most commonly encoded in
the photonic domain in the discrete, finite degrees of
freedom of single photons such as their polarization or
propagation paths, or transverse spatial modes [16, 17],
or frequency [18–20] or temporal modes [21, 22], or time
bins [23, 24]. Deterministic generation of single pho-
tons forms the key challenge in realizing these encod-
ings. Alternatively, encodings in the continuous, infinite
quadrature degrees of freedom of spatial, frequency and
temporal modes of the bosonic field have also been con-
sidered [25]. The class of Gaussian continuous variable
(CV) states, such as the coherent states and squeezed
states are easily generated using lasers and quantum non-
linear optics. CV quantum states are especially suited
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for the paradigm of measurement-based quantum com-
putation since highly entangled CV multimode Gaussian
graph states [10, 11, 26] can be generated very efficiently.
However, implementing universal quantum logic [27, 28],
or any useful non-trivial quantum information processing
task such as entanglement distillation [29] or quantum er-
ror correction [30] over CV states requires non-Gaussian
elements such as photon number resolving detection or
third or higher order optical nonlinearities [31].

In 2001, Gottesman, Kitaev and Preskill [32], intro-
duced a hybrid encoding of quantum information in a
bosonic mode, where an error-corrected qubit (more gen-
erally a qudit) is encoded in the continuous quadrature
degrees of freedom of a bosonic mode. The GKP qubit, is
protected against continuous, small displacement errors,
which is critical to realize fault-tolerant quantum com-
putation using CV quantum states and measurements.
The resilience of GKP qubits against small displace-
ment errors also makes them resistant to photon loss er-
rors that are encountered in quantum communications.
In fact, among all possible finite-dimensional subspace-
encodings over the CV, infinite dimensional Hilbert space
of a bosonic mode [33], the GKP qubit encoding is close
to the optimal encoding for quantum capacity of Gaus-
sian thermal loss channels with average photon num-
ber constraint [34]. This makes them suitable for er-
ror correction-based quantum repeaters [35, 36]. GKP
qubit states are sufficiently non-Gaussian that all qubit-
level Clifford operations can be deterministically and ef-
ficiently implemented using linear optics and coherent
homodyne detection [37]. The key challenge in working
with GKP qubits is that since they are ideal, unnormal-
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ized states, they can only be approximately realized in
practice. There have been a few different proposals to
realize approximate GKP qubit states and experimental
implementations as well in recent works [38–42].

Given a supply of approximate GKP qubit states, the
generation of CV GKP graph states has important appli-
cations in measurement-based quantum computation as
well as in all-optical quantum repeaters, where the graph
states play the role of quantum memories [35, 43]. This
task was investigated in Ref. [44]. However, the approx-
imate GKP qubits were modeled as incoherent mixtures
of ideal GKP qubits shifted by Gaussian distributed ran-
dom displacements [45] that are strictly speaking still in-
finite energy states and hence unphysical. On the other
hand, a coherent superposition of shifted finite-squeezed
vacuum states, where the displacements are Gaussian dis-
tributed is a truly finite-energy approximation of a GKP
qubit. An exact description of graph states based on such
finite-energy, approximate GKP qubit pure states has
been missing. This is accomplished in the present work.
We start by considering the error wavefunction descrip-
tion of such finite-energy approximate GKP qubit pure
states given by a coherent superposition of a Gaussian
ensemble of ideal GKP-qubit states that are randomly
displaced in phase space. Based on this, we represent a
finite-energy GKP qubit graph state as a coherent super-
position of a Gaussian ensemble of ideal GKP qubit graph
states that are randomly displaced in phase space, char-
acterized by the mean displacement vector and the co-
variance matrix of the Gaussian distribution for the ran-
dom displacements. Using standard tools from Gaussian
dynamics [46], we track the transformation of these char-
acteristics under the GKP-Steane error correction proto-
col and graph fusion operations that are used to con-
ditionally prepare large, high-fidelity graph states com-
posed of individual GKP qubit pure states. An impor-
tant merit of the description is that it provides a coherent
error model for the GKP qubit graph states, which can
be used to study their best error correction properties.
A coherent error model could, e.g., be useful in design-
ing all-optical GKP-encoding-based quantum repeaters
based on graph states, and more generally for quantum
computing with realistic, finite-energy, GKP qubit en-
coding. The paper is organized as follows. In Sec. II, we
briefly review the GKP encoding of a qubit in a bosonic
field mode along with its finite-energy approximations.
In Sec. III, we describe finite-energy GKP graph states.
In Sec. IV, we discuss an error correction procedure due
to Steane [47], which is widely used for GKP qubits. In
Sec. V, we discuss two fusion operations, that are used
to merge two subgraphs or modify parts of a graph. In
Sec. VI, we apply our description of finite-energy GKP
qubit graph states to a graph state generation protocol
to grow graph states. We illustrate how the description
provides an accurate acccount of the noise and errors that
build up in the graph state in the protocol.

II. GOTTESMAN-KITAEV-PRESKILL (GKP)
QUBITS

Consider a bosonic mode described by its creation and
annihilation operators â and â†, such that [â, â†] = 1.
The corresponding Hermitian quadrature operators are
given by q̂ = (â + â†)/

√
2, p̂ = (â − â†)/(

√
2i), where

we have chosen ~ = 1. The eigenstates of these opera-
tors are Fourier related as |q〉 = 1√

2π

∫
dp exp(ipq)|p〉 and

|p〉 = 1√
2π

∫
dp exp(−iqp)|q〉. The symmetrically-ordered

displacement operator for the mode is defined as

D̂

(
u+ iv√

2

)
= e−iup̂+ivq̂; u, v ∈ R (1)

= ei
uv
2 X̂(u)Ẑ(v) = e−i

uv
2 Ẑ(v)X̂(u) (2)

where Ẑ(v) = eivq̂, X̂(u) = e−iup̂. (3)

The operators X̂(2
√
π), Ẑ(2

√
π) commute, i.e., they can

be simultaneously diagonalized. The ideal GKP qubit is
defined as the 2-D subspace stabilized by these opera-
tors [32]. The logical bit-flip and phase flip operators for
this qubit are defined as X = X̂(

√
π), Z = Ẑ(

√
π). The

ideal eigenstates of these operators form the bases for a
GKP qubit and are given by

|sign((−1)kp)〉 =

+∞∑
n=−∞

|(2n+ kp)
√
π〉p, kp ∈ {0, 1} (4)

|kq〉 =

+∞∑
n=−∞

|(2n+ kq)
√
π〉q, kq ∈ {0, 1},

(5)

respectively. It can be easily shown using the Poisson
summation formula that the states of (5) are uniform co-
herent superpositions of the states in (4) with appropriate
phases, and vice versa. Moreover, the Wigner function
of a uniform incoherent mixture of the bases states in
(4) or (5), i.e., e.g.,

(
|0〉〈0|+ |1〉〈1|

)
/2, is a collection of

delta function peaks that lie on a square lattice of spac-
ing
√
π in phase space. For this reason, the qubit that

they define is referred to as a square-lattice GKP qubit.
Since the ideal square-lattice GKP qubit-basis states

defined above are infinite superpositions of periodically
displaced, infinite energy quadrature eigenstates, they
are unnormalizable and unphysical. We can define finite-
energy approximations of GKP qubit states as superposi-
tions of periodically displaced, finitely squeezed vacuum
states of variance σ2/2 (where σ2 = 1 corresponds to the
vacuum), weighted by a Gaussian envelope function of
variance 2/σ2, which therefore have finite energy, e.g.,

|k̃q〉 ∝
+∞∑

n=−∞
e−

σ2((2n+kq)
√
π)2

2 X̂((2n+ kq)
√
π)

× 1

(πσ2)1/4

∫ +∞

−∞
dq e−

q2

2σ2 |0〉q, kq ∈ {0, 1}, (6)
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and likewise the |k̃p〉 states. When σ �
√
π, the normal-

ization constants of the above states are ≈
√

2σ.
When such a finitely squeezed approximate GKP

qubit state, say the state |0̃〉 is measured along the
q−quadrature using homodyne detection, the probabil-
ity distribution of the outcomes and its approximation
when σ �

√
π are given by

PX(x) = |〈x|0̃〉|2 ≈
∣∣∣∣ +∞∑
n=−∞

√
2σ e−

σ2(2n
√
π)2

2
e−

(x−2n
√
π)2

2σ2

(πσ2)1/4

∣∣∣∣2

≈
+∞∑

n=−∞
(2σ)e−4πσ

2n2 e−
(x−2n

√
π)2

σ2

√
πσ2

(7)

=

+∞∑
n=−∞

PN [n]PQ(x− 2
√
πn), (8)

where

PN [n] = (2σ)e−4πσ
2n2

, n ∈ Z (9)

PQ(q) =
e−

q2

σ2

√
πσ2

, q ∈ R (10)

are Gaussian distributions of an integer-valued random
variable N and a real-valued random variable Q, re-
spectively. We denote these random variables and their
distributions by the following shorthand notation that
highlights the distribution (along with the field), and
the mean and variance: N ∼ GZ(0, 1/(8πσ2)) and Q ∼
GR(0, σ2/2), where σ2 ∈ R. Rescaling the random vari-
able N by 2

√
π, we have a real-valued random variable

2
√
πN ∼ GR(0, 1/(2σ2)). Thus, the outcome X is a ran-

dom variable given by

X = 2
√
πN +Q, (11)

whose distribution PX(x), x ∈ R is given by the convolu-
tion of the distributions of 2

√
πN and Q. Likewise, when

a coherent superposition state of the form (|0̃〉+ |1̃〉)/
√

2
is measured with q−homodyne detection, we have

PX(x) =
1

2
|〈x|0̃〉+ 〈x|1̃〉|2

≈ 1

2

∣∣∣∣ +∞∑
n=−∞

√
2σe−

σ2(2n
√
π)2

2
e−

(x−2n
√
π)2

2σ2

(πσ2)1/4

+

+∞∑
n′=−∞

√
2σe−

σ2((2n′+1)
√
π)2

2
e−

(x−(2n′+1)
√
π)2

2σ2

(πσ2)1/4

∣∣∣∣2 (12)

=
1

2

∣∣∣∣ +∞∑
n=−∞

√
2σe−

σ2(n
√
π)2

2
e−

(x−n
√
π)2

2σ2

(πσ2)1/4

∣∣∣∣2 (13)

≈
+∞∑

n=−∞
σe−πσ

2n2 e−
(x−n

√
π)2

σ2

√
πσ2

(14)

=

+∞∑
n=−∞

PN [n]PQ(x−
√
πn), (15)

Figure 1. Probability distribution of outcomes from
q−quadrature measurement of a finite-energy GKP qubit
(|0̃〉+ |1̃〉)/

√
2 for a squeezing value of 10 dB.

where

PN [n] = σe−πσ
2n2

, n ∈ Z (16)

PQ(q) =
e−

q2

σ2

√
πσ2

, q ∈ R (17)

are Gaussian distributions of an integer-valued random
variable N ∼ GZ(0, 1/(2πσ2)) and a real-valued random
variable Q ∼ GR(0, σ2/2), respectively. That is, the out-
come is a random variable

X =
√
πN +Q, (18)

whose distribution PX(x), x ∈ R is the convolution
of distributions of

√
πN ∼ GR(0, 1/(2σ2)) and Q ∼

GR(0, σ2/2). Figure 1 plots this outcome distribution for
the case where the constituent squeezed vacuum states
(in the weighted superposition) are 10 dB squeezed be-
low vacuum variance in the q−quadrature, i.e., where
the |0̃〉, |1̃〉, in the superposition are of the form in (6)
with σ2 = 0.1 (where squeezing in dB is calculated as
−10 log10 σ

2). Note that in the above descriptions of
finite-energy GKP qubit states, it is implicit that the
conjugate quadrature is correspondingly anti-squeezed
with a variance equalling that of the Gaussian outer
envelope. More generally, the outer Gaussian envelope
of a finite-energy GKP qubit state can have a variance
≤ 1/(2σ2), so that the squeezing-anti-squeezing product
is ≤ 1/4 [48].

An equivalent, more general description of an arbitrary
finite-energy GKP qubit state |ψ̃〉 in terms of the corre-
sponding ideal GKP qubit state |ψ〉 (up to normalization)
that was also discussed in Ref. [32] is given by

|ψ̃〉 =

∫
du dv η(u, v) ei(−up̂+vq̂)|ψ〉, (19)

=

∫
du dv η(u, v)e

iuv
2 e−iup̂e+ivq̂|ψ〉, (20)

η(u, v) =
1√
πκδ

e−
1
2 (

(u−u′)2

δ2
+

(v−v′)2

κ2
); 0 < δκ < 1, (21)
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where η(u, v) is the square root of a real-valued,
characteristic bivariate Gaussian distribution for the
state, known as its error wavefunction, where (u′, v′)
and (δ2, κ2) are the means and variances of the
(q, p)−quadrature displacements, respectively. The state
|ψ̃〉 is thus a coherent superposition of displaced ideal
GKP qubit states, where the displacements are drawn
from the distribution |η(u, v)|2, which effectively intro-
duces a Gaussian envelope. For the explicit equivalence
of the error wavefuction description to the quadrature
basis description, see Appendix A. Note that a superposi-
tion of displacements is different from an incoherent mix-
ture of displacements, which characterize thermal noise.

III. GRAPH STATES COMPOSED OF FINITE
SQUEEZED GKP QUBITS

Consider a finite, simple, undirected graph G(V,E),
where V is the set of vertices vi with cardinality |V| = n,
and E is the set of edges eij = (vi, vj) connecting vertices
vi, vj . A graph state |G〉 is defined as

|ΨG〉 =
∏
e∈E

CZe|+〉⊗n, (22)

where the vertices in V of graph G have been associated
with qubits in the |+〉 state and the edges e ∈ E with the
controlled-phase gate denoted by CZ .

When the vertices are bosonic modes initialized as
finite-energy approximate GKP qubits of the form in (19-
21), where δ2i = liσ

2, κ2i = miσ
2 and u′i = µqi , v

′
i =

µpi∀i ∈ {v1, . . . , vn}, σ2 is some unit variance and all
li,mi, µqiµpi ∈ R, the corresponding graph state takes
the form

|Ψ̃G〉 =

∫
d~x ηG(~µ, V, ~x)

n∏
i=1

e
ixixn+i

2 e−ixip̂ie+ixn+iq̂i |ΨG〉.

(23)

Here |ΨG〉 denotes the ideal GKP-qubit graph state of the
form in (22) associated with the graph G(V,E), which is
obtained using the continuous variable controlled-phase
gate that is the quadratic Gaussian unitary given by
CZe = e−iq̂vi q̂vj acting on edges eij = (vi, vj), where
the vertices are associated with the ideal |+〉 GKP qubit
state of (4). In the Heisenberg picture, the CZ unitary
transforms the quadrature operators of two modes v1, v2

symmetrically as

C†Z q̂v1
CZ = q̂v1

C†Z p̂v1
CZ = p̂v1

− q̂v2

C†Z q̂v2
CZ = q̂v2

C†Z p̂v2CZ = p̂v2 − q̂v1 . (24)

The error wavefunction ηG(~µ, V, ~x) is the square root of
the 2n−variate real-valued Gaussian distribution of the

now correlated coherent random displacements ~s,~t acting
on the underlying ideal GKP qubits, given by

ηG(V, ~µ, ~x) =
e−

1
2 ((~x−~µ)·V −1·(~x−~µ)T )

(π2n det(V ))1/4
, (25)

where

~x = (s1, s2, . . . , sn, t1, t2, . . . , tn), (26)

~µ ≡ {〈~s〉, 〈~t〉}, (27)

V =

(
Qn×n RT

n×n
Rn×n Pn×n

)
σ2, (28)

Qij ≡ 〈∆si∆sj〉,Pij ≡ 〈∆ti∆tj〉,Rij ≡ 〈∆ti∆sj〉,
(29)

and the mean displacement vector ~µ and the covariance
matrix elements Vij take on the following values:

~µ = {~µ′q, ~µ′p}, (30)
~µ′q = {µqi}ni=1, (31)

~µ′p = {µ′pi}
n
i=1, µ

′
pi = µpi −

∑
j

Aijµqj , (32)

Q = diag(~l), ~l = {li}ni=1, (33)

P = diag( ~m′), ~m′ = {m′i}ni=1, m
′
i = mi +

∑
j

Aij lj ,

(34)
R ≡ {Rij}ni,j=1, Rij = −Aij lj , (35)

withA being the adjacency matrix of graphG(V,E). The
above form for ηG is the result of the action of the affine-
symplectic map corresponding to the CV CZ unitary op-
eration on the quadrature variables in phase space [25].
The graph state of (23) most generally can thus be com-
pactly represented by a node-weighted version of the
graph G(V,E), the node weights being the mean quadra-
ture displacements of the modes ~µ = (~µ′q, ~µ

′
p), and in

addition by specifying a 2n× 2n, real, symmetric covari-
ance matrix V associated with the correlated coherent
random displacements ~s,~t along the n q̂ and p̂ quadra-
tures, respectively, acting on the underlying ideal GKP
qubit graph state. In other words, we can represent
|Ψ̃G〉 ≡ G(V,E, ~µq, ~µp, V ).

Evidently, if large graph states are generated from
individual finite-energy approximate GKP qubits using
CZ gates alone, then the p−quadrature variances of the
modes can quickly accumulate, rendering the state too
noisy. The next two sections discuss tools that help rem-
edy this situation.

IV. GKP ERROR CORRECTION OF FINITE
SQUEEZED GKP QUBIT GRAPH STATES

The GKP Steane error correction is a procedure that
helps reduce quadrature noise in the finite squeezed GKP
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Figure 2. A schematic of the Steane error correction proce-
dure for reducing the noise variance along the p−quadruture
in an approximate GKP qubit using an approximate GKP
ancilla qubit. The black dashed arrow indicates a Controlled-
Not gate.

qubits at the cost of a possible mean displacement er-
ror. We will begin by describing the action of the pro-
cedure on a trivial single mode graph state, i.e., a single
approximate GKP qubit state of the form in (19), and
then generalize the results to a vertex of a larger graph.
The procedure involves a unitary interaction between the
“data” qubit, whose noise along p or q quadrature is de-
sired to be reduced, and an ancilla that is also prepared
in a finite-energy approximation of an eigenstate of the
conjugate quadrature, but with presumably lower noise
variance than the data qubit in the quadrature of inter-
est. We note that Steane error correction for the case
of a single qubit graph has been previously discussed in
[49].

We discuss GKP-Steane error correction for
p−quadrature noise reduction here. A schematic of
the procedure is shown in Figure 2. It consists of
preparing an ancilla GKP qubit (qubit A) in the |0̃〉
state of (5) and performing the CV Controlled-NOT
gate CX with the ancilla qubit as the control and the
data qubit (qubit B) as the target. This is followed
by performing a p−quadrature homodyne measurement
on the ancilla and a feedback Ẑ(gy) displacement on
the data GKP qubit, where y is the measurement
outcome and g is a suitable gain factor. In this work,
the feedback displacement is chosen such that it removes
the measurement outcome-dependent component of the
conditional mean displacement on the data qubit(s).
The CX gate in CV is given by the unitary interaction
CC→TX = e−iq̂C p̂T , where C, T denote the control and
target modes, respectively. In the Heisenberg picture,
the CX unitary transforms the quadrature operators of
control and target modes as

C†X q̂CCX = q̂C

C†X p̂CCX = p̂C − p̂T
C†X q̂TCX = q̂T + q̂C

C†X p̂TCX = p̂T . (36)

The CV CX gate can be implemented using beam split-
ters and inline single-mode squeezers as described later
in Sec. V.

Note that the procedure for q−quadrature noise reduc-
tion would similarly involve an ancilla prepared in a |+̃〉

and the CX between the data and the ancilla qubits, but
with the data qubit as the control and the ancilla qubit
as the target. This would be followed by a q−quadrature
measurement of the ancilla qubit and a feedback mea-
surement on the data qubit.

A. p−Steane error correction of a single
finite-energy GKP qubit

In p−quadrature GKP Steane error correction of a sin-
gle finite-energy GKP qubit in a state of the form in (19),
the interaction between the data and ancilla approximate
GKP qubits results in a two-mode state given by

|ψ〉AB = CA→BX |0̃〉A ⊗ |+̃〉B

=

∫
duA dvA ηA(uA, vA)

∫
duB dvB ηB(uB , vB)

× CA→BX ei(−uAp̂A+vAq̂A)ei(−uB p̂B+vB q̂B)|0〉A|+〉B (37)

=

∫
dsA dtA dsB dtB ηAB(sA, sB , tA, tB)

× ei(−sAp̂A+tAq̂A)ei(−sB p̂B+tB q̂B)|0〉A|+〉B , (38)

where sA = uA, sB = uB + uA, tA = vA − vB , tB = vB
and ηAB(sA, sB , tA, tB) is the square root of a 4-variate
Gaussian distribution

ηAB(sA, sB , tA, tB) =
e−

1
2 (~xV −1~xT )

π(det(V ))1/4
, (39)

with

~x = (sA, sB , tA, tB), (40)
V = Q⊕P, (41)

Q =

(
lA lA
lA lB + lA

)
σ2, P =

(
mA +mB −mB

−mB mB

)
σ2

(42)

We note that CA→BX |0〉A ⊗ |+〉B = |0〉A ⊗ |+〉B .
The state |ψ〉AB can be equivalently written as [45]∫

dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

× ei(−sAp̂A+tAq̂A)ei(−sB p̂B+tB q̂B)|0〉A|+〉B , (43)

where χAB(sA, sB), and {P(tA), Q(tB |tA)} are the
square roots of bivariate and univariate, real-valued
Gaussian distributions, respectively, denoted as

χAB(sA, sB) ∼ G1/2R ((0, 0),Q), (44)

P(tA) ∼ G1/2R (0, (mA +mB)σ2), (45)

Q(tB |tA) ∼ G1/2R

(
−mB

mA +mB
tA,

mAmB

mA +mB
σ2

)
.

(46)

The latter follows by applying Bayes’ rule.
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Ancilla measurement and conditional post-measurement state

When qubit A is measured over its p−quadrature, we
get an outcome y ∈ R with probability PY (y) and a con-
ditional state |φ〉B|y on qubit B, that can be deduced
from the conditional unnormalized state given by (see
Appendix B for the derivation)

p〈y|A.|ψ〉AB =
√
PY (y)|φ〉B|y

= 2
√
π
∑
n

e
− (y−n

√
π)2

2(mA+mB)σ2

(π(mA +mB)σ2)1/4
e
− (y+n

√
π)2

8
(lA+lB)

lAlBσ
2

(4π (lA+lB)
lAlBσ2 )1/4

×

(∫
dsB dtB

e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
−

(
tB+

mB
mA+mB

(y−n
√
π)

)2
2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4

e
−i lA

2(lA+lB)
(y+n

√
π)sBei(−sB p̂B+tB q̂B)|+〉B

)
(47)

Assuming
√

(mA +mB)σ �
√
π/2, the support of PY (y)

is mainly concentrated around y = n
√
π, n ∈ Z. When

y− n
√
π is small for some n ∈ Z, then y+ n

√
π ≈ 2n

√
π

for that n, i.e.,
√
PY (y)|φ〉B|y

∝
∑
n

e
− (2n

√
π)2

8
(lA+lB)

lAlBσ
2

(4π (lA+lB)
lAlBσ2 )1/4

e
− (y−n

√
π)2

2(mA+mB)σ2

(π(mA +mB)σ2)1/4

(∫
dsB dtB

e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
−

(
tB+

mB
mA+mB

(y−n
√
π)

)2
2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4

e
−i lA

lA+lB
n
√
πsBei(−sB p̂B+tB q̂B)|+〉B

)
. (48)

Moreover, PY (y) can be approximated as

∝
∑
n

∣∣∣∣∣∣∣∣
e
− (n

√
π)2

2
(lA+lB)

lAlBσ
2

(π (lA+lB)
lAlBσ2 )1/4

e
− (y−n

√
π)2

2(mA+mB)σ2

(π(mA +mB)σ2)1/4

∣∣∣∣∣∣∣∣
2

(49)

=
∑
n

e
− (n

√
π)2

(lA+lB)

lAlBσ
2

(π (lA+lB)
lAlBσ2 )1/2

e
− (y−n

√
π)2

(mA+mB)σ2

(π(mA +mB)σ2)1/2
(50)

=
∑
n

PN [n]PQ(y − n
√
π), (51)

where the random variables N and Q are given by

N ∼ GZ(0,

(
lA + lB
lAlB

)
/(2πσ2)), n ∈ Z, (52)

Q ∼ GR(0, (mA +mB)σ2/2), p ∈ R. (53)

That is, the outcome of the p−homodyne measurement
of qubit A is

y =
√
πN +Q, (54)

and its distribution is given by the convolution of N
√
π ∼

GR(0,
(
lA+lB
lAlB

)
/(2σ2)), n ∈ Z and Q. Note that Q has

the same distribution as tA.
Thus, the conditional post-measurement state of qubit

B can be written as

|φ〉B|y =
1√
N

∑
n

√
PN [n]PQ(y − n

√
π)

∫
dsBdtB

ζ(sB , tB)e
−i lA

lA+lB
n
√
πsBei(−sB p̂B+tB q̂B)|+〉B ,

(55)

ζ(sB , tB) =
e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
−

(
tB+

mB
mA+mB

(y−n
√
π)

)2
2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4
,

(56)

N =
∑
n

PN [n]PQ(y − n
√
π). (57)

By a change of variables tB → tB − mB
mA+mB

(y − n
√
π),

the above state can be equivalently written as

|φ〉B|y =
1√
N

∑
n

√
PN [n]PQ(y − n

√
π)∫

dsB dtB ζ(sB , tB)e
−i lA

lA+lB
n
√
πsB

e
i(−sB p̂B+

(
tB−

mB
mA+mB

(y−n
√
π)
)
q̂B)|+〉B , (58)

ζ(sB , tB) =
e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
− t2B

2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4
, (59)

where N is the normalization factor of (57) and the mean
displacement has been moved to the displacement oper-
ator from the error wavefunction.

Feedback displacement on B

Following the ancilla measurement, a feedback dis-
placement Ẑ(gpc(y)), y being the ancilla measurement
outcome and g being a gain factor, is applied on mode
B. The quantity pc(y) is chosen to the amount of

pc(y) = y mod
√
π (60)

such that pc(y) ∈ [−
√
π/2,

√
π/2]. That is, e.g.,

0 < y <

√
π

2
⇒ pc(y) = y (61)

√
π

2
< y <

√
π ⇒ pc(y) = y −

√
π. (62)

More generally, for y > 0 and n′ = b y√
π
c ∈ Z, we have

pc(y)

=

{
y − n′

√
π, y − n′

√
π <
√
π/2

y − (n′ + 1)
√
π,
√
π > y − n′

√
π >
√
π/2

. (63)
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Likewise, for y < 0 and n′ = b |y|√
π
c ∈ Z, we have pc(y)

=

{
y + n′

√
π, |y| − n′

√
π <
√
π/2

y + (n′ + 1)
√
π,
√
π > |y| − n′

√
π >
√
π/2

. (64)

When the gain factor is chosen to be g = mB
mA+mB

, for
an ancilla measurement outcome in the interval of 0 <
y <

√
π
2 , the state of qubit B is transformed as |φ〉B|y →

|ψ〉B|y, where |ψ〉B|y

= Ẑ

(
mB

mA +mB
pc(y)

)
|φ〉B|y

=
1√
N

∑
n

√
PN [n]PQ(y − n

√
π)∫

dsB dtB ζ(sB , tB) e
isB
(

mB
mA+mB

y
2−

lA
lA+lB

n
√
π
)

e
(i(−sB p̂B+

(
tB+

mB
mA+mB

n
√
π
)
q̂B)|+〉B , (65)

N being the normalization factor of (57). Note that with
this choice of g, we get rid of the y−dependent mean dis-
placement. On the contrary, there is now a y−dependent
phase factor, which is arrived at by carefully manipulat-
ing the joint displacement operator with the Ẑ displace-
ment from the feedback using the decompositions in (2).
However, this phase is inconsequential since it is a global
phase, present in all terms in the coherent superposition.
When mA � mB , we have |ψ〉B|y

≈ 1√
N

∑
n

√
PN [n]PQ(y − n

√
π)

∫
dsB dtB ξ(sB , tB)

e
isB
(
y
2−

lA
lA+lB

n
√
π
)
ei(−sB p̂B+(tB+n

√
π)q̂B)|+〉B , (66)

where

ξ(sB , tB) = lim
mA/mB→0

ζ(sB , tB)

=
e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
− t2B

2mAσ
2

(πmAσ2)1/4
. (67)

More generally, when mA � mB , for any y ≷ 0, we
have |ψ〉B|y ≈

1√
N

∑
n

√
PN [n]PQ(y − n

√
π)

∫
dsB dtB ξ(sB , tB)

e
isB
(
y∓z
√
π

2 − lA
lA+lB

n
√
π
)
ei(−sB p̂B+(tB+(n∓z)

√
π))q̂B |+〉B ,

(68)

z =

{
n′, |y| − n′

√
π <
√
π/2

(n′ + 1),
√
π > |y| − n′

√
π >
√
π/2

, (69)

n′ = b |y|√
π
c ∈ Z, (70)

where ξ(sB , tB) is as given in (67).

Mean displacement error in the Steane error-corrected state

We will now focus on the interval |y| <
√
π for the

ancilla measurement outcome. Once again, assuming√
(mA +mB)σ �

√
π/2, the probability PY (y) of (51)

for outcome y can be approximated as

PY (y) ≈ PN [0]PQ(y) + PN [1]PQ(
√
π − |y|). (71)

Further, when |y| ≤
√
π/2 and mA � mB , the error-

corrected state can be approximated as |ψ〉B|y ≈√
PN [0]PQ(|y|)|ψ0〉+

√
PN [1]PQ(

√
π − |y|)|ψ1〉√

PY (y)
, (72)

where

|ψ0〉 =

∫
dsB dtB ξ(sB , tB) ei(−sB p̂B+tB q̂B)|+〉B , (73)

|ψ1〉 =

∫
dsB dtB ξ(sB , tB) ei(−sB p̂B+(tB−

√
π)q̂B)|+〉B ,

=

∫
dsB dtB ξ(sB , tB +

√
π) ei(−sB p̂B+tB q̂B)|+〉B ,

(74)

and PY (y) and ξ(sB , tB) are as given in (71) and (67),
respectively. Note that we are ignoring phase factors in
the above expressions since they do not affect the mean
displacement error probabilities discussed below.

We observe that the p−displacements in |ψ1〉 have an
additional mean shift of

√
π, i.e., an offset of half the

GKP grid spacing relative to |ψ0〉. Since the underly-
ing ideal GKP qubit state in both |ψ0〉 and |ψ1〉 is an
eigenstate of the X̂ operator (the |+〉 state), the addi-
tional mean p−displacement of

√
π in |ψ1〉 implies a log-

ical Z−flip of the underlying ideal GKP qubit state. In
other words, the |ψ1〉 has an orthogonal support com-
pared to |ψ0〉 in the GKP grid state basis.

However, it should be noted that |ψ1〉 is not exactly the
zero mean finite squeezed |−̃〉, because it has its Gaussian
envelope offset relative to that state. The p−quadrature
wavefunction of the state (and more generally for states
corresponding to shifted-mean error wavefunctions) is de-
rived in Appendix C. Figure 3 plots the p−quadrature
wavefunction of |ψ1〉 at the output of the p−quadrature
Steane error correction when starting with an input-
ancilla error wavefunction covariance matrix of the form
in (42) with lA = mA = lB = 1,mB � 1 and σ2 = 0.1
(corresponding to 10 dB vacuum squeezing along the
p−quadrature). This output |ψ1〉 has its error wavefunc-
tion covariance matrix specified by δ2 = 2σ2, κ2 = σ2.
Figure 3 also contrasts the plot of |ψ1〉 with that of
the |−̃〉 corresponding to the same error wavefunction
covariance matrix state. Since |y| ≤

√
π/2, we have

PN [0]PQ(|y|) > PN [1]PQ(
√
π − |y|), which implies a

higher weight for |ψ0〉 in the superposition.
On the other hand, when

√
π > |y| >

√
π/2 andmA �
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Figure 3. p−quadrature wavefunctions of |±̃〉 states of the
form in (19-21) with δ2/2 = κ2 = σ2 = 0.1 (corresponds to
10 dB p−quadrature squeezing), and with and without mean
shifts in the error wavefunction.
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Figure 4. Mean displacement error probability as a function of
the homodyne measurement outcome |y| ≤

√
π/2 for different

values of mB in (42), with lA = lB = mA = 1 and σ2 = 0.1.

mB , we have the conditional state being |ψ〉B|y ≈√
PN [0]PQ(|y|)|ψ0〉+

√
PN [1]PQ(

√
π − |y|)|ψ1〉√

PN [0]PQ(|y|) + PN [1]PQ(
√
π − |y|)

, (75)

where

|ψ0〉 =

∫
dsB dtB ξ(sB , tB) ei(−sB p̂B+(tB∓

√
π)q̂B)|+〉B

=

∫
dsB dtB ξ(sB , tB ±

√
π) ei(−sB p̂B+tB q̂B)|+〉B ,

(76)

and |ψ1〉

=

∫
dsB dtB ξ(sB , tB) ei(−sB p̂B+(tB+(1∓1)

√
π)q̂B)|+〉B

=

∫
dsB dtB ξ(sB , tB − (1∓ 1)

√
π) ei(−sB p̂B+tB q̂B)|+〉B ,

(77)

1 2 4 8

0.001

0.005

0.01

0.05

Figure 5. Average error probability when |y| ≤
√
π/2, as a

function of mB in (42), with lA = lB = mA = 1 and σ2 = 0.1.

where the |ψ1(y)〉 now is the state with support on
the original underlying ideal GKP qubit state, whereas
|ψ0(y)〉 is the state with the orthogonal support. The
|ψ1(y)〉 term dominates in the superposition when
PN [1]PQ(

√
π − |y|) is larger than PN [0]PQ(|y|).

More generally, consider the interval of measurement
outcomes given by n

√
π < |y| < (n + 1)

√
π. The prob-

ability PY (y) of (51) for such an outcome y ≷ 0 can be
best approximated as

PY (y) ≈ PN [n]PQ(|y| − n
√
π)

+ PN [(n+ 1)]PQ((n+ 1)
√
π − |y|). (78)

When mA � mB , the error-corrected state is given by

|ψ〉B|y ≈
√
cn|ψn〉+

√
cn+1|ψn+1〉√

cn + cn+1
, (79)

|ψn〉 =

∫
dsB dtB ξ(sB , tB)

ei(−sB p̂B+(tB+(n∓z)
√
π)q̂B)|+〉B (80)

|ψn+1〉 =

∫
dsB dtB ξ(sB , tB)

ei(−sB p̂B+(tB+(n+1∓z)
√
π)q̂B)|+〉B (81)

cn = PN [n]PQ(|y| − n
√
π) (82)

cn+1 = PN [(n+ 1)]PQ((n+ 1)
√
π − |y|), (83)

z =

{
n
√
π, |y| − n

√
π <
√
π/2

(n+ 1)
√
π,
√
π > |y| − n

√
π >
√
π/2

.

(84)

The mean displacement error probability as a function of
the measurement outcome y is thus given by

Pb(y) =

{
cn+1/(cn + cn+1), |y| − n

√
π <
√
π/2

cn/(cn + cn+1),
√
π > |y| − n

√
π >
√
π/2

.

(85)
Figure 4 plots the error probablity as a function of the
homodyne outcome for |y| ≤

√
π/2 and different val-

ues of mB in (42), with lA = lB = mA = 1 and
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Figure 6. Post-selection success probability as a function of
the exclusion window width ν in (86), for lA = lB = mA = 1,
mB = 4 and σ2 = 0.1 in (42).

σ2 = 0.1, while Fig. 5 plots the average value of the
mean-displacement error probability for |y| ≤

√
π/2 (cal-

culated as
∫
dyPY (y)Pb(y)) as a function of mB .

Post-selection to minimize mean displacement error
probability

Consider the case |y| <
√
π. The post-measurement

state can be enhanced by suppressing the logically-
flipped component in the coherent superposition in
the conditional post-measurement state. This can be
achieved by discarding outcomes in the interval

√
π/2−

ν ≤ |y| ≤
√
π/2+ν,

√
π/2 > ν > 0 [35, 44] for the follow-

ing reason. When |y| ≤
√
π/2−ν, the post-measurement

state has PN [0]PQ(|y|)/ (PN [1]PQ(
√
π − |y|)) > 1 that

increases with increasing ν—i.e., the state |ψ〉B|y ≈
|ψ0(y)〉 as ν increases. Likewise, when

√
π > |y| ≥√

π/2 + ν, the post-measurement state |ψ〉B|y ≈ |ψ1(y)〉,
increasingly so, as ν increases.

Of course, this enhancement comes with an associated
post-selection success probability, a function of ν, given
by

Psucc(ν) =

∫
I0(ν)

dyPY (y) +

∫
I1(ν)

dyPY (y), (86)

where I0(ν) ≡ |y| ≤
√
π/2 − ν and I1(ν) ≡

√
π > |y| ≥√

π/2+ν. Figure 6 plots the postselection success proba-
bility versus ν in (86) for lA = lB = mA = 1, mB = 4 and
σ2 = 0.1 in (42), while Fig. 7 plots the post-selection suc-
cess probability versus average error probability tradeoff
that ensues when varying ν.

B. Steane error correction on a vertex of a generic
graph state

Now, consider a general finite-energy approximate
GKP qubit graph state of the form in (23) and

0.0001 0.001 0.01

0.1

0.2

0.4

0.8

Figure 7. Post-selection success probability versus average
error probability tradeoff by varying the post-selection exclu-
sion window width ν in (86), for lA = lB = mA = 1, mB = 4
and σ2 = 0.1 in (42).

p−quadrature Steane error correction of an arbitrary ver-
tex T of the graph using ancilla A. When the outcome of
the measurement on the ancilla is y such that |y| <

√
π/2

and when mA � mT , the Graph state transforms as
|Ψ̃G(y)〉

≈
√
PN [0]PQ(|y|)|Ψ̃0〉+

√
PN [1]PQ(

√
π − |y|)|Ψ̃1〉√

PN [0]PQ(|y|) + PN [1]PQ(
√
π − |y|)

,

(87)

where

|Ψ̃0〉 =

∫
d~s d~t ξG(~s,~t) ei(−~s.

~̂p+~t.~̂q)|ΨG〉, (88)

|Ψ̃1〉 =

∫
d~s d~t ξG(~s,~t) ei(−(~s+

~s′).~̂p+(~t+~t′).~̂q)|ΨG〉

=

∫
d~s d~t ξG(~s− ~s′,~t− ~t′) ei(−~s.~̂p+~t.~̂q)|ΨG〉 (89)

(up to phase factors exp(−isT lA/(lA + lT )n
√
π), n ∈

{0, 1}) and PN [n] and PQ(p) are Gaussian distributions
of integer-valued and real-valued random variablesN and
Q given in (52) and (53), respectively, with {lB ,mB} re-
placed by {lT ,mT }. The covariance matrix and mean
displacement elements of the error wavefunctions of |Ψ̃0〉
and |Ψ̃1〉 follow from standard Gaussian dynamics [46].
The vectors ~s′, ~t′ in the latter are residual displacement
errors on the qubits, whose entries are 0 except at T
(target), and for all first (i.e. nearest) neighboring ver-
tices and second (i.e. next-to-nearest) neighboring ver-
tices. Thus, it is noteworthy that feedback displacements
(to get rid of measurement outcome dependence on the
mean displacements) only need to be performed up to
the second nearest neighbors of the target.

Thus, under Steane error correction, a finite-energy
GKP qubit graph state transforms into a conditional out-
put, which is a superposition of finite-energy GKP qubit
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Figure 8. Fusion A: (a) circuit diagram and (b) its CV im-
plementation for GKP qubits.

1

2

2

1

Figure 9. Fusion B: (a) circuit diagram and (b) its CV imple-
mentation for GKP qubits.

graph states whose error wavefunctions ξG(~x) are given
by square roots of Gaussian distribution functions with
identical covariance matrices of the form in (28), but with
different mean displacement vectors. The state |Ψ̃1〉 rep-
resents the displacement error term in the state |Ψ̃G(y)〉
of (87) and the probability associated with this error is
given by (82)-(85), which is a function of the homodyne
measurement outcome y. Note that post-selection can be
used to reduce the error probability similarly as discussed
for the single qubit case earlier.

V. FUSION OPERATIONS

In linear optical quantum computing (LOQC) with
single-photon-based qubits, graph states that are uni-
versal for measurement-based quantum computing can
be created by combining small graph states using what
are referred to as fusion operations acting on photonic

1

2

Figure 10. Fusion C: (a) circuit diagram and (b) its CV im-
plementation for GKP qubits.

qubits [50, 51]. Here, we explore the CV analogues of the
so-called "Type-II" fusion operations [50] from LOQC,
which are rotated versions of maximally entangled two-
qubit (Bell state) measurements, to apply on GKP qubits
and fuse small GKP-qubit graph states to generate larger
graph states of arbitrary topology [52]. The fusion op-
erations allow us to do so without rendering the GKP
qubits in the graph state too noisy and prone to logical
errors as would be the case if they were to be gener-
ated with CZ gates alone. Qubit circuits of three in-
stances of Type-II fusion from LOQC, denoted as fusions
A, B, and C, respectively, along with their CV analogues
are shown in Figs. 8, 9 and 10. In these figures, H de-
notes the Hadamard gate, CX denotes the controlled-
NOT gate and Z measurement denotes standard-basis
measurement. The CV circuits involve the Fourier gate,
beam splitters, squeezers, and q−quadrature homodyne
detection for standard-basis measurement. The −π/2
gate denotes the Fourier gate, i.e., a rotation in phase
space that transforms q̂ → p̂ and p̂ → −q̂. A beamsplit-
ter of transmissivity T transforms the input quadratures
as

q̂1 =
√
T q̂1 +

√
1− T q̂2

p̂1 =
√
T p̂1 +

√
1− T p̂2

q̂2 = −
√

1− T q̂1 +
√
T q̂2

p̂2 = −
√

1− T p̂1 +
√
T p̂2. (90)

The Ŝ(r) operation denotes a single-mode squeezer that
transforms q̂ → e−r q̂ and p̂ → erp̂. The equivalence of
the CV circuits to the qubit circuits in the figures follow
from the above the transformations of the input mode
quadratures. Note that while fusions A and B require
inline squeezing, fusion C can be implemented without
it. Fusion C implements what is known as dual homo-
dyne measurement, which is used, e.g., in CV Gaussian
entanglement swapping.

An important distinction between single-photon based
qubits and GKP qubits regarding the action of the fu-
sion circuits is that whereas in the former the fusions
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fail when particular photon detection patterns are not
observed at the detectors [51], the CV fusion operations
on GKP qubits always succeed unless post-selection is
performed on the measurement outcomes. Post-selection
on the measurement outcomes as part of the CV fusion
operations could be performed in a manner identical to
what was described earlier in Sec. IV A in the context
of Steane error correction, to reduce logical errors in the
resulting graph state qubits, but at the expense of ren-
dering the fusion probabilistic. It is thus also possible
to explore a tradeoff between the success probability of
GKP fusion operations and the ensuing logical errors in
the resulting graph state similar to the tradeoff presented
for Steane error correction.

When acted on ideal infinite-energy GKP qubits, all
the 3 fusions mentioned above perform rotated Bell-
state measurements given by the set of projectors
{|ψi,j〉〈ψi,j |, (i, j) ∈ {0, 1}2}, where

|ψ00〉 = |0,+〉+ |1,−〉 = |+, 0〉+ |−, 1〉,
|ψ10〉 = |0,+〉 − |1,−〉 = |+, 0〉 − |−, 1〉,
|ψ01〉 = |0,−〉+ |1,+〉 = |−, 0〉+ |+, 1〉,
|ψ11〉 = |0,−〉 − |1,+〉 = |−, 0〉 − |+, 1〉. (91)

However, when acted on finite-energy approximate GKP
qubits, the projections applied by these circuits are no
longer exactly equivalent. They result in conditional out-
put states with error wavefunctions having the same co-
variance matrix, but different mean displacements. We
note that the fusions are to be followed by suitable feed-
back displacements on the vertices of the fused graph,
which can be chosen in such a way as to remove the
dependence of the resulting graph state on the measure-
ment outcomes. Similar to Steane error correction, it
turns out that feedback displacements are required to be
performed only up to the second nearest neighbors of the
vertices corresponding to the control qubit C and the
target qubit T in the input sub-graph states.

When two finite-energy approximate GKP qubit graph
states are fused using a fusion operation, the structure of
the resulting graph state is governed by the action of the
fusion on the underlying ideal GKP qubit graph state. As
a result of their identical actions on ideal GKP qubits,
all the three types of fusions mentioned above yield the
same underlying graph structure. It is the same as the
structure of the graph state resulting from the action of
linear optical fusion operations on single-photon-based
qubits [53].

To further elucidate the action of the fusion operations,
consider 2 graph states |Ψ̃Gj 〉 =∫

d~x ηGj (~µ, V, ~x)

n∏
i=1

e
ixixn+i

2 X̂(xi)Ẑ(xn+i)|ΨGj 〉,

j ∈ {1, 2} (92)

of the form in (23), as described in Section III, and iden-
tify two vertices C and T , one from each of the two sub-
graphs. When a fusion operation is applied from C to T ,

Figure 11. Generation of a 4-qubit tree graph state from
finite-energy approximate GKP qubits using CZ gate, Steane
error correction and Fusion operations, as per the protocol
presented Ref. [44]

.

and the measurement outcomes are |yC |, |yT | ≤
√
π/2,

the post-fusion (followed by feedback displacements on
up to second-nearest neighboring vertices of C and T ),
the state is given by |Ψ̃′G〉|yC ,yT ∝≈

√
PNC [0]PQC (|yC |)PNT [0]PQT (|yT |)|ψ̃

′(00)
G 〉

+
√
PNC [0]PQC (|yC |)PNT [1]PQT (

√
π − |yT |)|ψ̃

′(01)
G 〉

+
√
PNC [1]PQC (

√
π − |yC |)PNT [0]PQT (|yT |)|ψ̃

′(10)
G 〉

+
√
PNC [1]PQC (

√
π − |yC |)PNT [1]PQT (

√
π − |yT |)

× |ψ̃
′(11)
G 〉 (93)

where |ψ̃
′(uv)
G 〉 ≡ G(V′,E′, ~µ

′(uv), V ′), u, v ∈ {0, 1},
|V ′| = n−2 and the topology of the fused graph E′ can be
found in Ref. [53]. The transformation of the error wave
function covariance matrix and mean displacement ele-

ments of these conditional graph states |ψ̃
′(uv)
G 〉, namely

V ′, ~µ
′(uv), under the fusion operations A, B and C in

terms of the pre-fusion covariance matrix elements and
mean displacement vector follow from standard Gaus-
sian dynamics [46]. All terms in the superposition in
(93) except the one corresponding to u = v = 0 are error
terms, whose probabilities are given by their coefficients
in the superposition upto suitable normalization. The
error probabilities are functions of yC , yT , and similar
to Steane error correction, could be reduced using post
selection.
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Fusion Covariance Matrix

A,B,C



5
3

0 0 0 0 − 2
3

1
3

1
3

0 11
15

1
15

1
15
− 4

15
0 0 0

0 1
15

11
15
− 4

15
1
15

0 0 0
0 1

15
− 4

15
11
15

1
15

0 0 0
0 − 4

15
1
15

1
15

11
15

0 0 0
− 2

3
0 0 0 0 5

3
− 1

3
− 1

3
1
3

0 0 0 0 − 1
3

5
3

2
3

1
3

0 0 0 0 − 1
3

2
3

5
3


σ2

Table I. Covariance Matrix of the error wavefuctions at the
output of the protocol described in Fig. 11. It is the same in-
dependent of the fusion applied. The quadratures are ordered
as (q1, . . . q4, p1, . . . p4).

Fusion Mean Displacement Vectors
A

{
−
√
π
3
u,
√
π

15
(−4w+ v),

√
π

15
(w− 4v),

√
π

15
(w− 4v),√

π
15

(11w + v),
√
πu
3
,
√
πu
3
,
√
πu
3

}
B

{√
π
3
v,
√
π

15
(−4w + u),

√
π

15
(w − 4u),

√
π

15
(w − 4u),√

π
15

(11w + u),−
√
π
3
v,−

√
π
3
v,−

√
π
3
v
}

C
{√

2π
3
u,
√
π

15

(
−4w +

√
2v
)
,−
√
π

15

(
w − 4

√
2v
)
,

−
√
π

15

(
w − 4

√
2v
)
,
√
π

15

(
11w +

√
2v
)
,

−
√
2π
3
u,
√
2π
3
u,
√
2π
3
u
}

Table II. Error wavefuction mean displacement vectors of the
finie-energy GKP-qubit graph states that are in coherent su-
perposition at the output of the protocol described in Fig. 11,
for the different choice of fusion operations A, B or C. The
quadratures are ordered as (q1, . . . q4, p1, . . . p4). The different
tuples of indices u, v, w ∈ {0, 1} correspond to the 8 terms
that are in superposition.

VI. DISCUSSION

The tools discussed in Sections IV and V can be used to
generate fault-tolerant graph states starting from finite-
energy approximate GKP qubit |+̃〉 states. Ref. [44] pro-
vided a protocol to generate graph states starting from
mixed state GKP qubits that are defined as incoher-
ent Gaussian mixtures of randomly displaced ideal GKP
qubit states. Such states can be obtained from the pure
finite-energy GKP qubit states considered in this work
by a Gaussian displacement twirling operation, and thus
by the data-processing inequality, are more noisy. An
approach similar to the one in Ref. [44] can be adopted
to generate universal GKP graph states from the pure,
finite energy approximate GKP qubit states considered
here using fusions and Steane error correction in a bal-
listic fashion similar to discrete-variable linear optical
schemes [43].

As a demonstration of our analysis, we look at the
generation of a small 4-qubit tree cluster made of finite-
energy approximate GKP qubits, tracing the first few
steps of the protocol followed in Ref. [44]. The protocol
is described step by step in Fig. 11. While the analysis
in Ref. [44] tracked the individual quadrature noise vari-
ances of mixed state GKP qubits, our analysis with truly
finite energy GKP qubits tracks the full covariance ma-

Fusion A

Fusion B

Fusion C

0.01 0.03 0.05 0.1 0.15 0.2

10-9

10-7

10 -5

10 -3
10 -2
10 -1

Figure 12. Average total error probability associated with
the generation of the 4-qubit tree graph state from finite-
energy approximate GKP qubits using the protocol presented
Ref. [44] with the three different fusions discussed in Sec V,
as a function of σ2, where the initial finite-energy approxi-
mate GKP qubits have teeth and envelope variances given by
σ2/2, 1/2σ2, respectively.

trix of the Gaussian error wavefunction of the graph state
along with the mean displacement vector. This work thus
provides a more accurate analysis of the errors that are
introduced during the graph creation from approximate
GKP qubit pure states due to (a) the finite-energy ap-
proximation, and (b) homodyne measurements that are
part of the graph state generation protocol. Since the 4-
qubit tree cluster generation as per the protocol involves
1 steane error correction and 1 fusion operation, there
are 3 homodyne measurements. This results in a total
of 8 terms in superposition at the ouptut, which cor-
respond to finite-energy GKP qubit graph states whose
error wavefunctions ξG(~x) are given by square roots of
Gaussian distribution functions with identical covariance
matrices of the form in (28) given in Table I, but with
different mean displacement vectors, as tabulated in Ta-
ble II indexed by u, v, w ∈ {0, 1}. The total error prob-
ability, i.e., the norm of the weights associated with all
but the term corresponding to u = v = w = 0 in the su-
perposition, averaged over the outcomes homodyne mea-
surement outcomes in the Steane error correction and the
fusion, are plotted for the 3 fusions in Fig. 12 as function
of initial GKP-qubit squeezing variance σ2. We observe
that though the output states from the three fusions are
not exactly identical, the error probabilities are. The er-
ror probabilities can be further reduced by considering
post-selected homodyne measurements as part of both
the Steane error correction and fusion, as discussed ear-
lier in Sec. IV A.

In summary, we presented an exact description of
graph states composed of truly finite-energy, approxi-
mate GKP qubit pure states in terms of Gaussian er-
ror wavefunctions. We tracked the transformation of the
error wavefunction’s covariance matrix and mean vector
under Steane error correction and graph fusion opera-
tions that are used to generate high-fidelity large graph
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states. The output of these procedures in the coherent er-
ror wavefunction description are coherent superpositions
of 2n number of approximate GKP qubit graph states (n
being the number of homodyne measurement involved)
whose error wavefunctions have identical covariance ma-
trices, but different mean displacement vectors, all of
which except one correspond to mean displacement er-
rors in phase space. The error probabilities are func-
tions of the homodyne measurement output statistics and
can be reduced using post-selection generation of graph
states at the expense of finite success probability of graph
state generation. Whereas studies hitherto on GKP qubit
graph states have dealt with incoherent, mixed state de-
scriptions of GKP qubits, our work presents an accu-
rate model for the noise and displacement errors present
in graph states composed of finite-energy GKP qubits.
Our work thus could potentially be useful in generating
and characterizing the error correction properties of large
graph states for measurement-based quantum informa-
tion processing with applications in quantum computing
and all-optical quantum repeaters.
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Appendix A: Equivalence between error
wavefunction and quadrature-basis descriptions of

GKP qubit states.

Here we show the equivalence between the error wave-
function description and quadrature-basis description of
a GKP qubit state. Consider as an example, the |+̃〉
state. Without loss of generality, assuming zero mean
displacements, we have

|+̃〉 =

∫
dudv

1√
πκδ

exp(−1

2
(u2/δ2 + v2/κ2))

exp(i(−up̂+ vq̂))|+〉, (A1)

=

∫
dudv

1√
πκδ

exp(−1

2
(u2/δ2 + v2/κ2))

exp(iuv/2)X̂(u)Ẑ(v)|+〉, (A2)

which follows from (2). Proceeding further, we have

|+̃〉 =

∞∑
n=−∞

1√
πκδ

∫
due

iuv
2 e−

u2

2δ2 e−iu(2n
√
π+v)

×
∫
dve−

v2

2κ2 |p = 2n
√
π + v〉, (A3)

where |+〉 has been expanded in the basis of
p−eigenstates, and the action of the X̂ operator on these
states results in the factor e−iu(2n

√
π+v). The above state

can be reexpressed as

|+̃〉 =

∞∑
n=−∞

√
2πδ2√
πκδ

∫
du

e−
u2

2δ2

√
2πδ2

e−iu(2n
√
π−v/2)

∫
dve−

v2

2κ2 Ẑ(2n
√
π + v)|p = 0〉 (A4)

=

√
2δ

κ

∑
n

∫
dve−

(2n
√
π+v/2)2δ2

2 e−
v2

2κ2

Ẑ(2n
√
π + v)|p = 0〉, (A5)

which follows from evaluating the Fourier intergral in
variable u. The above equation can be re-expressed with
completion of squares in variable v as

|+̃〉 =

√
2δ

κ

∑
n

e
− 8πδ2

4+κ2δ2
n2
∫
dve
−

(
v+

4
√
πδ2κ2n

4+δ2κ2

)2

8κ2

4+δ2κ2

Ẑ(2n
√
π + v)|p = 0〉 (A6)

=
√

2π
∑
n

e
− (2

√
πn)2

2

(
4+δ2κ2

4δ2

)
(
π
(
4+δ2κ2

4δ2

))1/4 ∫ dv
e
−

(
v+

4
√
πδ2κ2n

4+δ2κ2

)2

8κ2

4+δ2κ2(
π
(

4κ2

4+δ2κ2

))1/4
Ẑ(2n

√
π + v)|p = 0〉. (A7)
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In the limit κ2δ2 → 0, we get

|+̃〉 =
√

2π
∑
n

e−
δ2(2
√
πn)2

2

(π/δ2)1/4

∫
dv

e−
v2

2κ2

(πκ2)1/4

Ẑ(2n
√
π + v)|p = 0〉, (A8)

thus showing the equivalence between the error wave-
function and quadrature wavefunction descriptions.

Appendix B: Steane Error Correction Details

When mode A is measured over its p−quadrature, we
get an outcome y ∈ R with probability PY (y) and a con-
ditional state |φ〉B|y on mode B, that can be deduced
from the conditional unnormalized state given by

p〈y|A.|ψ〉AB =
√
PY (y)|φ〉B|y

=

∫
dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

p〈y|A.ei(−sAp̂A+tAq̂A)|0〉Aei(−sB p̂B+tB q̂B)|+〉B (B1)

=
∑
n

∫
dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

p〈y|A.e
isAtA

2 X̂A(sA)ẐA(tA)|n
√
π〉pAe

i(−sB p̂B+tB q̂B)|+〉B
(B2)

=
∑
n

∫
dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

e
isAtA

2 p〈y|A.|X̂A(sA)|n
√
π + tA〉pAe

i(−sB p̂B+tB q̂B)|+〉B
(B3)

=
∑
n

∫
dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

e−isA(n
√
π+

tA
2 )δ(y − (n

√
π + tA))ei(−sB p̂B+tB q̂B)|+〉B

(B4)

=
∑
n

∫
dsAdsBχAB(sA, sB)

∫
dtAdtBP(tA)Q(tB |tA)

e−isA(n
√
π+

tA
2 )δ(tA − (y − n

√
π))ei(−sB p̂B+tB q̂B)|+〉B

(B5)

=
∑
n

∫
dsAdsBdtBχAB(sA, sB)P(tA = y − n

√
π)

Q(tB |tA = y − n
√
π)e

−isA(y+n
√
π)

2 ei(−sB p̂B+tB q̂B)|+〉B .
(B6)

Using the distributions for χ,P,Q from (46), we have√
PY (y)|φ〉B|y

=
∑
n

e
− (y−n

√
π)2

2(mA+mB)σ2

(π(mA +mB)σ2)1/4

∫
dsBdtB

∫
dsAχAB(sA, sB)

e
−isA(y+n

√
π)

2
e
−

(
tB+

mB
mA+mB

(y−n
√
π)

)2
2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4
ei(−sB p̂B+tB q̂B)|+〉B

(B7)

= 2
√
π
∑
n

e
− (y−n

√
π)2

2(mA+mB)σ2

(π(mA +mB)σ2)1/4
e
− (y+n

√
π)2

8
(lA+lB)

lAlBσ
2

(4π (lA+lB)
lAlBσ2 )1/4

×

(∫
dsBdtB

e
− s2B

2(lA+lB)σ2

(π(lA + lB)σ2)1/4
e
−

(
tB+

mB
mA+mB

(y−n
√
π)

)2
2
mAmB
mA+mB

σ2

(π mAmB
mA+mB

σ2)1/4

e
−i lA

2(lA+lB)
(y+n

√
π)sBei(−sB p̂B+tB q̂B)|+〉B

)
(B8)

Appendix C: Shifted error wavefunction

Consider the example of an approximate GKP qubit
state whose underlying GKP qubit state is the |+〉,
and error wavefunction has non-zero mean displacements
given by u′ and v′, i.e.,

|ψ̃〉 =

∫
dudv

e−
(u−u′)2

2δ2
− (v−v′)2

2κ2

√
πκδ

e(i(−up̂+vq̂))|+〉, (C1)

=

∫
dudv

e−
(u−u′)2

2δ2
− (v−v′)2

2κ2

√
πκδ

e
iuv
2 X̂(u)Ẑ(v)|+〉 (C2)

=

∞∑
n=−∞

1√
πκδ

∫
dv

∫
due

iuv
2 e−

(u−u′)2

2δ2 e−iu(2n
√
π+v)

× exp(− (v − v′)2

2κ2
)Ẑ(2n

√
π + v)|p = 0〉 (C3)
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We have

|ψ̃〉 =

∞∑
n=−∞

√
2πδ2√
πκδ

∫
dv

∫
du
e−

(u−u′)2

2δ2

√
2πδ2

× e−iu(2n
√
π+v/2)e−

(v−v′)2

2κ2 Ẑ(2n
√
π + v)|p = 0〉

(C4)

=

√
2δ

κ

∑
n

∫
dve
− (2n

√
π+v/2)2

2/δ2 e−iu
′(2n
√
π+v/2)

× e−
(v−v′)2

2κ2 Ẑ(2n
√
π + v)|p = 0〉 (C5)

=

√
2δ

κ

∑
n

e
− (2n

√
π+v′/2)2

2

(
4+δ2κ2

4δ2

) ∫
dve
−

(
v+

2δ2κ22n
√
π−4v′

4+δ2κ2

)2

2

(
4κ2

4+δ2κ2

)

× e−iu
′(2n
√
π+v/2)Ẑ(2n

√
π + v)|p = 0〉 (C6)

=
√

2π
∑
n

e
− (2n

√
π+v′/2)2

2

(
4+δ2κ2

4δ2

)
(
π
(
4+δ2κ2

4δ2

))1/4 ∫ dv
e
−

(
v+

2δ2κ22n
√
π−4v′

4+δ2κ2

)2

2

(
4κ2

4+δ2κ2

)
(
π
(

4κ2

4+δ2κ2

))1/4
× e−iu

′(2n
√
π+v/2)Ẑ(2n

√
π + v)|p = 0〉. (C7)

In the limit κ2δ2 → 0, we get

|ψ̃〉 =
√

2π
∑
n

e−
δ2(2n

√
π+v′/2)2
2

(π/δ2)1/4

∫
dv
e−

(v−v′)2

2κ2

(πκ2)1/4

× e−iu
′(2n
√
π+v/2)Ẑ(2n

√
π + v)|p = 0〉. (C8)

The p−quadrature wavefunction of the above state |ψ̃〉 is
given by

〈p|ψ̃〉 =
√

2π
∑
n

e−
δ2(2n

√
π+v′/2)2
2

(π/δ2)1/4

∫
dv
e−

(v−v′)2

2κ2

(πκ2)1/4

× e−iu
′(2n
√
π+v/2)δ(v − (p− 2n

√
π)) (C9)

=
√

2π
∑
n

e−
δ2(2n

√
π+v′/2)2
2

(π/δ2)1/4
e−

(p−2n
√
π−v′)2

2κ2

(πκ2)1/4

× e−iu
′
2 (p+2n

√
π). (C10)

When v′ =
√
π, the state has it’s support flipped to

that of the ideal GKP qubit state |−〉, however, with an
envelope that is still only

√
π/2 shifted from the center of

the envelope corresponding to the initial |+̃〉 state. Thus,
it is not quite |−̃〉. The p−quadrature wavefunction de-
scription of the state is shown in Fig. 3.
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