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Entangling gates in trapped-ion quantum computers are most often applied to stationary ions
with initial motional distributions that are thermal and close to the ground state, while those
demonstrations that involve transport generally use sympathetic cooling to re-initialize the motional
state prior to applying a gate. Future systems with more ions, however, will face greater non-thermal
excitation due to increased amounts of ion transport and exacerbated by longer operational times
and variations over the trap array. In addition, pre-gate sympathetic cooling may be limited due
to time costs and laser access constraints. In this paper, we analyze the impact of such coherent
motional excitation on entangling-gate error by performing simulations of Mølmer-Sørenson (MS)
gates on a pair of trapped-ion qubits with both thermal and coherent excitation present in a shared
motional mode at the start of the gate. We quantify how a small amount of coherent displacement
erodes gate performance in the presence of experimental noise, and we demonstrate that adjusting
the relative phase between the initial coherent displacement and the displacement induced by the
gate or using Walsh modulation can suppress this error. We then use experimental data from
transported ions to analyze the impact of coherent displacement on MS-gate error under realistic
conditions.

I. INTRODUCTION

The ability to achieve precise control of qubits in the
presence of noise is fundamental to the progress of quan-
tum computation and quantum sensing. The Mølmer-
Sørenson (MS) two-qubit entangling gate [1] for trapped-
ion quantum computation is a good example of this built-
in robustness, as the gate is designed to reduce the error
caused by initial ion motion. While trapped-ion qubits
encode quantum information in long-lived internal states,
ion motion mediates the interactions between qubits, and
noise that affects the quantized motional state can signifi-
cantly degrade the performance of entangling gates. The
use of a noisy degree of freedom to mediate two-qubit
interactions is not unique to trapped-ion systems; for in-
stance, entangling gates in neutral-atom systems employ
a short-lived Rydberg state for this purpose [2]. Motional
excitation also plays a critical role in quantum-sensing
applications, including trapped-ion motional sensors [3]
and inertially-sensitive neutral-atom interferometers, for
which motional noise that persists after state preparation
is predicted to be one of the dominant error sources [4].

A significant amount of research in trapped-ion quan-
tum computation has focused on reducing the electric-
field noise that causes “anomalous heating” [5, 6] and de-
grades MS-gate performance. The gate error results from
incoherent excitation of the motional state both during
the gate, while temporarily entangled with the internal-
state qubit, and prior to the gate, by corrupting the ini-
tial motional state. For experiments that perform limited
transport and/or sympathetically cool the ions prior to
gates [7, 8], reference [9] accurately predicts the gate er-
ror because the ions are close to their motional ground
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state and thermal excitation contributes the majority of
motion-related error.

This picture grows significantly more complicated for
large trapped-ion systems that rely on extensive shuttling
operations. This is particularly true for the quantum
charge coupled device (QCCD) architecture [10], where
experiments motivated by this concept have demon-
strated linear [11], split/join [12, 13], and junction [14, 15]
transport in both surface and 3D traps. Motional excita-
tion over the course of an algorithm, whether from persis-
tent voltage noise (i.e. anomalous heating) or transport
induced excitation, is especially damaging to entangling-
gate performance because each gate is sensitive to the
accumulated excitation. A promising mitigation strategy
relies on sympathetically cooling the motional degrees of
freedom of the qubits while preserving any encoded quan-
tum information [16], but this is costly in both time and
infrastructure. Considerable time would be saved if sym-
pathetic cooling were only needed occasionally to reduce
small amounts of excitation. Similarly, the laser delivery
infrastructure could be reduced if sympathetic cooling
was only needed at a subset of sites.

In the work described here, we seek to better under-
stand the impact of motional excitation on MS gates by
computing the gate error that arises from both coherent
and thermal excitation in the initial state of the gate-
mediating motional mode. Both types of motion can
arise from or be influenced by environmental and control
sources, and while they do not affect the internal qubit
directly, their accumulated impact prior to the two-qubit
gate degrades its performance through temporary spin-
motion entanglement. In particular, we investigate how
each type of motion differently exacerbates the gate error
resulting from fluctuations in the motional frequency, a
ubiquitous source of experimental noise.

Imperfections in transport control inevitably lead to
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some degree of motional excitation, but careful control
design can tilt the balance between thermal excitation
and coherent displacement. For example, slow trans-
port speeds can result in less coherent displacement after
transport but contribute to longer operational times that
introduce more anomalous heating. Additionally, back-
ground electric fields can drift over minutes and hours,
altering the ion trajectory [12] and increasing the mag-
nitude of induced coherent displacement over time. By
analyzing our simulations of MS-gate error, we find that
a small amount of coherent displacement at the start of
the gate leads to a large error, with a strong dependence
on the phase of the coherent displacement. While op-
timizing this phase provides robustness to coherent mo-
tional excitation, we find that implementing a first-order
Walsh modulation greatly enhances this robustness and
eliminates the phase dependence. We then apply our
simulations to experimental data in which the applica-
tion of a background electric field coherently displaces
the motional modes of an ion.

II. MS-GATE MODEL

We model the application of an MS gate on two ions
that are part of a linear chain of ions in a surface trap
using the Hamiltonian,

H(t) = −ηΩJy
(
aeiδt + a†e−iδt

)
, (1)

which is in a rotating frame with respect to the atomic
and trap degrees of freedom. The collective spin opera-
tor Jy has the form: Jy = (σy1 + σy2)/2, where σyj is
the y Pauli spin operator for the j-th ion targeted by the
gate. The Lamb-Dicke parameter η is the same for both
ions, and Ω is the Rabi rate of the carrier transition for
both ions. The operators a† and a are the raising and
lowering operators, respectively, for a harmonic oscillator
that represents a single motional mode of the ion chain
with angular frequency ν. During the gate, a dual-tone
laser illuminates the ions with detunings ±δ = ±(δc− ν)
from their blue and red motional sideband transitions, re-
spectively, where the parameter δc is the detuning of the
blue-detuned laser tone from the carrier transition. For
simplicity, we have made the Lamb-Dicke approximation:
eiη(a+a

†) ≈ 1+iη(a+a†). We have also neglected the car-
rier transition, the far-off-resonant sideband transitions,
and all other motional modes.

The exact analytic solution for the propagator U(t) is,

U(t) = e−iB(t)J
2
yD(Jyα(t)),

B(t) =
i

2

∫ t

0

(
dα(t′)

dt′
α∗(t′)− α(t′)

dα∗(t′)

dt′

)
dt′, (2)

which is equivalent to the solution in refer-
ence [9]. The displacement operator D(Jyα(t)) =
exp

[
Jy(α(t)a† − α∗(t)a)

]
is conditioned on the spin

state of the targeted ions, and α(t) describes the

phase-space trajectory of the ion chain. The phase
B(t), which governs the amount of spin entanglement
accrued during the gate, is real and positive (negative)
for clockwise (counter-clockwise) trajectories. In terms
of the parameters of H(t),

α(t) =
ηΩ

δ

(
1− e−iδt

)
,

B(t) =
η2Ω2

δ2
(δt− sin δt) . (3)

To simulate the MS gate, we use U(t) to propagate the
density matrix of the ions ρ(t) from their initial state,

ρ(0) = ρspin ⊗ ρmotion, (4)

where ρspin and ρmotion describe the initial spin and mo-
tional degrees of freedom, respectively, to the state ρ(τ)
at the end of the gate. The error of this gate depends on
the character of the initial motional state ρmotion, which
accumulates all prior motional excitation since the ions
were last cooled, including excitation from gates, heating,
and transport.

III. INITIAL MOTIONAL STATE

The experimental realization of a quantum algorithm
on a linear chain of ions can incur both coherent and
incoherent motional excitation, which we represent as a
coherent displacement in phase space α = |α|eiφ and an
increase in the ion temperature T , respectively. Under
this premise, an ion chain cooled to its motional ground
state at the start of the algorithm arrives in a thermal
mixture of coherently displaced Fock states immediately
before an MS gate occurs. We represent the n-th Fock
state of the harmonic oscillator by |n〉, and we represent
a coherently displaced Fock state by,

|α, n〉 = D(α) |n〉 , (5)

where D(α) = exp
(
αa† − α∗a

)
is the displacement op-

erator. Hence, we describe the initial motional state for
the gate by the partial density matrix,

ρmotion =

∞∑
n=0

1

1 + n̄th

(
n̄th

1 + n̄th

)n
|α, n〉 〈α, n| , (6)

where n̄th = (exp(~ν/kBT ) − 1)−1 in which kB is the
Boltzmann constant.

The coherently displaced Fock state |α, n〉 has the fol-
lowing expansion onto Fock states [17],

|α, n〉 =

∞∑
m=0

C(α,n)
m |m〉 ,

C(α,n)
m = e−|α|

2/2
√
n!/m!αm−nL(m−n)

n (|α|2), (7)

where L
(m−n)
n is the generalized n-th order Laguerre

polynomial. The expectation value of the number op-
erator n̂ = a†a in the state ρmotion is 〈n̂〉 = |α|2 + n̄th,
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and this quantity determines the average motional energy
~ν(1/2 + 〈n̂〉). Even though 〈n̂〉 contains equal contribu-
tions from |α|2 and n̄th, coherent displacement generates
correlations between different Fock states and, in this
way, produces a fundamentally different motional state
than thermal excitation.

When the ion chain is coherently displaced prior to the
gate, α 6= 0, the operator D(Jyα(t)) from equation (2)
imparts an additional spin-dependent phase shift on the
ions from the non-additive property of coherent displace-
ments,

D (Jyα
′(t))D (α) = eJy(α

′(t)α∗−α′∗(t)α)/2D (Jyα
′(t) + α) .

(8)
Using our expression for α(t) from equation (3), we ob-
tain,

α′(t)α∗ − α′∗(t)α =
2iηΩ|α|

δ
(sin(δt+ φ)− sin(φ)) . (9)

Therefore, when α 6= 0 and δt 6= 2πk, where k is an
integer, the MS-gate produces an additional Jy rotation
that depends on φ.

IV. MS-GATE ERROR

We quantify the error of the MS gate by computing
both its entanglement infidelity εe [18] and diamond er-
ror ε� [19]. The entanglement infidelity quantifies the
performance of the gate averaged over input states, and
the diamond error assesses the worst-case performance of
the gate for all possible measurements and initial states.
Both metrics depend linearly on the amount of stochastic
error, and they are equal when the gate error is purely
stochastic. While coherent errors affect ε� linearly, εe de-
pends quadratically on coherent error [20]. As a result,
ε� can be much larger than εe when the gate error is small
and predominantly coherent. By using both metrics, one
can assess at a glance the relative importance of stochas-
tic vs. coherent errors in the gate. For our purposes, any
difference between the two metrics can signal the pres-
ence of a coherent error. If the two metrics are very close,
the gate error is likely dominated by stochastic error.

While the initial motional-state distribution affects the
gate error associated with multiple control errors, we fo-
cus on the interplay between this distribution and mo-
tional frequency fluctuations because of their relatively
large impact on gate performance compared to other
control errors (e.g. laser intensity drift) and because
the same physical noise sources (e.g. background elec-
tric fields and imperfect control voltages) contribute to
both quantities. We consider different values of the ini-
tial phase φ of the coherent state prior to the gate, and
we quantify the error after employing first-order Walsh
modulation [21].

Although our MS-gate model is appropriate for a wide
range of experimental conditions, we provide a concrete
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FIG. 1: Entanglement infidelity εe and diamond error ε�
for an MS gate vs. motional frequency error δν/2π with
n̄th = 0. From bottom (lightest) to top (darkest) in
each plot, the calculations are for |α|2 = 0 to 2 in steps
of 0.4 with φ = 0 (solid lines) and with φ = π/2 (dashed
lines). For |α|2 = 0, the gate error is the same for both
values of φ.

example by simulating an MS gate designed to com-
plete K = 2 counter-clockwise loops in phase space
during a gate duration of τ = 60 µs. This requires
δ/2π = −K/τ = −33.3 kHz to close the loops and
ηΩ/2π =

√
K/2τ = 11.8 kHz to produce B(τ) = −π/2.

We also choose the motional frequency ν/2π = 3 MHz,
which is a representative value for the axial, center-of-
mass motional mode of a linear chain of 40Ca+ ions in a
surface trap.

We incorporate motional frequency error into the MS-
gate model by shifting ν: ν = ν0 + δν, where ν0/2π =
3 MHz. This causes δ to deviate from its optimal value:
δ = δ0 − δν, where δ0/2π = −33.3 kHz, while τ remains
fixed. We consider values of |δν|/2π . 5 kHz, which can
have a substantial effect on δ, but we neglect the effect
δν has on η because δν � ν0. In this approximation,
δν only influences gate dynamics through its effect on δ.
This detuning error prevents the phase-space trajectory
from closing at the end of the gate, and from equation (9),
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we see that the magnitude of the additional Jy rotation
that occurs when both δt 6= 2πk and α 6= 0 depends on φ.
By substituting t = τ and δ = δ0 − δν into this equation
and expanding the right-hand-side for small δν , we find,

α′(τ)α∗ − α′∗(τ)α ≈ −2iηΩ|α|
δ0

×
(

cosφδντ +

(
cosφ

δ0τ
+

sinφ

2

)
δ2ντ

2

)
. (10)

From this equation, we see that setting φ = π/2 + πn,
where n is an integer, eliminates the first-order contribu-
tion to the additional Jy rotation from δν .

Fig. 1 shows how the simulated MS-gate entanglement
infidelity εe and diamond error ε� depend on the mo-
tional frequency error δν/2π for several values of |α|2
with n̄th = 0, for both φ = 0 and φ = π/2. For
|δν|/2π . 3 kHz, the gate error grows as the magnitude of
motional frequency error increases. For |δν|/2π & 3 kHz,
the gate error oscillates and remains large. An exper-
iment would observe these features if the motional fre-
quency drifts away from ν0/2π over the course of many
experiments. The gate error is more sensitive to δν for
higher values of |α|2, and this sensitivity depends on φ.
Hence, for a certain acceptable gate error, the values of
φ and |α|2 set the time between necessary re-calibrations
of ν.

As shown in Fig. 1, significant motional frequency er-
ror (|δν|/2π = 3 to 5 kHz) and only modest coherent
displacement (|α|2 = 0.4 to 2) generates a large gate er-
ror that is comparable for both φ = 0 and φ = π/2.
However, for values of δν that produce experimentally
relevant gate errors, coherent states with φ = π/2 show a
significant reduction in the sensitivity of gate error to δν,
as compared to φ = 0. For example, with δν/2π = −600
Hz and |α|2 = 2, εe = 0.030 (0.0045) and ε� = 0.23
(0.042) for φ = 0 (π/2). We also note that initial states
with phase φ+πn, where n is an integer, incur the same
gate error.

In addition to drifting over the course of many exper-
iments, the motional frequency fluctuates from shot to
shot during a single experiment due to voltage noise on
the electrodes and other sources. We model this kind of
noise by averaging the MS gate over a Gaussian distri-
bution of motional frequencies with width σ/2π and cen-
tered at ν0/2π = 3 MHz. Fig. 2 shows how the entangle-
ment infidelity εe and the diamond error ε� of the average
MS gate depend on φ when σ/2π = 600 Hz. Although
significantly lower frequency variations have been mea-
sured [22, 23], this value of σ/2π is representative of mo-
tional frequency fluctuations measured in several surface
traps operated at Sandia. Additionally, aspects of larger
ion trap arrays will increase the variation in motional
frequencies; these include more neighboring electrodes,
electrical component variation, greater laser power above
the trap surface, and dielectric exposure due to integrated
optics.

From Fig. 2 we see that φ = π/2 provides maximum
robustness to motional frequency noise when σ/2π = 600
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FIG. 2: Entanglement infidelity εe and diamond error ε�
for an MS gate averaged over a Gaussian distribution of
motional frequencies with width σ/2π = 600 Hz and
centered at ν0/2π = 3 MHz vs. the phase φ of the initial
coherent state. From bottom (lightest) to top (darkest)
in each plot, the calculations are for (a) |α|2 = 0 to 2 in
steps of 0.4 with n̄th = 0 and for (b) n̄th = 0 to 2 in
steps of 0.4 with |α|2 = 1.

Hz. The entanglement infidelity εe has a dramatic min-
imum at φ = π/2. Although the minimum of ε� is not
exactly at φ = π/2, this value of φ is in the center of an
approximately flat region of ε� vs. φ, and φ itself can be
altered by motional frequency noise. While the increase
of both error metrics with |α|2 is significantly suppressed
at φ = π/2, their increase with n̄th shows only a small
variation with φ.

To demonstrate the effect of changing φ from 0 to π/2,
we provide the following example. With σ/2π = 600
Hz, n̄th = 0, and |α|2 = 2, εe = 0.027 (0.0048) and
ε� = 0.049 (0.025) at φ = 0 (π/2). This corresponds to
an 82% reduction in εe and a 49% reduction in ε�. We
also note that the minimum in the gate error at φ = π/2
becomes slightly more pronounced for smaller values of
σ. For example, when σ/2π = 200 Hz, changing φ from
0 to π/2 corresponds to an 86% reduction in εe and a
52% reduction in ε�. For σ/2π & 600 Hz, the minimum
εe remains at φ = π/2, and two minima emerge in ε� vs.
φ.

The sensitivity of transport to experimental condi-
tions like electrode voltages, filters, and relative timing
of pulses prevents the calculation of φ a priori. How-
ever, by providing a time delay after transport, one can
vary the value of φ at the start of the gate and mini-
mize εe to select φ = π/2 + nπ. Alternatively, one can
minimize εe by varying the phase of the gate displace-
ment: α(t) → α(t)eiθ, where θ is equal to half the rel-
ative phase between the blue-detuned and red-detuned
laser tones: θ = (φb−φr)/2, which is set to zero in equa-
tion (1). From equations (2) and (8), it is straightforward
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FIG. 3: (upper plots) Entanglement infidelity εe and
(lower plots) diamond error ε� for an MS gate averaged
over a Gaussian distribution of motional frequencies
with width σ/2π = 600 Hz and centered at ν0/2π = 3
MHz vs. |α|2 and n̄th, for (a) φ = 0 and for (b) φ = π/2.
In each plot, the color represents increasing gate error
from lightest to darkest, and the contours start at 0.01
and increase in steps of 0.01 from the lower-left to the
upper-right.

to see that the gate error depends on φ and θ through
only their difference. Therefore, instead of changing φ,
one can vary θ to select φ− θ = π/2 + nπ and minimize
εe. This method will likely be faster and achieve a more
consistent value of φ − θ than adding a time delay. For
simplicity, we retain θ = 0 throughout this paper, but
the same results hold if we replace φ with φ − θ. Opti-
mizing this relative phase will simultaneously minimize
ε� and improve the performance of quantum algorithms
that use these gates.

Fig. 2 shows that ε� is more sensitive than εe to coher-
ent displacement. This is consistent with coherent dis-
placement causing a substantial amount of coherent gate
error, as opposed to the purely stochastic error caused by
thermal excitation. As quantum circuits amplify coher-
ent gate error, it is especially damaging to long quantum
algorithms that involve many gates [24]. As a result, the
balance between coherent displacement and thermal ex-
citation plays a critical role in the design of transport so-
lutions that maximize circuit performance, including the
choice of transport speeds. Although this study focuses
on motional frequency noise, other noise sources (e.g. un-
controlled ac-Stark shifts) may amplify the detrimental
effect of coherent displacement on high-fidelity gates.

To better characterize the optimal balance between
coherent displacement and thermal excitation prior to
the gate, Fig. 3 shows how the entanglement infidelity εe
and the diamond error ε� of an MS gate averaged over a
Gaussian distribution of motional frequencies with width
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FIG. 4: (a) Entanglement infidelity εe and (b) diamond
error ε� for an MS gate with first-order Walsh
modulation averaged over a Gaussian distribution of
motional frequencies with width σ/2π = 600 Hz and
centered at ν0/2π = 3 MHz vs. |α|2 and n̄th. There is
no dependence on φ. In each plot, the color represents
increasing gate error from lightest to darkest, and the
contours start at 0.002 and increase in steps of 0.002
from the lower-left to the upper-right.

σ/2π = 600 Hz and centered at ν0/2π = 3 MHz depend
on |α|2 and n̄th. For small magnitudes of coherent dis-
placement (|α|2 . 1) and thermal excitation (n̄th . 1),
these forms of motion make independent contributions
to the gate error, but their independence breaks down
for larger magnitudes. The gradient in these plots indi-
cates that increasing either |α|2 or n̄th leads to a higher
gate error for all initial states. For φ = 0, the gradient
is larger in the |α|2 direction than in the n̄th direction,
indicating that a coherent displacement prior to the gate
is more detrimental than thermal excitation of the same
average energy to gate performance. It therefore can be
worthwhile to seek transport solutions which reduce the
amount of coherent displacement, even at the expense
of additional thermal excitation due to longer transport
times, when φ = 0.

However, when φ = π/2, the gradient of εe is much
larger in the n̄th direction than in the |α|2 direction, even
though the gradient of ε� is still larger in the |α|2 direc-
tion. This implies that the optimal transport solution
depends on the application. One can increase the speed
of transport to minimize thermal excitation prior to the
gate and reduce εe, but the trade-off in increased coherent
displacement will raise ε� and degrade the performance
of some quantum algorithms.

While optimizing φ reduces gate error caused by the
initial motion of the ions, the residual gate error may
still be unacceptable for certain applications. To address
this situation, we also study MS-gate errors while im-
plementing a first-order Walsh modulation in our sim-
ulations. The modulated gate can be accomplished by
setting half the sum of the phases of the two laser tones
(φb + φr)/2 to zero, as it is in equation (1), for the first
half of the gate (t < τ/2) and then shifting this phase
to π for the rest of the gate (t ≥ τ/2). This amounts to
flipping the sign of the Hamiltonian H halfway through
the gate: H(t ≥ τ/2) = −H(t < τ/2) [21].
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Fig. 4 shows how the entanglement infidelity εe and
the diamond error ε� of an MS gate with first-order Walsh
modulation averaged over a Gaussian distribution of mo-
tional frequencies with width σ/2π = 600 Hz and cen-
tered at ν0/2π = 3 MHz depend on |α|2 and n̄th. We can
see that the modulation gives the gate a strong robust-
ness to motional frequency noise as the error magnitudes
are much smaller than without Walsh modulation. In
addition, the modulated gates are strongly robust to the
exacerbating effect of the initial motional distribution.
For |α|2 = 0 (n̄th = 0) the gate error is independent of
n̄th (|α|2), and only the combination of these two forms
of motional excitation reduce gate performance compared
to the motional ground state. The gate error is also in-
dependent of φ.

Although Walsh modulation reduces the gate error
from residual ion motion after transport, implement-
ing this technique may not be ideal for every situation.
Walsh modulation requires the ion chain to traverse at
least two loops in phase space (k = 2), and the required
gate duration increases with the number of loops for a
fixed laser power: τ = π

√
k/ηΩ, increasing the gate du-

ration by at least a factor of
√

2 from its minimum. If the
gate is dominated by incoherent errors that accrue during
the gate (e.g. anomalous heating), implementing Walsh
modulation can decrease the overall gate performance.

V. TRANSPORT MEASUREMENTS

To predict realistic magnitudes of MS-gate error due to
small amounts of motional excitation, we apply our sim-
ulations to experimentally measured motional spectra of
excited Fock states after linear transport. This matches a
relevant operational scenario for a trapped-ion quantum
computer using the QCCD architecture, in which trans-
port is calibrated for low motional excitation but over
time background electric fields arise and result in excess
motional heating.

In our experiment, the ion is shuttled away and back to
its initial position at 16 m/s, and a delay is added at the
turn-around point to eliminate most coherent excitation.
After shuttling, we collect blue-sideband Rabi-flopping
data to determine the coherent and thermal populations
of the transported ion [25]. Then we apply a controlled
electric-field offset of Ez = 40 V/m in the axial direction
to our optimized voltage solution to mimic a background
electric field that would typically arise over the course of
hours in an experiment, and we collect new blue-sideband
Rabi-flopping data. Fig. 5 shows the experimental data,
where each data point is an average of M = 500 shots
in the experiment. The error bars shown in the figure
represent the statistical uncertainty

√
Pe(1− Pe)/M of

sampling from a binomial distribution, where Pe is the
excited-state probability.

We model the blue-sideband Rabi-flopping experi-
ments by assuming ideal Rabi oscillations, except for
the addition of a phenomenological decoherence rate
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FIG. 5: Excited-state probability Pe during
blue-sideband Rabi-flopping experiments and the
log-likelihood vs. |α|2 and n̄th for (a) Ez = 0 and for (b)
Ez = 40 V/m. In the upper plots, the black dots are
the average of M = 500 measurements at each time
step. The blue vertical line segments are the
corresponding statistical error bars, and the orange line
is the best-fit model of Pe based on a maximum
likelihood estimation. In the lower plots, the color
scales range from the maximum likelihood (lightest) to
e−1 times the maximum likelihood (darkest), i.e., to one
sigma. The black contours occur every five sigma.

γn = γ0(n+ 1) between |n〉 and |n+ 1〉. For this model,
the excited-state probability Pe during the experiment
has the form [26],

Pe =
1

2
− 1

2

∞∑
n=0

Pn cos(2Ωn,n+1t)e
−γnt, (11)

where Ωn,n+1 = ηΩ
√
n+ 1 and Pn = Tr(ρmotion |n〉 〈n|).

Using the Rabi-flopping data shown in Fig. 5 for both
Ez = 0 and Ez = 40 V/m, we perform a maximum like-
lihood estimation of the model parameters Ω, γ0, |α|20,
n̄th,0, |α|240, and n̄th,40. The additional subscript on |α|2
and n̄th denotes the value of Ez in V/m, and we de-
mand that the parameters Ω and γ0 are independent
of Ez. Fig. 5 shows the values of Pe produced by the
best-fit model. The relatively small number of outlying
data points, which lie outside the statistical uncertainty
of neighboring data points, has a negligible effect on the
maximum likelihood estimation. We attribute the cause
of the outlying data points to collisions or other catas-
trophic events that are not captured by the model.

The estimators for the model parameters are Ω/2π =
136 kHz, 1/γ0 = 1.34 ms, |α|20 = 0.00 ± 0.04, n̄th,0 =
0.49± 0.05, |α|240 = 0.47± 0.01, and n̄th,40 = 0.12± 0.02.
We have determined the uncertainties by calculating the
likelihood for the case of Ez = 0 and Ez = 40 V/m,
separately, with Ω and γ0 fixed at their optimal values.
Fig. 5 shows contour plots of the log-likelihood vs. |α|2
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and n̄th. For Ez = 40 V/m, we define the uncertainty
in each parameter to be half its maximum range on the
curve defined by e−1 times the maximum likelihood. For
Ez = 0, we define the uncertainty in each parameter to
be its full range on this curve, noting that |α|20 is posi-
tive definite and that n̄th,0 is highly unlikely to be this
much greater than its optimal value. It is unclear why
the thermal excitation is lower for Ez = 40 V/m; after
measuring the excitation for multiple field offsets ranging
from 0 to 40 V/m, we observed that the coherent excita-
tion extracted from the fit increased monotonically with
the amount of offset, but the thermal excitation behaved
inconsistently.

We then use the estimators of |α|2 and n̄th to predict
the MS-gate error after transport without implementing
Walsh modulation. To represent the conditions of mod-
ern ion surface traps, we assume a Gaussian distribution
of motional frequencies with width σ/2π = 600 Hz and
centered at the optimal value of ν0/2π = 3 MHz. In this
case, our simulations predict εe = 0.0069 and ε� = 0.0061
when Ez = 0. These values are independent of φ because
|α|20 = 0. When Ez = 40 V/m, our simulations predict
εe = 0.010 (0.0049) and ε� = 0.015 (0.013) for φ = 0
(π/2). In this example, we see that a small background
electric field of Ez = 40 V/m raises εe (ε�) by 49% (150%)
when φ = 0, even though the field decreases n̄th by 0.37
and increases |α|2 by only 0.47, highlighting the sensitiv-
ity of MS-gate error to |α|2. When φ = π/2, the 40 V/m
field lowers εe by 29% – due to the decrease in n̄th and
the relative insensitivity of εe to |α|2 – and raises ε� by
110%, which is 40% less than when φ = 0.

This example demonstrates the benefits of optimizing
φ after an experimental implementation of ion transport,
but performing Walsh modulation can achieve greater
error suppression in this case. From Fig. 4, we see that
the Walsh-modulated gates achieve error rates well be-
low 0.002 for both Ez = 0 and Ez = 40 V/m. While this
study used linear ion transport, other types of transport
are likely to cause greater magnitudes of coherent dis-
placement for the same background electric field, further
elevating the importance of reducing coherent displace-
ment, optimizing φ, and implementing Walsh modula-
tion.

VI. CONCLUSION

We have extended MS-gate models to include both co-
herent and thermal excitation of motional modes prior

to the gate. We have demonstrated that small coher-
ent displacements have a large impact on gate perfor-
mance and generate significant coherent gate error, mak-
ing this error source particularly detrimental to quan-
tum algorithms that involve many gates and/or signif-
icant ion transport. Our simulations have focused on
Gaussian-distributed motional frequency noise to pro-
vide a concrete example, but the interplay between co-
herent displacement and thermal excitation is important
for a broad set of experimental realities with a diverse
spectrum of both environmental and control-based noise
sources. We have also validated our model of ion mo-
tion against measurements of the motional distribution
after linear transport, and we have applied our simula-
tions to predict MS-gate performance in a realistic ex-
perimental situation, with and without first-order Walsh
modulation. As trapped-ion quantum processors scale up
to larger numbers of qubits and support next-generation
quantum algorithms, the analysis and methods presented
in this paper will help maximize performance by assessing
the trade-offs between operations that produce coherent
and incoherent excitation of ion motion, a paradigm that
is also relevant to other quantum-computing technologies
and quantum sensors.
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