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Quantum Process Tomography (QPT) is a powerful tool to characterize quantum operations,
but it requires considerable resources making it impractical for more than 2-qubit systems. This
work proposes an alternative approach that requires significantly fewer resources for unitary pro-
cess characterization with a built-in method for state preparation and measurement (SPAM) error
mitigation. By measuring the quantum process as rotated through the X and Y axes on the Bloch
Sphere, we can acquire enough information to reconstruct the quantum process matrix x and mea-
sure its fidelity. We test the algorithm’s performance against standard QPT using simulated and
physical experiments on several IBM quantum processors and compare the resulting process matri-
ces. We demonstrate in numerical experiments that the method can improve gate fidelity via a noise
reduction in the imaginary part of the process matrix, along with a stark decrease in the number of
experiments needed to perform the characterization.

I. INTRODUCTION

Modern quantum computers are marred by noise that
limits their computational reach. The sources of this
noise are myriad, including initial state preparation er-
rors, noise introduced during the computation via de-
coherence and gate noise, and imprecise state readout
at measurement [1]. There has been extensive work to
improve quantum processor units (QPUs) at the hard-
ware level with methods that are generally not accessible
at the end-user level. Given the current proliferation of
noisy intermediate-scale quantum (NISQ) resources, we
seek strategies that end-users can use to calibrate a set of
qubits on physical, could-based, QPUs in a cost-effective
(less resource-intensive) manner. Furthermore, these al-
gorithms serve to isolate and characterize noise, a critical
component in benchmarking performance on experimen-
tal devicues. [2].

One such characterization method, quantum tomogra-
phy, provides a set of tools to characterize the behavior
of quantum dynamical processes through a series of mea-
surements spanning a complete basis, typically the Pauli
basis. Standard quantum process tomography (QPT)
reconstructs the underlying quantum process £ by per-
forming state tomography on a set of identical quantum
states after applying certain quantum operations, i.e., a
quantum circuit [3-5]. Through this tomographic recon-
struction in state space, one can infer the region where

* This manuscript has been authored by UT-Battelle, LLC, under
Contract No. DE-AC05000R22725 with the U.S. Department
of Energy. The United States Government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for the
United States Government purposes. The Department of Energy
will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan.

T Corresponding author: leytonorteva@ornl.gov

each generated state lies by applying maximum likelihood
estimation [0], Bayesian credibility [7, &], or confidence
regions [9-11].

Process tomography is also a key component in noise
characterization and noise mitigation for quantum algo-
rithms [12]. Through a large number of circuit evalua-
tions or shots, one can deploy statistical and numerical
methods to infer the underlying process matrix represen-
tation of £ [13-15]. However, the resource requirements
inhibit the scalability of QPT-based methods on NISQ
hardware. For an informationally complete determina-
tion of an n-qubit quantum process, one needs to pre-
pare 4™ x 3™ independent circuit executions to completely
specify a quantum process(see Appendix A for more de-
tails). This resource overhead makes QPT impractical
for characterizing processes involving more than a few
qubits. For example, the complete characterization of a
3-qubit quantum process requires 123 = 1728 indepen-
dent experiments, with each experiment repeated many
times to gather sufficient statistics. On the publicly avail-
able IBM QPUs, i.e., IBMQ Bogota, a user can send at
most 900 independent experiments, falling far short of
the 1728 required to characterize a 3-qubit process fully.
One may send the complete set of experiments in two
separate batches of circuits, but this leaves open the pos-
sibility that the device may have changed significantly
between experimental runs. Without dedicated access to
a QPU, process tomography is practically challenging for
n > 3 qubit systems. There has been promising improve-
ments to ameliorate this unfavorable scaling via ancilla-
[16-20] and error-correction-based[21-24] QPT schemes.
These methods require sophisticated state and measure-
ment preparations. Bayesian compressed sensing meth-
ods have also been shown to reduce the number of ex-
periments if some prior information about the process
is known[25, 26]. However, the success of compressed
sensing depends on the accuracy of the rank knowledge
given for the quantum process[27, 28]. Another way to re-
duce the resource requirements consists of a partial char-
acterization, like the randomized benchmarking used to
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compute gate fidelities on superconducting QPUs [29-
]. In summary, these methods assume a specific struc-
ture: low-rank restrictions [28], two-qubit processes [32],
and a unitary structure that only requires measurements
of the diagonal elements of the rotated process matrix.

Progresses in QPT techniques with fewer restrictions
on the quantum process to reduce the number of experi-
ment resources have been developed recently, where one
can characterize unitary quantum processes with no fur-
ther prior knowledge with a reduced number of measure-
ments. Baldwin et al. study the problem of QPT under
the assumption that the target quantum process is uni-
tary (or close to) by discriminating the target process
from any other CTPT process (a.k.a. BKD scheme). An
improved compressed-sensing protocol was introduced by
Ahn et al. [33, 34], introducing an adaptive compressive
tomography scheme (ACT) inspired by the traditional
compressed-sensing protocol in signal recovery. This
adaptive technique does not rely on any prior informa-
tion about the quantum state apart from its dimension.
Recently, ACT has been extended for quantum process
characterization (ACTQPT) [35] and tested in numeri-
cal and physical experiments. The ACTQPT can char-
acterize any quantum process with fewer measurement
resources than the standard QPT. This quantum process
characterization has been improved by implementing an
informational completeness certification [30] that certi-
fies the reconstruction uniqueness of the acquired data
in the characterization. In those schemes, the number of
required experiments, O(4"), for a complete characteriza-
tion is exponentially smaller than the number required in
the standard QPT. Another common characteristic is the
idealized measurement and state preparation, where the
measurement, process does not record assignation errors,
and the preparation of quantum states for the character-
ization is not subject to coherent and incoherent errors.

In synthesis, QPT techniques assume an idealized
limit, yet they are susceptible to state preparation and
measurement errors (SPAM) [2, 14]. This assumption
can lead to underestimating process fidelity by rolling
SPAM errors into the same process as the gates one is
trying to characterize. Here, we reduce the complexity
of QPT only with the unitary-process assumption while
still offering an exponential improvement in resource cost
over standard QPT by assuming a straightforward noise
model consisting of bit-flip assignment readout error and
an over-rotation error (see Fig. 2). Characterization uses
a series of rotations and measurements tailored to limited
access quantum chips such as cloud-based IBM quantum
devices, which we dub parametrized process characteri-
zation (PPC). We further provide a method to unravel
SPAM errors from process characterization by fitting the
projective measurement of key quantum states generated
by the quantum process to a statistical model influenced
by SPAM-type errors. The resulting fit parameters then
allow us to reconstruct the underlying quantum process.

II. METHODS

To illustrate the general idea of PPC, we first give
a one-qubit example that can be extended to a more
general case. We wish to characterize some quantum
process U : p — UpU', with p and U as a one-qubit
quantum state and unitary operator, respectively. With-
out loss of generality, we shall consider the rotation
Yy = exp[—iflo, /2] and assume that rotation is a noise-
less unitary operation in the experimental setup. The
projective measurement, along the z-axis in the Bloch
sphere, of the state YpU|s), for |s) € {|0),|1)}, reads

Pu( ) - 53/2 + |Us’0|209 - (Us,OUs*,l + Us,lUs*,o)SG
* s30T Usal?co + (UsoUs 1 + Us,1Us )0 ’

(1)
with Uy, = ([|U|k), cp = cosf, and sp = sin 6.

As a physical interpretation, we consider the rota-
tion around the y-axis in the Bloch sphere of an ar-
bitrary quantum state |¢). The projection on the z-
axis of the rotated state corresponds to the mean value
(02)0, = (02)pCo, +(0z),50,, this mean value is an exper-
imentally accessible quantity for every value of 64, and
therefore, it defines a way to determine by a fitting pro-
cedure the observables (o), and (o), that constitutes
the characterization of the state |p).

To account for readout error, we introduce a classical
assignment error modeled by the transition matrix:

too 1—1t11
T = ) (2)
1—to0 11

with tgp and t1; as the probabilities of measuring cor-
rectly the states |0) and |1), respectively. T is obtained
experimentally via calibration measurements. This ma-
trix represents a binary asymmetric channel, i.e., tgg #
t11, that maps the original probability distribution to the
experimental observation QY () = T - P¥(#), which can
be rewritten as:

o~ (-

This equation establishes a way to determine the quan-
tum process by fitting U, o and U, ; with the experimen-
tal data T and Q% (6). Notably, with the assumption that
a transition matrix can describe readout errors and those
errors occur only along the direction of rotation, a single
parameter in Eq. 3 can be used to fit the data. Here 6,
is an initial phase representing either a state preparation
error or a compilation error in the rotation operator Yjp.
In summary, we evaluate the action of the unitary oper-
ator U on a set of rotated states Yy|0), and by fitting the
model for the measurement output T - P¥(6) to the ex-
perimental output Q¥ () in (see Eq. 3), we can estimate
the components for U on the computational basis.

This procedure can be extended to an n-qubit system,
considering Yy as the main rotation; the superscript s
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m) TP 6. )



/1
%
1%

=
0s = (s/Ng)2m —m, s=0,---

lo) — Yo,

FIG. 1. Diagrammatic sketch of PPC in the Bloch sphere for
one-qubit systems. With the information obtained from ro-
tation on the states U|0) and U|1) we get information about
the quantum process represented by Y. The dotted lines rep-
resent the rotations of the states ¢/|0) and U/|1) around the
y-axis. In order to clarify this procedure, inset displays the
mean value (0.)¢, (experiment’s output) as a function of 6.
There, the behavior of {(o.)g, for different values of 6, gives
information about the observables (0.), and (o), that con-
form the tomography information of the state |p) = U|po).

stands for the physical qubit where the rotation is ap-
plied. As before, it is enough to consider a subset of the
n-qubit computational basis where the s-th qubit is in
the ground state, i.e., the set {|pks) = |ko, - ,kon) €
{]0),]1)}™ : ks = 0}, and determine the action of the
unitary operator U on different rotations applied on this
set,

¥k.s(0)) = U - Y¢ |k, s) (4)

for different values of 6 in [—m,w]. The projective mea-
surement from these states, 7 - P¥_(0), can be seen as a
function of # with parameters givén by the components
of U, i.e., a function Fy (0; Ugo, - - - ,Uan 2ny). Thus, the
fit parameters of this function to the experimental mea-
surement data give the estimate for U. Before applying
the algorithm, we use a calibration procedure to deter-
mine the transition matrix T and the phase correction 6y
that uses a similar angular sweep (see Section V).

1010 4
8 —— ]\"TQPT

0 Nacrorr

= 108.

3

9]

)

0 106.

=

o

S 104

E

2

S 102

S

T

1 2 3 4 5 6 7 8 9
number of qubits, n

FIG. 2. Number of quantum circuit executions for quan-

tum process characterization: in this figure, we compare the
resources used by different QPT techniques against the re-
sources used by PPC. For different numbers of rotations
(Np = 31,51,and 71 lines), standard QPT surpasses PPC in
the number of resources required for its execution for n > 2,
and state-of-the-art techniques like ACTQPT and BKD sur-
passes PPC for n > 6.

III. SINGLE QUBIT QUANTUM PROCESS
CHARACTERIZATION

For an n-qubit quantum process characterization U, it
is necessary to execute Nppc = 2"~ (n +2) Ny quantum
circuits with Ny as the number of rotations the interval
[—7, 7] is divided into; 2" Ny quantum circuits for cali-
bration; and 2"~ 'nNg quantum circuits to obtain data
for fitting an estimate of U. Both the calibration and
the estimation quality depends on Ny -a large enough

value ensures slight deviations (o ~ N, 1/ %) of the model
from the experimental data. Note that Ny does not de-
pend on the number of qubits. Since QPT scales dif-
ferently with the number of qubits, Ngpr = 12", PPC
with a moderate number of angles becomes a favorable
method in cases where n > 2, since log(Ngpr/Nppc) ~
(n — 1)log6 — log(Ny/2). Concerning state-of-the-art
schemes, like ACTQPT and BKD, the PPC shows a re-
duction in the measurement resources for n > 6. PPC is
still being a good method when considering the SPAM
mitigation embedded in the protocol. Figure 2 shows
resource scaling for each protocol.

We performed simulations and on-hardware experi-
ments for one and two-qubit systems using native gates
as the target operations to characterize. See appendix
C for the quantum hardware specifications. For these
experiments, we set Ny = 51 rotations and N = 5000
experimental repetitions of PPC circuits and employ the
Python Symfit [37] library to fit the model to the ex-
perimental data. Symfit is a Python module that uses
symbolic methods to determine the Jacobian in the fit-
ting process analytically. We test our procedure char-
acterizing the X- and H-gate for one-qubit systems and



the CX-gate for two-qubit systems applied on different
plaquettes on several IBM QPUs. We use Yy for the
calibration and characterization since this rotation has
lower fidelity than Xy (see appendix B), and thus consti-
tutes a good benchmark for the method. For the QPT
experiments, we use the tomography module of Qiskit
Ignis [38].

A common way to describe the quantum process U is
through the process matrix x defined as

U(p) = xuPepP, ()
ki

with p as a one qubit state, and Py, € {I,0,,0y,0.} (Pauli
basis). It is simple to find the process matrix x, we need
to find the representation of U in the Pauli basis and
compare UpoUT with Eq. (5), which gives xx = ugpu}
with U = tr{Z/{Pk}/Z

When comparing QPT and PPC-generated process
matrices, we observe qualitatively similar results for the
real part, x,e, while observing differences in the imag-
inary part, xim. In Figures 3 and 4, we present the
heat plots of the process matrix from the numerical and
on-hardware experiments comparing both methods us-
ing the gates H and CX as targets, respectively. We
further observe that the 4P ¢ differs from ngT, even
in the noiseless numerical experiments. The imaginary
part, which gives information about the quantum error
[14], in both procedures is slightly different, owing to
the assignment error mitigation implemented in PPC.
This isolation of SPAM errors is impossible to do under
standard QPT. A common way to compare the empir-
ical and the expected operation is through the process
fidelity F, = tr[xxo]/4"™, with xo as the noiseless process
matrix. In table I, we show the process fidelity values for
every experiment. The PPC results show closer values
to 1 than the QPT results in the numerical experiments,
where we used a noiseless simulator as the initial test of
the method. In the physical experiments, we still observe
that xppc has a minor contribution from the imaginary
part than the result from xgpr. The numerical results
for xI'P ¢ and Xgr]:T are irrelevant since the statistical
error N™1/2/2 ~ 7 x 1073[39] in the projective measure-
ment. For the physical experiment, we observed similar
values for one- and two-qubit in the standard deviation
(oppc ~ 2 x 1073 and ogpr ~ 6 x 1073) after boot-
strapping results from 21 experiments using each method
in 10* resamples. These deviations determine what val-
ues are statistically relevant in the experiment. There-
fore, the results for one-qubit experiments are closer to
an ideal behavior than the results from two-qubit gates.
Additionally, we determine the difference between the
process matrices x©'F¢ and y@FT applying the distance

doo ().
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FIG. 3. Comparison between tomography results for the
one-qubit system. We present the y-matrix representation in
the Pauli matrices for the Hadamard gate H using QPT and
PPC. In a) and b), we depict the x-matrix using QPT and
PPC, respectively, by running the experiment in a noiseless
simulator. In c) and d), we show the resulting x matrices, by
QPT and PPC, respectively, by running the experiment on
the Oth qubit on the IBMQ-Bogota backend. In both cases,
we considered N = 5000 shots and least square estimation
for QPT, and N = 5000 shots and Ny = 51 for PPC. There
is a good agreement in the y-matrix’s real part, but a dif-
ference in the imaginary part, even when using the noiseless
simulator. In the noiseless simulator, the imaginary part is
statistically irrelevant since the statistical error is in the or-
der of N™Y/2/2 ~ 7 x 1073[39]. On the other hand, in the
QPT experiments, the imaginary part is statistically relevant
due to SPAM errors. At the bottom, we present the do(-)
distance between the resulting process matrices.

A. density matrix representation of the one-qubit
characterization

For the sake of clearness, we describe the scheme for
the one-qubit quantum process characterization in the
density matrix representation. To this end, we consider
the super-operator notation, in which the density opera-
tor p is written as a super-ket |p)). In this case, consider
the initial state |po)) = (1,0,0,0)T.

IV. MULTI-QUBIT QUANTUM PROCESS
CHARACTERIZATION

Consider the action of a n-qubit quantum operator U
on the state

‘wk,s(9)> = Yes‘kOa e 7k5713 07 k8+1a e 7k77,>
=Y;|k,0s). (6)



TABLE I. Process fidelity Fy of local and non-local gates.

configuration gate F, PPC F, QPT
Numerical 1.0 0.99
IBMQ-Bogota, qubit 0 0.99 0.92
IBMQ-Bogota, qubit 2 0.99 0.95
IBMQ-Santiago, qubit 1 X 0.99 0.97
IBMQ-Santiago, qubit 3 0.99 0.99
IBMQ-Quito, qubit 0 0.92 0.93
IBMQ-Quito, qubit 1 0.99 0.99
IBMQ-Boeblingen, qubit 0 0.99 0.96
IBMQ-Boeblingen, qubit 4 0.99 0.92
Numerical 1.0 0.99
IBMQ-Bogota, qubit 0 0.96 0.90
IBMQ-Bogota, qubit 2 0.99 0.95
IBMQ-Santiago, qubit 1 H 0.99 0.97
IBMQ-Santiago, qubit 3 0.99 0.99
IBMQ-Quito, qubit 0 0.93 0.94
IBMQ-Quito, qubit 1 0.99 0.99
IBMQ-Boeblingen, qubit 0 0.99 0.95
IBMQ-Boeblingen, qubit 4 0.96 0.90
Numerical 1.0 0.98
IBMQ-Bogota, qubits [1,2] 0.97 0.75
IBMQ-Bogota, qubits [0,1] CcX 0.96 0.73
IBMQ-manhattan, qubits [0,1] 0.99 0.88
IBMQ-manhattan, qubits [11,17] 0.99 0.98
IBMQ-Boeblingen, qubit 0 0.99 0.86
IBMQ-Boeblingen, qubit 4 0.99 0.81

V. CALIBRATION

We assume the assignment error effects are represented
by a transition matrix Ty; = P(l|k), where P(l|k) is the
conditional probability of observing |j) when the system
has been prepared in the state |i). This is typically deter-
mined by measuring the number of outcomes ‘j’, ¢;, of N
identically-prepared states of |i); T;; = ¢;/N. However,
this procedure is limited in its explanatory power, as we
cannot determine which part of the readout error comes
from the state preparation. Additionally, this method
scales exponentially with the number of qubits consid-
ered since we must evaluate the conditional probabilities
for all 2™ states of the system. We follow a modified cal-
ibration routine that tracks assignment error as a func-
tion of the rotation about the y-axis to discriminate the
assignment error from every possible state preparation
error in each experiment.

We rotate the states |0, ko, - - - , kn—1) around the y-axis
of the first qubit, for k € {0,1}"~1, yielding the output
09/2|0, ko, e, kn_1> + 59/2|1, ko, ce 7kn—1>- T‘hllS7 the
expected probability distribution will have two compo-

Above, we used a short notation to identify where
the rotation is being applied, in this case on the
ground state of the s-th qubit while the rest are at
lko, ++ ,ks—1,kst+1, -+ ,kn). The probability distribu-
tion for U|¢y s(0)) reads as

1
Pklfs(a) = 3 (Ak,s + By sco + Ch s ), (7)

where Ay s, By s, and Cj, s are vectors in R2?", with com-
ponents

[Ak,s]j = ‘<j|Z/{|k‘,Oé>|2 + |<]|u‘k715>|2 ) (8)
[Bk,s]j = ‘<]|u|k705>|2 - |<]|u‘k>1s>|2 ) (9)
[Ch,slj = (UK, 05) (UK, 16)" +

(UK, 05)" (GlA |k, 1s), 5 € {0, 13"
(10)

By measuring N systems identically prepared in the state
U Yr.s(0)) for every 0 in Sy, = {(j/No — 1)m : j €
N,0 < j < Np}; we estimate the probability distribu-
tions Qi,s = (Cg’j/N,-~- ,Ck;j/N) for j = 0,---, Ny,
with CFJ as the number of outcomes ‘m’ € {0,1}"
for the j-th angle. The original distributions P,gﬁ o af-
ter mitigating the assignment error (see next section
for details), are obtained by minimizing the functions
fi(P) = |QL , — T - P||p, where || - || is the Frobenius
norm. With that information, i.e. {P,gs, e ,P]fvf} and
the model (7), we can compute the matrix elements for
U. Therefore, we can determine the process matrix .

(

2 2 :
nents, Co/2 and 59/25 for instance

P: 0 == CQ ,0,""0;82 707'..7OT?
o=0---0(6) (9/2 /2 )
2n—1_1
Pr—10...0(0) = 0702 ,07"',070752 aoa"'aOTv
k=10 0( ) ( 0/2 0/2 )
on—-1_9
Pico..01(8) = (0, ,0,¢2,,,0,---,0,52,,)T.
%=0---01(0) = ( 0/2 0/2)
2n—1_1

(11)

Under the bit-flip noise model, an empirical probability
distribution Q(0) is related to Py(6) by Qx(0) = T -
Pk (9), with

tUO M tO’Qn
T = oo, 8 . (12)

t2n)0 ... t2n72n

Taking into account the structure of P (6), we can de-
termine two columns of T' per state Yy|0, ko, -, kn—1).
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FIG. 4. x-matriz for the CX-gate: Here we depict the x-matrix representation in Pauli matrices of the CNOT-gate, obtained
by the QPT and PPC methods. In a) and b) we used a noiseless simulator to run QPT and PPC, respectively. In ¢) and d), we
used the qubits 0 and 1 on IBMQ-Bogota backend to run QPT and PPC respectively. In the experiments we used N = 5000
shots and least squared estimation for the QPT configuration, and N = 5000 shots and Ny = 51 for the PPC configuration.
We obtained similar results to the one-qubit case, there is good agreement with the real part, but a slight difference in the
imaginary ones. Again, part of the imaginary values stem from an inherent error introduced by the estimation procedure in the
QPT method. In this case, the imaginary part produced by PPC and QPT in the numerical experiments are still statistical
no relevant since we can consider the same level of statistical error used in the one-qubit case [39], i.e. ~ 7 x 107, For the
physical experiments, the imaginary part overpass the standard deviations (cppa ~ 2 x 1072 and ogpr ~ 6 x 107%) reveling
imperfections in the quantum gate. In this case, the distance doo (-, ) in the simulation is similar with the experimental result.

We measure the states Yy, [0, ko, - -, k1), 0; € Sp, and
estimate the probability distribution by the sampling dis-
tribution of the outcomes, i.e. we obtain the quantities

7 = (CE7/N, -, C57 /N)T. We fit the acquired data
with the model T'- Py (6 — ). In the model, we have con-
sidered an initial phase 6y to describe preparation error.

A. Two-qubit transition matrix and initial
preparation

For the two-qubit system, we can consider the following
model for the expected distributions of the states Y,?|00)
and Yy |01),

Po(0) = (03/27 0, 33/270)T7

P(0) = (0’03/270733/2)T7 (13)



and the emperical distributions Qg (6) = T - Px(9),

too to2
Qo(6) = t1o cg n t12 2

t20 /2 a2 o/z

t30 t32

to1 to3
Q1(0) = tn ot hs S5/2-

t21 ta3

t31 t33

Now, we execute the quantum circuits

|0) — Yo, for k =0, (15)

10)

and for 6; € Sp. We determine the transition matrix
elements t;; by fitting the model (14) to the acquired
data Q] = (ChJ /N, CEJ /N, CFI /N, CH /N)T from the
above quantum circuit executions.

VI. DISCUSSION

To summarize, we introduced an alternative method
to characterize a unitary quantum process based on a
rotational sweeping procedure without prior information
about the process. Instead of using a complete set of
measurement operators, we measure the unknown quan-
tum state rotated around different angles. Additionally,
we proposed a pre-characterization process to define the
assignment errors enclosed in the transition matrix and
then mitigated those effects in the quantum process char-
acterization. In the scheme presented here, we perform
27=1(n 4 2)N, experiments to characterize an n-qubit
process, in which the number of angles Ny does not scale
with the number of qubits. Therefore, we can fix this pa-
rameter to get enough data to fit the model with minor
deviations. We considered Ny = 51 for a suitable fitting
with relatively slight deviations (~ 10~%) from ideal be-
havior; this value can be used for any n-qubit system.
Additionally, QPT is affected by errors in preparing the
initial states and tomography measurements. By con-
trast, in our method, we control the initial preparation
error by considering an initial phase in the model and the
readout error by mitigating the assignment error.

The PPC algorithm is affected by the fitting error that
depends on the number of rotational divisions, Ny. This
procedure assumes a high-fidelity rotation and trusted

quantum states |0) and |1) in the same way that QPT re-
lies on high-fidelity measurement. One way to mitigate a
possible imperfection in the rotation process is by using a
different compilation for the rotations Yy and Xy. For in-
stance, we can use the compilation procedure introduced
in [40]; a decomposition based on rotations Xg. The al-
ternative decomposition brings a shorter pulse structure
and commensurately higher fidelity.

To validate the performance of the PPC procedure,
we compared the process matrix obtained by our ap-
proach with the outcome from the QPT. We compared
the process fidelity F) of the results, from PPC and
QPT, of different one- and two-qubits gates on-hardware
and in-silico. As expected, we found minor differences
between Re{xppc} and Re{xgpr}; there was, how-
ever, a remarkable difference in their imaginary parts,
even in the numerical experiments. The matrix elements

( %T/ PPC)ij can be attributed to numerical errors.

They are in the range of the statistical error present in the
simulation and therefore do not contribute to the char-
acterization analysis. We observed statistically relevant
QPT ", . . .
values for x5, ~ in the physical experiments and negli-
gible values in 1 F A other consequence of the SPAM
mitigation in the PPC process for one-qubit quantum
processes. The PPC implements the mitigation of single
qubit over-rotations, therefore the imaginary part X%DT
exhibits relevant data that reflects other quantum imper-
fections. We establish the difference of the process ma-
trices via the distance dw(+,-), and the process fidelity
as performance metric that gives a perfect score in the
noiseless simulation for the PPC (see Table I).
Additionally, the PPC protocol allows the calculation
of the error process matrix directly from the quantum
gate’s characterization without appealing to the QPT
process introduced by Korotkov [14]. The imaginary part
of the error process matrix provides information about
the process fidelity and imperfections. A natural exten-
sion of this work is studying the error process matrix for
low-depth quantum circuits. The method may also prove
useful in providing tighter measures of crosstalk effects
in quantum processes. For example, tomography on one
qubit, while its neighbors undergo local unitaries, can re-
veal correlated noise [41, 42]. The improved scalability
of PPC over QPT allows us to extend this tomographic

method to more significant numbers of qubits, a valuable
feature for crosstalk identification and characterization.

Appendix A: Quantum process tomography
implementation

The QPT algorithm finds the process matrix xg of
a quantum map £ : |p)) — |EpE")), by measuring
the resulting state £|pg)), from a basis of initial states
P A{lp1)), -, |pan))}, onto different directions M :
{|E1)), - ,|En))} in the Hilbert space, with n and M as
the number of qubits and number of measurement opera-
tors respectively. Here, we have introduced the superop-



erator notation for the statistical operator, where oper-
ators become superkets and quantum maps becomes su-
peroperators, i.e, £(p) — E|p)) (more details in [13, 41]).
In the superoperator notation, the goal is to determine
the matrix representation [x¢]i; = ((j||€]|7)) in the Pauli
basis {]i))}, by the measurements

Aij = ((Ej1Epi))-

We can establish the relation between A and x¢ by insert-
ing the completeness identity ). |i))((i| =1 in Eq. A1,

(A1)

n

Nij= Y Dxel ((E51R){(Ulpa)).

(A2)
k=1
We can arrange the terms as
Yjr(i—1)xM = Aij, (A3)
Tpp(—1)xar = [Xelij (A4)
Bjy(i—1)x M, k+(-1)xan = (E5lk)){{I|pi)), (A5)

and transform A2 into a more convenient expression,
Br — 4y =0, for a numerical solution.

B.1 One-qubit process matriz: Without loss of general-
ity, consider the characterization of a one-qubit quantum
map & using the following intitial states and measure-
ment operators

P:{ |Zp>>v |Zm)),
1Xp)) 1Y) }

M { |Zp>>a |Zm)),
1Xp))s 1 Xm)),
o)), 1Ym)) } s

where we have introduced the projectors Z, = (I+0,)/2,
L = (]I - JZ)/Qv Xp/m = —ﬂ/QZp/me/27 and Yp/?n =
X _r/2ZpymXrs2. Since Z, = [0)(0], Z, = [1)(1],
X, = |4+)(+], and Y, = |i)(i|], the set P is generated
by the preparation of the states {|0),]1),|+),|¢)}. The
quantum chip detector measures o, by default. The pos-
sible outcomes of a measurement on an arbitrary state p
are i = 0,1, where ¢ = 0 corresponds to {(o,) = +1 and
it =1to (0,) = —1, with probabilities

(A6)

po =tr{pZ,}, p1=tr{pZy}. (A7)

J

Appendix B: Fitting parameters

In this section we shall discuss the fitting details used
in the post-processing step in the PPC protocol.

The number of rotations and shots plays an essential
role in the quantum process characterization. We con-
sider a one-qubit experiment to benchmark the calibra-
tion process, which follows the same principle as the char-
acterization. In this experiment, we consider the qubit 0
in the IBMQ-Bogota quantum chip. For the calibration

Now, to measure o, and o, we need to consider the
projectors X,, X,,, and Y}, Y,,,, respectively, by trans-
forming the z- and y-axis into the z-axis in the Bloch
sphere and measuring o, (see the definitions below
Eq. A6). Therefore, the set M is generated by the
gates {I,Y_r/2,X_r/2}. In Figure 5 there is a sketch
of the required circuits to gate characterization. Thus,
the number of quantum circuits for a complete charac-
terization is less than the number of independent terms
in the matrix process xg. On the other hand, one
can observe that the number of measurement operators,
size of M, is enough for the solution of Eq. Al, since
dim{M} x dim{P} > dim{y}.

B.2 n-qubit process matriz: The natural extension of
the initial states and the measurement operators in the
n-qubit quantum process characterization follows:

Pr {12005 1Zm))s
X)), 1Y) 35"

Mo {1Zp)) | Zm)),
[ Xp))s [ Xom)),

Vo)) [Yim)) }5"
(AS)
where P, is generated by the preparation preparation
of the states {|0), 1), |+),]i)}®". Now, the possible out-
comes of the c©™ measurement on an arbitrary state are
s = {0,1}"™, with probabilities

Po--.0 = tI‘{Zp X Zp}
10100 = t1{Zp ® Zpy @ Z, @ -+ @ Zp}

For the {0, 0,,0,}®" measurements we need to apply
the projectors {X,,, X, }®™ and {Y,, Y, }®", respectively.
Thus, the set M, is generated by {I,Y_, /o, X_/2}®".
Again, as in the one-qubit case, we get a redundant
amount of measurements, dim{M,, } xdim{P,, } = 4" x6"
for the number 16™ of independent elements in x.

(

we use rotations about the z- and y-axis, with a differ-
ent number of rotations and shots. Figure 6 shows the
conditional probabilities and the initial phase for each
experimental setup as a function of the number of rota-
tions and shots, with error bars indicating the standard
deviation in each measurement. We choose a suitable
setup where the conditional probabilities do not vary sig-
nificantly concerning the result using the highest values
Ny = 71 and N = 5000. For Yy and Xy we found the
optimal points Ny = 51 and Ny = 41, respectively (see



a) Preparation set b) Measurement set

0) —{1}— [0)--

o) —{X}— (1)
lO)Wm

o —{E{vx}— 2

{|Zp)>7|Zm>>}
(X0, 1 X}
o —{VEHEA {|Y), [Ym))}

FIG. 5. Preparation and Measurement set of quantum circuits for one-qubit quantum process tomography.

and N, which slightly improves the experimental setup’s
refinement.

shadow regions in Figure 6). One important feature is the
dependence of the parameters’ standard deviation on Ny

0.996 1
' #2000 - 5000 0.994
1.002 1 ~#$- 3000
1.000 | @ heeeeer@preeeeeens 0.992
o o
+$0.998 4 0.990 1
0.996
0.988
0.994
0.992 ] 0.986 |
b)0.9600 e)
0.9575 1 0.960
0.9550 0.955
= 0.9525 A o
o +50.950
0.9500 1
0.945 |
0.9475
0.94501 0.940
c) 0.0201 f)
0.015 | 0.001
0.010 |
—0.011
o 0.005- °
[95)
0.000 | —0.021
~0.005 1
—0.031
~0.0101
21 31 a1 51 61 71 21 31 a1 51 61 71
Ng Ng

FIG. 6. Fitting parameters: Conditional probabilities and initial phase using Yy rotation in a), b), and c), and using the Xy
rotation in d), e), and f), respectively. The error bars represent the standard deviation of each parameter in the fitting process.
The shadow regions indicate the optimal values for Ng and N.



Appendix C: On-hardware experimental setup

In the Figure 7 we present the specifications of the
hardware used in our experiments. The IBM hardware
is subject to daily calibration, therefore, the information
presented here represents an estimate, for updated values
the reader can check the IBM Quantum Services [45].

IBMQ Quantum Backend Specifications

topology Nq E,n gsx gcx

backend

ibmg_bogota 0 1 2 3 4| 5 |0.06]4.4x10"| 1.7x10

0.03 | 3.4x10™ | 2.7x107

(S8

ibmg_santiago ‘0 ‘1 ‘2 ‘3 ’4

0 1 2

ibmg_quito {3 5 10.03 | 4.6x10*| 1.3x10
4

ibmg_manhattan retired 65 [0.02| 4.4x10™| 1.3x10?

ibmg_boeblingen retired 20 {0.05] 1.1x10° | 1.6x102

FIG. 7. Backend Specifications: inside ng stands for the
number of qubits, & for the average readout error rate, Esx
for the average SX error rate, and Ecx for the average CX
error rate.
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