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Magic state distillation is a resource intensive subroutine that consumes noisy input states to
produce high-fidelity resource states that are used to perform logical operations in practical quantum-
computing architectures. The resource cost of magic state distillation can be reduced by improving
the fidelity of the raw input states. To this end, we propose an initialization protocol that offers a
quadratic improvement in the error rate of the input magic states in architectures with biased noise.
This is achieved by preparing an error-detecting code which detects the dominant errors that occur
during state preparation. We obtain this advantage by exploiting the native gate operations of an
underlying qubit architecture that experiences biases in its noise profile. We perform simulations
to analyze the performance of our protocol with the XZZX surface code. Even at modest physical
parameters with a two-qubit gate error rate of 0.7% and total probability of dominant errors in the
gate O(103) larger compared to that of non-dominant errors, we find that our preparation scheme
delivers magic states with logical error rate O(10−8) after a single round of the standard 15-to-1
distillation protocol; two orders of magnitude lower than using conventional state preparation. Our
approach therefore promises considerable savings in overheads with near-term technology.

I. INTRODUCTION

The significant resource cost of implementing fault-
tolerant logical gates is a major challenge for scalable
quantum computation with near-term quantum hard-
ware [1–7]. A number of recent studies have shown that
the structure of noise in the underlying qubit architecture
can be leveraged to improve the performance of quantum
error correction [8–15]. These studies motivate the design
of new noise-aware protocols for resource-efficient logical
operations for fault-tolerant quantum computation.

A significant resource overhead of practical quantum
computing architectures is consumed performing non-
Clifford gates. These are essential logical operations
needed for universal quantum computing. A versatile way
of realizing non-Clifford gates is by teleportation where a
high-fidelity resource state, called a magic state, is used
by the circuit [16]. High-quality resource states can be
prepared with magic state distillation (MSD) [3, 16–28]
where several copies of noisy magic states are consumed
to produce a smaller number of copies with lower logical
error rates.

The planar layout of the surface-code (SC) quantum
computing architecture [1, 29–31] makes it particularly
appealing for experimental implementation and as such,
significant effort has been dedicated on minimizing the
resource cost of preparing magic states with the surface
code. Additionally, magic state distillation protocols
based on the surface code have been adopted in low-
overhead schemes for fault-tolerant quantum computing
based on finite rate quantum low-density parity-check

codes [32]. Even with these considerable efforts, it remains
that MSD is expected to occupy a large fraction of the
resources of a SC architecture and it therefore presents a
bottleneck in realizing quantum algorithms [19].

In this work we present a new protocol for preparing
higher-fidelity input states for MSD protocols that is
tailored for qubit architectures that experience biased-
noise such that errors that cause bit-flips are far less likely
than those that lead to phase-flips. In our protocol we use
a physical two-qubit diagonal non-Clifford gate to prepare
a magic state encoded in a two-qubit code capable of
detecting a single dominant error. Therefore, the infidelity
of the post-selected states that herald no error scales
quadratically with the physical error probability when the
bias is strong and physical error rates are modest. This is
a quadratic reduction in the infidelity compared with more
conventional approaches for state preparation [1, 33–36].
Detecting more high probability errors results in more
states being discarded, but importantly this only results
in a minute decrease in the success probability compared
to other approaches based on post-selection [35].

This work follows a bottom-up approach for the design
of fault-tolerant protocols. For example, our scheme uti-
lizes a recently discovered, bias-preserving controlled-not
(CX) gate [37] for detecting errors without affecting the
noise bias of the system. This bias-preserving gate also
enables us to encode the post-selected state into a high-
distance error correcting code required for robust quantum
computing while maintaining the quadratic improvement.
Unlike the CX, single- and two-qubit diagonal gates are
trivially biased [38]. Moreover, in the biased-noise super-
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conducting Kerr-cat architecture, the two-qubit diagonal
gates can be implemented with simple interactions and
can in principle be much faster and higher fidelity than
single qubit diagonal gates [11, 37, 39]. Consequently,
we leverage two-qubit diagonal non-Clifford gates in this
proposal. While, in practice the dominant source of noise
is independent perturbations on physical qubits, these
independent errors can get correlated due to the action
of the gate. For example, in the bias-preserving CX gate
a phase-flip error in the target qubit during the gate
propagates to the control qubit giving rise to correlated
phase noise [11, 37]. In contrast, the diagonal gates are
transparent to phase-errors in the qubits. Thus, the high-
rate independent phase-flip events do not get correlated.
Highly precise microwave control in superconducting qubit
platform also ensures that correlated errors due to control
noise are rare events. The naturally low probability of cor-
related errors on diagonal gates ensures that high-fidelity
preparation of magic states in our protocol is possible.

We incorporate our initialization protocol into a
quantum-computing architecture based on the XZZX
code [10, 11]; a surface code that is tailored to correct
biased noise. With this setup we find improvements in
the fidelity of the injected magic state, leading to more
effective MSD. For example, even with a modest CX gate
infidelity of ∼ 0.7%, and average bias O(103), we find that
a raw XZZX magic state of size 5× 25 (equivalent to 441
data and ancilla qubits) can be prepared, with ∼ 94% suc-
cess rate, at an error rate of ∼ 0.1%. The average bias is
defined as the total probability of phase-flip errors relative
to that of other errors in the gate. After consuming these
raw states in one round of 15-to-1 distillation protocol [16],
a single copy of magic state can be produced at an error
rate of O(10−8). This error rate is, for example, sufficient
for realizing quantum simulations with quantum advan-
tage without further rounds of distillation [40–42]. On the
other hand, the error rate after one round of distillation
with raw magic states prepared using the standard scheme
is two orders of magnitude larger. These numerical results
correspond to the case when noise in the CX gates is an
order of magnitude larger than other operations in the
syndrome extraction circuit, as is typically the case with
biased-noise cat qubits [11]. When the CX gates are as
noisy as other components in the circuit, the protocol
proposed here gives a greater advantage over the standard
approach. Other approaches have been studied for imple-
menting non-Clifford gates with codes tailored to biased
noise. In [43] for example, a magic state is initialized in
the repetition code with success rate that decreases expo-
nentially with the code size even in the absence of errors.
This is in contrast to our proposal which prepares the
magic state deterministically in the absence of errors and
heralding errors only costs a small decrease in the success
rate. Moreover, our scheme only requires two-qubit gates
which are experimentally easy to realize and is effective
even with modest amounts of bias achievable in near-term

(a) (b)

FIG. 1. (a) Illustration of the rectangular XZZX code with
data qubits on the vertices of a rotated grid. The stabilizers
are the product of two Pauli X and two Pauli Z operators on
qubits arranged on the vertices around each face. The distance
to X and Z errors is dx and dz respectively. The logical qubit
Pauli XL(ZL) are the product of Pauli X(Z) on the qubits
along the blue (left vertical) and red (upper horizontal) edges
respectively. The order in which qubits are coupled to the
ancilla at the center of each face (not shown) is indicated by
the red arrow. (b) Circuit for stabilizer measurements. The
ancilla is prepared in state |+〉, then coupled to data qubits
with CX and CZ gates and finally read out in the X basis.

experiments. Proposals in Refs. [12, 15] on the other
hand use three-qubit entangling gates.

This paper is structured as follows. Sections II and III
describe our protocol and the effect of noise, respectively.
Results from simulations are presented in Section IV.
We offer concluding remarks in Section V. Appendices
provide some supporting material and describes possible
improvements to our protocol with practical three-qubit
diagonal non-Clifford gates.

II. THE PROTOCOL

We demonstrate our protocol with the XZZX code [10]
defined on a rectangular lattice of size dx × dz shown
in Fig 1(a). Data qubits are placed on the vertices of
the lattice, and dx and dz respectively denote the code
distance with respect to pure X and Z errors. The sta-
bilizers of the code are of the form X ⊗ Z ⊗ Z ⊗X on
the qubits around each face, as shown in Fig 1(a). The
logical operator XL is the product of Pauli X operators
of the qubits along a vertical edge and ZL is the prod-
uct of Pauli Z operators of the qubits along a horizontal
edge. The stabilizer measurement circuit is illustrated in
Figure 1(b). An ancilla qubit, placed at the center of
each face, is initialized in |+〉. Next, a sequence of CX
and CZ gates is applied in the order shown in Fig. 1(a),
and finally the ancilla is measured in the X basis.

The injection protocol proceeds in two stages similar
to that presented in [35]. In stage I, a small XZZX code
of size dx,1 × dz,1 is prepared in the magic state. Some
errors are detected, but not corrected, at this stage. States
where no errors are detected proceed to stage II where
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FIG. 2. Illustration of the protocol for magic state preparation.
In stage I the qubits in region I are initialized as shown, a
ZZ(θ) gate is applied to the two grey qubits (top left), and
the stabilizers are measured twice. The faces shaded in grey
mark the fixed stabilizers for stage I. After stage I is successful
and a dx,1 × dz,1 magic state is prepared, qubits in region II
are initialized as shown. Stage II is then implemented and
the dx,1 × dz,1 state is grown to a dx,2 × dz,2 state, where
stabilizers are measured for dm = dz,2 rounds.

the code is grown to a larger distance; dx,2 × dz,2. Our
protocol goes beyond the preparation protocol in [35] in
that, as an intermediate step in stage I, we prepare a two-
qubit error detecting code that detects a single dominant
error acting on the raw magic state before it is injected
into the stage I code. This gives a quadratic improvement
to fidelity of the input state. The detailed steps in our
protocol are given below.

Stage I

Stage I proceeds over three separate steps.

• Step 1: Physical qubits in region I are initialized
as shown in Fig 2. The qubits marked in green
(second legend label) and blue (third legend label)
are initialized in state |0〉 and |+〉 respectively. The
two qubits on the top left corner, marked in grey, are
initialized in |+〉. In the following, the stabilizers
on the faces shaded in grey will be referred to as
fixed stabilizers.

• Step 2: A two-qubit ZZ(θ) = e−iθZ⊗Z gate is ap-
plied on the two qubits at the top left which are
highlighted in grey in Fig 2.

• Step 3: All the stabilizers are measured twice and
stabilizer measurement outcomes or syndromes are
recorded. If the outcome of measuring any fixed
stabilizer is −1 or if the measurement outcomes
from the two rounds are not identical, then an error
has been detected. In this case the state is discarded
and stage I is restarted. Otherwise, the code is sent
to stage II.

Let us give some motivation for these steps. In the absence
of errors, the initial product state in step 1 is the +1
eigenstate of the fixed stabilizers.

In step 2, the ZZ(θ) gate entangles the two grey qubits,
while the rest of the qubits remain un-entangled. For a
general angle θ, which is not an integral multiple of π/4,
this is a non-Clifford gate. We can think of the grey qubits
as forming a two-qubit repetition code with Z ′L = Z ⊗ Z
and X ′L = X⊗I. In this picture, the effect of the physical

ZZ(θ) gate is to non-transversally apply a logical e−iθZ
′
L

gate to the two-qubit repetition code. After this step, the
state of the physical qubits on the XL and ZL edge is the
+1 eigenstate of cos(2θ)XL + sin(2θ)YL. Observe that in
the absence of errors, the physical qubits remain in the
+1 eigenstate of the fixed stabilizers.

The first measurement round of step 3 projects the sys-
tem into an eigenspace of the stabilizers and the logical
qubit is realized. In the absence of errors, the syndromes
corresponding to the fixed stabilizers will be +1, while
those corresponding to the unmarked stabilizers can be
either +1 or −1. Moreover, in the absence of errors, mea-
surement outcomes from the two measurement rounds in
step 3 will be identical. Because the stabilizers commute
with the logical operators, the resulting logical qubit state
is the +1 eigenstate of cos(2θ)XL+sin(2θ)YL. Thus when
θ = π/8, the dx,1 × dz,1 code is initialized in the logical
magic state |m〉L = |0〉L + eiπ/4 |1〉L. If the target state is
|+Y 〉L, then θ = π/4 is used. Thus, by tuning θ, arbitrary
states in the X − Y plane of the Bloch sphere can be
prepared.

Stage II

Stage II proceeds to encode the magic state into a larger
surface code, pending an appropriate heralded outcome at
stage I [35]. Physical qubits in region II are initialized as
shown in Fig. 2. All the stabilizers of the dx,2 × dz,2 code
are measured for dm rounds and error correction is per-
formed using standard decoding algorithms like minimum
weight perfect matching [10, 30, 44, 45]. Subsequently
the state may be sent for MSD.

Let us remark that there is some freedom in choosing
the initial state of qubits in regions I and II. The initial
state pattern shown in Fig 2 works well for the range
of parameters used in section IV. Appendix C gives an
example of an alternative pattern.
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III. NOISE

Here we argue that our scheme is tolerant to a single
dephasing error on a data qubit or an ancilla qubit dur-
ing preparation, idling, or any of the gates, to a single
measurement error, or to a single correlated dephasing
error that occurs during CX and CZ gates. As a conse-
quence, when bit-flip errors are absent, the preparation
error rate is O(p2), with p the probability of a dominant
error. This improvement remains significant for realistic
noise models with high but finite bias η, where 1/η (η � 1
) is the factor by which the probability of a non-Z error
is suppressed compared to that of the dominant Z error.
In this case, undetectable preparation errors can occur
at rate O(p/η). It follows that if η is large relative to
p−1, we obtain a quadratic improvement in the fidelity of
injected magic states at finite bias compared to standard
injection protocols. At very small p we obtain an improve-
ment by a factor of 1/η in preparation fidelity; O(p/η).
The competition between the contribution of infidelity
due to high rate and low rate errors can be determined
by numerical experiments such as those we describe in
Section IV. For the following qualitative discussion we
concentrate on errors at stage I because this will be the
dominant source of infidelity given sufficiently large dx,2
and dz,2 at stage II.

We assume a Pauli approximation to a biased cir-
cuit noise model. Each single-qubit operation, includ-
ing preparation and idling, is followed by a Pauli error
Q = {I,X, Y, Z} that occurs with probability pQ. Faulty
measurements are modelled by flipping a given measure-
ment outcome with probability pM . Errors in two-qubit
gates are modelled by applying a Pauli error Q = QC⊗QT
with QC , QT ∈ {I,X, Y, Z} with probability PQ before
the gate where QC(QT ) denotes the error acting on the
control(target) qubit of the gate. Our protocol is de-
signed to be highly effective against Z-biased noise where
pZ , pZI , pIZ , pZZ , and pM are significantly larger than
the probabilities of other non-trivial, i.e., non-identity,
error events and we take pZZ to be small in the ZZ(θ)
gate following experimentally well motivated arguments
given below.

We now demonstrate that our protocol is robust against
a single high-rate error event in a biased-noise architecture.
Over steps 1-3, a Z error on any of the qubits highlighted
in grey and blue will cause the syndromes corresponding
to the fixed stabilizers to change to −1. Thus, these errors
are detected in step 3. A Z error on the qubits marked
in green before the first measurement round of step 3
will not cause a logical error. A Z error on these qubits
in the second measurement round of step 3 will result
in a mismatch of the syndromes, corresponding to the
unshaded stabilizers in region I, in the two measurement
rounds. Hence, this error is also detected in step 3. A Z
error on an ancilla or a measurement error will also be

detected as it will either cause the outcome of measuring a
fixed stabilizer to be −1 or cause a mismatch of stabilizer
measurement outcomes from the first and second rounds.

So far we have ignored correlated errors introduced by
the two-qubit gates. During a correlated error, two qubits
simultaneously suffer from phase-flips with a probability
that can be greater than the probability of independent
phase-flips on the two qubits. In case of pure-dephasing
noise, the CX or CZ gates acting between data and ancilla
qubits do not lead to correlated errors on the data qubits.
A correlated Z ⊗ Z error in any one of these gates in
the first round of step 3, will either cause the outcome of
measuring a fixed stabilizer to be −1 or cause a mismatch
of stabilizer measurement outcomes and hence will be
detected. Moreover, a Z ⊗ Z error in the second round
will be corrected by subsequent rounds of error correction
in stage II. A correlated Z ⊗ Z error in the ZZ(θ) gate
will cause a logical error which will not be detected in
either stage I or II. However, these are expected to be low-
rate errors in superconducting biased-noise architecture
since independent phase-noise in the qubits don’t get
correlated and control and crosstalk errors can be easily
mitigated (see further discussion in section V). Thus, a Z⊗
Z error in the ZZ(θ) gate will not limit the performance
of the scheme in practice. There are several instances of
independent errors occurring simultaneously on two or
more qubits which will also not be detected. For example,
simultaneous phase-flip errors during initialization of the
two grey qubits will go undetected.

In summary, we find that the proposed scheme is robust
against a single Z error during preparation, idling, or any
of the gates, or a correlated Z ⊗ Z error in the CX and
CZ gates, or a single measurement error. These errors are
detected and discarded in stage I or corrected in stage
II. Thus, our protocol has a finite success rate which
decreases with increase in the number of locations at
which a fault can occur. Hence, for a high enough success
rate, the distance of the code in stage I should not be too
large.

In order to determine the scaling of the logical error
rate as a function of the probability of high-rate errors,
we consider a physically realistic noise model where each
qubit is subject to independent phase-flip errors with
identical probability p. In this case, pZ = p for the
single-qubit operations, pZI = p, pIZ = pZZ = p/2 for
the CX gates, and pZI = p, pIZ = p, pZZ = p2 for the
diagonal gates. Errors in the measurement can also be
assumed to be pM = O(p). Thus in the absence of non-Z
noise, the logical error rate of the injected magic state is
pL = O(p2). The error-channel used to obtain this scaling
is justified because in the bias-preserving CX gates a Z
error on the target qubit propagates as a combination
of a Z error on the target and a Z ⊗ Z error on the
target and control qubits, giving pIZ , pZZ = p/2 [11, 37].
Such error-correlations cannot be trivially introduced
in the diagonal gates since they can be implemented
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in an error-transparent manner using interactions that
commute with physical Z errors in qubits [37]. Hence, the
probability of two qubit Z ⊗ Z errors is the same as the
probability of two independent Z errors for the diagonal
gates, pZZ = pIZ · pZI = p2.

A. Noise modelling in simulations

We now describe the circuit noise model used to obtain
the numerical results presented in the next section. In
biased-noise qubits the CX gate is the slowest operation
and total noise in the CX gate can be much greater than
that in the diagonal two-qubit gates. In particular in the
Kerr-cat qubit architecture, the probability of phase-flip
errors during the CX gate can be an order of magnitude
greater than that of the CZ gate [11] unless sophisticated
control techniques are applied [46]. So we show numerical
results for two noise models: (A) CX slower than CZ,
and (B) CX as fast as CZ. In both these cases, for the
diagonal CZ, ZZ(θ) gates we use pIZ , pZI and pZZ as
described before, and the probability of other non-trivial
two qubit errors = p/η. For the single-qubit preparation
errors, idling errors on data qubits while the ancillas are
being measured, and errors on some of the qubits which
idle during CZ gates, we use pZ = p and pX = pY = p/η.
Measurement errors are applied with probability p+ p/η.
To model the fast CX gate in (B) we use, pZI , pIZ , pZZ
as described before and the probability of other non-
trivial two qubit errors = p/η. In this case, the error
channel applied to qubits which idle during the CX gate
is identical to that applied to qubits which idle during
the CZ gate. In (A), for the CX and single-qubit idling
errors during this gate we use the same channel as (B)
but with p replaced by 10p.

For numerical results we use two biases η = 104 and
η = 103, for which the average gate bias in the CX gate
is ∼ 1667 and ∼ 167 respectively. The average gate bias
is defined as the ratio of the sum of the probabilities
of I ⊗ Z,Z ⊗ I, and Z ⊗ Z error and the sum of the
probabilities of all other non-trivial errors. We start with
a dx,1×dz,1 = 1×3 code in stage I and grow it to a larger
dx,2 × dz,2 code with dm = dz,2.

For comparison we also present the logical error rate
and success rate obtained when the standard scheme based
on using a single-qubit Z(θ) = e−iθZ gate, as described
in Appendix B, is used. For the error model of this gate
we use pZ = p and the probability of other non-trivial
single-qubit errors = p/η. We keep the probability of
phase-flip error per qubit in the ZZ(θ) and Z(θ) gate to
be the same even though in practice the former can be
smaller.
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FIG. 3. Logical error rate (εrawL ) and success rate after dm
rounds of error correction in stage II with noise model A (CX
slower than CZ) so that pCX = 20p + 120p/η. The bias is
η = 104 in (a,c) and η = 103 in (b,d). The code size in stage I
is dx,1× dz,1 = 1× 3. Stage II code sizes dx,2× dz,2 are shown
in the legend, with dm = dz,2. The results for our scheme are
shown using solid lines and that for the standard approach are
shown using dotted lines. Error bars indicate standard error of
the mean. Each data point is generated with 105 Monte-Carlo
samples.

IV. RESULTS

Finally, we present numerical results that demonstrate
the advantage of our scheme for logical magic state prepa-
ration, and subsequently for distillation with practical
system parameters. Figure 3 shows the total logical error
rate εrawL of the output XZZX magic state and success rate
as a function of the total error rate of the physical CX
gate (pCX) for the noise model (A) and for three different
dx,2 × dz,2.

Using our scheme, we find that when bias is large
η = 104, εrawL is approximately independent of the code
size and the curvature of εrawL (pCX) indicates a non-linear
dependence of εrawL on the physical error rate. This follows
from the discussion in section III, according to which the
dominant source of uncorrectable errors is two phase-flip
events, or two faulty-measurement outcomes, or a combi-
nation of these in the initial 1× 3 code. The deviations



6

0.2 0.4 0.6 0.80.0 1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.80.0 1.0

88

92

96

100
(a) (b)

StandardSu
cc

es
s r

at
e 

(%
)

FIG. 4. Logical error rate (εrawL ) and success rate after dm
rounds of error correction in stage II with noise model B (CX
as fast as CZ) so that pCX = 2p+ 12p/η. The bias is η = 104

and the code size in stage I is dx,1 × dz,1 = 1 × 3. Stage II
code sizes dx,2 × dz,2 are shown in the legend, with dm = dz,2.
The results for our scheme are shown using solid lines and
that for the standard approach are shown using dotted lines.
Error bars indicate standard error of the mean. Each data
point is generated with 105 Monte-Carlo samples.

between εrawL for different code sizes in Fig. 3 is mainly
due to small but non-zero bit-flip noise. By numerical fit-
ting of the component of ZL error in εrawL for η = 104, we
find that this component scales as ((4.48± 0.07)× 103)p2

or (11.2±0.2)p2CX. In contrast, with the standard scheme,
the curvature for εrawL (pCX) indicates a linear dependence
on the physical error rate even if the bias is large. In this
case, with numerical fitting we find that ZL component
of error in εrawL scales as (11.6± 0.5)p or (0.58± 0.02)pCX.
Details for the fitting and different components of the
total logical error rate are given in Appendix A.

Results in Fig. 3(a) show that εrawL can be about an
order of magnitude lower than the physical error rate
of the noisiest gate in the system. For example, when
pCX = 0.67% and η = 104, the infidelity of the injected
magic state in the 3×15 code is = 0.07%. The probability
of success is high = 94.4%. For an order of magnitude
lower bias η = 103, εrawL increases and is still somewhat
independent of the code size in the given range of pCX.
Moreover, due to greater contribution from the non-Z
errors, the curve εrawL (pCX) starts to flatten out. Nonethe-
less, the scheme introduced here prepares a XZZX magic
state with a significantly lower error rate than the stan-
dard approach for both η = 104 and η = 103. The ability
to detect more errors with our scheme leads to a small
decrease in the success rate compared to the standard
approach.

In Fig. 4(a,b) we present εrawL and success rate as a
function of pCX for the noise model (B). We use η = 104

and again we find that the scheme based on ZZ(π/8)
gate outperforms the standard approach. For example,
even when the physical error rate in the two-qubit gates

is as high as 0.45%, the infidelity of the injected 3× 15
magic state is five-fold lower ∼ 0.11%, while that with
the standard scheme is higher ∼ 0.66%.

The impact of our protocol becomes evident from the
subsequent reduction in cost for MSD. If the infidelity
of the raw injected state is εrawL , then after a round of
15-to-1 distillation protocol the logical error rate can be
made arbitrarily close to 35(εrawL )

3
, if sufficiently large

code dx,2 × dz,2 is used so that errors in the distillation
circuit are negligible [16]. Consider Fig. 3 and note that

εrawL = 0.11% or 35(εrawL )
3 ∼ 4.7 × 10−8 when pCX =

0.67%, η = 104, and dx,2× dz,2× dm = 5× 25× 25. From
numerical simulations we have confirmed that for the same
noise channel the logical error rate for dm = 25 rounds
of error correction with 5× 25 code is � 10−8. Thus, we
find that after one round of distillation a magic state with
error rate O(10−8) can be realized with a 5× 25 XZZX
code. In contrast, with the standard approach, for the
same sized code and physical gate errors, εrawL = 0.33%,
so that only an error rate of O(10−6) will be possible after
one round of distillation.

V. SUMMARY AND DISCUSSION

To summarize, we have introduced a protocol to prepare
raw encoded states with low error rate by exploiting
features of biased-noise hardware. This in turn reduces
the overhead cost of MSD for such systems.

The protocol is robust against the typical errors of a
biased circuit noise model. To gain an advantage over the
standard protocol, the probability of two-qubit correlated
phase-flip errors in the ZZ(θ) gate must be low relative to
the probability of two independent single-qubit phase-flip
errors. We expect this to be the case with Kerr-cat qubits.

While correlated phase-flip errors may be induced due
to virtual transitions to the excited states caused by
the microwave drive that realizes the ZZ(θ) gate, such
noise can be mitigated by pulse shaping or by adding
counter-diabatic drives [46]. Another source of correlated
errors is crosstalk which can be mitigated by appropriate
frequency arrangement of qubits [47]. Thus, while we do
not believe correlated errors will be a significant issue,
further investigation in mitigating such errors is called
for, which will be made possible by rapid advances in
biased-noise qubit technology.

We expect that the simple protocol we have proposed
can be widely generalized and adapted to other magic
state preparation schemes. For example, it might be
interesting to determine if further improvements can be
achieved by combining our ideas with recent developments
using flag qubits [48, 49]. We could also consider using
the state-preparation protocol with other codes, and we
expect that there may be some room for optimization of
the initialization strategy we have presented. We discuss
these suggestions in Appendix C.
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Our work shows the value of carefully analysing the
circuit operations that are available with the underly-
ing platform to ease the requirements of fault-tolerant
quantum logical operations. To begin with, with the ar-
chitecture we have considered here, we might expect to
obtain an additional order of magnitude reduction in the
preparation error by using a three-qubit ZZZ(θ) entan-
gling gate. We discuss this gate in Appendix D. Moving
forward, the discovery of better multi-qubit entangling
gates that can be built using near-term technology, could
give us better error-corrected devices that are essential
for practical quantum computing.
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Appendix A: Logical error decomposition

Figure 5 shows the component of XL and ZL errors in
the total error rate presented in Fig. 3 of the main text.
For small p, we find a quadratic dependence of ZL errors
on p (Ap2) when the scheme introduced in this work is
used. On the other hand, the dependence of ZL errors on
p is linear when the standard protocol is used. In Fig. 5(b)
we fit ZL for dx,2× dz,2 = 3× 15 and dx,2× dz,2 = 5× 25
to Ap2 and find A = (4.48± 0.07)× 103. In Fig. 5(d) we
fit ZL for dx,2 × dz,2 = 11× 11 and dx,2 × dz,2 = 15× 15
to Ap2 and find A = (4.34± 0.09)× 103. This confirms
the analysis in section III, according to which, ZL error
rate, or equivalently A, should be independent of the
code size in stage II if dz,2 is large enough. Because of
the initialization pattern chosen in stage II, the XL error
rate is expected to grow with the distance dz,2. This can
be understood from the fact that bit-flip errors on any
one of the dz,2 qubits in the top row of block II will be
un-correctable. However, since the bias is large, failure
due to such error events is not too large. It is possible to
prevent such errors from accumulating, especially when
the bias is small, by using a larger dx,1 in stage I or by
using an alternative initialization strategy in stage II, like
discussed in the Appendix C.

Figures 6 shows the component of XL and ZL errors in
the total error rate presented in Fig. 4 of the the main text.
We fit ZL for dx,2× dz,2 = 3× 15 and dx,2× dz,2 = 5× 25
to Ap2 and find A = (1.78± 0.06)× 102.
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FIG. 5. XL and ZL error rate in the magic state for η = 104

(a,b) and η = 103 (c,d) for noise model (A). The black (bold)
dashed lines in (b,d) is found by fitting ZL error rate in the
magic state prepared using our scheme, at low p and large
distances, to Ap2. In (b) we use the solid lines corresponding
to dx,2 × dz,2 = 3× 15 and dx,2 × dz,2 = 5× 25 for the fit and
find A = (4.48 ± 0.07) × 103. In (d) we use the solid lines
corresponding to dx,2×dz,2 = 11×11 and dx,2×dz,2 = 15×15
for the fit and find A = (4.34± 0.09)× 103.
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FIG. 6. XL and ZL error rate in the magic state for η = 104

for noise model (B). The black (bold) dashed lines in (b) is
found by fitting ZL error rate in the magic state prepared
using our scheme to Ap2. We use the solid lines corresponding
to dx,2 × dz,2 = 3× 15 and dx,2 × dz,2 = 5× 25 for the fit and
find A = (1.78± 0.06)× 102.
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FIG. 7. Qubit arrangement in stage I of the standard scheme
used for comparison in this paper. The faces shaded in grey
mark the fixed stabilizers for stage I. Stage II is identical to
Fig. 2

Appendix B: Standard protocol based on the
single-qubit Z(θ) gate

The numerical results corresponding to the standard
scheme used in Figs. 3,4 were produced by modifying the
steps in Stage I of the protocol described in the main text
as follows:

• Step 1: Physical qubits in region I are initialized as
shown in Fig 7.

• Step 2: A Z(θ) = e−iθZ gate is applied on the qubit
on the top left, highlighted in grey in Fig 7. The
fixed stabilizers are shown in grey.

• Step 3: All the stabilizers are measured twice and
stabilizer measurement outcomes or syndromes are
recorded. If the outcome of measuring any fixed
stabilizers is −1 or if the measurement outcomes
from the two rounds are not identical, then an error
has been detected. In this case the state is discarded
and stage I is started afresh. Otherwise, the code is
sent to stage II.

Appendix C: Possibilities for further optimization in
the XZZX Code and other surface codes

Our protocol can be understood as preparing a 1× 2
surface code magic state directly by using a physical two-
qubit operation ZZ(θ). Next, the 1×2 code is grown into
a dx,1× dz,1 code in stage I in a standard way and all the
stabilizers are measured twice. Only when no errors are
detected, the dx,1×dz,1 code is grown into dx,2×dz,2 code
and subsequent rounds of error correction are performed.
In both the growing steps, the initial state of the qubits
(apart from the qubits forming the original 1× 2 code) is
chosen so that the logical operators grow correctly and
to maximise the number of errors that can be detected or

I II

FIG. 8. Illustration of the protocol for preparing the magic
state in the XZZX code with alternate stage II initialization
pattern. The faces shaded in grey mark the fixed stabilizers
for stage I.

corrected. For example, an alternate initialization pattern
is shown in Fig 8 which would be more beneficial when
noise is not too strongly biased. While we mainly focused
on the XZZX code, this basic procedure outlined above
can also be applied to other surface code families, like the
tailored surface code. The main common component is to
start with two qubits in |+〉⊗ |+〉 state and place them in
the magic state of a 1× 2 SC using the two-qubit ZZ(θ)
gate. To illustrate, a possible arrangement of qubit states
for the tailored surface code is shown in Fig. 9.

Appendix D: Protocol with ZZZ(θ) gate

In biased-noise cat qubits it is possible to realize a three-
qubit ZZZ(θ) = e−iθZ⊗Z⊗Z gate. It can be activated
parametrically via four-wave mixing and can be easily
implemented with the current circuit-QED toolbox [37].
In fact, operations requiring similar interactions have
already been realized in several experiments [50–53]. With
such a gate, it is possible to directly prepare a 1× 3 code
in the magic state. Following the procedure in section II,
the 1× 3 code can be first grown to a dx,1 × dz,1 code by
measuring the stabilizers thrice in stage I and the state
post-selected on no error-detection can be grown to a
dx,2×dz,2 code in stage II. When the bias is large and the
probability of three-qubit phase-flip error in the ZZZ(θ)
gate is small, the probability of a logical error scales as
O(p3phy). Alternatively, error detection in stage I can be
skipped and the 1× 3 code can be directly grown into a
dx,2 × dz,2 code. In this case, the logical error probability
is dominated by the failure rate of the 1 × 3 code and
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I II

FIG. 9. Arrangement of qubits for preparing the magic state
cos(π/8) |+i〉L − i sin(π/8) |−i〉L in the tailored surface code.
This code has two types of stabilizers: product of Pauli
Y, Y, Y, Y on the qubits around the white squares and product
of Pauli X,X,X,X on the qubits around the grey squares. At
the boundaries the stabilizers are product of X,X and Y, Y
on two qubits. The fixed stabilizers for stage I are marked
using black lines. The ZZ(θ) gate is applied to the two grey
qubits on the top left.

scales as O(p2phy). In general, the protocol can be adapted

to use a k-qubit Zk(θ) gate.
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