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We develop a framework for simulating measure-preserving, ergodic dynamical systems on a quan-
tum computer. Our approach provides a new operator-theoretic representation of classical dynamics
by combining ergodic theory with quantum information science. The resulting quantum embedding
of classical dynamics (QECD) enables efficient simulation of spaces of classical observables with ex-
ponentially large dimension using a quadratic number of quantum gates. The QECD framework is
based on a quantum feature map that we introduce for representing classical states by density oper-
ators on a reproducing kernel Hilbert space, H. Furthermore, an embedding of classical observables
into self-adjoint operators on H is established, such that quantum mechanical expectation values
are consistent with pointwise function evaluation. In this scheme, quantum states and observables
evolve unitarily under the lifted action of Koopman evolution operators of the classical system.
Moreover, by virtue of the reproducing property of H, the quantum system is pointwise-consistent
with the underlying classical dynamics. To achieve a quantum computational advantage, we project
the state of the quantum system onto a finite-rank density operator on a 2n-dimensional tensor
product Hilbert space associated with n qubits. By employing discrete Fourier-Walsh transforms of
spectral functions, the evolution operator of the finite-dimensional quantum system is factorized into
tensor product form, enabling implementation through an n-channel quantum circuit of size O(n)
and no interchannel communication. Furthermore, the circuit features a state preparation stage,
also of size O(n), and a quantum Fourier transform stage of size O(n2), which makes predictions
of observables possible by measurement in the standard computational basis. We prove theoretical
convergence results for these predictions in the large-qubit limit, n → ∞. In light of these proper-
ties, QECD provides a consistent simulator of the evolution of classical observables, realized through
projective quantum measurement, which is able to simulate spaces of classical observables of dimen-
sion 2n using circuits of size O(n2). We demonstrate the consistency of the scheme in prototypical
dynamical systems involving periodic and quasiperiodic oscillators on tori. These examples include
simulated quantum circuit experiments in Qiskit Aer, as well as actual experiments on the IBM
Quantum System One.

I. INTRODUCTION

Ever since a seminal paper of Feynman in 1982 [1], the
problem of identifying physical systems that can faith-
fully and efficiently simulate large classes of other sys-
tems (performing, in Feynman’s words, universal compu-
tation) has received considerable attention. Under the
operating principle that nature is fundamentally quan-
tum mechanical, and with the realization that simulating
quantum systems by classical systems is exponentially

hard, much effort has been focused on the design of uni-
versal simulators of quantum systems. Such efforts are
based on the axioms of quantum mechanics, with gates
connected in quantum circuits performing unitary (and
thus reversible) transformations of quantum states [2–7].

Over the past decades, several numerically hard prob-
lems have been identified, for which quantum algorithms
are significantly faster than their classical counterparts.
A prominent example is the Grover search algorithm,
which results in a quadratic speedup over classical search
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[8]. In a few cases, such as random sampling, quantum
computers have solved problems that would be effectively
unsolvable with present-day classical supercomputing re-
sources, thus opening the way to quantum supremacy [9].
See also Ref. [10] for a discussion of the result in Ref. [9].

Yet, at least at the level of effective theories, a great
variety of phenomena are well described by classical dy-
namical systems, generally formulated as systems of or-
dinary or partial differential equations. Since simulating
a quantum system by a classical system can be expo-
nentially hard, it is natural to ask whether simulation of
a classical system by a quantum system is an exponen-
tially “easy” problem, enabling a substantial increase in
the complexity and range of computationally amenable
classical phenomena.

The possibility to simulate classical dynamical systems
on a quantum computer has attracted growing atten-
tion, on par with research on fundamental new quan-
tum algorithms and their practical implementation [11].
Already 20 years ago, for example, Benenti et al. [12]
studied the sawtooth map generating rich and complex
dynamics. The implementation of an Euler method to
solve systems of coupled nonlinear ordinary differential
equations (ODEs) was addressed by Leyton and Os-
borne [13]. A framework for sequential data assimi-
lation (filtering) of partially observed classical systems
based on the Dirac–von Neumann formalism of quantum
dynamics and measurement was proposed in Ref. [14].
The simulation of classical Hamiltonian systems using
a Koopman–von Neumann approach was studied by
Joseph [15]. This quantum computational framework
was shown to be exponentially faster than a classical sim-
ulation when the Hamiltonian is represented by a sparse
matrix. More recently, the potential of quantum comput-
ing for fluid dynamics, in particular turbulence, was ex-
plored in Refs. [16, 17]. This includes, for example, trans-
port simulators for fluid flows in which the formal analogy
between the lattice Boltzmann method and Dirac equa-
tion is used [18]. Lubasch et al. [19] took a different path
inspired by the success of quantum computing in solv-
ing optimization problems, modeling the one-dimensional
Burgers equation by a variational quantum computing
method, made possible by its correspondence with the
nonlinear Schrödinger equation. Quantum systems have
also been employed in the modeling of classical stochas-
tic processes, where they have shown a superior memory
compression [20, 21].

Here, we present a procedure for simulating a clas-
sical, measure-preserving, ergodic dynamical system by
means of a finite-dimensional quantum mechanical sys-
tem amenable to quantum computation. Combining
operator-theoretic techniques for classical dynamical sys-
tems with the theory of quantum dynamics and mea-
surement, our framework leads to exponentially scalable
quantum algorithms, enabling the simulation of classi-
cal systems with otherwise intractably high-dimensional
spaces of observables. Our work thus opens a novel route
to the full realization of quantum advantage in the com-

FIG. 1. Schematic of the relationship between the flow map
Φt that advances the (nonlinear) dynamical system in a state
space X in time and the linear Koopman operator U t that ad-
vances observables f on X in an infinite-dimensional Hilbert
space.

putation of classical dynamical systems.
Another noteworthy aspect of our approach is that it

interfaces between classical [22–29] and quantum [30–36]
machine learning techniques based on kernel methods.
Connections with other data-driven, operator-theoretic
techniques for classical dynamics [37–43] are also preva-
lent. Building on our previous work on quantum mechan-
ical approaches data assimilation [14], the framework pre-
sented here offers a mathematically rigorous route to rep-
resenting complex, high-dimensional classical dynamics
on a quantum computer. The primary contributions of
this work are as follows.

1. We present a generic pipeline that casts classical
dynamical systems in terms amenable to quantum com-
putation. This approach consists of four steps. (a) A
dynamically consistent embedding of the classical state
space X into the state space of an infinite-dimensional
quantum system with a diagonalizable Hamiltonian.
(b) Eigenspace projection of the infinite-dimensional
quantum system onto a finite-dimensional system, whose
dynamics are representable by composition of basic com-
muting unitary transformations, realizable via quantum
gates. (c) A preparation process, encoding the classi-
cal initial state in X to a quantum computational state.
(d) A quantum measurement process in the standard
basis of the quantum computer to yield predictions for
observables. These four steps result in simulations of
a 2n-dimensional space of classical observables using n
qubits and a circuit of size (i.e., number of quantum
gates) O(n2) and depth O(n). We call this framework
for encoding a classical dynamical system in terms of a
quantum computational system quantum embedding of
classical dynamics (QECD).

2. We develop the principal mathematical tools em-
ployed in this construction using Koopman and transfer
operator techniques [44, 45] and the theory of reproduc-
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ing kernel Hilbert spaces (RKHSs) [46, 47] and Banach
function algebras on locally compact abelian groups [48–
50]. The connection between the dynamical system and
the Koopman operator is illustrated in Fig. 1. Using
RKHSs as the foundation to build quantum mechani-
cal models (as opposed to the L2 spaces employed in
Ref. [25]) leads to pointwise consistency with the under-
lying classical dynamical system; that is, consistency for
every classical initial condition, rather than in the sense
of expectations over initial conditions. This result should
be of independent interest in the broader context of rep-
resentations of classical dynamics in terms of quantum
systems, which has received significant attention [51–55].

3. In the particular setting of quantum computa-
tion, we establish theoretical convergence results for the
finite-dimensional systems generated by QECD, includ-
ing asymptotic convergence rates in the large-qubit limit,
n → ∞. The time evolution of the quantum compu-
tational systems leverages discrete Fourier-Walsh tech-
niques [56] to efficiently represent the Koopman operator
using a circuit of size O(n) and depth O(1). The state
preparation step, which is a major challenge in quan-
tum computing [57, 58], is also carried with a circuit of
size O(n) and depth O(1). In particular, we take ad-
vantage of the fact that every quantum state associated
with a classical initial state in X can be reached to any
desired accuracy by efficient unitary transformations ap-
plied to a uniform-superposition state constructed using
Hadamard gates. Meanwhile, the measurement process
employs the quantum Fourier transform (QFT) to per-
form efficient approximate diagonalization of observables
with a circuit of size O(n2) and depth O(n) [59, 60].

4. We demonstrate the QECD framework in simple,
analytically solvable examples of classical dynamics, so
that all steps of the procedure are fully reproducible.
Specifically, we use QECD to simulate the evolution of
observables of periodic and quasiperiodic dynamical sys-
tems in a one- and two-dimensional phase space, respec-
tively. We employ the gate-based, universal quantum
computing toolkit Qiskit Aer [61, 62], using up to n = 8
qubits. Results from simulated quantum circuit experi-
ments (see Figs. 6 and 8) are found to be in good agree-
ment with the true classical dynamics. In addition, we
perform experiments for the periodic system on an ac-
tual quantum computer, the IBM Quantum System One,
demonstrating the ability of QECD to simulate a classi-
cal system on a noisy intermediate-scale quantum (NISQ)
device.

We note that the two-dimensional quasiperiodic dy-
namics in our examples can be straightforwardly ex-
tended to higher dimensions, where the dynamics be-
comes increasingly indistinguishable from a chaotic sys-
tem. For quasiperiodic dynamics, no interchannel com-
munication is necessary. Circuits of higher complexity
that create inter-qubit entanglement may need to be ex-
plored for treatment of chaotic dynamics.

The outline of the paper is as follows. First, in
Sec. II we give a high-level description of the methodolog-
ical framework underlying the quantum embedding. In
Sec. III, we introduce the class of dynamical systems un-
der study, along with the corresponding RKHSs of clas-
sical observables. This is followed in Secs. IV–VIII by a
detailed description of the construction of the QECD for
this class of systems. In Sec. IX, we discuss aspects of the
computational complexity of our approach in relation to
classical simulators of quantum computational systems
[63–65]. In Secs. X and XI, we present our results from
simulated and actual quantum computation experiments,
respectively. Our primary conclusions are summarized in
Sec. XII. The paper contains appendices on RKHS-based
quantum mechanical representations of classical systems
(Appendix A), Fourier-Walsh factorization of the Koop-
man generator (Appendix B), and QFT-based approxi-
mate diagonalization of observables (Appendix C). In ad-
dition, we provide an overview of elements of Koopman
operator theory related to this work and associated nu-
merical techniques in Appendices D and E, respectively.

II. A ROUTE TO QUANTUM EMBEDDING OF
CLASSICAL DYNAMICS

We begin by describing the main components of
the QECD framework for representing classical dy-
namics on a quantum computer. Figure 2 schemat-
ically summarizes the successive levels used in the
procedure, passing through classical, classical statis-
tical, infinite-dimensional quantum mechanical, finite-
dimensional quantum mechanical (referred to as matrix
mechanical), and quantum computational levels. This
diagram juxtaposes the steps for states and observables
side-by-side for easy comparison. In the following sub-
sections, we discuss the individual horizontal and vertical
connections (which are maps) on each of the five levels
of this diagram.

A. Classical and classical statistical levels

Consider a classical dynamical system on a compact
metric space X, described by a dynamical flow map

Φt : X → X with t ∈ R, (1)

as indicated by a horizontal arrow in the left-hand column
of Fig. 2. The classical state space X is embedded into
the space of Borel probability measures P(X) (i.e., the
classical statistical space) by means of the map δ sending
x ∈ X to the Dirac measure δx ∈ P(X) supported at x.
The dynamics acts naturally on the classical statistical
space by the pushforward map on measures,

Φt∗ : P(X)→ P(X) with Φt∗(ν) = ν ◦ Φ−t, (2)

also known as the transfer or Perron-Frobenius operator
[44, 45]. The map δ has the equivariance property Φt∗◦δ =
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FIG. 2. Schematic representation of the QECD framework applied to states and observables of a classical dynamical system
in five successive levels, leading to an n-qubit quantum computational system. These are the classical, classical statistical,
quantum mechanical, matrix mechanical, and quantum computational levels. The horizontal arrows from top to bottom in
the left- and right-hand columns represent the time evolution maps of states and observables, respectively. These are the
flow map Φt on the classical state space X, the transfer operator Φt∗ on the space of probability measures P(X), and the
Koopman operator U t on the algebra of classical observables A ⊆ C(X). They are followed by the unitary evolution map Ψt

and the Heisenberg operator U t on the space of density operators Q(H) and bounded linear operators B(H), respectively, on the
reproducing kernel Hilbert space H. The maps at the matrix mechanical level, Ψt

n and U tn, are finite-rank projections of Ψt and
U t, respectively, acting on operators on 2n-dimensional subspaces Hn of H. The corresponding maps Ψ̂t

n and Û tn, respectively,
at the quantum computational level act on operators on the 2n-dimensional tensor product Hilbert space Bn, which forms the
basis of an n-qubit quantum computer. The vertical arrows correspond to maps that translate states (left-hand column) and
observables (right-hand column) to the next representation level. Under the combined action of these maps, a classical state
x ∈ X is mapped to an n-qubit density matrix ρ̂x,n ∈ Q(Bn), and a classical observable f ∈ A is mapped to a self-adjoint

operator Ŝn ∈ B(Bn). A loop of arrows represents a commutative diagram.

δ ◦ Φt, represented by the top loop in the the left-hand
column in Fig. 2.

Associated with the dynamical system are spaces of
classical observables, which we take here to be spaces
of complex-valued functions on X. A natural example
is the space of continuous functions, denoted as C(X),
which also forms an (abelian) algebra with respect to the
pointwise product of functions. The Koopman operator
[66, 67], U t, acts on observables in C(X) by composition
with the flow map, i.e.,

U t : C(X)→ C(X) with U tf = f ◦ Φt; (3)

see also Fig. 1. The horizontal arrow in the first line of
the right-hand column in Fig. 2 represents the action of
the Koopman operator on a subalgebra A ⊆ C(X) that
will be described in Sec. II B below.

In this context, a simulator of the system can be de-
scribed as a procedure which takes as an input an ob-
servable f ∈ C(X) and an initial condition x ∈ X, and

produces as an output a function f̂ (t)(x) approximating
the evolution f(Φt(x)) of the observable under the dy-
namics. For instance, if Φt is the flow generated by a

system of ODEs ẋ = ~V (x) on X = Rm, and X ⊂ X
is an invariant subset of this flow (e.g., an attractor),

a standard simulation approach is to construct a finite-
difference approximation Φ̂t : X → X of the dynam-
ical flow based on a timestep ∆t (using interpolation
to generate a continuous-time trajectory), and obtain

f̂ (t)(x) = f(Φ̂t(x)) by evaluating the observable of in-
terest f on the approximate trajectory. The scheme then
converges in a limit of ∆t → 0 by standard results in
ODE theory and numerical analysis for observables f of
sufficient regularity.

From an observable-centric standpoint, a simulator
of the system corresponds to a linear operator Û t ap-

proximating the Koopman operator U t, giving f̂ (t)(x) =

Û tf(x). For instance, the ODE-based approximation just

mentioned can be described in this way for Û tf = f ◦ Φ̂t,
but note that not every approximation of U t has to be
of the form of a composition operator by a flow. Indeed,
“lifting” the task of simulation from states to (classical)
observables opens the possibility of using new approxi-
mation techniques, which in some cases can resolve com-
putational bottlenecks, e.g., due to high dimensionality
(m) of the ambient state space X [68]. Invariably, every

practical simulator Û t is restricted to act on a space of
observables of finite dimension, N (e.g., a subspace of
C(X) or L2). In general, the computation cost of acting
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with Û t on elements of this space scales as N2, but can be
reduced to O(N) if Û t is efficiently represented by a di-
agonal matrix. The evaluation cost of observables, which
corresponds to summation of an N -term basis expansion
such as a Fourier series, is typically O(N).

In what follows, rather than employing an approxi-
mation Û t acting on classical observables, our goal is to
simulate the action of U t using a quantum mechanical
system. As we will see, this can be achieved at a loga-
rithmic cost of elementary quantum operations (gates);
specifically, QECD allows simulation of spaces of classical
observables of dimension N = 2n using O(n2) gates.

B. Quantum computational representation

The QECD framework effecting the representation of
the classical system by a quantum mechanical system
employs the following key spaces:

1. The classical state space X.

2. A Banach ∗-algebra A ⊆ C(X) of classical observ-
ables.

3. An infinite-dimensional RKHS H ⊂ A.

4. A finite-dimensional Hilbert space Bn associated
with the quantum computer.

The Hilbert spaces H and Bn have corresponding (non-
abelian) algebras of bounded linear operators, B(H) and
B(Bn), respectively, acting as quantum mechanical ob-
servables. Moreover, states on these algebras are rep-
resented by density operators, i.e., trace-class, positive
operators of unit trace, acting on the respective Hilbert
space. We denote the spaces of density operators on H
and Bn by Q(H) and Q(Bn), respectively. Below, n rep-
resents the number of qubits, thus the dimension of Bn
is 2n.

The spaces of classical states and observables X and
A are mapped into the spaces of quantum states and ob-
servables Q(Bn) and B(Bn), respectively; see Fig. 2. The
following maps on states (left-hand column) and observ-
ables (right-hand column) transform the classical system
into a quantum-mechanical one on Bn:

• We construct a map F̂n : X → Q(Bn) from clas-
sical states (points) in X to quantum states on Bn.
By analogy with the RKHS-valued feature maps in ma-
chine learning [69], F̂n will be referred to as a quantum

feature map. To arrive at F̂n, the classical statistical
space P(X) is first embedded into the quantum mechan-
ical state space Q(H) associated with H through a map
P : P(X)→ Q(H) (see (22) below). The composite map
F := P ◦ δ thus describes a one-to-one quantum feature
map from X into Q(H). Next, the infinite-dimensional
space Q(H) is projected onto a finite-dimensional quan-
tum state space Q(Hn) associated with a 2n-dimensional
subspace Hn ⊂ H by means of a map Π′n : Q(H) →

Q(Hn). We refer to this level of description as matrix
mechanical since all quantum states and observables are
finite-rank operators, represented by 2n × 2n matrices.
To arrive at the quantum computational state space, we
finally apply a unitary Wn : Q(Hn) → Q(Bn), so that
the full quantum feature map from X to Q(Bn) takes

the form F̂n =Wn ◦Π′n ◦ P ◦ δ.

• We construct a linear map T̂n : A → B(Bn) from
classical observables in A to quantum mechanical ob-
servables in B(Bn). This map takes the form T̂n =
Wn ◦Πn ◦T , where Πn : B(H)→ B(Hn) is a projection,

so that T̂n yields a quantum computational representa-
tion of classical observables passing through intermediate
quantum mechanical and matrix mechanical representa-
tions. Here, T : A → B(H) is one-to-one on real-valued
functions in A, and Tf is self-adjoint whenever f is real.

Next, we describe the maps governing the temporal
evolution of states and observables, represented by hori-
zontal arrows in Fig. 2:

• At the quantum mechanical level, states in Q(H)
evolve under the operator Ψt (horizontal arrow in the left-
hand column) induced by a unitary Koopman operator
U t = etV on H. This evolution is generated by a skew-
adjoint generator V : D(V ) → H, defined on a dense
subspaceD(V ) ⊂ H and possessing a countable spectrum
of eigenfrequencies.

• The generator V is mapped to a self-adjoint Hamil-
tonian Hn : Bn → Bn given by Hn = WnΠnV/i. This
Hamiltonian is decomposable as a sum Hn =

∑
j Gj

of mutually-commuting operators Gj ∈ B(Bn), each of
which is of pure tensor product form, Gj =

⊗n
i=1Gij .

The latter property enables quantum parallelism in the
unitary evolution Ψ̂t

n : Q(Bn) → Q(Bn) at the quantum
computational level generated by Hn (see horizontal ar-
row at the bottom of the left-hand column of Fig. 2).

One of our main results is that Ψ̂t can be implemented
via a quantum circuit of size O(n) and no interchannel
communication (see Figs. 6 and 8).

• The horizontal arrow at the quantum mechanical
level represents the action of the Heisenberg evolution
operator U t : B(H) → B(H). Under the assumption
that the RKHS H is invariant under the Koopman op-
erator, U t acts on B(H) by conjugation with U t, i.e.,
U tA = U tAU t∗.

• The corresponding Heisenberg evolution operator at
the quantum computational level, Û tn : B(Bn)→ B(Bn),
acting on quantum mechanical observables on the Hilbert
space Bn, is represented by the horizontal arrow at the
bottom of the right-hand column. This operator is ob-
tained by projection of U t, viz. Û tn =WnΠnU t.

Given a classical initial condition x ∈ X, the quan-
tum computational system constructed by QECD makes

probabilistic predictions f̂
(t)
n (x) of f(Φt(x)) through
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quantum mechanical measurement of the projection-
valued measure (PVM) [4, 70] associated with the quan-

tum register on the quantum state ρ̂
(t)
x,n := Ψ̂t

n(ρ̂x,n),

where ρ̂x,n = F̂n(x). The state ρ̂x,n is prepared by means
of a circuit of size O(n), which is applied to the standard
initial state vector of the quantum computer. Further-
more, the measurement step is effected by performing a

rotation ρ̂
(t)
x,n 7→ ρ̃

(t)
x,n by a QFT, which is implementable

via a circuit of size O(n2). An ensemble of such mea-
surements then approximates the quantum mechanical
expectation value

〈T̂nf〉ρ̂(t)
x,n

:= f (t)
n (x). (4)

The function x 7→ f
(t)
n (x) converges in turn uniformly

to the true classical evolution, i.e., U tf(x), in the large-
qubit limit, n → ∞. We will return to these points in a
more detailed discussion in Secs. V–VIII.

In summary, the key distinguishing aspects of QECD
are as follows:

1. Dynamical consistency. The predictions made by
the quantum quantum computational system via (4) con-
verge to the true classical evolution as the number of
qubits n increases. In particular, since dimBn = 2n, the
convergence is exponentially fast in n.

2. Quantum efficiency. The full circuit implementa-
tion of the scheme, including state preparation, dynami-
cal evolution, and measurement, requires a circuit of size
O(n2) and depth O(n). Since, as just mentioned, the di-
mension of Bn increases exponentially with n, the quan-
tum computational system constructed by QECD can
simulate a 2n-dimensional subspace of classical observ-
ables at an O(n2) computational cost. This results in
an exponential quantum advantage over classical numer-
ical techniques for approximating Koopman operators,
where computational complexity scales linearly with the
dimension of the subspace, i.e., is O(2n). We will make
a comparison with randomized classical algorithms for
quantum circuit simulation [63–65] in Sec. IX.

3. State preparation. The quantum computational
state ρ̂x,n corresponding to classical state x is prepared
by passing the standard initial state vector of the quan-
tum computer through a circuit of size O(n) and depth
O(1). This overcomes the expensive (potentially expo-
nential) state preparation problem affecting many quan-
tum computational algorithms.

4. Measurement process. The process of querying the
system to obtain predictions is a standard projective
measurement of the quantum register. Importantly, no
quantum state tomography or auxiliary classical compu-
tation is needed to retrieve the relevant information.

In the ensuing sections, we lay out the properties of the
classical system under study (Sec. III), and describe the
conversion to the quantum computational system using
QECD (Secs. IV–VIII).

III. CLASSICAL DYNAMICS AND
OBSERVABLES

A. Dynamical system

We focus on the class of continuous, measure-
preserving, ergodic flows with a pure point spectrum
generated by finitely many eigenfrequencies and contin-
uous corresponding eigenfunctions. Every such system
is topologically conjugate (for our purposes, equivalent)
to an ergodic rotation on a d-dimensional torus, so we
will set X = Td without loss of generality. Using the
notation x = (θ1, . . . , θd) to represent a point x ∈ Td,
where θj ∈ [0, 2π) are canonical angle coordinates, the
dynamics is described by the flow map

Φt(x) = (θ1 + α1t, . . . , θ
d + αdt) mod 2π, (5)

where α1, . . . , αd are positive, rationally independent (in-
commensurate) frequency parameters. This dynamical
system is also known as a linear flow on the d-torus, but
note that Td is not a linear space. In dimension d > 1,
the orbits Φt(x) of the dynamics do not close by incom-
mensurability of the αj , each forming a dense subset of
the torus (i.e., a given orbit passes by any point in Td at
an arbitrarily small distance). The case d = 2 is shown
for two choices of αj in Fig. 3, illustrating the difference
between ergodic and non-ergodic dynamics. In dimension
d = 1, the flow map corresponds to a harmonic oscillator
on the circle, T1 = S1, where each orbit is periodic and
samples the whole space.

It is important to note that if the dynamical system
is not presented in the form of a torus rotation, then
standard constructions from ergodic theory may be used
to transform it into the form in (5). These constructions
are based entirely on spectral objects (i.e., eigenfunctions
and eigenfrequencies) associated with the Koopman op-
erator of the system. See Appendix D 4 further details.
The same constructions allow one to treat the case where
X is a periodic or quasiperiodic attractor of a dynam-
ical flow Φt : X → X on a higher-dimensional space
X ⊇ X. By virtue of these facts, the quantum mechani-
cal framework described in this paper can readily handle
simulations of observables of general measure-preserving,
ergodic flows with pure point spectrum. Relevant exam-
ples include ODE models on X = Rm with quasiperi-
odic attractors [71], as well as PDE models where X is
an infinite-dimensional function space. The latter class
includes many pattern-forming physical systems such as
thermal convection flows [72], plasmas [73], and reaction-
diffusion systems [74] in moderate-forcing regimes.

At any dimension d, the flow in (5) is measure-
preserving and ergodic for a probability measure µ given
by the normalized Haar measure. The dynamics of
classical observables f : X → C is governed by the
Koopman operator U t, which is a linear operator, act-
ing by composition with the dynamical flow in accor-
dance with (3) [44, 45, 75]. The Koopman operator
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FIG. 3. Ergodic (a) and non-ergodic (b) linear flows on the
two-dimensional torus T2. In (a) the ratio of the frequency
parameters α1/α2 is irrational, and the trajectory starts to fill
the torus surface. In (b) the ratio of the frequencies is rational,
and the trajectory is closed. The corresponding frequency
parameters α1 and α2 are given to the right of each figure.

acts as an isometry on the Banach space of continu-
ous functions on X, i.e., ‖U tf‖C(X) = ‖f‖C(X), where
‖f‖C(X) = maxx∈X |f(x)| is the uniform norm. In addi-
tion, U t lifts to a unitary operator on the Hilbert space
L2(µ) associated with the invariant measure. That is,
using 〈f, g〉L2(µ) =

∫
X
f∗g dµ to denote the L2(µ) in-

ner product, we have 〈U tf, U tg〉L2(µ) = 〈f, g〉L2(µ) for

all f, g ∈ L2(µ), which implies, in conjunction with the
invertibility of Φt, that

U t∗ = U t
−1
.

Here, U t∗ denotes the operator adjoint, which is also fre-
quently denoted as (U t)†. The collection {U t : L2(µ) →
L2(µ)}t∈R then forms a strongly continuous unitary
group under composition of operators [76]. See again
Fig. 1.

By Stone’s theorem on one-parameter unitary evo-
lution groups [77], the Koopman group on L2(µ) has
a skew-adjoint infinitesimal generator, i.e., an opera-
tor V : D(V ) → L2(µ) defined on a dense subspace
D(V ) ⊂ L2(µ) satisfying

V ∗ = −V and V f = lim
t→0

U tf − f
t

, (6)

for all f ∈ D(V ). The generator gives the Koopman
operator at any time t by exponentiation,

U t = etV . (7)

Modulo multiplication by 1/i to render it self-adjoint, it
plays an analogous role to a quantum mechanical Hamil-
tonian generating the unitary Heisenberg evolution oper-
ators.

As already noted, the torus rotation in (5) is a canon-
ical representative of a class of continuous-time con-
tinuous dynamical systems on topological spaces with
quasiperiodic dynamics generated by finitely many basic
frequencies. This means that every such system can be
transformed into an ergodic torus rotation of a suitable
dimension by a homeomorphism (continuous, invertible
map with continuous inverse). By specializing to this
class of systems (as opposed to a more general measure-
preserving, ergodic flow), we gain two important proper-
ties:

1. The dynamics has no mixing (chaotic) component.
This implies that the spectrum of the Koopman operator
for this system acting on L2(µ), or a suitable RKHS as in
what follows, is of “pure point” type, obviating compli-
cations arising from the presence of continuous spectrum
as would be the case under mixing dynamics.

2. The state space X is a smooth, closed manifold with
the structure of a connected, abelian Lie group. The
abelian group structure, in particular, renders this sys-
tem amenable to analysis with Fourier analytic tools.

Below, we use a d-dimensional vector j = (j1, . . . , jd) ∈
Zd to represent a generic multi-index, and

φj(x) =

d∏
m=1

ϕjm(θm) with ϕl(θ) = eilθ, (8)

to represent the Fourier functions on Td. In Sec. XII,
we will discuss possible avenues for extending the frame-
work presented here to other classes of dynamical sys-
tems, such as mixing dynamical systems with continuous
spectra of the Koopman operators.

B. Algebra of observables

According to the scheme described in Sec. II B, we per-
form quantum conversion of an (abelian) algebra A of
classical observables, i.e., a space of complex-valued func-
tions on X which is closed under the pointwise product
of functions. We construct A such that it is a subalge-
bra of C(X) with additional (here, C∞) regularity and
RKHS structure. This structure is induced by a smooth,
positive-definite kernel function k̃ : X × X → R, which
has the following properties for every point x ∈ X and
function f ∈ A:

1. The kernel section k̃x := k̃(x, ·) lies in A.

2. Pointwise evaluation, x 7→ f(x), is continuous, and
satisfies

f(x) = 〈k̃x, f〉A, (9)

where 〈·, ·〉A is the inner product of A.
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Equation (9) is known as the reproducing property, and
underlies the many useful properties of RKHSs for tasks
such as function approximation and learning. Note, in
particular, that L2 spaces, which are more commonly em-
ployed in Koopman operator theory and numerical tech-
niques (see Sec. III A), do not have a property analogous
to (9). In fact, pointwise evaluation is not even defined
for the L2(µ) Hilbert space on Td. See Refs. [46, 47, 78]
for detailed expositions on RKHS theory.

Our construction of A follows Ref. [50]. We begin by
setting parameters p ∈ (0, 1) and τ > 0, and defining the
map |·|p : Zd → R+,

|j|p := |j1|p + . . .+ |jd|p,

and the functions ψj ∈ C(X),

ψj := e−τ |j|p/2φj with j ∈ Zd.

We then define a kernel k̃ : X ×X → R+ via the series

k̃(x, x′) =
∑
j∈Zd

ψ∗j (x)ψj(x
′), (10)

where the sum over j converges uniformly on X × X
to a smooth function. Intuitively, τ can be thought of
as a locality parameter for the kernel, meaning that as
τ decreases k̃(x, x′) becomes increasingly concentrated
near x = x′, approaching a δ-function as τ → 0.

An important property of the kernel that holds for any
τ > 0 is that it is translation-invariant on the abelian
group X = Td. That is, using additive notation to rep-
resent the binary group operation on X, we have

k̃(x+ y, x′ + y) = k̃(x, x′), ∀x, x′, y ∈ X. (11)

In particular, setting y = Φt(e), where e is the iden-
tity element of X, and noticing that the dynamical flow
from (5) satisfies Φt(x) = x + Φt(e), we deduce the dy-
namical invariance property

k̃(Φt(x),Φt(x′)) = k̃(x, x′), ∀x, x′ ∈ X, ∀t ∈ R.

In Ref. [50] it was shown that for every p > 0 and

τ > 0, the kernel k̃ in (10) is a strictly positive-definite
kernel on X, so it induces an RKHS, A, which is a dense
subspace of C(X). One can verify that the collection
{ψj : j ∈ Zd} forms an orthonormal basis of A, consisting
of scaled Fourier functions, so every observable f ∈ A
admits the expansion

f =
∑
j∈Zd

f̃jψj =
∑
j∈Zd

f̃je
−τ |j|p/2φj ,

where the sum over j converges in A norm. The above
manifests the fact that A contains continuous functions
with Fourier coefficients decaying faster than any poly-
nomial, implying in turn that every element of A is a
smooth function in C∞(X).

It can also be shown that the RKHS induced by k̃ ac-
quires an important special property which is not shared
by generic RKHSs—namely, it becomes an abelian, uni-
tal, Banach ∗-algebra under pointwise multiplication of
functions. We list the defining properties for complete-
ness in Appendix A 1. In Ref. [50], the space A was re-
ferred to as a reproducing kernel Hilbert algebra (RKHA)
as it enjoys the properties of both RKHSs and Banach al-
gebras. In particular, a distinguishing aspect of A is that
it simultaneously has Hilbert space structure (as L2(µ))
and Banach ∗-algebra structure (as C(X)), while also
allowing pointwise evaluation by continuous functionals,
(i.e., the reproducing property in (9)). The RKHAs as-
sociated with the family of kernels in (10) are examples
of harmonic Hilbert spaces on locally compact abelian
groups [48], and are also closely related (by Fourier trans-
forms) to weighted convolution algebras [49] on the dual
group Zd of X = Td.

Table I summarizes the properties of A and other func-
tion spaces on X employed in this work. In what follows,
we shall let Asa denote the set of self-adjoint elements
of A, i.e., the elements f ∈ A satisfying f∗ = f . Since
the ∗ operation of A corresponds to complex conjugation
of functions, it follows that Asa contains the real-valued
functions in A. Note that if f =

∑
j∈Zd f̃jψj is an el-

ement of Asa, then its expansion coefficients in the ψj
basis satisfy f̃∗j = f̃−j .

Next, we state a product formula for the orthonormal
basis functions ψj , which follows directly from their def-
inition, viz.

ψjψl = cjlψj+l with

cjl = exp

(
−τ |j|p + |l|p − |j + l|p

2

)
. (12)

In the above, we interpret the coefficients cjl as “struc-
ture constants” of the RKHA A. Figure 4 displays repre-
sentative matrices formed by the cjl in dimension d = 1
and 2 for p = 1/4 and τ = 1/4.

In the special case d = 1, we will let A(1) be the RKHA
on the circle S1 ≡ T1 constructed as above. We denote
the reproducing kernel of A(1) by k̃(1), and let ψ

(1)
j , j ∈ Z,

be the corresponding orthonormal basis functions with

ψ
(1)
j (θ) = e−|j|

pτ/2ϕj(θ). It then follows that A admits
the tensor product factorization

A =

d⊗
i=1

A(1), (13)

and the reproducing kernel and orthonormal basis func-
tions of A similarly factorize as

k̃(x, x′) =

d∏
i=1

k̃(1)(θi, θi′),

ψj(x) =

d∏
i=1

ψ
(1)
ji

(θi),
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FIG. 4. Structure constant matrices cjl for reproducing kernel
Hilbert algebras on (a) the circle with d = 1 and (b) the
2- torus with d = 2. In both cases, we use the parameter
values p = 1/4 and τ = 1/4 as given in (12). In (a), we
consider indices in the range −2n−1 ≤ j, l ≤ 2n−1 with n = 3.
In (b), the multi-indices j = (j1, j2) and l = (l1, l2) satisfy

−2n/2−1 ≤ ji, li ≤ 2n/2−1 with n = 8. In both (a) and (b), we

map j and l into standard matrix indices 1, 2, . . . , (2n/d + 1)d

(which results in (24 + 1)2 = 289 for (b)) by lexicographical
ordering. The matrix in (b) is thus equal to the Kronecker
product of the matrix in (a) with itself.

where j = (j1, . . . , jd), and θi, θi′ are canonical an-
gle coordinates of the points x = (θ1, . . . , θd), x′ =
(θ1′, . . . , θd′), respectively (see also (8)).

C. Evolution of RKHA observables

From an operator-theoretic perspective, simulating the
dynamical evolution of a continuous classical observable
f ∈ C(X) can be understood as approximating the Koop-

L2(µ) L∞(µ) C(X) C∞(X) A
Completeness X X X × X
Hilbert space structure X × × × X
Pointwise evaluation × × X X X
∗-algebra structure × X X X X
C∞ regularity × × × X X

TABLE I. Properties of representative spaces of classical ob-
servables on the compact abelian group X = Td. The space
A is an RKHA, which, in addition to being an RKHS it has
Banach ∗-algebra structure.

man operator U t on C(X); for, if U t were known one
could use it to compute U tf(x) = f(Φt(x)) for every
observable f ∈ C(X), time t ∈ R, and initial condi-
tion x ∈ X (cf. Sec. II). Yet, despite its theoretical
appeal, consistently approximating the Koopman oper-
ator on C(X) is challenging in practice, as this space
lacks the Hilbert space structure underpinning commonly
employed operations used in numerical techniques, such
as orthogonal projections (see Table I). For a measure-
preserving, ergodic dynamical system such as the torus
rotation in (5), a natural alternative is to consider the
unitary Koopman operator on the L2(µ) Hilbert space as-
sociated with the invariant measure µ. While this choice
addresses the absence of orthogonal projections on C(X),
L2(µ) lacks the notion of pointwise evaluation of func-
tions, so one must correspondingly abandon the notion
of pointwise forecasting in this space.

In light of the above considerations, RKHSs emerge
as attractive candidates of spaces of classical observables
in which to perform simulation, as they allow pointwise
evaluation through the reproducing property in (9) while
having a Hilbert space structure. Unfortunately, an ob-
struction to using RKHSs in dynamical systems forecast-
ing is that a general RKHSH on X need not be preserved
under the dynamics, even if the reproducing kernel k is
continuous. That is, in general, if f : X → C lies in
an RKHS, the composition f ◦ Φt need not lie in the
same space, and thus the Koopman operator is not well-
defined as an operator mapping the RKHS into itself [27].
Intuitively, this is because membership of a function f in
an RKHS generally imposes stringent requirements in its
regularity, as we discussed for example in Sec. IV A with
the rapid decay of Fourier coefficients, which need not be
preserved by the dynamical flow.

An exception to this obstruction occurs when the re-
producing kernel is translation-invariant, which holds
true for the class of kernels introduced in Sec. III B
(see (11)). In fact, it can be shown [55] that the RKHA

A associated with the kernel k̃ in (10),is invariant under
the Koopman operator U t for all t ∈ R, and U t : A→ A
is unitary and strongly continuous. Analogously to the
L2(µ) case, the evolution group {U t : A → A}t∈R is
uniquely characterized through its skew-adjoint gener-
ator V : D(V ) → A, defined on a dense subspace
D(V ) ⊂ A, and acting on observables as displayed in (6).

For the torus rotation in (5), V is diagonalizable in the
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{ψj} basis of A. That is, for j = (j1, . . . , jd) ∈ Zd, we
have

V ψj = iωjψj ,

where ωj is a real eigenfrequency given by

ωj = j1α1 + . . .+ jdαd. (14)

Moreover, V admits a decomposition into mutually com-
muting, skew-adjoint generators V1, . . . , Vd satisfying

Vlψj = ijlαlψj with l = 1, . . . , d. (15)

In particular, since {ψj} is an orthonormal basis, (15)
completely characterizes Vl, and we have

V = V1 + . . .+ Vd,

[Vj , Vl] = 0, [Vj , V ] = 0.
(16)

It should be noted that the Koopman generator on L2(µ)
admits a similar decomposition to (16); see e.g., Ref. [25]
for further details. Analogously to the L2(µ) case, the
Koopman operator on A can be recovered at any t ∈ R
from the generator by exponentiation as given in (7).

IV. EMBEDDING INTO AN
INFINITE-DIMENSIONAL QUANTUM SYSTEM

The initial stages of the QECD procedure outlined in
Sec. II involve embedding classical states and observables
into states and observables of quantum system associated
with an infinite-dimensional RKHS H, arriving at the
quantum mechanical level depicted in Fig. 2. In this sec-
tion, we describe the construction of this quantum system
and associated embeddings of classical states and observ-
ables. First, in Sec. IV A we build H as a subspace of the
RKHA A from Sec. III B. Then, in Secs. IV B and IV C
we establish representation maps Q : X → Q(H) and
T : A→ B(H) from classical states and observables into
quantum mechanical states and observables, respectively,
on H. Note that the quantum mechanical embedding of
states Q passes through an intermediate classical statis-
tical level associated with probability measures on the
classical state space (second row in the left-hand col-
umn of Fig. 2). In Secs. IV D and IV E, we establish the
classical-quantum consistency and associated dynamical
properties of our embeddings.

A. Reproducing kernel Hilbert space

We chooseH as an infinite-dimensional subspace of the
RKHA A containing zero-mean functions. For that, we
introduce the (infinite) index set

J = {(j1, . . . , jd) ∈ Zd : ji 6= 0}, (17)

and define H as the corresponding infinite-dimensional
closed subspace

H = span{ψj : j ∈ J}.

The space H is then an RKHS with the reproducing ker-
nel

k(x, x′) =
∑
j∈J

ψ∗j (x)ψj(x
′). (18)

In particular, for every f ∈ H, which is necessarily an
element of A, the reproducing property in (9) reads

f(x) = 〈kx, f〉H = 〈k̃x, f〉A,

where kx := k(x, ·) is the section of the kernel k at x ∈ X,
and 〈·, ·〉H denotes the inner product of H.

By excluding zero indices from the index set J , every
element f of H has zero mean,

∫
X
f dµ = 0, as noted

above. The reason for adopting this particular defini-
tion for H, instead of, e.g., working with the entire space
A, is that later on it will facilitate construction of 2n-
dimensional subspaces Hn ⊂ H suitable for quantum
computation (see Sec. V). In what follows, Π : A → A
will denote the orthogonal projection with ran Π = H.
Moreover, we set

κ = k(x, x) =
∑
j∈J

e−τ |j|p ,

κ̃ = k̃(x, x) =
∑
j∈Zd

e−τ |j|p ,

where these definitions are independent of the point x ∈
X by (11). We also note that, by construction, H is
a Koopman-invariant subspace of A, so we may define
unitary Koopman operators U t : H → H by restriction
of U t : A→ A from Sec. III C.

B. Representation of states with a quantum
feature map

For our purposes, a key property that the RKHS struc-
ture of H endows is the feature map, which is the contin-
uous map F : X → H mapping classical state x ∈ X to
the RKHS function

F (x) = kx. (19)

It can be shown that for the choice of kernel in (18), F is
an injective map, and the functions {F (x) ∈ H : x ∈ X}
are linearly independent. It is then natural to think of
the normalized feature vectors

ξx :=
kx
‖kx‖H

=
kx
κ

(20)

as “wavefunctions” corresponding to classical states x ∈
X.
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We can generalize this idea by associating every such
wavefunction ξx with the pure quantum state ρx =
〈ξx, ·〉Hξx. The mapping F : X → Q(H) with

F(x) = ρx (21)

then describes an embedding of the classical state space
X into quantum mechanical states in Q(H), which we
refer to as a quantum feature map. Note that there is
no loss of information in representing x ∈ X by ρx ∈
Q(H). Moreover, F can be understood as a composition
F = P ◦ δ, where δ : X → P(X) maps classical state
x ∈ X to the Dirac probability measure δx ∈ P(X), and
P : P(X) → Q(H) is a map from classical probability
measures on X to quantum states on H, such that

P (p) =

∫
X

ρx dp(x). (22)

The map P describes an embedding of the state space
X into the space of probability measures P(X), i.e., the
classical statistical level in the left-hand column of Fig. 2.
See Ref. [50] for further details on the properties of this
map.

By virtue of it being an RKHS, we can also define
classical and quantum feature maps for the RKHA A.
Specifically, we set F̃ : X → A and F̃ : X → Q(A),
where

F̃ (x) = 〈k̃x, ·〉A, F̃(x) = 〈ξ̃x, ·〉Aξ̃x, (23)

and ξ̃x = k̃x/‖k̃x‖A. The feature maps F̃ and F̃ have
analogous properties to F and F , respectively, which we
do not discuss here in the interest of brevity.

C. Representation of observables

The quantum mechanical representation of classical
observables in A is considerably facilitated by the Ba-
nach algebra structure of that space. In Sec. IV C 1,
we leverage that structure to build representation maps
from functions in A to bounded linear operators in B(A).
Then, in Sec. IV C 2, we consider associated represen-
tations mapping into bounded linear operators on the
RKHS H (which is a strict subspace of A), arriving at
the map T : A → B(H) depicted in the right-hand col-
umn of Fig. 2. Additional details on the construction are
provided in Appendix A.

1. Representation on the RKHA A

We begin by noting that the joint continuity of the
multiplication operation of Banach algebras (see (A1))
implies that for every f ∈ A the multiplication opera-
tor Af : g 7→ fg is well-defined as a bounded opera-
tor in B(A). This leads to the regular representation
π : A → B(A), which is the algebra homomorphism of

A into B(A), mapping classical observables in A to their
corresponding multiplication operator,

πf := Af . (24)

This mapping is a homomorphism since

π(fg) = Afg = AfAg, ∀f, g ∈ A,

and it is injective (i.e., faithful as a representation) since
(π(f − f ′))1X = f − f ′ 6= 0 whenever f 6= f ′. However,
π is not a ∗-representation; i.e., π(f∗) is not necessarily
equal to A∗f . In particular, Af need not be a self-adjoint

operator in B(A) if f is a self-adjoint element in Asa. To
construct a map from A into the self-adjoint operators in
B(A), we define T̃ : A→ B(A) with

T̃ f =
πf + (πf)∗

2
. (25)

By construction, T̃ f is self-adjoint for all f ∈ A, and it
can also be shown (see Appendix A 2) that T̃ is injec-

tive on Asa. That is, T̃ provides a one-to-one mapping
between real-valued functions in A and self-adjoint oper-
ators in B(A).

It follows from the product formula in (12) that if

f ∈ A has the expansion f =
∑
j∈Zd f̃jψj , where f̃j =

〈ψj , f〉A, then the corresponding multiplication operator
Af = πf has the matrix elements

(Af )ij := 〈ψi, Afψj〉A = 〈ψi, fψj〉A,

and thus

(Af )ij = cj,i−j f̃i−j . (26)

Correspondingly, the matrix elements of the self-adjoint
operator Sf := T̃ f are given by

(Sf )ij := 〈ψi, Sfψj〉A =
(Af )ij + (Af )∗ji

2
.

If, in addition, f lies in Asa, then we have f̃∗j−i = f̃i−j
and the formula above reduces to

(Sf )ij =
cj,i−j + ci,j−i

2
f̃i−j . (27)

Here, of particular interest are the multiplication and
self-adjoint operators representing the basis elements of
A, i.e., Aψl and Sψl , respectively, for l ∈ Zd. Since

f̃i−j = δl,i−j for f = ψl, it follows from (26) that after
a suitable lexicographical ordering of multi-indices (as in
Fig. 4), (Af )ij forms a banded matrix with nonzero ele-
ments only in the diagonal corresponding to multi-index
k. Figure 5(a) illustrates the nonzero matrix elements
of Aψ1

in the one-dimensional case, d = 1. Similarly,
the self-adjoint operator Sψ1

is a bi-diagonal matrix with
nonzero entries in the diagonals corresponding to ±1, as
shown in Fig. 5(b).
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FIG. 5. Matrix elements (Aψ1)ij (a) and (Sψ1)ij (b) of the
multiplication operator Aψ1 (Eq. (26)) and the self-adjoint
operator Sψ1 (Eq. (27)) representing the basis function ψ1 for
dimension d = 1. As in Fig. 4(a), we consider the reproducing
kernel Hilbert algebra A on the circle from with p = 1/4 and
τ = 1/4, and map the indices i and j into standard matrix
indices 1, 2, . . . , 2n + 1 with n = 3. The matrix in (a) has
nonzero elements only in the first lower diagonal, i − j =
1. The matrix in (b) is a symmetric bidiagonal matrix with
elements in the first upper and lower diagonals, i− j = ±1.

We deduce from these observations that if f is a ban-
dlimited observable (i.e., expressible as a finite linear
combination of Fourier functions φj), Af is represented
by a banded matrix, whose l-th diagonal comprises of the
structure constants clj multiplied by f̃l. The matrix rep-
resenting Sf is also banded whenever f is bandlimited.
If, in addition, f is real, the l-th diagonal of (Sf )ij is

given by the multiple of (clj + cli)/2 with f̃l.

2. Representation on the RKHS H

We now take up the task of defining analogs of the
maps π : A→ B(A) and T : A→ B(A) from Sec. IV C 2,
mapping elements of A to bounded operators on the
RKHS H ⊂ A (i.e., the Hilbert space underlying the
infinite-dimensional system at the quantum mechanical
level). To that end, let Π be the projection map from
B(A) to B(H), defined as

ΠA := ΠAΠ, (28)

where Π is the orthogonal projection from A to H in-
troduced in Sec. IV A. One can explicitly verify that the
map Π ◦ π : A → B(H) is injective, so there is no loss
of information in representing f ∈ A by Π(πf) ∈ B(H)
as opposed to πf ∈ B(A). For our purposes, however,
in addition to injectivity we require that our representa-
tion maps provide value-level consistency between classi-
cal and quantum measurements (in a sense made precise
in Sec. IV D below). For that, it becomes necessary to
modify the map Π ◦π, as well as its self-adjoint counter-
part Π ◦ T̃ , to take into account the contractive effect of
the projection Π.

In Appendix A 3, we construct a self-adjoint, invertible
operator L : A→ A, which is diagonal in the {ψj} basis,
and whose role is to counter-balance that contraction.
Specifically, we define $ : A→ B(H) and T : A→ B(H)
with

$ = Π ◦ π ◦ L−1, T = Π ◦ T̃ ◦ L−1. (29)

Here, L−1 inflates the expansion coefficients of functions
in the {ψj} basis of A, absorbing the contractive action

of Π. Analogously to π and T̃ , respectively, $ is one-
to-one, and T is one-to-one on the real functions in Asa.
Moreover, every operator in the range of T is self-adjoint.
The map T provides the representation of classical ob-
servables in A by self-adjoint operators in B(H) at the
quantum mechanical level, depicted by vertical arrows in
the right-hand column of Fig. 2.

D. Classical–quantum consistency

We now come to a key property of the regular repre-
sentation π and the associated map T̃ , which is a conse-
quence of the reproducing property and Banach algebra
structure of A. Namely, π and T̃ provide a consistent cor-
respondence between evaluation of classical observables
and quantum mechanical expectation values. To see this,
for any quantum state % ∈ Q(A) and quantum mechani-
cal observable A ∈ B(A), let

〈A〉% := tr(%A) (30)

be the standard quantum mechanical expectation func-
tional. Then, it follows from the reproducing property
in (9), the definition of the quantum feature map F̃
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in (23), and the definition of the regular representation
in (24) that for any observable f ∈ A and classical state
x ∈ X,

f(x) = 〈πf〉%x = 〈T̃ f〉%x , (31)

where %x = F̃(x). The last equality in (31) requires that
f is a self-adjoint element in Asa; see Ref. [50] for fur-
ther details. Equation (31) shows, in particular, that
by passing to the quantum mechanical representation we
maintain pointwise consistency with the classical mea-
surement processes for special sets of quantum mechan-
ical observables and states. These are the self-adjoint
operators Sf and the pure states %x.

To express these relationships in terms of matrix ele-
ments, note first that the quantum state %x satisfies

(%x)ij :=〈ψi, %xψj〉A

=
〈ψi, k̃x〉A〈k̃x, ψj〉A

κ̃

=
ψ∗i (x)ψj(x)

κ̃
. (32)

Combining this result with (26), we obtain

f(x) = tr(%x(πf))

=
∑
i,j∈Zd

(%x)ij(Af )ji

=
∑
i,j∈Zd

ψ∗i (x)ψj(x)ci,j−if̃j−i
κ̃

,

and this relationship holds irrespective of whether f is
self-adjoint or not. If f is a self-adjoint element in Asa,
then we can use the matrix elements of the self-adjoint
operator Sf from (27), in conjunction with the fact that
%x is also self-adjoint, to arrive at the expression

f(x) = tr(%x(T̃ f))

=
∑
i,j∈Zd

(%x)ij(Sf )ji

=
∑
i,j∈Zd

ψ∗i (x)ψj(x)(ci,j−i + cj,i−j)f̃j−i
2κ̃

.

Even though H is a strict subspace of the RKHA A,
it is still possible to consistently recover all predictions
made for classical observables, as we describe in Ap-
pendix A 3. There, we show that the modified versions
$ : A→ B(H) and T : A→ B(H) of π : A→ B(A) and

T̃ : A→ B(A), respectively (defined in (29)), satisfy the
analogous consistency relation to (31), i.e.,

f(x) = 〈$f〉ρx = 〈Tf〉ρx , (33)

where ρx = F(x) is the quantum state on H obtained
from the feature map in (21). As with (31), the first
equality in (33) holds for any f ∈ A and the second holds
for real-valued elements f ∈ Asa.

E. Dynamical evolution

In this section, we describe the dynamics of quantum
states and observables associated with the RKHA A and
RKHS H ⊂ A, and establish consistency relations be-
tween the classical and quantum evolution.

First, recall that the Koopman operators U t act on A
as a unitary evolution group. As a result, there is an in-
duced action U t : B(A)→ B(A) on quantum mechanical
observables in B(A), given by

U tA = U tAU t∗. (34)

This action has the important property of being compat-
ible with the action of the Koopman operator on func-
tions in A under the regular representation. Specifically,
for every f ∈ A and t ∈ R, we have

U t(πf) = π(U tf). (35)

The unitary evolution in (34) has a corresponding dual
action Ψt : Q(A)→ Q(A) on quantum states, given by

Ψt(%) = U t∗%U t ≡ U−t%. (36)

One can verify that this action is compatible with the
classical dynamical flow under the feature map F̃ : X →
Q(A), viz.

Ψt(F̃(x)) = F̃(Φt(x)). (37)

Using (31), (34), and (36), we arrive at the consistency
relationships

U tf(x) = 〈U t(πf)〉%x = 〈πf〉Ψt(%x), (38)

with %x = F̃(x). This holds for every classical observable
f ∈ A, initial condition x ∈ X, and evolution time t ∈ R.
If, in addition, f is a self-adjoint element in Asa, we may
compute the evolution U tf using the self-adjoint operator
T̃ f , which is accessible via physical measurements. That
is, for f ∈ Asa we have

U tf(x) = 〈U t(T̃ f)〉%x = 〈T̃f 〉Ψt(%x). (39)

In summary, we have constructed a dynamically con-
sistent embedding of the torus rotation from (5) into a
quantum mechanical system on the RKHA A. For com-
pleteness, we note that the matrix elements of the state
Ψt(ρx) are given by

〈ψi,Ψt(%x)ψj〉A = 〈U tψi, U t%xψj〉A
= ei(ωj−ωi)t(%x)ij .

Using this formula together with the expressions for the
matrix elements of T̃ f in (27), respectively, we arrive at
the expression

U tf =
∑
i,j∈Zd

ei(ωj−ωi)t
ψ∗i (x)ψj(x)(ci,j−i + cj,i−j)f̃j−i

2κ̃
,
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which holds for all self-adjoint elements f =∑
j∈Zd f̃jψj ∈ Asa.
Our discussion was thus far based on the RKHA A, as

opposed to the RKHS H. In Appendix A 4, we establish
that the dynamics of classical states and observables can
be represented consistently through their representatives
on H using the maps $ and T in (29). Specifically, we
show that for any f ∈ A,

U tf(x) = 〈U t($f)〉ρx = 〈$f〉Ψt(ρx),

while for any real-valued f ∈ Asa,

U tf(x) = 〈U t(Tf)〉ρx = 〈Tf〉Ψt(ρx),

where ρx = F(x). In the above, U t : B(H)→ B(H) and
Ψt : Q(H) → Q(H) are evolution operators on quantum
observables and states on H, respectively, defined anal-
ogously to their counterparts on A using the Koopman
operator U t : H → H (see Sec. IV A).

V. PROJECTION TO FINITE DIMENSIONS

While being dynamically consistent with the underly-
ing classical evolution, the quantum system constructed
in Sec. IV is infinite-dimensional, and thus not directly
accessible to simulation by a quantum computer. We
now describe an approach for projecting the infinite-
dimensional quantum system to a finite-dimensional sys-
tem. In Fig. 2 we refer to this level of representation
as matrix mechanical, since all linear operators involved
have finite rank and are representable by matrices. Our
objectives are to construct this projection such that (a)
it is refinable, i.e., the original quantum system is recov-
ered in a limit of infinite dimension (number of qubits);
and (b) it facilitates the eventual passage to the quantum
computational level (to be described in Sec. VI).

We begin by fixing a positive integer parameter n (the
number of qubits), chosen such that it is a multiple of the
dimension d of the classical state space X, and defining
the index sets

Jn,d = {−2n/d−1, . . . ,−1, 1, . . . , 2n/d−1},
Jn = {(j1, . . . , jd) ∈ Zd : ji ∈ Jn,d}.

(40)

Note that Jn is a subset of J from (17) with N ≡ 2n

elements. Next, consider the N -dimensional subspace of
H given by

Hn = span{ψj : j ∈ Jn},
and let Πn : H → H be the orthogonal projection map-
ping into Hn. When appropriate, we will interpret Πn as
a map into its range, i.e., Πn : H → Hn, without change
of notation. The subspace Hn has the structure of an
RKHS of dimension 2n, associated with the spectrally
truncated reproducing kernel

kn(x, x′) =
∑
j∈Jn

ψ∗j (x)ψj(x
′). (41)

Moreover, Hd,H2d,H3d, . . . is a nested family of sub-
spaces, increasing towards H.

By virtue of being spanned by eigenfunctions of the
generator V , Hn is invariant under the Koopman op-
erator, i.e., U tHn = Hn for all t ∈ R. Moreover, the
projection Πn commutes with both V and U t,

[V,Πn] = 0, [U t,Πn] = 0.

These invariance properties allow us to define a projected
generator

Vn ≡ ΠnVΠn, (42)

and an associated Koopman operator

U tn := etVn ≡ ΠnU
tΠn,

such that the following diagram commutes for all t ∈ R:

H H

Hn Hn

Ut

Πn Πn

Utn

. (43)

Similarly, we define a finite-rank Heisenberg operator

U tn := U tΠn,

where Πn : B(H) → B(H) is the projection on B(H)
defined as ΠnA = ΠnAΠn. This leads to an analogous
commutative diagram to that in (43) viz.,

B(H) B(H)

B(Hn) B(Hn)

Ut

Πn Πn

Utn

. (44)

Next, we introduce a spectrally truncated feature map
Fn : X → Hn, defined analogously to (19) as

Fn(x) = kx,n := kn(x, ·),

as well as a corresponding quantum feature map Fn :
X → Q(Hn), such that Fn(x) = ρx,n is given by

ρx,n = 〈ξx,n, ·〉Hnξx,n with

ξx,n =
kx,n√
κn
, κn = kn(x, x) =

∑
j∈Jn

e−τ |j|p . (45)

In the sequel, we will use the states ρx,n as approxima-
tions of the states ρx = F(x). These approximations
have the following properties.

1. The dynamical evolution of ρx,n is governed by a
finite-rank operator Ψt

n : Q(Hn)→ Q(Hn), where

Ψt
n(ρx,n) = U t∗n ρx,nU

t
n.
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2. As n → ∞ (i.e., in the infinite qubit limit),
Ψt
n(ρx,n) converges to Ψt(ρx), in the sense that for

any quantum mechanical observable A ∈ B(H),

〈An〉ρx,n
n→∞−−−−→ 〈A〉ρx , (46)

where An = ΠnA, and the convergence is uniform
with respect to x ∈ X.

See Appendix A 5 for further details.
In light of the above, we employ the following approxi-

mations to the quantum mechanical representation of the
evolution of classical observables from Sec. IV E (see also
Appendix A 4),

f̌ (t)
n (x) := 〈Πn($f)〉Ψtn(ρx,n),

f (t)
n (x) := 〈Πn(Tf)〉Ψtn(ρx,n).

(47)

By (46), for every function f ∈ A f̌
(t)
n (x) converges as

n → ∞ to U tf(x), uniformly with respect to the ini-
tial condition x ∈ X and evolution time t ∈ R, whereas

f
(t)
n (x) converges to U tf(x) if f is self-adjoint (real-

valued).

VI. REPRESENTATION ON A QUANTUM
COMPUTER

We are now ready to perform the final step in the
QECD pipeline, namely passage from the matrix me-
chanical level to the quantum computational level asso-
ciated with the n-qubit Hilbert space Bn = B⊗n (see
bottom row in Fig. 2). We will do so by applying a
unitary map, so that the systems in the matrix mechan-
ical and quantum computational levels are isomorphic
as quantum systems. However, the key aspects that
the quantum computational system provides are that (a)
it can be efficiently implemented as a quantum circuit
with a quadratic number of gates in n; and (b) infor-
mation about the evolution of classical observables can
be extracted by measurement of the standard projection-
valued measure associated with the computational basis.
We describe the construction of the unitary map from
the matrix mechanical to quantum computational levels
and the properties of the resulting quantum system in
Secs. VI A and VI B, respectively.

A. Quantum computational system on the tensor
product Hilbert space

Being expressible in terms of finite-rank quantum
states, observables, and evolution operators, the approx-
imation framework described in Sec. V can be encoded
in a quantum computing system operating on a finite-
dimensional Hilbert space. In particular, letting B ' C2

denote the 2-dimensional Hilbert space associated with
a single qubit, it follows immediately from the fact that

Hn is a 2n-dimensional Hilbert space that there exists a
unitary map Wn : Hn → Bn, where

Bn := B⊗n ' C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n

(48)

is the tensor product Hilbert space associated with n
qubits. Under such a unitary, the projected generator
Vn from (42) maps to a skew-adjoint operator V̂n :=
WnVnW

∗
n , inducing a self-adjoint Hamiltonian

Hn :=
1

i
V̂n, (49)

and a corresponding unitary evolution operator Û tn :=
eiHnt on Bn. This leads to the commutative diagram

Hn Hn

Bn Bn

Utn

Wn Wn

Ûtn

,

expressing the fact that elements of Hn and Bn evolve
consistently under U tn and Û tn, respectively. Note that
we work here with the self-adjoint Hamiltonian Hn as
opposed to the skew-adjoint generator V̂n for consistency
with the usual convention in quantum mechanics.

In addition, Wn induces a unitary Wn : B(Hn) →
B(Bn), with WnA = WnAW

∗
n , mapping quantum me-

chanical observables on Hn to quantum mechanical ob-
servables on Bn. The restriction of Wn on Q(Hn) ⊂
B(Hn) then induces a continuous, invertible map Wn :
Q(Hn) → Q(Bn) from quantum states on Hn to quan-
tum states on Bn (which we continue to denote using the
symbol Wn). Moreover, we have the evolution maps

Ψ̂t
n : Q(Bn)→ Q(Bn) : ρ̂n 7→ Ψ̂t

n(ρ̂n) = Û t∗n ρ̂nÛ
t
n,

Û tn : B(Bn)→ B(Bn) : Ân 7→ Û tnÂn = Û tnÂnÛ
t∗
n ,

(50)

such that the maps for states and observables between
and within the matrix mechanical and quantum compu-
tational level in Fig. 2 constitute commutative diagrams.
In particular, following the vertical arrows in the left- and
right-hand columns from the classical level to the quan-
tum computational level gives the maps F̂n : X → Q(Bn)

and T̂n : A→ B(Bn), where

F̂n =Wn ◦Π′n ◦ P ◦ δ
T̂n =Wn ◦Πn ◦ T.

(51)

The maps F̂n and T̂n provide the quantum computa-
tional representation of classical states and observables,
respectively, which are two of the main ingredients of the
QECD (see Sec. II). By unitary equivalence, they have
analogous convergence properties in the n → ∞ limit
as those of their matrix mechanical counterparts Fn and
Tn described in Sec. V.We also note that the evolution
operator Û tn at the quantum computational level can be
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equivalently obtained as a projection of the Koopman
operator U t on A, i.e.,

Û tn = (Wn ◦Πn ◦Π)U t. (52)

B. Factorizing the Hamiltonian in tensor product
form

In order for the representation of the dynamics on Bn
to exhibit robust quantum parallelism, i.e., implemen-
tation on a quantum circuit of small depth, it is highly
beneficial that the Hamiltonian Hn can be decomposed
as a sum of commuting operators in pure tensor product
form, i.e.,

Hn =
∑
j∈Jn

Gj =
∑
j∈Jn

G1j ⊗ · · · ⊗Gnj , (53)

where [Gi, Gj ] = 0 and Glj : B → B are mutually-
commuting, single-qubit Hamiltonians. With such a de-
composition, the unitary operator Û tn = eiHnt generated
by Hn factorizes as

Û tn = exp

i ∑
j∈Jn

Gjt

 =
∏
j∈Jn

exp

(
n⊗
l=1

iGljt

)
. (54)

Thus, Û tn can be split into a composition of up to 2n uni-
taries exp(iGjt) (depending on the number of nonzero
terms Gj in the right-hand side of (53)), which can be
applied in any order by commutativity of the Gj . More-
over, each unitary exp(iGjt) has a generator of pure ten-
sor product form, and thus can be represented as a quan-
tum circuit with at most n quantum gates for rotations
of the individual qubits.

In fact, as we will now show, using a Walsh operator
representation [56], for a dynamical system with pure
point spectrum the decomposition in (53) only has n
nonzero terms Gj , and for each nonzero term, the ten-
sor product factorization Gj =

⊗n
l=1Glj has all but one

factors Glj equal to the identity. As a result,

exp

(
n⊗
l=1

iGljt

)
=

n⊗
l=1

exp(iGljt),

and the decomposition in (54) reduces to a tensor product
of n unitaries,

Û tn =

n⊗
l=1

Ξtl with Ξtl = exp

i ∑
j∈Jn

Gljt

 . (55)

The key point about (55) is that Û tn can be implemented
via a quantum circuit of n qubit channels with no cross-
channel communication. We will return to this point in
Sec. VII.

1. Walsh-Fourier transform and Walsh operators

Classical states and observables of the dynamical sys-
tem have been transformed into pure state density op-
erators and self-adjoint operators on the 2n-dimensional
Hilbert space Bn which is a tensor product of the single
qubit quantum state spaces as given in (48). We will
employ the commonly used Dirac bra-ket notation [5] to
denote vectors in Bn. We let {|0〉, |1〉} be the standard or-
thonormal basis of the single-qubit Hilbert space B ' C2

comprising of eigenvectors of the Pauli Z operator,

Z|0〉 = |0〉, Z|1〉 = −|1〉,
with

Z =

(
1 0
0 −1

)
, |0〉 =

(
1
0

)
, and |1〉 =

(
0
1

)
.

Thus, each vector |ψ〉 ∈ B can be expanded in this basis
as

|ψ〉 = α|0〉+ β|1〉 with α, β ∈ C. (56)

In order to arrive at the decomposition in (55), we em-
ploy the approach developed in Ref. [56], which is based
on discrete Walsh-Fourier transforms, and the associated
Walsh operators, as follows. First, for any non-negative
integer j ∈ N0, we let β(j) = (β1(j), . . . , βl(j)) ∈ {0, 1}l
be its binary expansion; that is,

j =

l∑
i=1

βi(j)2
i−1 = β1(j)20 + β2(j)21 + . . .+ βl(j)2

l,

where l ∈ N is the smallest positive integer such that
j ≤ 2l − 1. For example, we have β(0) = 0, β(1) = 1,
β(2) = (0, 1), β(3) = (1, 1), and β(4) = (0, 0, 1). More-
over, for every real number u ∈ [0, 1) we let γ(u) =
(γ1(u), γ2(u), . . .) ∈ {0, 1}N be its dyadic expansion, i.e.,

u =

∞∑
i=1

γi(u)2−i =
γ1(u)

2
+
γ2(u)

4
+
γ3(u)

8
+ . . . .

Note that the most significant digit in β(j) is the last
one, βl(j), whereas the most significant digit in γ(u) is
the first one, γ1(u).

With this notation, for every j ∈ N0 we define the
Walsh function wj : [0, 1)→ {0, 1} as

wj(u) = (−1)
∑l
i=1 βi(j)γi(u).

Furthermore, for any n ∈ N0 and j ∈ {0, . . . , 2n − 1},
we define the discrete Walsh function of order n, w

(n)
j :

{0, . . . , 2n − 1} → {0, 1} as

w
(n)
j (m) = wj(m/2

n), with m = 0, . . . , 2n − 1.

It then follows that

w
(n)
j (m) = (−1)

∑l
i=1 βi(j)γi(m/2

n)

= (−1)
∑n
i=1 β

(n)
i (j)β̃

(n)
i (m).
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Here, β(n)(j) = (β1, . . . , βl, 0, . . . , 0) ∈ {0, 1}n is the n-
digit binary expansion of j obtained by padding β(j) to
the right with zeros, as needed. Moreover,

β̃(n)(j) = (β̃
(n)
1 (j), . . . , β̃(n)

n (j))

= (γ1(j/2m), . . . , γn(j/2m))

is the n-digit reversed binary representation of m. Thus,

the exponent in the expression for w
(n)
j (m) is given

by the inner product between the n-digit binary ex-
pansion of j with the bit-reversed binary expansion of
m. For example, with n = 2 and m = 0, 1, 2, 3, we

have w
(2)
0 (m) = {1, 1, 1, 1}, w(2)

1 (m) = {1, 1,−1,−1},
w

(2)
2 (m) = {1,−1, 1,−1}, and w

(2)
3 (m) = {1,−1,−1, 1}.

Among the Walsh functions wj , those with j =
1, 2, 4, . . . , 2l for l ∈ N0 are called Rademacher functions,
Rl, and satisfy

w2l(u) ≡ Rl(u) = (−1)γl(u). (57)

That is, Rl(u) depends only on the (l + 1)-th bit in the
dyadic expansion of u. Using (57), it follows that for any
integer m ∈ {0, . . . , 2n − 1}, we have

m

2n
=

n−1∑
i=0

1−Ri+1(m/2n)

2i+2
,

meaning that we can express the i-th bit in the dyadic
decomposition of m/2n in terms of the (i − 1)-th
Rademacher function,

γi(m/2
n) =

1−Ri−1(m/2n)

2
. (58)

It is known that the set {wj}j∈N0 forms an orthonor-
mal basis of the Hilbert space L2([0, 1]) with respect to
Lebesgue measure. In the discrete case, we let L2

n([0, 1])
be the N -dimensional Hilbert space, N ≡ 2n, with re-
spect to the normalized counting measure supported on
{0, 1/N, 2/N, . . . , (N − 1)/N}. Then, the set of discrete

Walsh functions of order n, {w(n)
j }N−1

j=0 , is an orthonor-

mal basis of L2
n([0, 1]). One obtains

f =

N−1∑
j=0

f̂jw
(n)
j ∈ L2

n([0, 1]) with

f̂j =
1

N

N−1∑
m=0

ŵ
(n)
j (m)f(m/N).

The map Fn : L2
n([0, 1]) → CN : f 7→ (f̂0, . . . , f̂N−1) is

called the discrete Walsh-Fourier transform of the func-
tion f ∈ L2

n([0, 1]).
Next, consider the tensor product basis {|b〉 = |b1〉 ⊗

· · · ⊗ |bn〉} of Bn with |bi〉 ∈ {|0〉, |1〉}, where the multi-
index b = (b1, . . . , bn) ∈ {0, 1}n runs over all binary
strings of length n. Whenever convenient, we will em-
ploy the notation |b〉 ≡ |b〉, where b = β̃(n)(b). That is,

b is an integer in the range 0, . . . , 2n − 1, whose reversed
binary representation is equal to b,

b =

n∑
i=1

β̃
(n)
i (b)2n−i =

n∑
i=1

bi2
n−i.

For example, in a system with n = 3 qubits |b〉 = |6〉
corresponds to |b〉 = |110〉, where the least significant bit

is the one to the right. Note that {|b〉}2n−1
b=0 is also the

standard quantum computational basis for an n-qubit
problem in the Qiskit framework [61, 62] that we will
employ in Sec. X [79].

For every b ∈ {0, 1}n, we define the associated Walsh
operator Zb : Bn → Bn as

Zb = Zb1 ⊗ Zb2 ⊗ · · · ⊗ Zbn .

By construction, the Zb form a collection of mutually-
commuting, self-adjoint operators, which have pure ten-
sor product form and are diagonal in the {|b〉} basis of
Bn, i.e.,

Zb|c〉 =

(
n∏
i=1

(−1)bi(ci−1)

)
|c〉,

where |c〉 is again a quantum computational basis vector.
For example, for n = 2 qubits, the Walsh operator Zb
with b = |0, 1〉, and the basis vector |c〉 = |b〉, one obtains

Zb|c〉 = (I ⊗ Z)(|0〉 ⊗ |1〉) = −|c〉.

It follows from a counting argument that the collec-
tion {Zb}b∈{0,1}n forms a basis of the vector space of
operators in B(Bn) which are diagonal in the {|b〉} basis.
In Ref. [56], it was shown that if A ∈ B(Bn) is such a
diagonal operator,

A|b〉 = ab|b〉 with ab ∈ C,

then it admits the expansion

A =

N−1∑
j=0

f̂jZβ(n)(j), f̂j ∈ C, (59)

where the expansion coefficients f̂j are the complex

Walsh-Fourier coefficients (f̂0, . . . , f̂N−1) = Fnf of the
function f = (f0, . . . , fN−1) ∈ L2

n([0, 1]) with fj =
aβ(n)(j). That is, fj is equal to the eigenvalue ab, where
b is the n-digit binary representation of the integer j.

2. Walsh representation of the Hamiltonian

In order to effect the decomposition in (53) for the
generator-induced Hamiltonian from (49), let o : Jn,d →
{0, . . . , 2n/d − 1} be the enumeration on the index set
Jn,d from (40) based on the standard order of integers,

i.e., o(−2n/d−1) = 0, 1, . . . , 2n/d − 1 = o(2n/d−1). For
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(j1, j2) (η(j1), η(j2)) b ωj
(−2,−2) ((0, 0), (0, 0)) 0 −2α1 − 2α2

(−2,−1) ((0, 0), (0, 1)) 1 −2α1 − 1α2

(−2,+1) ((0, 0), (1, 0)) 2 −2α1 + 1α2

(−2,+2) ((0, 0), (1, 1)) 3 −2α1 + 2α2

(−1,−2) ((0, 1), (0, 0)) 4 −1α1 − 2α2

(−1,−1) ((0, 1), (0, 1)) 5 −1α1 − 1α2

(−1,+1) ((0, 1), (1, 0)) 6 −1α1 + 1α2

(−1,+2) ((0, 1), (1, 1)) 7 −1α1 + 2α2

(+1,−2) ((1, 0), (0, 0)) 8 +1α1 − 2α2

(+1,−1) ((1, 0), (0, 1)) 9 +1α1 − 1α2

(+1,+1) ((1, 0), (1, 0)) 10 +1α1 + 1α2

(+1,+2) ((1, 0), (1, 1)) 11 +1α1 + 2α2

(+2,−2) ((1, 1), (0, 0)) 12 +2α1 − 2α2

(+2,−1) ((1, 1), (0, 1)) 13 +2α1 − 1α2

(+2,+1) ((1, 1), (1, 0)) 14 +2α1 + 1α2

(+2,+2) ((1, 1), (1, 1)) 15 +2α1 + 2α2

TABLE II. Binary encodings η(j) = (η(j1), η(j2)) and enu-

meration b = (β̃(n))−1(η(j)) = 0 . . . 2n−1 of the eigenfrequen-
cies ωj with multi-index j = (j1, j2) of a quasiperiodic system
on a two-dimensional torus (d = 2) with basis frequencies α1

and α2. The total number of qubits is n = 4 with 2 qubits
for each torus dimension.

example, n = 2, d = 1 gives j ∈ J2,1 = {−2,−1, 1, 2},
which is mapped to o(j) = {0, 1, 2, 3}. The mapping of
J2,2 (for n = 2, d = 2) is displayed in first and third
columns of Table II. We define Wn : Hn → Bn as the
unique (unitary) linear map such that for j = (j1, . . . , jd),

Wnψj = |b〉 with

b = η(j) := (η(j1), . . . , η(jd)),

η(ji) = β̃(n/d)(o(ji)).

(60)

That is, Wn maps the basis element ψj of Hn with multi-
index j = (j1, . . . , jd) ∈ Jn to the tensor product basis
element |b〉, with b given by an invertible binary string
encoding of j. Here, b is obtained as a concatenation
(η(j1), . . . , η(jd)) of d binary strings of length n/d, corre-
sponding to the dyadic decompositions of o(j1), . . . , o(jd),
respectively. See again Table II, where we list the map-
ping for a two-dimensional torus with 2 = n/d qubits for
each torus dimension.

Since V̂nψj = iωjψj with ωj given by (14), we have

Hn|b〉 = ωη−1(b)|b〉, (61)

Thus, in order to decompose Hn into Walsh operators as
in (59), we need to compute the discrete Walsh transform
of the function h ∈ L2

n([0, 1]) with

h(m/N) = ωj , j = η−1(β̃(n)(m)). (62)

This calculation is detailed in Appendix B. The eigenval-
ues ωj for the example of a two-dimensional torus with
n = 2 qubits are listed in the fifth column of Table II.

By virtue of the decomposition in (B1), the only

nonzero coefficients in the Walsh-Fourier transform ĥ =

(ĥ0, . . . , ĥN−1) = Fnh are the coefficients ĥj with j =

2l+(i−1)d and 1 ≤ l ≤ n/d, 1 ≤ i ≤ d. Correspondingly,

the only nonzero terms ĥjZβ(n)(j) in the Walsh opera-

tor expansion from (59) for the Hamiltonian in (61) are
those for which the binary string η(j) has exactly one bit
equal to 1 and the remaining n − 1 bits equal to 0. In
particular, we have

Hn =

d∑
i=1

n
d−1∑
l=0

ĥ2l+(i−1)n/dZβ(2l+(i−1)n/d)

= ĥ1Z ⊗ I ⊗ I ⊗ I ⊗ · · · ⊗ I
+ ĥ2I ⊗ Z ⊗ I ⊗ I ⊗ · · · ⊗ I
+ ĥ4I ⊗ I ⊗ Z ⊗ I ⊗ · · · ⊗ I + . . .

+ ĥ2n−1I ⊗ · · · ⊗ I ⊗ Z, (63)

where the coefficients ĥ1, ĥ2, ĥ4, . . . , ĥ2n−1 have closed-
form expressions; see (B7).

Equation (63) verifies the assertion made earlier that
the decomposition of Hn in (53) can be arranged to have
n nonzero terms, each of which factorizes as a tensor
product of n operators, with all but one factors equal to
the identity. Since

eitI⊗···⊗I⊗Z⊗I···⊗I = I ⊗ · · · ⊗ I ⊗ eitZ ⊗ I ⊗ · · · ⊗ I,
we conclude that

Û tn = eiHnt =

n−1⊗
l=0

exp(itĥ2lZ), (64)

which is consistent with the decomposition in (55).

3. Cost of circuit construction

Before closing this section, we briefly assess the com-
putational cost of constructing a quantum circuit that
implements the unitary Koopman evolution Û tn. Note
that this is a one-off cost that does not affect the run-
ning time of our algorithm.

According to (55), Û tn is decomposed as a tensor prod-

uct of n single-qubit unitaries exp(itĥ2lZ) with l =
0, . . . , n − 1. Each such unitary can be implemented by

an Rz gate that rotates by the angle ϑl(t) = 2αtĥ2l . That
is, we have

exp(−itĥlZ) = Rz(ϑl(t)), (65)

where

Rz(ϑ) = e−iϑZ/2 =

(
e−iϑ/2 0

0 eiϑ/2

)
(66)

is the matrix representation of the Rz rotation gate by
angle ϑ in the {|0〉, |1〉} basis of B. Using the closed-

form expressions for ĥ2l in (B7), we can evaluate each
rotation angle ϑl(t) at O(1) cost, so the computational
cost of building our n-qubit Koopman evolution circuit
for time t is O(n).
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VII. PROJECTIVE MEASUREMENT OF
OBSERVABLES

In the classical setting, the process of obtaining the
results of a computation is a straightforward readout
of the state of the computer. In contrast, in quantum
computing, extracting information from the system is a
non-trivial process, as it must invariably confront with
the intricacies of quantum measurement. In this sec-
tion, we describe how the QECD performs probabilis-
tic predictions of the evolution of classical observables
through projective measurement of quantum computa-
tional observables. First, in Sec. VII A, we consider an
idealized measurement scenario, where one has access to
the spectral measure of the observable of interest. Then,
in Sec. VII B we develop an approximate measurement
procedure based on the QFT, which yields asymptoti-
cally consistent results with the idealized measurement,
while maintaining an exponential quantum advantage.
Additional technical results are provided in Appendix C.

A. Idealized quantum measurement

Our goal is to approximate the classical evolution
U tf(x) through projective measurement of the quantum

mechanical observable Ŝn := T̂nf on the quantum state

ρ̂(t)
x,n := Ψ̂t

n(ρ̂x,n), ρ̂x,n = F̂n(x), (67)

where the representation maps T̂n and F̂n are defined
in (51), and the evolution map Ψ̂t

n is defined in (50) (see

also Fig. 2). Since Ŝn is a finite-rank, self-adjoint opera-
tor, it has a spectral resolution

Ŝn =
∑

s∈σ(Ŝn)

sPs, (68)

where σ(Ŝn) is the spectrum of Ŝn, i.e., the set of its
eigenvalues, and Ps ∈ B(Bn) are the orthogonal projec-
tions onto the corresponding eigenspaces. For example, if
s ∈ σ(Ŝn) is an eigenvalue of multiplicity 1 with a corre-
sponding normalized eigenvector |s〉, then Ps is the rank-
1 projection given by Ps = |s〉〈s|. The collection {Ps} de-

fines a projection-valued measure (PVM) on σ(Ŝn), i.e.,

a map Sn : Σ(Ŝn)→ B(Bn) given by

Sn(Υ) =
∑
s∈Υ

Ps, (69)

where Σ(Ŝn) is the collection (σ-algebra) of all subsets of

σ(Sn), and Υ a set in Σ(Ŝn). A projective measurement

of Ŝn on the quantum state ρ̂
(t)
x,n then corresponds to a

randomly drawn eigenvalue ŝ from the spectrum σ(Ŝn)
with probability

P
ρ̂

(t)
x,n

(ŝ) = tr(ρ̂(t)
x,nPs).

The random draws ŝ have expectation∑
s∈σ(Ŝn)

sP
ρ̂

(t)
x,n

(s) =
∑

s∈σ(Ŝn)

tr(ρ̂(t)
x,nPs) =: f (t)

n (x),

which is equivalent with (47) by unitarity of the trans-
formations from the matrix mechanical to quantum com-
putational level.

One can compute a Monte Carlo (ensemble) estimate

of f
(t)
n (x) by performing a collection {ŝ1, . . . , ŝK} of mea-

surements of Ŝn on K independently and identically pre-
pared quantum systems. The number K is oftentimes
referred to as the number of shots. The ensemble mean,

f̂ (t)
n (x) :=

1

K

K∑
k=1

ŝk (70)

converges as K → ∞ to the expectation f
(t)
n (x). The

latter, converges in turn to the true value U tf(x) in the
infinite-qubit limit, n→∞; that is, we have

lim
n→∞

lim
K→∞

f̂ (t)
n (x) = U tf(x). (71)

B. Approximate quantum measurement using
quantum Fourier transforms

Despite its theoretical consistency, the quantum mea-
surement process described in Sec. VII A is not well-
suited for practical quantum computation. The reason
is that, in general, a quantum computing platform does
not support the measurement of arbitrary PVMs such
as Sn in (68), and instead only allows measurement of
the PVM associated with the quantum register. For
an n-qubit system, the latter is defined as the PVM
En : Σ({0, 1}n)→ B(Bn) (cf. (69)),

En(Υ) =
∑
b∈Υ

Eb with Eb = |b〉〈b|,

where Eb is the orthogonal projection along the compu-
tational basis vector |b〉.

In order to transform a measurement of Sn to an equiv-
alent measurement of En, one must apply a unitary trans-

formation ρ̂
(t)
x,n 7→ Λnρ̂

(t)
x,nΛ∗n to the quantum state ρ̂

(t)
x,n,

where Λn : Bn → Bn is a unitary map that diagonalizes
Ŝn, i.e., Λ∗nŜnΛn is a diagonal operator in the {|b〉} basis
of Bn. Two issues arise with this approach. First, Λn
is generally not known in closed form, and must be de-
termined by solving an (exponentially large) eigenvalue

problem for Ŝn. Secondly, even if Λn were known explic-
itly, it would likely be difficult to implement efficiently in
a quantum circuit as it would generally be represented
by a fully occupied matrix.

To overcome these challenges, instead of working with
Λn directly, we will employ a different unitary map on
Bn associated with the QFT. As is well known, the QFT
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on the n-qubit space Bn has a circuit implementation of
size O(n2) and depth O(n) [5, 59, 60]. Thus, including
it in the QECD pipeline does not result in loss of an
exponential advantage in n over classical computation.
Crucially for our purposes, moreover, the class of oper-
ators Ŝn induced from multiplication operators πf by
classical observables on X turns out to be approximately
diagonalized by the QFT, with an error that vanishes in
a suitable asymptotic limit.

In more detail, for any n ∈ N, let Fn : Bn → Bn be the
Fourier operator on Bn, defined as

Fn|m〉 =
1√
2n

2n−1∑
p=0

e−2πipm/2n |p〉, (72)

where |m〉 and |p〉 are again two basis vectors of Bn, pa-
rameterized by integers m and p, respectively, by con-
version of the corresponding binary sequences. More-
over, for n divisible by the state space dimension d, let
Fn,d : Bn → Bn be the tensor product operator defined
as

Fn,d = Fn/d ⊗ · · · ⊗ Fn/d︸ ︷︷ ︸
d

, (73)

and Fn,d : B(Bn) → B(Bn) the induced operator on
quantum computational observables, given by

Fn,dA = Fn,dAF
∗
n,d. (74)

In Appendix C, we show that S̃n := Fn,dŜnF
∗
n,d is an ap-

proximately diagonal operator in the computational ba-
sis {|b〉}. In particular, decomposing b = (b(1), . . . , b(d)),

where b(i) = (b
(i)
1 , . . . , b

(i)
n/d) are binary strings of length

n/d, and defining the points

xb = (θb(1) , . . . , θb(d)) ∈ Td (75)

with the canonical angle coordinates

θb(i) =
2π(β̃(n/d))−1(b(i))

2n/d
,

we have

S̃n|b〉 = s̃b|b〉+ |rnb〉, s̃b = f(xb). (76)

Here, |rnb〉 is a residual that vanishes as n → ∞, and
L : A → A is the self-adjoint, diagonal operator defined
in Appendix A 3 (see also Sec. IV C 2). Effectively, the
points xb define a uniform grid on the d-torus Td, indexed
by the n-digit binary strings b. The quantities s̃b can thus
be interpreted as approximate eigenvalues of S̃n, which
can be obtained from classical measurement of f at the
points xb, avoiding the need to solve an exponentially
large eigenvalue problem for Ŝn.

By virtue of these facts, and since

tr(ρ̂(t)
x,nŜn) = tr(ρ̃(t)

x,nS̃n),

with

ρ̃(t)
x,n = Fn,dρ̂

(t)
x,n, (77)

we can approximate a measurement of Ŝn on the state

ρ̂
(t)
x,n by a measurement of the PVM En on the state

ρ̃
(t)
x,n. The latter measurement returns a random string
b ∈ {0, 1}n with probability

P
ρ̃

(t)
x,n

(b) = tr(ρ̃(t)
x,nEb) = 〈b|ρ̃(t)

x,n|b〉,

inducing a sample s̃b = f(xb). Analogously to (70), we
estimate U tf(x) by forming an ensemble of K indepen-
dent measurements b1, . . . , bK of En, and computing the
ensemble mean by

f̂ (t)
n (x) :=

1

K

K∑
k=1

s̃bk . (78)

Further details on this approximation, such as the
proof of asymptotic consistency, can be found in Ap-
pendix C. Here, we note that due to errors associated
with the QFT-based measurement process, the conver-

gence of f̂
(t)
n to U tf is not unconditional, but requires

taking a sequence of decreasing RKHA parameters τ (un-
like the limit in (71) which holds for any τ > 0). It should
also be noted that it is possible to simulate multiple clas-
sical observables using the same circuit and ensemble of
quantum measurements {b1, . . . , bK}. That is, to simu-
late the evolution of a different observable g : X → C,
we use the bk to generate samples ˜̃sbk = g(xbk), and

estimate U tg(x) by ĝ
(t)
n (x) :=

∑K
k=1

˜̃sbk/K, analogously
to (78).

VIII. STATE PREPARATION

Besides measurement of observables, the preparation,
or loading, of the quantum state representing the input
(initial conditions) to a quantum computer is challenging.
In a typical scenario involving an n-qubit computation,
the register of a quantum computer is initialized with a
state vector associated with an unentangled tensor prod-
uct state,

|0〉 ≡ |0〉⊗n. (79)

The desired initial state must be prepared by applying
a unitary transformation (encoder) to |0〉, which may in
general require a circuit of exponential depth in n when
the algorithm is broken down to elementary gate oper-
ations [57, 58]. This poses a potentially significant ob-
struction to the scalability of quantum computational al-
gorithms.

In QECD, our task is to prepare the quantum state
ρ̂x,n = F̂n(x) from (67) associated with the classical ini-
tial condition x ∈ X. This state is a pure state,

ρ̂x,n = |ξ̂x,n〉〈ξ̂x,n|,
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where the state vector |ξ̂x,n〉 = Wnξx,n is obtained by
application of the unitary Wn : Hn → Bn from (60)
on the normalized RKHS feature vector ξx,n from (45).
Specifically, we have

ξx,n =
kx,n√
κn

=
1√
κn

∑
j∈Jn

ψ∗j (x)ψj ,

and thus

|ξ̂x,n〉 = Wnξx,n =
∑
j∈Jn

ψ∗j (x)
√
κn

Wnψj

=
∑

b∈{0,1}n

ψ∗η−1(b)(x)
√
κn

|b〉. (80)

We now describe how, in the limit of small RKHA pa-
rameter τ , this state can be prepared to any degree of
accuracy using a circuit of size O(n) and depth O(1).

Let |Ω〉 ∈ Bn be the state vector associated with a uni-
form superposition of the quantum computational basis
vectors,

|Ω〉 =
1√
N

∑
b∈{0,1}n

|b〉.

The state vector |Ω〉 can be prepared from |0〉 using a cir-
cuit of depth 1, associated with an n-fold tensor product
of Hadamard gates, i.e.,

|Ω〉 =

(
n⊗
i=1

H

)
|0〉 , (81)

where H : B → B is the Hadamard gate, represented by
the matrix

H =
1√
2

(
1 1
1 −1

)
.

We will come back to this point in Sec. XI when the algo-
rithm is implemented on an actual quantum computer.

Next, recall that the basis functions ψj of Hn have the

form ψj = e−τ |j|p/2φj , where the φj are Fourier functions
on the abelian group X = Td (see Sec. III B). Since the
Fourier functions are characters of the group, they take
the value φj(e) = 1 on the identity element e ∈ X (the
point with angle coordinates θ = 0), and thus

|ξ̂e,n〉 =
∑

b∈{0,1}n

e−τ |η
−1(b)|p/2
√
κn

|b〉.

It follows that∥∥∥|ξ̂e,n〉 − |Ω〉∥∥∥2

Bn
=

∑
b∈{0,1}n

∣∣∣∣∣ 1√
N
− e−τ |η

−1(b)|p/2
√
κn

∣∣∣∣∣
2

,

(82)
and noting that limτ→0 κn = N (see (45)), we conclude

that, for fixed n, |ξ̂e,n〉 converges to |Ω〉 as τ → 0. In

particular, since |Ω〉 can be efficiently prepared via (81),

we can efficiently approximate |ξ̂e,n〉 by |Ω〉 to arbitrarily
high precision.

We now claim that every state vector |ξ̂x,n〉 from (80)

can be reached efficiently from |ξ̂e,n〉 by applying a suit-
able unitary Koopman operator. Indeed, letting Sx :
H → H be the shift operator by x = (θ1, . . . , θd) ∈ Td,
i.e.,

(Sxf)(y) = f(x+ y),

we have that Sx = U t, where U t is the Koopman oper-
ator for any time t and rotation frequencies α1, . . . , αd
such that x = (α1t, . . . , αdt). Thus, if Ŝxn : Bn → Bn is
the unitary operator induced at the quantum computa-
tional Hilbert space Bn by Sx (cf. (52)),

Ŝxn = (Wn ◦Πn ◦Π)Sx,

we can implement Ŝxn with a circuit of size O(n) and
depth O(1) using an analogous approach to that used
for the Koopman operator. In particular, by translation
invariance of the kernel k (see (11)), we have ξx = S−xξe,

and thus |ξ̂x,n〉 = Ŝ−xn |ξ̂e,n〉. Therefore, the state vector

|ξ̂x,n〉 can be obtained efficiently by application of that

circuit to |ξ̂e,n〉.
Consider now the state vector

|ξ̌x,n〉 := Ŝ−xn |Ω〉. (83)

We have∥∥∥|ξ̌x,n〉 − |ξ̂x,n〉∥∥∥
Bn

=
∥∥∥Ŝ−xn |Ω〉 − Ŝ−xn |ξ̂e,n〉∥∥∥Bn

=
∥∥∥|Ω〉 − |ξ̂e,n〉∥∥∥

Bn
,

where we have used the unitarity of Ŝ−xn to obtain the
last equality. By (82), it follows that as τ → 0 at fixed

n, |ξ̌x,n〉 converges to |ξ̂x,n〉. We therefore conclude that
for any error tolerance ε there exists τ > 0 such that

the desired initial state vector, |ξ̂x,n〉, is approximated

by |ξ̌x,n〉 with an error of at most ε in the norm of Bn.

Moreover, the state vector |ξ̌x,n〉 can be prepared by pass-
ing the initial quantum computational state vector |0〉
through a circuit of size O(n) and depth O(1). As with
the QFT-based measurement scheme (see Sec. VII B and
Appendix C), as n→∞, errors due to approximation of

|ξ̂x,n〉 by |ξ̌x,n〉 can be controlled by taking a decreasing
sequence of RKHA parameters τ .

IX. COMPARISON WITH CLASSICAL
SIMULATORS OF QUANTUM CIRCUITS

The reader may have noticed that with the state prepa-
ration scheme described in Sec. VIII, QECD results in a
quantum computational system where entanglement is
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produced only by a terminating QFT. That is, we start
with the state vector |0〉 from (79) (which is a tensor
product of single-qubit state vectors |0〉, and thus unen-
tangled), and then:

1. Apply to |0〉 a tensor product
⊗n

i=1 H of Hadamard
gates to obtain the state vector |Ω〉 in (81).

2. Apply to |Ω〉 the shift operator Ŝ−xn to obtain the
state vector |ξ̌x,n〉 in (83) encoding the classical ini-
tial condition x.

3. Apply to |ξ̌x,n〉 the Koopman operator Û−tn in (64)

to obtain the state vector |ξ̌(t)
x,n〉 := Û−tn |ξ̌x,n〉 rep-

resenting the quantum state ρ̂
(t)
x,n ≈ |ξ̌x,n〉〈ξ̌x,n|

in (67).

4. Apply to |ξ̌(t)
x,n〉 the QFT to arrive at the state

vector |ξ̆(t)
x,n〉 := Fn,d|ξ̌(t)

x,n〉 representing the state

ρ̃
(t)
x,n ≈ |ξ̆(t)

x,n〉〈ξ̆(t)
x,n| in (77).

Note that the relations ρ̂
(t)
x,n ≈ |ξ̌x,n〉〈ξ̌x,n| and ρ̃

(t)
x,n ≈

|ξ̆(t)
x,n〉〈ξ̆(t)

x,n| in Steps 3 and 4 are approximate since in
Steps 1 and 2 we use the approximate state preparation
scheme of Sec. VIII, but the approximation errors vanish
as n→∞ along a decreasing sequence of τ . In this pro-
cedure, the only operation that produces entanglement is
the QFT in Step 4. All operations in Steps 1–3 operate
on individual qubits, and result in no entanglement.

It is known [63, 64] that under certain conditions,
quantum computational algorithms exhibiting no entan-
glement can be simulated efficiently using randomized
classical algorithms. In Ref. [63], Josza and Linden (JL)
consider a quantum algorithm that runs in T (n) steps,
where T is a polynomial function of the number of qubits
n. They show that if the input state is sufficiently unen-
tangled, it is possible to classically sample the measure-
ment distribution in the quantum computational basis
at an error tolerance η using a randomized classical al-
gorithm with running time

T (n, η) = poly(T (n), log(1/η)). (84)

Here, poly(u) represents a polynomial function of u that
asymptotically bounds the quantity of interest (in this
case, running time) as u → ∞. Using this result,
Browne [65] shows that certain classes of quantum cir-
cuits where entanglement is only produced by a termi-
nating QFT can also be efficiently simulated classically
(i.e., in a polynomial running time T ) using appropri-
ate classical simulators of the QFT. The QFT simulators
they propose include the semiclassical QFT algorithm of
Griffiths and Niu [80], as well as approximate QFT algo-
rithms [81, 82].

We will now compare the computational complex-
ity of our QECD scheme against randomized classical
algorithms which rely on the theory of JL (including
Ref. [65]).

We begin by noting that the tolerance parameter η
in (84) represents errors due to rational approximation
of quantum gates, which is necessary for efficient quan-
tum simulability. More specifically, η represents the error
in the trace norm between the exact quantum state em-
ployed in a given quantum computational algorithm and
the state obtained by running the algorithm with rational
approximations of its quantum gates. In certain classes
of problems (e.g., discrete decision problems), a finite
tolerance is sufficient and it is not necessary to consider
arbitrarily small η. Yet, in the setting of our work, i.e.,
continuous-time dynamical systems, taking η → 0 limits
is necessary to attain convergence. In this context, an es-
sential requirement for a consistent and robust simulator
of a continuous-time system is that its prediction errors
converge to 0 uniformly over time intervals and sets of
initial conditions (cf. the convergence results for QECD
in Proposition 3 and Corollary 8).

Consider that the evolution time t varies in an interval
[0, tmax]. As t varies in that interval, the Rz(ϑl(t)) gates

implementing the Koopman evolution Û−tn of our circuit
swipe through continuous intervals of phase angles ϑl(t)
(see (65)). As a result, the collection of the matrix ele-
ments (Rz(ϑl(t)))ij , as the ϑl(t) vary in these intervals,
is an uncountable set that does not lie in any finite alge-
braic extension of the rationals. This means that rational
approximations of (Rz(ϑl(t)))ij of the form aijl(t)/bijl(t)
for complex numbers aijl(t) and bijl(t) with integer real
and imaginary parts, satisfying∣∣∣∣(Rz(ϑl(t)))ij − aijl(t)

bijl(t)

∣∣∣∣ < η

uniformly over t ∈ [0, tmax] and with respect to i, j, l, re-
quire integers bijl(t) of modulus Θ(η−1/2) [83]. The rea-
son for this requirement stems from the fact that there
exist badly approximable real numbers, i.e., real numbers
u satisfying |u − a/b| > c/b2 for some c > 0 and every
rational a/b. Thus, in order to uniformly attain a toler-
ance η, a classical simulator based on the theory of JL
utilizes integers of m digits, where

m = Θ(log η). (85)

In Appendix A 5 (see, in particular, (A18)), we show
that for fixed RKHA parameters p ∈ (0, 1) and τ > 0, the

n-qubit quantum computational state ρ̂
(t)
x,n employed by

QECD approximates the infinite-dimensional quantum
state ρx (see Sec. IV) at an error of O(e−τ̃n

p/2) for any
τ̃ ∈ (0, τ), uniformly with respect to the evolution time
t ∈ R and initial condition x ∈ X. Setting

η = e−τ̃n
p/2 (86)

in (85), it follows that in order to achieve a comparable
error to an n-qubit implementation of QECD, the classi-
cal simulator employs integer arithmetic with m = Θ(np)
digits.

In order to derive the estimate in (84), JL assume a
polynomial complexity of integer arithmetic operations,
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such as addition and multiplication, with respect to m.
For our purposes, it is appropriate to assume that the
dominant cost is due to integer multiplication associated
with application of (rational approximations of) quan-
tum gates to qubits. The complexity of this operation
is O(m2) using the standard algorithm (long multipli-
cation). Very recently, Harvey and van der Hoeven [84]
developed an O(m logm) algorithm, which is conjectured
to be an optimal bound consistent with the true complex-
ity of integer multiplication.

Letting mult(m) denote the complexity of the multi-
plication algorithm employed, the running time T (n, η)
of a classical simulator of our QECD circuit with the
tolerance from (86) satisfies

T (n, η) = O(n2 mult(m)) = O(n2 mult(np)). (87)

In QECD, the running time T (n) is dominated by the
QFT, and is thus T (n) = O(n2). Therefore, if standard
multiplication is used, (87), QECD offers an improved
upper bound by a factor of n2p over (87), which is ap-
proximately quadratic for p ≈ 1. Using the Harvey and
van der Hoeven algorithm, this factor drops to np log n.
However, it should be kept in mind that due to various
overhead costs, the efficiency of fast multiplication algo-
rithms such as in Ref. [84] is typically not realized since
impractically large integers have to be used [85]. Thus,
the bound of T (n, η) = O(n2(1+p)) associated with stan-
dard multiplication is the relevant one for classical sim-
ulation of our quantum circuit in practical applications.
We should also point out that the analysis above does
not take into account any additional costs incurred by
the classical simulator in the approximation of the QFT.

X. SIMULATED QUANTUM CIRCUIT
EXPERIMENTS

In this section, we demonstrate the performance of
the QECD framework with simulated quantum circuit
experiments implemented in the ideal Qiskit Aer simu-
lator [61, 62]. We consider a periodic example on the
circle (Sec. X A), as well as a quasiperiodic system on
the 2-torus (Sec. X B). In both cases, we compare the
mean from an ensemble of quantum measurements with
the true dynamical evolution of representative classical
observables. The numerical results, displayed in Figs. 6
and 8 for the one- and two-dimensional examples, respec-
tively, are in good agreement with the theory developed
in Secs. IV–VII.

A. Circle rotation

According to (5), in dimension d = 1 the orbits of the
dynamics are given by

x(t) = Φt(x) = (θ1 + α1t) mod 2π,

where α1 is the frequency parameter and x = θ1 the ini-
tial condition. We set α1 = 2π, so the orbits have period
2π/α1 = 1. We seek to approximate the evolution of a
real-valued observable f : S1 → R on the orbit starting
at x, which is represented using the Koopman operator
as

f (t)(x) = U tf(x) = f(Φt(x)) = f(θ1 + α1t).

In this experiment, we consider the bandlimited observ-
able f(x) = sinx.

The quantum circuit output by QECD, displayed
graphically in Fig. 6(a), consists of the following four
logical stages:

1. A load stage, where the initial quantum state
ρ̂x,n = F̂n(x) is prepared using the quantum fea-

ture map F̂n in (51).

2. A dynamical evolution stage, which evolves ρ̂x,n

to the state ρ̂
(t)
x,n = Ψ̂t

n(ρx,n) using the evolution

operator Ψ̂t
n in (50).

3. A QFT stage, rotating ρ̂
(t)
x,n to the state ρ̃

(t)
x,n =

Fn,dρ̂
(t)
x,n using the Fourier operator in (73).

4. A measurement stage, measuring the quantum-

computational PVM En on the state ρ̂
(t)
x,n. The

quantum mechanical approximation f̂
(t)
n (x) of

f (t)(x) is then obtained as an ensemble mean of
K independent shots using (78).

The circuit is parameterized by three parameters, namely
the RKHA parameters p and τ and the number of qubits
n. We set p = τ = 1/4, and consider experiments with
n = 3 and n = 7 qubits, corresponding to the quantum
computational Hilbert spaces B3 and B7 of dimension
N = 23 = 8 and N = 27 = 128, respectively. Another
input parameter is the evolution time t, which we set
to integer multiples of a fixed timestep ∆t = 0.02 for
purposes of visualization.

Since all quantum states in the pipeline are pure, in
practice we implement the circuit as a sequence of oper-
ators on the corresponding state vectors. First, the initial
state is given by

ρ̂x,n = |ξ̂x,n〉〈ξ̂x,n|,

where the state vector |ξ̂x,n〉 = Wnξx,n is obtained by
application of the unitary Wn : Hn → Bn from (60)
on the normalized RKHS feature vector ξx,n from (45).
See also (80). We note that in these experiments the

state vector |ξ̂x,n〉 is loaded into the quantum register
“exactly”, using an amplitude encoding scheme applied
to the initial state vector |0〉 (see Fig. 6(a)), as opposed to
the efficient approximate scheme described in Sec. VIII.

In particular, we loaded |ξ̂x,n〉 using the Qiskit function
QuantumCircuit.initialize. We will discuss experi-
ments utilizing the preparation approach of Sec. VIII in
Sec. XI.



24

FIG. 6. Quantum circuit implementation of the 3- and 7-qubit approximation of a circle rotation with frequency α1 = 2π
in the ideal Qiskit Aer environment. (a) Circuit diagram with n = 3 qubits, comprising (from left to right) of state vector
load, Koopman evolution over time t using Rz gates, quantum Fourier transform (QFT), and measurement. (b) Empirical
distribution of an ensemble of K = 106 projective measurements (shots) of the projection-valued measure (PVM) associated
with the computational basis vectors |b〉 ≡ |b〉 for n = 3 and t = 0.94. (c) Temporal evolution of the empirical probability

distributions for n = 3 and 7. (d) Reconstruction of the classical observable f (t)(x) = sin(x(t)) = sin(θ1 + α1t) from the

ensemble means, f̂
(t)
n (x). The analytical result f (t)(x) is plotted as a solid line. In Panels (b)–(d), the initial condition is

x = θ1 = 2.5 and the reproducing kernel Hilbert algebra (RKHA) parameters are p = τ = 1/4. Measurements are performed
at a fixed timestep ∆t = 0.02. In Panels (b) and (c), the computational basis vectors |b〉 are indexed by an integer b in the
range 0, . . . , 2n−1.

The next step is the unitary Koopman evolution, given
by

ρ̂(t)
x,n = Ψ̂t

n(ρ̂x,n) = Û t∗n |ξ̂x,n〉〈ξ̂x,n|Û tn.

Here, Û tn = eitHn is the unitary operator in (55), which
is generated by the Hamiltonian Hn with the Walsh fac-

torization in (63). We have ρ̂
(t)
x,n = |ξ̂(t)

x,n〉〈ξ̂(t)
x,n| with

|ξ̂(t)
x,n〉 = Û t∗n |ξ̂x,n〉 = e−iHnt|ξ̂x,n〉.

Therefore, our circuit implements the transformation

|ξ̂x,n〉 7→ |ξ̂(t)
x,n〉, i.e.,

|ξ̂(t)
x,n〉 =

2n−1∑
b=0

ψ∗o−1(b)(x)
√
κn

e−itHn |b〉

=

2n−1∑
b=0

ψ∗o−1(b)(x)
√
κn

[
n−1⊗
l=0

exp(−itα1h̃2lZ)

]
|b〉,

where h̃2l = ĥ2l/α1, and ĥ2l are the Walsh-Fourier coeffi-
cients in (63). In more detail, using (B6) with d = 1 and

n = 3, we obtain that all coefficients h̃2l are zero except

from h̃1 = −5/2, h̃2 = −1, and h̃4 = −1/2. For n = 7,

the seven non-vanishing coefficients are h̃1 = −65/2,

h̃2 = −16, h̃4 = −8, h̃8 = −4, h̃16 = −2, h̃32 = −1,
and h̃64 = −1/2. The implementation of this second
step on the quantum computer is done for each qubit
channel separately, as seen in Fig. 6(a), by a Rz rotation
gate from (66). Specifically, we have

exp(−itαh̃2lZ) = Rz(2α1th̃2l).

The third step is the application of the QFT, which
results to

ρ̃(t)
x,n = Fn,1ρ̂

(t)
x,n = |ξ̃(t)

x,n〉〈ξ̃(t)
x,n|,

where |ξ̃(t)
x,n〉 = Fn,1|ξ̂(t)

x,n〉. We again operate at the level

of state vectors, effecting the transformation |ξ̂(t)
x,n〉 7→

|ξ̃(t)
x,n〉 using a standard QFT circuit. The subsequent

measurement of the PVM En on the state represented

by |ξ̃(t)
x,n〉 for K shots leads to an empirical probability

distribution over the binary strings b ∈ {0, 1}n (which
index the basis vectors |b〉 ≡ |b〉), depicted in Fig. 6(b)
for a representative evolution time t. In Fig. 6(c), we
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FIG. 7. Eigenvalues sj (left-hand column) and representative eigenfunctions uj : S1 ! R (right-hand column) of the self-adjoint
operators Sn = Tnf representing the classical observable f(x) = sin x on the circle for the qubit numbers n = 3 (top row)
and 7 (bottom row). The RKHA parameters are p = ⌧ = 1/4 as in Fig. 5. The index j runs from 1 to 2n. Notice that as n
increases the spectra of Sn provide an increasingly dense sampling of the range of values of f (i.e., the interval [�1, 1]), and
the eigenfunctions uj(x) become increasingly localized around values of x for which f(x) ⇡ sj .

display the time evolution of this probability distribu-
tion for K = 106 shots and n = 3 and n = 7 qubits.
Notice that as n increases, the probability distribution
becomes increasingly concentrated around straight lines
that periodically fold wrap around the set b = 0, . . . , 2n

indexing the |bi vectors. This is a manifestation of the

fact that the time-dependent quantum state ⇢̃
(t)
x,n “tracks”

the underlying classical state x(t).

Figure 6(d) displays the true (f (t)(x)) and simulated

(f̂
(t)
n (x)) evolution of the observable f(x) = sin x over the

time interval t 2 [0, 1] starting from the initial condition

x = ✓1 = 2.5. The simulated evolution f̂
(t)
n (x), which is

again obtained using K = 106 shots, is seen to be in good
agreement with the true signal for n = 7 qubits. The
simulation fidelity for n = 3 qubits is clearly degraded,
exhibiting higher variance near the extrema f (t)(x) = ±1
of the true signal, but nevertheless captures an approxi-
mately sinusoidal waveform with the correct frequency.

To gain intuition on the expected fidelity of the quan-
tum computational model as a function of the number
of qubits, in Fig. 7 we show the spectra of eigenvalues sj

and representative corresponding eigenfunctions uj of the
self-adjoint operator Sn := ⇧n(Tf) from (47) for n = 3
and 7 qubits. Recall, in particular, that Sn is an ap-

proximation of the multiplication operator by f , with its
spectrum of eigenvalues �(Sn) providing a discretization
of the (continuous) range of values of f , i.e., in this case
the interval [�1, 1]. Moreover, Sn is unitarily equivalent

to the quantum computational observable Ŝn = WnSn,
which is in turn approximately unitarily equivalent to the
Fourier-transformed observable S̃n = Fn,1Ŝn that our
circuit approximately measures. In Fig. 7, it is evident
that as n increases, �(Sn) samples the interval [�1, 1]
with increasingly high density, exhibiting a clustering of
eigenvalues near the boundary points ±1. This concen-
tration of density is consistent with the distribution of
f(x) = sin x induced by a fixed-frequency rotation on
the circle. Meanwhile, as n increases, the eigenfunctions
exhibit increasingly high localization, with eigenfunction
uj(x) concentrated on points x 2 S1 such that f(x) is
close to the corresponding eigenvalue sj . This is seen
in the right-hand column of the figure for representative
eigenfunctions uj . Thus, intuitively, as the number of

qubits increases, the PVM associated with S̃n (which we
approximate by the quantum computational PVM En)
provides a representation of the classical observable f of
increasingly high resolution.

FIG. 7. Eigenvalues sj (left-hand column) and representative eigenfunctions uj : S1 → R (right-hand column) of the self-adjoint
operators Sn = Tnf representing the classical observable f(x) = sinx on the circle for the qubit numbers n = 3 (top row)
and 7 (bottom row). The RKHA parameters are p = τ = 1/4 as in Fig. 5. The index j runs from 1 to 2n. Notice that as n
increases the spectra of Sn provide an increasingly dense sampling of the range of values of f (i.e., the interval [−1, 1]), and
the eigenfunctions uj(x) become increasingly localized around values of x for which f(x) ≈ sj .

display the time evolution of this probability distribu-
tion for K = 106 shots and n = 3 and n = 7 qubits.
Notice that as n increases, the probability distribution
becomes increasingly concentrated around straight lines
that periodically fold wrap around the set b = 0, . . . , 2n

indexing the |b〉 vectors. This is a manifestation of the

fact that the time-dependent quantum state ρ̃
(t)
x,n “tracks”

the underlying classical state x(t).

Figure 6(d) displays the true (f (t)(x)) and simulated

(f̂
(t)
n (x)) evolution of the observable f(x) = sinx over the

time interval t ∈ [0, 1] starting from the initial condition

x = θ1 = 2.5. The simulated evolution f̂
(t)
n (x), which is

again obtained using K = 106 shots, is seen to be in good
agreement with the true signal for n = 7 qubits. The
simulation fidelity for n = 3 qubits is clearly degraded,
exhibiting higher variance near the extrema f (t)(x) = ±1
of the true signal, but nevertheless captures an approxi-
mately sinusoidal waveform with the correct frequency.

To gain intuition on the expected fidelity of the quan-
tum computational model as a function of the number
of qubits, in Fig. 7 we show the spectra of eigenvalues sj
and representative corresponding eigenfunctions uj of the
self-adjoint operator Sn := Πn(Tf) from (47) for n = 3

and 7 qubits. Recall, in particular, that Sn is an ap-
proximation of the multiplication operator by f , with its
spectrum of eigenvalues σ(Sn) providing a discretization
of the (continuous) range of values of f , i.e., in this case
the interval [−1, 1]. Moreover, Sn is unitarily equivalent

to the quantum computational observable Ŝn = WnSn,
which is in turn approximately unitarily equivalent to the
Fourier-transformed observable S̃n = Fn,1Ŝn that our
circuit approximately measures. In Fig. 7, it is evident
that as n increases, σ(Sn) samples the interval [−1, 1]
with increasingly high density, exhibiting a clustering of
eigenvalues near the boundary points ±1. This concen-
tration of density is consistent with the distribution of
f(x) = sinx induced by a fixed-frequency rotation on
the circle. Meanwhile, as n increases, the eigenfunctions
exhibit increasingly high localization, with eigenfunction
uj(x) concentrated on points x ∈ S1 such that f(x) is
close to the corresponding eigenvalue sj . This is seen
in the right-hand column of the figure for representative
eigenfunctions uj . Thus, intuitively, as the number of

qubits increases, the PVM associated with S̃n (which we
approximate by the quantum computational PVM En)
provides a representation of the classical observable f of
increasingly high resolution.
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B. Quasiperiodic dynamics on the 2-torus

The two-dimensional case proceeds along similar lines
as the one-dimensional example in Sec. X A, so we mainly
focus on the points that are different from the one-
dimensional example. The classical dynamical orbit on
the 2-torus is now given by

x(t) = Φt(x) = (θ1 + α1t, θ
2 + α2t) mod 2π,

where α1 and α2 are the frequency parameters and x =
(θ1, θ2) is the initial condition. We choose the (rationally

independent) values α1 = 3
√

2π and α2 = 2π, leading to
an ergodic flow on T2. We again seek to approximate
the evolution of a bandlimited classical observable f , in
this case f(x) = sin(θ1) cos(θ2). The evolution of this
observable is given by

f (t)(x) = U tf(x) = sin(θ1 + α1t) cos(θ2 + α2t).

To perform quantum simulation, we set the RKHA
parameters p = τ = 1/4 as in Sec. X A, and use a total
of n = 8 cubits, which corresponds to 4 qubits allocated
to each torus dimension. The quantum computational
Hilbert space, B8, is thus 256-dimensional, and admits
the tensor product factorization

B8 = B4 ⊗ B4. (88)

For convenience in the notation, we will label the basis
vectors for each of the B4 factors in (88) as |k〉 and |l〉,
where k = (k1, k2, k3, k4) and l = (l1, l2, l3, l4) are 4-digit
binary strings. Note that the factorization in (88) is com-
patible with the tensor product structure of the infinite-
dimensional RKHA A in (13), in the sense that each B4

factor corresponds to the image space under a projection
of the A(1) spaces in (13). See also Appendix B, and in
particular (B6). A similar tensor product structure ap-
plies for the quantum feature map, dynamical evolution,
and QFT operators,

F̂n = F̂ (1)
n/2 ⊗ F̂

(1)
n/2,

Û tn = (U tn/2)(1) ⊗ (U tn/2)(1),

Fn,2 = Fn/2,1 ⊗ Fn/2,1,

(89)

so we can form the entire circuit by composing two
4-qubit circuits from the one-dimensional case; see
Fig. 8(a) for an illustration. In (89), (1)-superscripts
and 1-subscripts denote maps inherited from the one-
dimensional case.

As in the one-dimensional example of Sec. X A, all
quantum states occurring in our scheme are pure, so
we implement the circuit in Fig. 8(a) at the level of
the vectors ξx,n (normalized RKHS feature vectors),

|ξ̂x,n〉 = Wnξx,n (initial state vectors), |ξ̂(t)
x,n〉 = Û t∗n |ξ̂x,n〉

(Koopman-evolved state vectors), and |ξ̃(t)
x,n〉 = Fn,2|ξ̂(t)

x,n〉
(state vectors after application of the QFT). Note that

the normalized feature vector associated with classical
state x ∈ T2 takes the form

ξx,n =
∑
j∈Jn,2

ψ∗j (x)
√
κn

ψj ,

with n = 8 and

ψ∗j (x) = exp
[
−τ

2
(|j1|p + |j2|p)

]
exp[−i(j1x1 + j2x2)].

See again Table II for an example of the ordering of the
multi-index j and its mapping to the computational basis
in the case n = 4 (the table would have 256 rows in the
current example). We also note that our n = 8 example
has 2 × 4 nonzero Walsh-Fourier expansion coefficients:
h̃1 = −9/2, h̃2 = −2, h̃4 = −1, and h̃8 = −1/2 for each
torus dimension.

Figure 8(b) displays snapshots of the empirical joint
probability distribution of the (k, l) indices at repre-
sentative evolution times t, obtained from ensembles of
K = 106 measurements of the quantum computational

PVM En on the state represented by |ξ̃(t)
x,n〉 for the initial

condition x = (1.0, 2.5). The locality of the distribu-
tions is indicative of the fact that the quantum comput-
ing model successfully tracks the orbit of the underlying
classical dynamical system. Figs. 8(d) and 8(d) show
marginals of these distributions over the k and l index
spaces as a function time t, where periodic evolution at
the generating frequencies α1 and α2, respectively, is ap-
parent.

In Fig. 8(e) we compare the approximate evolution

f̂
(t)
n (x) of the observable f computed from the same en-

sembles of quantum measurements against the true evo-
lution f (t)(x). Despite the modest number of qubits al-

located to each torus dimension, f̂
(t)
n (x) reproduces the

quasiperiodic behavior of f (t)(x) to an adequate degree
of accuracy, with more pronounced errors occurring near
the extrema of the true signal. As in the one-dimensional
example of Fig. 6(d), we expect such discrepancies to
rapidly diminish as the number of qubits increases. Sim-
ilarly, from this example it becomes clear how one can
generalize the dynamics to a torus of dimension d > 2.

XI. EXPERIMENTS ON THE IBM QUANTUM
SYSTEM ONE

The circle rotation algorithm for n = 3 qubits was
also implemented on the IBM Quantum System One to
demonstrate the readiness of QECD on a real NISQ de-
vice. This system has a quantum volume (an empirical
metric that quantifies the capability and error rates of a
quantum device) of 32. The corresponding program was
again written in Qiskit (see Sec. X), and then transpiled
(translated) into a sequence of appropriate elementary
gate operations acting on the physical superconducting
qubits via microwave channels at the hardware level. No
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FIG. 8. As in Fig. 6, but for an 8-qubit approximation of a quasiperiodic rotation on the 2-torus with frequency parameters
α1 = 3

√
2π and α2 = 2π. (a) Quantum circuit for the quasiperiodic system, composed as two parallel copies of the circuit

in Fig. 6(a) for the one-dimensional case, with 4 qubits allocated to each dimension of the 2-torus. An empirical probability
distribution obtained from K = 106 shots is shown to the right of the circuit diagram, where the integers b = 0, . . . , 28−1 = 255
index the computational basis vectors |b〉 of the 256-dimensional Hilbert space Bn with n = 8. The RKHA parameters are again
p = τ = 1/4. (b) Snapshots of the probability distribution at three representative evolution times, combined in a single surface
plot. The horizontal axes labeled |k〉 and |l〉 correspond to the basis vector indices for each of the 4-qubit spaces associated
with each torus dimension through the factorization B8 = B4 ⊗ B4. Note that the indices k and l range from 0 to 24 − 1 = 15.
(c, d) Evolution of the marginal distributions obtained by measurement of the PVMs of each of the two 4-qubit spaces, i.e.,
one of the two torus dimensions only. The initial condition is x = (θ1, θ2) = (1.0, 2.5), and measurements are performed at
a fixed timestep ∆t = 0.02. The slopes of the probability contours in Panels (c) and (d) are proportional to the frequency
parameters α2 and α1, respectively. Notice that the slopes in Panel (c) are shallower than those in Panel (d) since α2 < α1,
and are equal to the corresponding slopes in Fig. 6(c) since α2 is equal to the frequency parameter of the one-dimensional

example. (e) Reconstruction of the classical observable f (t)(x) = f (t)(x1, x2) = cos(θ2 + α2t) sin(θ1 + α1t) from the ensemble

means f̂
(t)
n (x) output from the quantum computer. The true evolution f (t)(x) is plotted as a solid line.

error correction was used in our simulation. As men-
tioned in Sec. VIII, the encoding of 2n (complex) am-

plitudes that represent the feature vector |ξ̂x,n〉 associ-
ated with classical state x ∈ X in an n-qubit quantum
register can lead to an exponential growth of gates. To
give a concrete example for n = 3: amplitude encoding
using QuantumCircuit.initialize with no circuit op-
timization is transpiled into a sequence of 84 elementary
quantum gates. This conversion results to 52 elementary
gates for a higher transpiler optimization level of 2.

To circumvent this expensive amplitude encoding of
classical data, it was shown in Sec. VIII that the initial

state vector |ξ̂x,n〉 can also be obtained to any degree of
accuracy with a circuit of size O(n) and depth O(1). In
the particular case x = e (i.e., the point with canonical
angle coordinates θ1, . . . , θd = 0), the encoding reduces

to a uniform superposition state for n-qubits, |Ω〉, which
is obtained via n Hadamard gates H applied to the stan-
dard basis quantum state |0〉⊗n (see (81)). This step
reduces the number of gates, and thus the circuit depth,
significantly to 33 and 30 for the transpiler optimization
levels 0 and 2, respectively. This depth is close to the
quantum volume of the computer.

Figure 9 directly compares the results of an ideal Qiskit
Aer simulator for n = 3 and τ = p = 1/4 with an ex-
periment on the IBM Quantum System One for the ob-
servable f(x) = sinx and an initial uniform superposi-

tion state |Ω〉 (approximating |ξ̂e,n〉). Despite the noise
caused by decoherence, the evolution of probability den-
sities (Fig. 9(b)) and expectation values (Fig. 9(c)) ob-
tained from the NISQ device remain consistent with the
Qiskit simulation (Fig. 9(a,c)). The number of shots,
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FIG. 9. Comparison of 3-qubit approximations of a circle rotation with frequency α1 = 2π from simulated circuit experiments
in the ideal Qiskit Aer environment (ideal) and actual quantum computing experiments on the IBM Quantum System One
(ibmq). (a) Temporal evolution of the empirical probability similar to Fig. 6(d) in the ideal Qiskit circuit simulation, using
amplitude encoding with QuantumCircuit.initialize for the state preparation and the RKHA parameters p = τ = 1/4.
(b) Temporal evolution of the empirical probability distributions for n = 3 on the quantum computer starting with a uniform

superposition state |Ω〉 at t = 0. (d) Reconstruction of the classical observable f (t)(x) = sin(x(t)) = sin(θ1 + α1t) from the

ensemble means, f̂
(t)
n (x). The analytical result f (t)(x) is plotted as a solid line. In all panels, the initial condition is x = θ1 = 0.

Measurements are performed at a fixed timestep ∆t = 0.02. The number of shots is K = 218 = 262,144 in both cases.

which is limited to 8192 on the Quantum System One,
was enhanced to 218 by aggregating results from multiple
jobs.

Unfortunately, increasing the number of qubits beyond
n = 3 led to noticeable degradation of the results on the
quantum computer relative to the Qiskit simulations, de-
spite our best efforts to manage noise and decoherence
with the tools available to us. Still, to our knowledge,
the n = 3 results reported in this section constitute the
first successful simulation of an observable of a classical
dynamical system on a manifold by an actual NISQ de-
vice. We expect that as the coherence characteristics,
error mitigation and/or circuit optimization schemes for
quantum computation improve, the QECD framework
presented in this paper will successfully scale to higher
qubit numbers.

XII. SUMMARY AND OUTLOOK

We have developed a framework for approximating
the evolution of observables of a classical dynamical
system by a finite-dimensional quantum system imple-
mentable on an actual quantum computer. The proce-
dure, which we refer to as quantum embedding of clas-
sical dynamics (QECD), takes the classical system as an
input, and passes through intermediate classical statisti-
cal, infinite-dimensional quantum mechanical, and finite-
dimensional quantum mechanical (matrix-mechanical),
representations, ultimately arriving at an n-qubit quan-
tum computational representation of the system. We
have thus addressed the full pipeline starting from the
classical dynamical system all the way to its experimen-
tal verification on a real quantum computer, the IBM
Quantum System One.

For the class of dynamical systems under study (i.e.,
measure-preserving, ergodic dynamical systems with
pure point spectra), QECD is able to simulate a 2n-
dimensional Hilbert space of classical observables using
circuits of size O(n2) and depth O(n). This constitutes
an exponential advantage over deterministic classical al-
gorithms for Koopman operator approximation, where
the cost scales linearly with the subspace dimension,
i.e., is O(2n). In addition, the quantum state encod-
ing of the initial classical state is efficiently prepared,
and predictions from the quantum computational sys-
tem are extracted through projective measurement in the
standard computational basis without requiring postpro-
cessing techniques such as quantum state tomography.
QECD also has a near-quadratic computational advan-
tage over randomized classical algorithms for quantum
circuit simulation [63, 65] due to issues associated with
uniform rational approximation of phase rotation gates
over continuous time intervals (see Sec. IX).

One of the mathematical underpinnings of our ap-
proach is the theory of reproducing kernel Hilbert spaces
(RKHSs). RKHS theory is widely used in kernel meth-
ods for machine learning, but was employed here to con-
struct quantum mechanical analogs of feature maps that
behave consistently under classical function evaluation
and quantum mechanical expectation. A further founda-
tional ingredient is the operator-theoretic description of
dynamical systems, which utilizes linear Koopman opera-
tors to characterize the action of a (nonlinear) dynamical
system on observables.

We described how QECD proceeds along two compos-
ite mappings, one taking state variables x 7→ ρ̂x,n to den-
sity operators ρ̂x,n on an n-qubit Hilbert space, Bn, and

another one taking classical observables f 7→ Ŝn to self-
adjoint operators Ŝn on Bn. A key aspect of the resulting
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quantum system is a tensor product factorization of its
Hamiltonian in terms of Walsh operators, yielding quan-
tum circuits of low size and depth. In particular, it was
shown that for an ergodic dynamical system with finitely-
generated pure point spectrum, this results in a circuit
of size O(n) and no cross-channel communication, imple-
menting unitary Koopman evolution. The QECD frame-
work also includes a state preparation stage of size O(n),
as well as a quantum Fourier transform (QFT) stage of
size O(n2) to enable information retrieval through mea-
surement in the computational basis.

The scheme exhibits three types of approximation er-
ror, all of which can be controlled, as we have shown, in
appropriate asymptotic limits:

1. Finite-dimensional approximation errors due to
projection of the infinite-dimensional quantum sys-
tem on the RKHSH to the finite-dimensional quan-
tum computational system on Bn. These errors
vanish as n → ∞, and the uniform convergence
is unconditional on the defining parameters of H
if idealized state preparation and measurement is
employed (see Sec. V).

2. Bias errors due to preparation of an approximate
initial quantum state and measurement of an ap-
proximate observable using efficient circuits. These
errors vanish in a joint limit of decreasing RKHS
parameter τ and increasing n (see Secs. VII, VIII,
and Appendix C).

3. Monte Carlo errors associated with approximation
of quantum mechanical expectations with a finite
number of measurement shots (see Sec. VII B).
These errors vanish as the number of shots, K, in-
creases at fixed n and τ .

We illustrated our approach with periodic and
quasiperiodic dynamical systems on the circle and 2-
torus, respectively, where many aspects of the quantum
embedding of classical dynamics can be directly vali-
dated against closed-form solutions. Our numerical ex-
periments were based on simulated quantum circuits of
up to n = 8 qubits, implemented using the Qiskit frame-
work. In addition we demonstrated the ability of our
framework to deal with a classical dynamical system on
a real noisy quantum computer. The results demon-
strated high-fidelity simulation of the evolution of clas-
sical observables through ensemble averages of indepen-
dent quantum measurements. Our approach is straight-
forwardly generalizable to quasiperiodic dynamics of ar-
bitrarily large intrinsic dimension through parallel com-
position of quantum circuits.

The work presented in this paper should be considered
a first step, particularly given its focus on systems with
pure point spectra. Applications of the procedure to mix-
ing (chaotic) dynamical systems will invariably have to
deal with the continuous spectrum of the Koopman op-
erator, potentially generating quantum circuits of higher
connectivity than for quasiperiodic dynamics. Studies

in this direction are currently underway using RKHS-
based spectral discretization approaches for Koopman
operators [29] (see Appendix E 3 b), which are able to
consistently approximate, in a spectral sense, measure-
preserving, ergodic dynamical flows of arbitrary spec-
tral character (pure point spectrum, mixed spectrum,
and continuous spectrum) by unitary evolution groups
with pure point spectra. A possible route to generalize
QECD to this class of systems is to employ the scheme
of Ref. [29] to first approximate the Koopman group on
L2(µ) by a unitary evolution group on an RKHS with a
discrete spectrum, and then apply the quantum compu-
tational techniques developed in this paper to simulate
the discrete-spectrum system.

Another avenue of future research is to develop data-
driven formulations of the present quantum embedding
framework, using kernel methods to build orthonormal
bases from dynamical trajectory data, and employ these
bases to represent quantum mechanical states and ob-
servables [25] (see Appendix E). This line of research
would address the important problem of how errors in
data-driven approximation of Koopman operators propa-
gate into errors in the dynamical predictions made by the
quantum computer. In addition, insights from classical
data-driven approximation techniques for Koopman op-
erators should lead to a systematic development of quan-
tum machine learning algorithms that can describe clas-
sical dynamical systems on NISQ devices. This comprises
not only classification and regression tasks [36], but also
the development of data-driven quantum algorithms for
modeling nonlinear dynamics in high-dimensional phase
spaces. A longer-term goal would be to explore applica-
tions of quantum mechanical methodologies to perform
simulation and forecasting of real-world systems such as
climate dynamics [86] and turbulent fluid flows [87].
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Appendix A: Quantum mechanical representation of
classical observables

In this appendix, we state various properties and re-
sults on the representation of classical observables by
quantum mechanical operators employed in the main
text.

1. Banach ∗-algebra structure of A

The fact that the RKHA A from Sec. III B is an
abelian, unital, Banach ∗-algebra under pointwise mul-
tiplication of functions means that it has the following
defining properties:

1. A is closed under pointwise multiplication of func-
tions, i.e., the function h : X → C with h(x) =
f(x)g(x) lies in A whenever f and g lie in A.
Thus, A is an algebra, and is clearly abelian since
fg = gf .

2. A is equipped with an antilinear involution oper-
ation ∗ : A → A given by complex conjugation of
functions, i.e. (f∗)(x) = f(x)∗. Thus, A is also a
∗-algebra.

3. There exists a constant C > 0 such that for every
f, g ∈ A the relationships

‖fg‖A ≤ C‖f‖A‖g‖A, ‖f∗‖A = ‖f‖A, (A1)

hold. Thus, A is a Banach ∗-algebra.

4. The function 1X : X → C equal everywhere to 1
lies in A and satisfies 1Xf = f for all f ∈ A. Thus,
finally A is also unital.

More generally, the topic of Banach function algebras
on locally compact abelian groups (with respect to ei-
ther pointwise multiplication or convolution), has a long
history of study; e.g., [49, 88–91].

2. Injectivity of the map T̃

We verify the assertion made in Section IV C that the
map T̃ : A → B(A) is injective on Asa. For that, it is

enough to show that if T̃ f = 0 for f ∈ Asa, then f = 0.

By definition of T̃ , T̃ f = 0 implies that πf = −(πf)∗,
or, equivalently

〈ψi, fψj〉A = −〈fψi, ψj〉A, ∀i, j ∈ Zd. (A2)

Expanding f =
∑
l∈Zd f̃lψl, and setting i = 0 in (A2), we

get

f̃∗j = −cj,−j f̃−j .

However, because f is real, we have f̃∗j = f̃−j , and since

cj,−j is nonzero we conclude that f̃j = 0, and thus f = 0.

3. Consistency of representations based on the
reproducing kernel Hilbert space H

Recall the construction of the RKHS H in Sec. IV A.
Even though H is a strict subspace of the RKHA A, the
quantum feature map F : X → Q(H) from (21) allows us
to consistently recover all predictions made for classical
observables obtained via the feature map F̃ : X → Q(A)
of A in (23), as we now describe.

First, observe that by definition of %x = F̃(x) and
ρx = F(x), we have

ρx =
κ̃

κ
Πρx, (A3)

where Π is the projector onto B(H), defined in (28). As
a result, if A ∈ B(A) is a quantum mechanical observable
whose range is included in H (so that A is well-defined
as an operator on H), and whose nullspace includes the
orthogonal complement H⊥ in A, we have

〈A〉%x =
κ

κ̃
〈A〉ρx . (A4)

Indeed, since every observable A in this class satisfies
ΠA = A, using (A3) and the cyclic property of the trace,
we get

〈A〉%x = tr(%xA) = tr(%x(ΠA))

= tr(%xΠAΠ) = tr(Π%xΠA)

=
κ

κ̃
tr(ρxA) =

κ

κ̃
〈A〉ρx ,

which verifies (A4). Thus, for all observables A ∈ B(A)
satisfying

ranA ⊆ H, kerA ⊇ H⊥, (A5)

expectation values with respect to %x can be recovered
from expectation values with respect to %x up to a con-
stant scaling factor. For our purposes, this means that
the quantum mechanical observables Π(πf) and Π(T̃ f)

obtained through the projections Ππ and ΠT̃ of π and
T̃ from (24) and (25), respectively, satisfy (A4).

As noted in Sec. IV C 2, in order to reach consistency
between classical function evaluation and quantum me-
chanical expectation, analogously to (31), we introduce
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the modified representation maps $ : A → B(H) and
T : A → B(H) in (29) to account for scaling errors. We
reproduce the definitions here for convenience:

$ = ΠπL−1, T = ΠT̃L−1.

We define L : A→ A as the self-adjoint, diagonal opera-
tor satisfying the eigenvalue equation

Lψl =
ηl
κ
ψl with ηl =

∑
j∈J′l

e−τ |j|
p

, (A6)

where J ′l is the index set defined as

J ′l = {j ∈ J : j + l ∈ J}.

Note that by construction of J ′l , the numbers ηl are
strictly positive, and have the maximum value η0 = κ.
Moreover, the ηl attain their smallest value, e−τ , when
|l| = 1, i.e., the multi-index l = (l1, . . . , ld) ∈ Zd has
exactly one entry li equal to ±1 and all other entries
equal to 0. As a result, L is an invertible operator with
bounded inverse, satisfying

L−1ψl =
κ

ηl
ψl.

Since κ/ηl ≥ 1, we deduce that L−1 acts by inflating the
expansion coefficients of elements of A in the {ψj} basis.

We then have:

Proposition 1. The following classical–quantum consis-
tency relation holds for every f ∈ A and x ∈ X:

f(x) = 〈$f〉ρx .

Moreover, if f is a real-valued observable in Asa, we have

f(x) = 〈Tf〉ρx

Proof. Suppose that g = ψl for some l ∈ Zd, and let
A = ΠAg, where Ag = πψl ∈ B(A) is the multiplication
operator by ψl. Then, A satisfies (A5), and using (A4),

we get

〈A〉ρx =
κ̃

κ
〈A〉%x =

κ̃

κ
tr(%xΠAgΠ)

=
κ̃

κ

∑
j∈Zd
〈ψj , %xΠAgΠψj〉A

=
κ̃

κ

∑
j∈J
〈ψj , %xΠAgψj〉A

=
κ̃

κ

∑
j∈J
〈ψj , %xΠ(ψlψj)〉A

=
1

κ

∑
j∈J
〈k̃x,Π(ψlψj)〉A〈ψj , k̃x〉A

=
1

κ

∑
j∈J′l

〈kx, ψlψj〉A〈kx, ψj〉∗A

=
1

κ

∑
j∈J′l

ψ∗j (x)ψj(x)ψl(x)

=
1

κ

∑
j∈J′l

e−τ |j|
p |φj(x)|2ψl(x)

=
1

κ

∑
j∈J′l

e−τ |j|
p

ψl(x)

=
ηl
κ
ψl(x) = Lψl(x). (A7)

Meanwhile, an application of (31) for f = Lψl gives

Lψl(x) = 〈π(Lψl)〉%x , (A8)

and combining (A7) and (A8) we arrive at

〈Π(πg)〉ρx = 〈π(Lg)〉%x , (A9)

where g = ψl. Since the basis vector ψl was arbitrary,
it follows by linearity that (A9) holds for every g ∈ A.
Setting, in particular, g = L−1f yields

〈Π(π(L−1f))〉ρx = 〈πf〉%x ⇐⇒ 〈$f〉ρx = f(x),

which confirms the first claim of the proposition. The
second claim, f(x) = 〈Tf〉ρx , follows similarly under the
additional assumption that f∗ = f .

4. Dynamics on the reproducing kernel Hilbert
space H

By construction, the RKHS H is a Koopman-invariant
subspace of A, i.e., U tH = H for all t ∈ R. As a result, we
can define a generator V : D(V )→ H with D(V ) ⊂ H, a
corresponding Koopman operator U t : H → H, and cor-
responding evolution maps on observables, U t : B(H)→
B(H), and states, Ψt : Q(H)→ Q(H) analogously to the
corresponding operators associated with A. These opera-
tors satisfy the compatibility relations (cf. (35) and (37))

U t($f) = $(U tf), Ψt(F(x)) = F(Φt(x))
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for every f ∈ A, x ∈ X, and t ∈ R, where $ : A→ B(H)
is the map on observables in (29) and F : X → Q(H)
the quantum feature map in (21). In addition, using the
consistency relations in Proposition 1 and (39), we get

U tf(x) = 〈U t($f)〉ρx = 〈$f〉Ψt(ρx),

U tf(x) = 〈U t(Tf)〉ρx = 〈Tf〉Ψt(ρx),
(A10)

where T : H → B(H) was defined in (29), and the equal-
ities in the second line hold for real-valued functions in
H. It follows from (A10) that we can consistently rep-
resent the evolution of classical observables in A (which
is a dense subspace of C(X)) by quantum mechanical
evolution of observables in B(H), even though H is a
non-dense subspace of A.

5. Uniform convergence

In what follows, ‖·‖ will denote the operator norm of
bounded operators on H, and ‖·‖1 will denote the trace
norm of trace-class operators on H, i.e.,

‖A‖ = sup
f∈H\{0}

‖Af‖H
‖f‖H

, ‖A‖1 = tr(
√
A∗A).

Here,
√
A∗A ≡ R is the positive square root of A∗A,

i.e., the unique positive operator R ∈ B(H) such that
R2 = A∗A. We recall that the trace norm of a rank-1
operator of the form A = 〈f, ·〉Hg with f, g ∈ H is given
by

‖A‖1 = ‖f‖H‖g‖H. (A11)

Moreover, for any trace-class operator A : H → H and
bounded operator B ∈ B(H) we have

|tr(AB)| ≤ ‖A‖1‖B‖. (A12)

The following lemma establishes that as n → ∞ the
density operators ρx,n from Sec. V converge to ρx in the
trace norm, uniformly with respect to the initial condi-
tion x.

Lemma 2. With the notation of Sec. V, we have
limn→∞‖ρx,n − ρx‖1 = 0, where the convergence is uni-
form with respect to x ∈ X.

Proof. Let

ρ̆x,n = Πnρx =
κn
κ
ρx,n.

We have

‖ρx,n − ρx‖1 = ‖ρx,n − ρ̆x,n + ρ̆x,n − ρx‖1
≤ ‖ρx,n − ρ̆x,n‖1 + ‖ρ̆x,n − ρx‖1
=
∣∣∣1− κn

κ

∣∣∣ ‖ρx,n‖1 + ‖ρ̆x,n − ρx‖1

= 1− κn
κ

+ ‖ρ̆x,n − ρx‖1. (A13)

Moreover,

‖ρ̆x,n − ρx‖1
=

1

κ
‖〈kx,n, ·〉Hkx,n − 〈kx, ·〉Hkx‖1

=
1

κ
‖〈kx,n, ·〉Hkx,n − 〈kx, ·〉Hkx,n

+ 〈kx, ·〉Hkx,n − 〈kx, ·〉Hkx‖1
≤ 1

κ
(‖〈kx,n − kx, ·〉Hkx,n‖1 + ‖〈kx, ·〉H(kx,n − kx)‖1)

=
1

κ
(‖kx,n − kx‖H‖kx,n‖H + ‖kx‖H‖kx,n − kx‖H)

≤ 2

κ
‖kx‖H‖kx,n − kx‖H

=
1

2
‖kx,n − kx‖H,

where we used (A11) to obtain the equality in the third
to last line and the fact that ‖kx,n‖H < ‖kx‖H (which
follows from (41)) to arrive at the second to last line.
Using again (41), we get

‖kx,n − kx‖H =

∥∥∥∥∥∥
∑

j∈J\Jn

ψ∗j (x)ψj

∥∥∥∥∥∥
H

=

√ ∑
j∈J\Jn

|ψj(x)|2 =

√ ∑
j∈J\Jn

e−τ |j|p ,

and inserting this result in (A13) it follows that

‖ρx,n − ρx‖1 ≤ 1− κn
κ

+
1

2

√ ∑
j∈J\Jn

e−τ |j|p . (A14)

Taking the n→∞ limit, we obtain

lim
n→∞

‖ρx,n − ρx‖1 = 0,

as claimed, and since the right-hand side of (A14) does
not depend on x it follows that the convergence to the
limit uniform.

Using Lemma 2, we show that the predictions made
by the finite-dimensional quantum systems on Hn con-
structed in Sec. V converge, as n → ∞, to those made
by the infinite-dimensional system on H, uniformly with
respect to the initial condition x and evolution time t.

Proposition 3. With the notation of Sec. V, for any
quantum mechanical observable A ∈ B(H) we have

lim
n→∞

〈An〉Ψtn(ρx,n) = 〈A〉Ψt(ρx),

where the convergence is uniform with respect to x ∈ X
and t ∈ R.

Proof. As in Sec. V, we identify An ∈ B(Hn) with the

unique observable Ãn ∈ B(H) such that Ãnf = Anf if
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f lies in Hn, and Ãnf = 0 if f lies in the orthogonal
complement of Hn in H. With this identification, we
have

〈An〉Ψtn(ρx,n) = tr(Ψt
n(ρx,n)An)

= tr(ρx,nU tnAn)

= tr(ρx,nU tΠnA)

= tr(ρx,nΠnU tA)

= tr((Πnρx,n)U tA)

= tr(ρx,nU tA),

where we used the commutative relations in (44) to ob-
tain the equality in the fourth line and the fact that ρx,n
is invariant under Πn to obtain the final equality. There-
fore, using the fact that U t is an isometry of B(H), i.e.,
‖U tA‖ = ‖A‖, we obtain

|〈An〉Ψtx(ρx,n) − 〈A〉Ψt(ρx)| = |tr((ρx,n − ρx)U tA)|
≤ ‖ρx,n − ρx‖1‖U tA‖
≤ ‖ρx,n − ρx‖1‖A‖. (A15)

It therefore follows by Lemma 2 that

lim
n→∞

|〈An〉Ψtx(ρx,n) − 〈A〉Ψt(ρx)| = 0,

as claimed. The convergence is uniform with respect to
x ∈ X by Lemma 2, and it is uniform with respect to
t ∈ R since the right-hand side of (A15) does not depend
on t.

Before closing this appendix, we manipulate the bound
in (A14) to bring it in a simplified form for use in the
complexity analysis in Sec. IX. First, we have

1− κn
κ

=
1

κ

∑
j∈J\Jn

e−τ |j|
p

,

and inserting this expression in (A14) leads to

‖ρx,n − ρx‖1 ≤
1

κ
Sn +

1

2

√
Sn, (A16)

where

Sn =
∑

j∈J\Jn

e−τ |j|
p

.

Next, letting τ̃ ∈ (0, τ) be arbitrary, we have

Sn = e−τ̃d
pnp

∑
j∈J\Jn

eτ̃d
pnp−τ |j|p .

Observe that since τ̃ < τ and |j|p > dpnp for every j ∈
J \Jn, the exponents d̃pnp− τ |j|p are all negative. Using
concavity arguments for the function f(u) = up (as done
in Appendix C 4 ahead), it can be shown that the sums

S̃n =
∑
j∈J\Jn e

τ̃dpnp−τ |j|p are uniformly bounded with

respect to n. Using this result in (A16), we get

‖ρx,n − ρx‖1 ≤
C̃

κ
e−τ̃d

pnp +

√
C̃

2
e−τ̃d

pnp/2,

where C̃ is an upper bound for S̃n. It therefore follows
that there exists a constant C such that

‖ρx,n − ρx‖1 ≤ Ce−τ̃d
pnp/2. (A17)

Since the state ρx,n is unitarily equivalent to the quan-
tum computational state ρ̂x,n from (67), we can use (A17)
as an upper bound of the approximation error of the
infinite-dimensional state ρx by the n-qubit state em-
ployed by QECD. Moreover, since the right-hand side
of (A17) is independent of the initial condition x and
we have Ψtρx = ρx(Φt) and Ψtρx,n = ρΦt(x),n we can
conclude that the bound applies for any evolution time
t ∈ R, i.e.,

‖ρ(t)
x,n − ρ(t)

x ‖1 ≤ Ce−τ̃d
pnp/2. (A18)

Appendix B: Walsh operator representation of the
Koopman generator

In this appendix, we lay out the calculation of the
discrete Walsh transform of the spectral function h ∈
L2
n([0, 1]) of the Hamiltonian Hn induced by the Koop-

man generator of a quasiperiodic dynamical system, de-
fined in (62). In particular, we show that h is ex-
pressible as a linear combination of Rademacher func-
tions Rl = w2l (without contributions from more gen-
eral Walsh functions), leading to the factorization of Hn

in (63).
First, by (14) and (62), for any m ∈ {0, . . . , 2n−1} we

have

h
(m

2n

)
= ωj = α1j1 + α2j2 + . . .+ adjd, (B1)

where j1, . . . , jd are integers in the set J1, defined
uniquely by the property that the concatenated binary
strings η(j1), . . . , η(jd) give the dyadic decomposition of
m/2n,

γ
(m

2n

)
= (η(j1), . . . , η(jd)). (B2)

We can express the left-hand side of (B2) in terms of
Rademacher functions using (58), viz.

γ
(m

2n

)
=
[
γ1

(m
2n

)
, . . . , γn

(m
2n

)]
=

1

2
− 1

2

[
R0

(m
2n

)
, . . . , Rn−1

(m
2n

)]
. (B3)

Meanwhile, setting mi = o(ji) and using again (58), the
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right-hand side of (B2) becomes

[η(j1), η(j2), . . . , η(jd)]

=
[
γ
( m1

2n/d

)
, . . . , γ

( md

2n/d

)]
=

1

2
− 1

2

[
R0

( m1

2n/d

)
, . . . , Rn/d−1

( m1

2n/d

)
R0

( m2

2n/d

)
, . . . , Rn/d−1

( m2

2n/d

)
,

. . . . . .

R0

( md

2n/d

)
, . . . , Rn/d−1

( md

2n/d

)]
.

(B4)

Substituting for γ(m/2n) and (η(j1), . . . , η(jd)) in (B2)
using (B3) and (B4), respectively, we deduce that for
each i ∈ {1, . . . , d} and l ∈ {0, . . . , n− 1}

Rl

(m
2n

)
= Rl−(i−1)n/d

( mi

2n/d

)
, (B5)

for all m ∈ {0, . . . , 2n − 1}.
Observe now that for ji ∈ J1,

ji =

{
mi − 2n/d−1 : 0 ≤ mi ≤ 2n/d−1 − 1

mi − 2n/d−1 + 1 : 2n/d−1 ≤ mi ≤ 2n/d − 1

=

n/d−1∑
l=0

1−Rl
( mi

2n/d

)
2l+2−n/d +

1−R0

( mi

2n/d

)
2

− 2n/d−1

= −
n/d−1∑
l=0

Rl

( mi

2n/d

)
2l+2−n/d −

R0

( mi

2n/d

)
2

= −
n/d−1∑
l=0

Rl+(i−1)n/d

(m
2n

)
2l+2−n/d −

R(i−1)n/d

(m
2n

)
2

,

where we used (B5) to obtain the last line. Substituting
the above in (B1), we obtain

h
(m

2n

)
= −

d∑
i=1

αi

n/d−1∑
l=0

Rl+(i−1)n/d

(m
2n

)
2−l−2+n/d


−

d∑
i=1

αi
2
R(i−1)n/d

(m
2n

)

= −
d∑
i=1

αi
2

n/d−1∑
l=0

(
2−l−1+n/d + δl0

)
×Rl+(i−1)n/d

(m
2n

)
.

We therefore conclude that for a quasiperiodic system,
the spectral function of the generator h is expressible as a
linear combination of Rademacher functions. Explicitly,
we have

h =

d∑
i=1

n/d−1∑
l=0

ĥ2l+(i−1)n/dRl+(i−1)n/d, (B6)

with

ĥ2l+(i−1)n/d = −αi(2−l−1+n/d + δl0)/2, (B7)

which is consistent with the factorization of the Hamil-
tonian Hn in (63).

Appendix C: Approximate diagonalization of
observables using the quantum Fourier transform

In this appendix, we perform an analysis of approxi-
mate diagonalization of quantum mechanical observables
induced at the quantum computational level from classi-
cal observables through the use of the QFT. In Appen-
dices C 1 and C 2, we describe how such quantum me-
chanical observables become increasingly diagonal as the
number of qubits n increases, and provide explicit bounds
verifying the approximate eigenvalue equation (76). In
Appendix C 3, we show that quantum mechanical expec-
tation values of the approximately diagonalized observ-
ables converge to the true expectation values in a limit
of infinite qubit number n and vanishing RKHA param-
eter τ . Appendices C 4 and C 5 contain proofs of two
auxiliary lemmas, Lemma 4 and 6, which are stated in
Appendices C 1 and C 3, respectively.

1. Approximate diagonalization in dimension d = 1

We begin with the one-dimensional case, d = 1, where
X = S1. In this case, the index set Jn in (17) becomes
Jn = Jn,1 = {−N/2, . . . ,−1, 1, . . . , N/2} with N = 2n,
and the map Fn,d in (73) reduces to the standard n-qubit
QFT, Fn,d ≡ Fn. We also recall that p ∈ (0, 1) and τ > 0
are the parameters associated with the RKHA A.

a. Diagonalization using the regular representation π

Fixing m ∈ Z, consider the regular representer (mul-
tiplication map) πψm ∈ B(A) of basis vector ψm, the
associated quantum computational observable

Âm,n := (Wn ◦Πn ◦Π ◦ π)ψm ∈ B(Bn),

and the Fourier-transformed observable

Ãm,n = FnÂm,n ≡ F∗nÂm,nFn. (C1)

First, note that by definition of the projection Πn, Âm,n
is the zero operator (and thus trivially diagonal) when-
ever |m| > N/2. This is a manifestation of an effective
“Nyquist limit” on the wavenumber m of classical ob-
servables that can be resolved by the finite-dimensional
system on Bn. Here, we are interested in characteriz-
ing the behavior of Âm,n in the “well-resolved” regime,
|m| � N/2. The following lemma provides a bound

showing that (a) such well-resolved observables Âm,n are
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approximately diagonal in the quantum computational
basis {|0〉, . . . , |N−1〉}; and (b) the diagonal part approx-
imately recovers the values of ψm at particular points on
the circle S1.

Lemma 4. With the notation of (C1), the observable

Ãm,n satisfies

(Ãm,n)kl := 〈k|Ãm,n|l〉 = ψm(θl)δkl + εmnkl,

where θl = 2πl/N , and εmnkl is a residual obeying the
bound

|εmnkl| ≤
Cτ |m|
N1−p +

(2|m|+ 1)e−τ |m|
p

N
,

for a constant C independent of k, l, m, n, p, and τ .

A proof of Lemma 4 will be given in Appendix C 4.
Using this basic result, we can derive error estimates for
more general quantum mechanical observables than those
induced by the individual basis functions ψm.

First, note that the terms (2|m| + 1)e−τ |m|
p

, m ∈ Z,
are bounded by a constant that depends on p and τ (and
diverges as either of these parameters tends to 0). More-
over, since p > 0, 1/N is bounded by a constant times
1/N1−p. Thus, for every p ∈ (0, 1) and τ > 0 there exists
a constant Cp,τ such that for all m ∈ Z,

(2|m|+ 1)e−τ |m|
p

N
≤ Cp,τ
N1−p .

This means that we can simplify the estimate for |εmnkl|
in Lemma 4 to (the less precise) bound

|εmnkl| ≤
Cp,τ + Cτ |m|

N1−p . (C2)

Using (C2), we estimate the square norm of the residual

|rmnl〉 := Ãm,n|l〉 − ψm(θl)|l〉

as

‖rmnl‖2Bn = ‖(Ãm,n − ψm(θl)|l〉)‖2Bn

=

N−1∑
k=0

|〈k|Ãm,n − ψm(θl)I|l〉|2

=

N−1∑
k=0

|εmnkl|2

≤
N−1∑
k=0

(Cp,τ + Cτ |m|)2

N2(1−p)

=
(Cp,τ + Cτ |m|)2

N1−2p
,

giving

‖rmnl‖Bn ≤
Cp,τ + Cτ |m|

N1/2−p . (C3)

Thus, so long as p < 1/2, the norm of the residual con-
verges to zero as n → ∞, uniformly with respect to
l ∈ N0.

We next generalize to bandlimited observables, i.e., ob-
servables f (M) : X → C for which there exists M ∈ N
such that f (M) =

∑M
m=−M f̂mφm, where the φm are the

Fourier functions on X, and the f̂m are complex expan-
sion coefficients. We denote the vector space of such
bandlimited observables on X by B. Note that B is
a dense subalgebra of C(X), and is also a dense subal-
gebra of A for any τ > 0 and p ∈ (0, 1) (in the respec-
tive norms). In particular, viewed as an element of A,

f (M) =
∑m
m=−M f̂mφm can be equivalently expressed as

f =
∑M
m=−M f̃mψm, where f̃m = eτ |m|

p/2f̂m.

By linearity, every such observable f (M) ∈ B is repre-
sented at the quantum computational level by

Â(M)
n := (Wn ◦Πn ◦Π ◦ π)f (M) =

M∑
m=−M

f̃mÂm,n,

and after application of the QFT by

Ã(M)
n = FnÂ

(M)
n =

M∑
m=−M

f̃mÃm,n. (C4)

Thus, using Lemma 4 and (C3), we obtain

〈k|Ã(M)
n |l〉 =

M∑
m=−M

f̃m〈k|Ãm,n|l〉

=

M∑
m=−M

f̃mψm(θl)δkl +

M∑
m=−M

f̃mεmnkl

= f (M)(θl)δkl + ε
(M)
nkl ,

where the residual ε
(M)
nkl :=

∑M
m=−M f̃mεmnkl can be es-

timated as

|ε(M)
nkl | =

∣∣∣∣∣
M∑

m=−M
f̃mεmnkl

∣∣∣∣∣
≤
(

M∑
m=−M

|f̃m|2
)1/2( M∑

m=−M
|εmnkl|2

)1/2

≤ ‖f (M)‖A
1

N1−p

(
M∑

m=−M
(Cp,τ + Cτ |m|)2

)1/2

.

We thus conclude that for bandlimited observables the
off-diagonal residual ε

(M)
nkl vanishes as n → ∞ at fixed

p and τ , uniformly with respect to k, l ∈ N0. For later
convenience, we set

C2
p,τ,M =

M∑
m=−M

(Cp,τ + Cτ |m|)2,



36

so that

|ε(M)
nkl | ≤

Cp,τ,M
N1−p ‖f‖A. (C5)

Analogously to (C3) we can bound the norm of the resid-

ual |r(M)
nl 〉 := Ã

(M)
n |l〉 − f (M)(θl)|l〉 as

‖r(M)
nl ‖Bn =

(
N−1∑
k=0

|ε(M)
nkl |2

)1/2

≤ ‖f (M)‖A
Cp,τ,M
N1/2−p ,

(C6)
and we deduce that the residual vanishes as n → ∞ if
p < 1/2.

Suppose now that f =
∑∞
m=−∞ f̃mψm ∈ A is

not bandlimited. Then, for any ε > 0 there exists
M ∈ N0 such that the bandlimited observable f (M) :=∑M
m=−M f̃mψm ∈ B satisfies

‖f − f (M)‖A < ε. (C7)

Defining

Ãn := (Fn ◦Wn ◦Πn ◦Π ◦ π)f (C8)

and Ã
(M)
n by (C4), we get

|〈k|Ãn|l〉 − f(θl)δkl| = |〈k|(Ãn − Ã(M)
n )|l〉

− (f(θl)− f (M)(θl))δkl

+ 〈k|Ã(M)
n |l〉 − f (M)(θl)δkl|

≤ |〈k|(Ãn − Ã(M)
n )|l〉|

+ |f(θl)− f (M)(θl)|
+ |〈k|Ã(M)

n |l〉 − f (M)(θl)δkl|.

To bound the terms in the right-hand side of the last in-
equality, note first that the operators π : A → B(A),
Π : B(A) → B(H), Πn : B(H) → B(Hn), Wn :
B(Hn) → B(Bn), and Fn : B(Bn) → B(Bn) all have
unit norm. Using this fact, it follows that

|〈k|Ãn − Ã(M)
n |l〉|

= |〈k|(Wn ◦Πn ◦Π ◦ π)(f − f (M))|l〉|
≤ ‖(Wn ◦Πn ◦Π ◦ π)(f − f (M))‖Bn
≤ ‖Wn‖‖Πn‖‖Π‖‖π‖‖f − f (M)‖A
< ε‖f − f (M)‖A.

Moreover, it follows from the reproducing property of A
that

|f(θl)− f (M)(θl)| = |〈kθl , f − f (M)〉A|
≤ ‖kθl‖A‖f − f (M)‖A
< κε.

Using these bounds and (C5), we obtain

|〈k|Ãn|l〉 − f(θl)δkl| ≤ ε(1 + κ)‖f‖A

+
Cp,τ,M
N1−p ‖f

(M)‖A

≤
(

(1 + κ)ε+
Cp,τ,M
N1−p

)
‖f‖A.

In particular, for large-enough N we have

Cp,τ,M
N1−p < ε,

and thus

|〈k|Ãn|l〉 − f(θl)δkl| ≤ ε(2 + κ)‖f‖A. (C9)

Since ε was arbitrary, we conclude that as n → ∞,
|〈k|Ãn|l〉 − f(θl)δkl| converges to 0, i.e., the matrix ele-

ments of the quantum mechanical observable Ãn are con-
sistently approximated by the matrix elements of the di-
agonal observable associated with the values f(θl). Note
that unlike the bandlimited case we do not have an ex-
plicit rate for this convergence.

Consider now the residual

|rnl〉 = Ãn|l〉 − f(θl)|l〉. (C10)

In order to examine the asymptotic behavior of |rnl〉 as
n → ∞, it is useful to view the spaces Bn as a nested
family of subspaces of the sequence space `2, i.e., B1 ⊂
B2 ⊂ · · · ⊂ `2. With this identification, {|0〉, |1〉, . . .} is an
orthonormal basis of `2, and |r1l〉, |r2l〉, . . . is a bounded
sequence in `2. According to (C9), for any k ∈ N0, this
sequence satisfies

lim
n→∞

〈k|rnl〉Bn = 0.

It then follows from standard Hilbert space results that
as n → ∞, |rnl〉 converges to zero in the weak topology
of `2. That is, for any u ∈ `2, we have

lim
n→∞

〈un|rnl〉Bn → 0, (C11)

where un is the orthogonal projection of u onto Bn.
In summary, in dimension d = 1, the residual |rnl〉

from (C10) converges weakly to zero as n → ∞ for any
f ∈ A. Moreover, if f is bandlimited, the convergence
is strong (i.e., the residual norm vanishes) with a rate of
convergence estimated by (C6).

b. Diagonalization using the self-adjoint representation T̃

Using the estimates obtained in Appendix C 1 a, we
now derive approximate diagonalization results for the
self-adjoint observables induced by the map T̃ : A →
B(A) in (25). For any f ∈ A, consider the self-adjoint

observable S̃n ∈ B(Bn) with

S̃n = (Fn ◦Wn ◦Πn ◦Π ◦ T̃ )f ≡ Ãn + Ã∗n
2

, (C12)
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where Ãn is defined in (C8). Then, we have

|〈k|S̃n|l〉 − Re f(θl)|

=
1

2
|〈k|Ãn|l〉 − f(θl)δkl + 〈k|Ã∗n|l〉 − f∗(θl)δkl|

≤ 1

2
|〈k|Ãn|l〉 − f(θl)δkl|+ |〈k|Ã∗n|l〉 − f∗(θl)δkl|

=
1

2
|〈k|Ãn|l〉 − f(θl)δkl|+ |(〈l|Ãn|k〉 − f(θl)δkl)

∗|

=
1

2
|〈k|Ãn|l〉 − f(θl)δkl|+ |〈l|Ãn|k〉 − f(θk)δlk|,

and we can use the results of Appendix C 1 a to bound
the two terms in the last line. In particular, if f =∑M
m=−M f̃mψm is bandlimited, then it follows from (C5)

that

|〈k|S̃n|l〉 − Re f(θl)| ≤
|ε(M)
nkl |+ |ε

(M)
nlk |

2
≤ Cp,τ,M

N1−p ‖f‖A,

and for general f ∈ A,

|〈k|Ãn|l〉 − Re f(θl)δkl| ≤ ε(2 + κ)‖f‖A,

with the same notation as (C9). Moreover, convergence

results for the residual S̃n|l〉 −Re f(θl)|l〉 can be derived
analogously to those for |rnl〉 in Appendix C 1 a.

2. Approximate diagonalization in dimension d > 1

We can extend the results in Appendix C 1 to dimen-
sion d > 1 by taking advantage of the tensor product
structure of the RKHA A on Td and the maps effecting
the transformations from the classical to the quantum
computational level. Following the notation of Sec. III B,
we will use (1)-superscripts to distinguish vector spaces,
vectors, and linear maps associated with the circle S1;
see, e.g., (13). With this notation, the representation
map π : A → B(A) for dimension d decomposes as

π =
⊗d

i=1 π
(1), and similarly we have Π : B(A)→ B(H),

Πn : B(H) → B(Hn), and Wn : B(Hn) → B(Bn)

with Π =
⊗d

i=1 Π(1), Πn =
⊗d

i=1 Π
(1)
n/d, and Wn =⊗d

i=1W
(1)
n/d, where we have assumed that the number

of qubits n is an integer multiple of d. We also re-
call the definition of the tensor product QFT operator
Fn,d : B(Bn)→ B(Bn) in (74), i.e.,

Fn,dA := Fn,dAF
∗
n,d ≡

(
d⊗
i=1

Fn/d

)
A.

Given any tensor product element f =
⊗d

i=1 f
(i) ∈ A,

we have

Ãn := (Fn,d ◦Wn ◦Πn ◦Π ◦ π)f =

d⊗
i=1

Ã(i)
n ,

where

Ã(i)
n = (Fn/d ◦W(1)

n/d ◦Π
(1)
n/d ◦Π(1) ◦ π(1))f (i)

Meanwhile, for any binary string b = (b(1), . . . , b(d)) ∈
{0, 1}n with associated evaluation point xb ∈ Td
from (75) we have

f(xb) =

d∏
i=1

f(θb(i)).

Thus, for any two computational basis vectors |a〉 and |b〉
of Bn with a = (a(1), . . . ,a(d)) and b = (b(1), . . . , b(d))
we have

|〈a|Ãn|b〉 − f(xb)δab|

=

d∏
i=1

∣∣∣〈a(i)|Ãn|b(i)〉 − f (i)(θb(i))δa(i)b(i)

∣∣∣ ,
and we can use the results of Appendix C 1 to bound the
right-hand side. In particular, it follows from (C9) that

|〈a|Ãn|b〉 − f(xb)δab| converges to 0 as n → ∞, so that

Ãn is consistently approximated by a diagonal observable
with eigenvalues equal to the values of f at the points xb.
Moreover, the residual is O(N1−p) analogously to (C6)
if f is bandlimited, and converges weakly to zero as n
increases in the sense of (C11).

The extension to elements of A which are not of tensor
product form follows by linearity. We omit the details of
these calculations in the interest of brevity.

Note now that for every f ∈ A, the spectrum of the
corresponding multiplication operator πf consists pre-
cisely of the range of values of f , i.e., σ(πf) = ran f [50].
In particular since the elements of A are all continuous
functions, πf has nonempty continuous spectrum, unless
f is constant. Define Dn : Bn → Bn and En : Bn → Bn
as the diagonal operators satisfying

Dn|b〉 = f(xb)|b〉, En|b〉 = Re f(xb)|b〉, (C13)

where En is self-adjoint. The following theorem summa-
rizes the properties of the quantum computational ob-
servables approximating πf and T̃ f obtained in Appen-
dices C 1 and C 2.

Theorem 5. Let f ∈ A be arbitrary, and consider the
operators Ãn and S̃n defined as in (C8) and (C12) for
dimension d ≥ 1. Consider also the diagonal operators
in (C13). Then, the following hold as n→∞.

a. The matrix elements 〈k|Ãn|l〉 of Ãn converge to the
matrix elements 〈k|Dn|l〉 = f(xl)δkl of Dn.

b. The matrix elements 〈k|S̃n|l〉 of S̃n converge to the
matrix elements 〈k|En|l〉 = Re f(xl)δkl of En.

c. For each basis vector |l〉, the residuals (Ãn− Ẽn)|l〉
and (S̃n−Ẽn)|l〉 converge to zero weakly. Moreover,
if f is bandlimited, the convergence is strong and
the norms of the residuals are O(N1−p).
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d. For every element z ∈ ran f there exists a sequence
of eigenvalues zn of Dn and a sequence of eigen-
values un of En such that z = limn→∞ zn and
Re z = limn→∞ un.

The approximate diagonalization result in (76) is a
consequence of Theorem 5.

3. Convergence of quantum mechanical
expectations

Thus far, we have established that every element f of A
can be consistently approximated in a spectral sense by
operators Dn ∈ B(Bn) which are diagonal in the com-
putational basis. By construction (see Theorem 5) the
spectra of Dn are subsets of the range of values of f . As a
result, quantum measurement of Dn (which can be equiv-
alently realized by measurement of the PVM associated
with the computational basis as described in Sec. VII B)
yields outcomes consistent with values that f takes on
classical states in X. While this is a desirable property
to have, it does not in itself guarantee that the quantum
mechanical measurements are consistent with the value
of f on the particular classical state that the system hap-
pen to have. Establishing this type of consistency is the
goal of this appendix.

The convergence results that we derive will turn out to
hold for a decreasing sequence of RKHA parameters τ ,
as opposed to fixed τ values in Appendices C 1 and C 2.
Thus, in what follows, we will use the notation Aτ ≡ A
to make the dependence of the RKHAs on τ > 0 explicit.
By construction, the spaces Aτ form an increasing nested
family as τ decreases to 0; that is, for every 0 < τ < τ ′

and f ∈ A we have Aτ ⊂ Aτ ′ and ‖f‖Aτ ≥ ‖f‖Aτ′ . We
also introduce explicit τ subscripts in our notation for
the RKHSs Hτ ⊂ Aτ and Hτ,n ⊂ Hτ and the operators
Lτ : Aτ → Aτ , πτ : Aτ → B(Aτ ), Πτ : B(Aτ )→ B(Hτ ),
and Πτ,n : B(Hτ ) → B(Hτ,n). τ subscripts will also be
introduced in our notation for elements of Aτ , Hτ , and
the associated operator spaces as appropriate.

As in Appendices C 1 and C 2, we consider first the
one-dimensional case, d = 1, and an observable f = ψm,τ
equal to a basis vector of Aτ . We define the diagonal
operator Dm,τ,n : Bn → Bn with

Dm,τ,n|l〉 = ψm,τ (θl)|l〉

analogously to (C13), and also set D̃m,τ,n ∈ B(Hτ,n)
with

D̃m,τ,n = (W∗n ◦ F∗n)Dm,τ,n = W ∗nFnDm,τ,nF
∗
nWn.

We also define

Ãm,τ,n = (Fn◦Wn◦Πτ,n◦Πτ ◦πτ )ψm,τ ∈ B(Bn) (C14)

as in (C1). For any x ∈ X = S1, we consider the quan-

tum computational state ρ̂x,τ,n = F̂τ,n(x) ∈ Q(Bn) and
the state ρ̃x,τ,n ∈ Q(Bn) after application of the QFT,

ρ̃x,τ,n = Fnρ̂x,τ,n = (Fn ◦Wn)ρx,τ,n. (C15)

We then have:

Lemma 6. With notation as above, the n → ∞ limit
of the expected difference 〈Ãm,τ,n−Dm,τ,n〉ρ̃x,τ,n between

measurements of Ãm,τ,n and Dm,τ,n on the state ρ̃x,τ,n
exists, and satisfies

lim
n→∞

|〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n | ≤ 1− e−τ |m|p/2.

A proof of Lemma 6 can be found in Appendix C 5.
For our purposes, a key implication of the result is that
while the bias in measuring Dm,τ,n (instead of Ãm,τ,n)
need not vanish as n → ∞, it can be made arbitrarily
small for a suitable choice of τ . In particular, for any
ε > 0 there exists τm > 0 such that for all τ ∈ (0, τm) we
have 1− e−τ |m|p/2 < ε, and thus

lim
n→∞

|〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n | < ε. (C16)

Since 1 − e−τ |m|p/2 ≤ τ |m|p/2, the choice τm = 2ε|m|−p
will suffice for (C16) to hold.

Next, we consider bandlimited observables f (M) ∈ B

of the form f (M) =
∑M
m=−M f̃m,τψm,τ . Let

Ã(M)
τ,n = (Fn ◦Wn ◦Πτ,n ◦Πτ ◦ πτ )f

=

M∑
m=−M

f̃m,τ Ãm,τ,n ∈ B(Bn) (C17)

be the corresponding quantum computational observ-
able, and let Dτ,n ∈ B(Bn) be the diagonal observable

approximating Ãτ,n,

Dτ,n|l〉 = f(θl)|l〉, Dτ,n =

M∑
m=−M

f̃m,τDm,τ,n. (C18)

Using Lemma 6 and following a similar approach as in
Appendix C 1, we find

lim
n→∞

|〈Ãτ,n −Dτ,n〉ρ̃x,τ,n | ≤ Cp,τ,M‖f‖Aτ , (C19)

where

C2
p,τ,M =

M∑
m=−M

(
1− e−τ |m|p/2

)2

.

Again, for any ε > 0, there exists τM > 0 such that

lim
n→∞

|〈Ãτ,n −Dτ,n〉ρ̃x,τ,n | < ε‖f‖Aτ , ∀τ ∈ (0, τM ).

(C20)

In this case, the choice τM = 2ε|M |−(p+ 1
2 ) is sufficient

for the bound to hold.
To generalize to non-bandlimited observables, we must

take into account the fact that the error bounds in (C16)
and (C20) imply convergence on a decreasing sequence of
RKHA parameters τ , as opposed to the diagonalization
results in Appendix C 1 which hold for fixed τ . With
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that in mind, we consider a space of classical observables
that contains the RKHAs Aτ for all admissible values of
the parameters τ and p. In particular, we consider ob-
servables in the Wiener algebra of X, i.e., the space of
functions f : X → C with absolutely convergent Fourier
series, which we denote here by W. The Wiener alge-
bra W is a dense subalgebra of C(X). Moreover, the
RKHAs Aτ employed in this work are all dense subal-
gebras of W. Thus, we have the following relationships
between algebras of classical observables (which also hold
in dimension d > 1):

B ⊂ Aτ ⊂W ⊂ C(X).

Suppose then that f =
∑∞
m=−∞ f̂mφm is an arbitrary

element of W, where the sum over m converges uniformly
on X. Then, for any ε > 0 there exists M∗ ∈ N such that
for every M > M∗ the bandlimited observable f (M) =∑M
m=−M f̂mφm ∈ B satisfies

‖f − f (M)‖C(X) < ε/3. (C21)

The bandlimited observable f (M) is an element of Aτ for
any τ > 0, with RKHA norm satisfying

‖f (M)‖Aτ =

(
M∑

m=−M
eτ |m|

p |f̂m|2
)1/2

≤ eτMp/2

(
M∑

m=−M
|f̂m|2

)1/2

≤ eτMp/2
M∑

m=−M
|f̂m|

= eτM
p/2

M∑
m=−M

∣∣∣∣ 1

2π

∫ 2π

0

e−imθf(θ) dθ

∣∣∣∣
≤ eτMp/2

M∑
m=−M

‖f‖C(X)

= (2M + 1)eτM
p/2‖f‖C(X). (C22)

We will also need the observable

f (M)
τ = Lτf

(M) = κτ

M∑
m=−M

f̂m
ηm,τ

φ̂m

as an intermediate approximation associated with the
bias correction introduced in Sec. IV D and Appendix A 3
to take into account the projection from Aτ to Hτ . Here,
Lτ is operator introduced in (A6) and ηm,τ are its eigen-
values, where we have again used τ subscripts to make
dependencies on that parameter explicit. We have

‖f (M) − f (M)
τ ‖C(X) =

∥∥∥∥∥
M∑

m=−M

(
ητ,m
κτ
− 1

)
f̂mφm

∥∥∥∥∥
C(X)

≤ Cτ
M∑

m=−M
|f̂m|,

where

Cτ = max
m∈[−M,M ]

∣∣∣∣ητ,mκτ − 1

∣∣∣∣ =
e−τ

κτ
.

Note that to obtain the last result we used the fact that
ητ,m lies in the interval [e−τ , κτ ]; see Appendix A 3. In
particular, as τ → 0, Cτ converges to 0 since e−τ con-
verges to 1 and κτ tends to infinity. Proceeding as in the

derivation of (C22) to bound the sum
∑M
m=−M |f̂m|, we

arrive at

‖f (M) − f (M)
τ ‖C(X) ≤ Cτ (2M + 1)‖f‖C(X). (C23)

Next, define the quantum computational observable

Ã
(M)
τ,n ∈ B(Bn) as

Ã(M)
τ,n = (Fn ◦Wτ,n ◦Πτ,n ◦Πτ ◦ πτ )f (M)

= κτ

M∑
m=−M

f̃m,τ
ηm,τ

Ãm,τ,n (C24)

where f̃m,τ = eτ |m|
p/2f̂m, and Ãm,τ,n are operators de-

fined as in (C14). Define also the diagonal observable

D(M)
τ,n |l〉 = f (M)(θl)|l〉 =

M∑
m=−M

f̃m,τψm,τ (θl)|l〉. (C25)

Letting x be an arbitrary point in X, defining the quan-
tum state ρ̃x,τ,n ∈ Q(Bn) as in (C15), and using (C21)
and (C23) we get

|f(x)− 〈D(M)
τ,n 〉ρ̃x,τ,n |

= |f(x)− f (M)(x) + f (M)(x)− f (M)
τ (x) + f (M)

τ (x)

− 〈Ã(M)
τ,n 〉ρ̃x,τ,n + 〈Ã(M)

τ,n 〉ρ̃x,τ,n − 〈D(M)
τ,n 〉ρ̃x,τ,n |

≤ |f(x)− f (M)(x)|+ |f (M)(x)− f (M)
τ (x)|

+ |f (M)
τ (x)− 〈A(M)

τ,n 〉ρ̃x,τ,n |+ |〈Ã(M)
τ,n −D(M)

τ,n 〉ρ̃x,τ,n |
≤ ‖f − f (M)‖C(X)+ ≤ ‖f (M) − f (M)

τ ‖C(X)

+ |f (M)(x)− 〈Ã(M)
τ,n 〉ρ̃x,τ,n |+ |〈Ã(M)

τ,n −D(M)
τ,n 〉ρ̃x,τ,n |

<
ε

3
+ Cτ (2M + 1)‖f‖C(X) + |f (M)(x)− 〈Ã(M)

τ,n 〉ρ̃x,τ,n |

+ |〈Ã(M)
τ,n −D(M)

τ,n 〉ρ̃x,τ,n |.

We can now bound the second, third, and fourth terms
in the right-hand side of the last inequality. In particular,
it follows by applying Proposition 1 to the observable

f
(M)
τ that

lim
n→∞

|f (M)
τ (x)− 〈Ã(M)

τ,n 〉ρ̃x,τ,n | = 0,

and from (C19) and (C22) that

lim
n→∞

|〈Ã(M)
τ,n −D(M)

τ,n 〉ρ̃x,τ,n |

≤ Cp,τ,M‖f (M)‖Aτ
≤ Cp,τ,M (2M + 1)eτM

p/2‖f‖C(X).
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Then, using the above in conjunction with the fact that
limτ→0 Cτ = 0, it follows that for any M ∈ N there
exists τM > 0 such that for all τ ∈ (0, τM ) we have,
simultaneously,{

Cτ (2M + 1)‖f‖C(X) < ε/3,

Cp,τ,M (2M + 1)eτM
p/2‖f‖C(X) < ε/3,

(C26)

and thus

lim
n→∞

|f(x)− 〈D(M)
τ,n 〉ρ̃x,τ,n | <

ε

3
+
ε

3
+ 0 +

ε

3
= ε.

Since ε was arbitrary, we conclude that there exists a
decreasing sequence of RKHA parameters τM such that

the quantum mechanical expectation 〈D(M)
τM ,n〉ρ̃x,τM,n

con-

verges to the classical value f(x) in the iterated limit
of M → ∞ (infinite bandwidth) after n → ∞ (infinite
qubits), and the convergence is uniform with respect to
x ∈ X.

Having established this convergence result in dimen-
sion d = 1, we can extend it to higher dimensions us-
ing tensor product arguments analogous to those in Ap-
pendix C 2. It is also straightforward to derive analogous
results using the symmetrized map T̃τ : Aτ → B(Hτ ),
inducing the self-adjoint quantum computational observ-
able (cf. (C24))

S̃(M)
τ,n = (Fn ◦Wτ,n ◦Πτ,n ◦Πτ ◦ T̃τ )f (M)

and the diagonal observable

E(M)
τ,n |xl〉 = Re f (M)(xl)|xl〉. (C27)

We do not reproduce the details of these analyses in the
interest of brevity. The following theorem summarizes
the asymptotic convergence of our approach in these set-
tings.

Theorem 7. Let f =
∑
m∈Zd f̂mφm be a classical ob-

servable in the Wiener algebra W of X = Td. For
M ∈ N, τ > 0, and n ∈ N, define the bandlimited observ-

able f (M) =
∑
|m|≤M f̂mφm and the corresponding di-

agonal quantum mechanical observables D
(M)
τ,n and E

(M)
τ,n

from (C25) and (C27), respectively. Then, there exists
a sequence τ1, τ2, . . ., decreasing to 0, such that for any
x ∈ X,

lim
M→∞

lim
n→∞

〈D(M)
τM ,n〉ρ̃x,τ,n = f(x),

lim
M→∞

lim
n→∞

〈E(M)
τM ,n〉ρ̃x,τ,n = Re f(x),

uniformly with respect to x ∈ X.

The fact that quantum states at the quantum compu-
tational level evolve compatibly with the underlying clas-
sical dynamics (i.e., Ψ̂t

n(ρ̂x,τ,n) = ρ̂Φt(x),n) leads, in con-
junction with the uniform convergence result in Propo-
sition 3, to the following corollary of Theorem 7, which
establishes the asymptotic consistency of QECD in sim-
ulating the evolution of classical observables.

Corollary 8. With the notation of Theorem 7 and for

any t ≥ 0, let f̃
(t)
M,n ∈ C(X) with

f̃
(t)
M,n(x) = 〈D(M)

τM ,n〉ρ̃Φt(x),τ,n
,

be the function representing the expected value of the
time-t simulation of f by the quantum computer, given
initial conditions x. Then,

lim
M→∞

lim
n→∞

f̃
(t)
M,n(x) = U tf(x).

where the convergence is uniform with respect to x ∈ X
and t ∈ R. Moreover, if f is real-valued, the analogous
result holds for

f̃
(t)
M,n(x) = 〈E(M)

τM ,n〉ρ̃Φt(x),τ,n
.

Before closing this section, we note that while the con-
vergence results in Theorem 7 and Corollary 8 hold for
observables in the Wiener algebra W with absolutely con-
vergent Fourier series, the fact that W is a dense sub-
space of C(X) means that any observable f ∈ C(X) can
be approximated to arbitrarily high precision in uniform
norm by an observable g ∈ W, whose dynamical evolu-
tion can in turn be simulated to arbitrarily high precision
using QECD as established in Corollary 8. The function
g may be constructed by several means available from
signal processing, e.g., by convolution of f by an appro-
priate smoothing kernel. A detailed study of this topic
is beyond the scope of the present work.

4. Proof of Lemma 4

Using the definition of the map Wn in (60) and the
QFT in (72), we get

W ∗nFn|l〉 = W ∗n

(
1√
N

N−1∑
q=0

e−2πilq/N |q〉
)

=
1√
N

N−1∑
q=0

e−2πilq/Nψo−1(q)

=
1√
N

∑
j∈Jn

e−2πilo(j)/Nψj ,

leading to

(πψm)R∗nW
∗
n |l〉 =

1√
N

∑
j∈Jn

e−2πilo(j)/N (πψm)ψj

=
1√
N

∑
j∈Jn

e−2πilo(j)/Nψmψj

=
1√
N

∑
j∈Jn

e−2πilo(j)/Ncmjψm+j .
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Therefore, the operator Ãm,n has the matrix elements

(Ãm,n)kl = 〈k|Ãm,n|l〉
= 〈k|F∗nWnΠn(πψm)Π∗nW

∗
nFn|l〉

= 〈Π∗nW ∗nFnk, (πψm)Π∗nW
∗
nFnl〉A

=

〈
1√
N

∑
j′∈Jn

e−2πiko(j′)/Nψj′ ,

1√
N

∑
j∈Jn

e−2πilo(j)/Ncmjψm+j

〉
A

=
1

N

∑
j′,j∈Jn

e2πi(ko(j′)−lo(j))/Ncmjδj′,m+j

=
1

N

∑
j∈Jn

e2πi(ko(m+j)−lo(j))c
(n)
mj ,

where

c
(n)
mj =

{
cmj , m+ j ∈ Jn,
0, otherwise.

Observe now that if m + j ∈ Jn, then o(m + j) =

m+o(j). Therefore, since c
(n)
mj = 0 whenever m+ j /∈ Jn,

we get

(Ãm,n)kl =
1

N

∑
j∈Jn

e2πi((k−l)o(j)+km)/Nc
(n)
mj .

Thus, defining

c̃
(n)
mj = c

(n)
mj − e−τ |m|

p/2

=

{
eτ(|m|p+|j|p−|m+j|p)/2 − e−τ |m|p/2, m+ j ∈ Jn,
−e−τ |m|p/2, otherwise

and

εmnkl =
1

N

∑
j∈Jn

e2πi((k−l)o(j)+km)/N c̃
(n)
mj ,

we get

(Ãm,n)kl =
1

N

∑
j∈Jn

e2πi((k−l)o(j)+km)/Ne−τ |m|
p/2 + εkl

=
1

N

N−1∑
q=0

e2πi((k−l)q+km)/Ne−τ |m|
p/2 + εmnkl

= e2πikm/Ne−τ |m|
p/2δkl + εmnkl.

Note that we used standard properties of discrete Fourier
transforms to arrive at the last line. It then follows by
definition of the ψm basis vectors and θl gridpoints that

(Ãm,n)kl = ψm(θl)δkl + εmnkl,

as claimed in the statement of the lemma.

We now proceed to bound the remainder εmnkl, as-
suming, for now, that m ≥ 0. Letting Ñ = N/2, we
have

|εmnkl| =

∣∣∣∣∣∣ 1

N

∑
j∈Jn

e2πi((k−l)o(j)+km)/N c̃
(n)
mj

∣∣∣∣∣∣
≤ 1

N

∑
j∈Jn

c̃
(n)
mj

=
1

N

−m∑
j=−Ñ

c
(n)
mj +

1

N

−1∑
j=−m+1

e−τ |m|
p

+
1

N

Ñ−m∑
j=1

c
(n)
mj +

1

N

Ñ∑
Ñ−m+1

e−τ |m|
p

=
(2|m|+ 1)e−τ |m|

p

N
+ ε− + ε+, (C28)

where

ε− =
1

N

−m∑
j=−Ñ

c
(n)
mj , ε+ =

1

N

Ñ−m∑
j=1

c
(n)
mj .

Next, to bound the ε+ term, consider the function f(u) =
up. Since p ∈ (0, 1), f is strictly concave on the positive
real line. Thus, for m ≥ 0 and j ≥ 1, we have

|m+ j|p − |j|p = |f(m+ j)− f(j)|
≤ |f ′(j)||m|
= pjp−1|m|. (C29)

Consider also the function g(u) = eτu/2−1 on the interval
u ∈ [0, umax] with umax = pm. The function g is strictly
convex, so

g(u) ≤ g′(umax)u =
τ

2
eτumax/2u =

τ

2
eτpm/2u.

Therefore, for m ≥ 0 and j ≥ 1, we obtain

c̃
(n)
mj = e−τ |m|

p/2g(f(m+ j)− f(j)) ≤ τp|m|jp−1/2.

(C30)
Note that we have used (C29) and the fact that f(m +
j)− f(j) ≤ pm (which follows from the same equation).

Next, let aÑ be the series

aÑ =

Ñ∑
j=1

(
j

Ñ

)p−1
1

Ñ
.

As Ñ → ∞, aÑ converges to the integral
∫ 1

0
up−1 du =

1/p. Therefore, aÑ is bounded by a constant, C̃, leading
to the bound

1

Ñ

Ñ∑
j=1

jp−1 = Ñp−1ãN ≤ C̃Ñp−1. (C31)
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Using (C30) and (C31), we thus obtain

ε+ :=

∣∣∣∣∣∣ 1

2Ñ

Ñ∑
j=1

e2πi((k−l)o(j)+km)/N c̃
(n)
mj

∣∣∣∣∣∣
≤ 1

2Ñ

Ñ∑
j=1

c̃
(n)
mj

≤ C̃τp|m|Ñp−1/2. (C32)

Moreover, analogous arguments for j ≤ −1 lead to the
estimate

ε− :=

∣∣∣∣∣∣ 1

2Ñ

−1∑
j=−Ñ

e2πi((k−l)o(j)+km)/N c̃
(n)
mj

∣∣∣∣∣∣
≤ Ĉτp|m|Ñp−1/2 (C33)

for a constant Ĉ.
Substituting (C32) and (C33) into (C28), it follows

that

|εmnkl| ≤
(2|m|+ 1)e−τ |m|

p

N
+ ε+ + ε−

≤ (2|m|+ 1)e−τ |m|
p

N
+
Cτp|m|
N1−p

with C = min{C̃, Ĉ}, which verifies the claim of the
lemma for m ≥ 0. However, since ψ−m = ψ∗m, repeating
the calculation described above for m < 0 leads to the
same bound, so we conclude that the claim holds for any
m ∈ Z.

5. Proof of Lemma 6

We have

〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n
= tr(ρ̃x,τ,n(Ãm,τ,n −Dm,τ,n))

= tr(ρx,τ,n(Πτ,n(Π(πψm,τ ))− D̃m,τ,n)).

By the results in Sec. V and Appendix A, it follows that

lim
n→∞

tr(ρx,τ,nΠτ,n(Πτ (πτψm,τ )))

= tr(ρx,τΠτ (πτψm,τ ))

=
ηm,τ
κτ

ψm,τ (x)

=

∑
j∈J′m

e−τ |j|
p

κτ
ψm,τ (x),

(C34)

where we recall the definition of the index set J ′m,

J ′m = {j ∈ J : j +m ∈ J}.

Moreover, we have

tr(ρx,τ,nD̃m,τ,n) = 〈ξx,τ,n, D̃m,τ,nξx,τ,n〉Hτ

=
〈kx,τ,n, D̃m,τ,n)kx,τ,n〉Hτ

κτ,n

=
(D̃m,τ,nkx,τ,n)(x)

κτ,n
.

In the above, the function D̃m,τ,nkx,τ,n ∈ Hτ,n can be
expressed as

Dm,τ,nkx,τ,n

= W ∗nFnDm,τ,nF
∗
nWn

∑
j∈Jn

ψ∗j,τ (x)ψj,τ


= W ∗nFnDm,τ,nF

∗
n

∑
j∈Jn

ψ∗j,τ (x)|o(j)〉


= W ∗nFnDm,τ,n

 1√
N

N−1∑
l=0

∑
j∈Jn

ψ∗j,τ (x)e2πio(j)l/N |l〉


= W ∗nFn

 1√
N

N−1∑
l=0

∑
j∈Jn

ψ∗j,τ (x)e2πio(j)l/Nψm,τ (θl)|l〉


= W ∗n

 1

N

N−1∑
k,l=0

∑
j∈Jn

ψ∗j,τ (x)e2πi(o(j)−k)l/Nψm,τ (θl)|k〉


=

1

N

N−1∑
k,l=0

∑
j∈Jn

ψ∗j,τ (x)e2πi(o(j)−k)l/Nψm,τ (θl)ψo−1(k)

=
∑

j,j′∈Jn

ψ∗j,τ (x)ψj′,τ

×
(

1

N

N−1∑
l=0

ei(o(j)−o(j
′))(2πl/N)ψm,τ (2πl/N)

)
.

As n→∞, the summation in the parentheses in the last
line converges to a continuous Fourier transform,

lim
n→∞

1

N

N−1∑
l=0

ei(o(j)−o(j
′))(2πl/N)ψm,τ (2πl/N)

=

∫
S1

e−i(j−j
′)θψm,τ (θ) dθ

= e−τ |m|
p/2

∫
S1

ei(j−j
′+m)θ dθ = e−τ |m|

p/2δj′,j+m.
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As a result, we have

lim
n→∞

D̃m,τ,nkx,τ,n
κτ,n

=
1

κτ

∑
j,j′∈J

ψ∗j,τ (x)ψj′e
−τ |m|p/2δj′,j+m

=
1

κτ

∑
j∈J′m

ψ∗j,τ (x)ψj+me
−τ |m|p/2

=
1

κτ

∑
j∈J′m

ψ∗j,τ (x)e−τ |j+m|
p/2φj+me

−τ |m|p/2

=
1

κτ

∑
j∈J′m

ψ∗j,τ (x)ψj,τe
−τ(|j+m|p−|j|p)/2ψm,τ ,

and upon evaluation at x,

lim
n→∞

(D̃m,τ,nkx,τ,n)(x)

κτ,n

=
1

κτ

∑
j∈J′m

e−τ |j|
p

e−τ(|j+m|p−|j|p)/2ψm,τ (x). (C35)

Therefore, combining (C34) and (C35), we obtain

lim
n→∞

〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n

=
1

κτ

∑
j∈J′m

e−τ |j|
p
(

1− e−τ(|j+m|p−|j|p)/2
)
ψm,τ (x),

and thus

lim
n→∞

|〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n |

=
e−τ |m|

p/2

κτ

∣∣∣∣∣∣
∑
j∈J′m

e−τ |j|
p
(

1− e−τ(|j+m|p−|j|p)/2
)∣∣∣∣∣∣

≤ 1

κτ

∑
j∈J′m

e−τ |j|
p
∣∣∣1− e−τ(|j+m|p−|j|p)/2

∣∣∣ .
Note now that for fixed m ∈ Z, the largest value of

e−τ |m|
p/2|1 − e−τ(|j+m|p−|j|p)/2| over j ∈ Z occurs for

|j| = |m|. That is, we have

e−τ |m|
p/2
∣∣∣1− e−τ(|j+m|p−|j|p)/2

∣∣∣
≤ e−τ |m|p/2 max

{∣∣∣1− eτ |m|p/2∣∣∣ , ∣∣∣1− e−τ |m|p/2∣∣∣}
= max

{∣∣∣e−τ |m|p/2 − 1
∣∣∣ , e−τ |m|p/2 ∣∣∣1− e−τ |m|p/2∣∣∣}

≤ max
{∣∣∣e−τ |m|p/2 − 1

∣∣∣ , ∣∣∣1− e−τ |m|p/2∣∣∣}
= 1− e−τ |m|p/2,

so that

lim
n→∞

|〈Ãm,τ,n −Dm,τ,n〉ρ̃x,τ,n |

≤ 1

κτ

∑
j∈J′m

e−τ |j|
p
(

1− e−τ |m|p/2
)

=
ηm,τ
κτ

(
1− e−τ |m|p/2

)
≤ 1− e−τ |m|p/2,

proving the lemma.

Appendix D: Results from Koopman operator
theory

In this appendix, we collect results and constructions
from Koopman operator theory which are relevant to the
discussion in the main text. We refer the reader to one of
the many references in the literature, e.g., [44, 45, 92, 93],
for more detailed expositions of these topics.

1. Koopman operators on classical function spaces

As in the main text, we consider a continuous-time,
continuous flow Φt : X → X, t ∈ R, on a compact, Haus-
dorff, metrizable space X. We denote the Borel σ-algebra
and set of Borel probability measures on X by B(X) and
P(X), respectively. We recall that Φt has an induced ac-
tion Φt∗ : P(X) → P(X) through the pushforward map
on measures, Φt∗(ν) = ν ◦ Φ−t (cf. (2)).

Let A be the vector space over the complex numbers
consisting of all complex-valued functions on X. For ev-
ery time t ∈ R, the Koopman operator U t : A → A acts
by composition with the dynamical flow map, U tf :=
f ◦ Φt. It follows from its definition that U t is a lin-
ear operator, i.e., U t(f + cg) = U tf + cU tg for any
f, g ∈ A, c ∈ C. Moreover, U t is invertible by invert-
ibility of Φt, with (U t)−1 = U−t. The Koopman opera-
tor U t is also compatible with the structure of A as an
abelian ∗-algebra under pointwise function multiplication
and complex conjugation. That is, for any f, g ∈ A, we
have

U t(fg) = (U tf)(U tg), (U tf)∗ = U t(f∗). (D1)

In other words, U t acts as a ∗-isomorphism of A.
In the setting of continuous flows, it is natural to

restrict attention to the Banach space of continuous,
complex-valued functions on X, C(X) ⊂ A, on which
U t acts as an isometry, ‖U tf‖C(X) = ‖f‖C(X) with
‖f‖C(X) = maxx∈X |f(x)|. The space C(X) is a C∗-
algebra under pointwise function multiplication and con-
jugation, satisfying

‖fg‖C(X) ≤ ‖f‖C(X)‖g‖C(X), ‖f∗f‖C(X) = ‖f‖2C(X).
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The Koopman operator is again compatible with this al-
gebraic structure, satisfying (D1) for any f, g ∈ C(X).
In other words, U t acts as an isometric ∗-isomorphism of
the abelian C∗-algebra C(X).

Next, let µ ∈ P(X) be a Borel probability measure.
The flow Φt is said to be:

1. µ-preserving if Φt∗(µ) = µ for any time t ∈ R.

2. µ-ergodic if for any set A ∈ B(X) that satisfies
Φ−t(A) ⊆ A we have that µ(A) is equal to either 0 or
1.

3. µ-weak-mixing if for any two sets A,B ∈ B(X) we
have

lim
T→∞

1

T

∫ T

0

|µ(A ∩ Φ−t(A))− µ(A)µ(B)| dt = 0. (D2)

It should be kept in mind that µ-preservation and µ-
ergodicity are independent notions. Intuitively, measure
preservation means that the flow preserves the “size” or
“volume” of sets assigned by µ. On the other hand, er-
godicity is a form of indecomposability that asserts that
a dynamical system has no non-trivial invariant sets with
respect to a probability measure (here, µ), irrespective of
whether that measure is invariant or not. It is also worth-
while noting that ergodicity, in it self, does not imply that
the orbits of the dynamics are dense, i.e., that given an
initial condition x ∈ X the orbit Ox := {Φt(x)}t∈R sam-
ples the state space densely in a topological sense. How-
ever, what can be said is that for µ-almost every x ∈ X,
the orbit Ox is a dense subset of the support of µ. In-
tuitively, this means that if x ∈ X is an initial condition
drawn randomly with distribution µ, then with probabil-
ity 1, the orbit Ox will well-sample any subset in X which
has nonzero probability of occurring (again with respect
to µ) under the dynamics. Meanwhile, weak-mixing en-
compasses the notion that, under dynamical evolution,
sets become statistically independent in a time-averaged
sense. This behavior is consistent with chaotic dynam-
ics, but one should keep in mind that mathematically
weak-mixing is an independent notion from topological
definitions of chaos, e.g., [94].

Associated with any Borel probability measure µ
are the standard Lp(µ) spaces of (equivalence classes
of) complex-valued functions on X, equipped with the
norms ‖f‖Lp(µ) = (

∫
X
|f |p dµ)1/p for 1 ≤ p < ∞ and

‖f‖L∞(µ) = limp→∞‖f‖Lp(µ). As in the main text, we

use the notation 〈f, g〉L2(µ) =
∫
X
f∗g dµ to represent the

L2(µ) inner product. Note that because µ is a finite mea-
sure, we have Lq(µ) ⊆ Lp(µ) for all 1 ≤ p ≤ q ≤ ∞.

For the rest of this appendix, we will assume that Φt

is µ-preserving. Then, the Koopman operator is well-
defined as an isometry U t : Lp(µ) → Lp(µ) for all 1 ≤
p ≤ ∞. In the Hilbert space case, p = 2, U t is an unitary
operator satisfying U t∗ = U−t. In what follows, we will
let F stand for any of the C(X) or Lp(µ) spaces with
1 ≤ p ≤ ∞, and we will let F0 stand for any of C(X)

or Lp(µ) with 1 ≤ p < ∞. Note that all the F0 spaces
are separable Banach spaces (by the assumed Hausdorff
compactness and metrizability of X), but unless X is a
finite set, L∞(µ) is not separable.

A cornerstone result in measure-preserving, ergodic
dynamical systems is the Birkhoff pointwise ergodic the-
orem. It states that if Φt is µ-preserving and µ-ergodic,
then for every observable f ∈ L1(µ) and µ-almost every
(a.e.) initial condition x ∈ X, the equality

lim
T→∞

1

T

∫ T

0

f(Φt(x)) dt =

∫
X

f dµ (D3)

holds. The pointwise ergodic theorem thus asserts that
expectation values (spatial averages) of observables are
equal to time averages along typical orbits of the sys-
tem. In fact, an analog of (D3) also holds for discrete-
time subsamplings of the continuous-time flow Φt. For
any sampling interval ∆t > 0, we let Φ̂ : X → X be
the discrete-time map with Φ̂ = Φ∆t. The map Φ̂ is
µ-preserving by definition. Moreover, it is µ-ergodic for
Lebesgue a.e. sampling interval ∆t, satisfying

lim
N→∞

1

N
N−1∑
i=0

f(Φ̂i(x)) dt =

∫
X

f dµ. (D4)

Besides its theoretical significance, (D4) provides a foun-
dation for many data-driven techniques (as will be dis-
cussed in more detail in Appendix E), for it enables ap-
proximation of expectation values by finite trajectories
sampled in discrete time.

2. Eigenvalues of Koopman operators

Consider the eigenvalue equation for the Koopman op-
erator,

U tφ = Λtφ,

where φ : X → C is a nonzero function, and Λt ∈ C
an eigenvalue. Without imposing any restrictions on the
membership of φ in a particular function space, we can
deduce from its definition that U t admits as an eigen-
function the constant function φ(x) = 1 and the corre-
sponding eigenvalue is Λt = 1. Since constant functions
lie in all of the C(X) and Lp(µ) spaces, it follows that
the number 1 is an eigenvalue of U t on F. A fundamental
result is that the multiplicity of that eigenvalue provides
an equivalent characterization of ergodicity. In particu-
lar, a µ-preserving flow Φt : X → X is µ-ergodic, if and
only if the only functions φ ∈ L1(µ) which are simulta-
neously eigenfunctions of U t for all t ∈ R corresponding
to eigenvalue Λt = 1 are constants.

Besides providing a spectral characterization of ergod-
icity, Koopman eigenvalues and eigenfunctions have use-
ful algebraic properties which we have exploited in several
instances in the main text:
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1. It follows by definition of U t that if φ, φ̃ ∈ A
are eigenfunctions corresponding to the eigenvalues
Λt, Λ̃t ∈ C, respectively, then φφ̃ is also an eigen-
function, corresponding to eigenvalue ΛtΛ̃t. Ap-
plying this result for φ̃ = φ, we deduce that φ2 is
an eigenfunction corresponding to Λ2

t , whereas the

choice φ̃ = φ∗ yields that |φ|2 is an eigenfunction
corresponding to |Λt|2.

2. Since (U tφ)∗ = U t(φ∗), it follows that φ∗ is an
eigenfunction of U t corresponding to the eigenvalue
Λ∗t .

3. Since ‖U tf‖F = ‖f‖F for any f ∈ F, we can also
deduce that all eigenvalues Λt lie in the unit circle
in the complex plane, T1 ⊂ C, and thus if Λt is
an eigenvalue, then so is Λ−1

t = Λ∗t . Therefore, we
conclude that the eigenvalues of U t form a multi-
plicative subgroup of T1.

Let σe(U
t;F) denote the set of eigenvalues of U t on a

Banach space F. In the case of the Koopman opera-
tor on L2(µ), the spectral theorem for unitary opera-
tors implies that all eigenfunctions corresponding to dis-
tinct eigenvalues are orthogonal. Thus, by separability
of L2(µ), it follows that σe(U

t;L2(µ)) is a countable set.
Moreover, it can be shown [45, Proposition 7.18] that
σe(U

t;Lp(µ)) = σe(U
t;Lq(µ)) for all p, q ∈ [0,∞]. One

also readily verifies that σe(U
t;C(X)) ⊆ σe(U

t;Lp(µ)),
so we conclude that U t has countably many eigenvalues
on any of the F spaces.

Next, suppose that φ ∈ L2(µ) is an eigenfunction of
U t corresponding to the eigenvalue Λt. Then, |φ|2 lies in
L1(µ), and using (D1) we get

U t(|φ|2) = U t(φ∗φ) = (U tφ∗)(U tφ) = (U tφ)∗(U tφ)

= (Λtφ)∗(Λtφ) = |Λt|2|φ|2 = |φ|2.

It therefore follows that |φ|2 ∈ L1(µ) is an eigenfunction
of U t corresponding to the eigenvalue Λt = 1. In particu-
lar, if the system is µ-ergodic, this implies in turn that φ
can be chosen such that it takes values on the unit circle,
i.e., |φ| = 1. This choice implies in turn that φ is a unit
vector in L2(µ), i.e., ‖φ‖L2(µ) = 1.

Further useful properties follow by continuity of the
flow Φt with respect to time t. The latter, implies that for
any f ∈ F0 the map t 7→ U tf is continuous in the norm of
F0 (but not in the norm of L∞(µ)). This in turn implies
that the operator group {U t}t∈R on F0 has a generator,
i.e., a (generally, unbounded) operator V : D(V ) → F0

defined on a dense subspace D(V ) ⊆ F0, satisfying

d

dt
U tf = V U tf = U tV f (D5)

for every observable f ∈ D(V ). The generator V can be
explicitly obtained by taking the limit

V f = lim
t→0

U tf − f
t

(D6)

in the norm of F0, as done in (6) for F0 = L2(µ). Note
that (D6) is the defining equation for the domain of the
generator, i.e., the domain D(V ) consists of all f ∈ F0 for
which the limit in (D6) exists. The generator completely
characterizes the Koopman group on F0, in the sense that
given V , the Koopman operator U t at any time t can be
reconstructed by solving the differential equation (D5);
symbolically we write U t = etV (cf. (7)).

3. Spectral properties of Koopman operators on
L2(µ)

In this subsection, we focus on Koopman operators on
L2(µ), whose spectra can be characterized using Hilbert
space techniques. By Stone’s theorem on strongly con-
tinuous unitary evolution groups [77], the generator V :
D(V ) → L2(µ) of the Koopman group on L2(µ) is skew
adjoint, V ∗ = −V , which implies that its spectrum is a
subset of the imaginary line, iR. By the spectral map-
ping theorem, for every element z ∈ iR of the spectrum
of V , ezt ∈ T1 is an element of the spectrum of U t lying
in the unit circle. That is, if z = iω is an eigenvalue
of V (associated with the eigenfrequency ω ∈ R) and
φ ∈ L2(µ) is a corresponding eigenfunction, then φ is
also an eigenfunction of U t corresponding to the eigen-
value Λt = eiωt. We will denote the set of eigenvalues
of V by σe(V ) ≡ σe(V ;L2(µ)). We also let He be the
Hilbert subspace of L2(µ) spanned by the corresponding
eigenfunctions. That is, He has an orthonormal basis
{φj} satisfying

V φj = iωjφj , iωj ∈ σe(V ).

Since every basis vector φj is an eigenvector of U t corre-
sponding to eigenvalue eiωjt, it follows that every element

f =
∑
j f̂jφj of He, with f̂j ∈ C, satisfies

U tf =
∑
j

eiωjtf̂jφj . (D7)

The µ-preserving flow Φt : X → X is said to have pure
point spectrum if the generator V on L2(µ) is diagonal-
izable, i.e., He = L2(µ). Two important characteristics
of pure point spectrum systems are as follows:

1. The generator equation (D5) governing the evo-
lution of observables in L2(µ) is integrable, and
has (D7) as its solution.

2. The evolution of observables does not exhibit long-
term decay of correlations. In particular, for f, g ∈
L2(µ) with f =

∑
j f̂jφj and g =

∑
j ĝjφj , we can

define the cross-correlation function Cfg : R → C
by

Cfg(t) = 〈f, U tg〉L2(µ) =

∫
X

f∗(x)g(Φt(x)) dµ(x), (D8)
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and it follows from (D7) that for a pure point spec-
trum system Cfg(t) has an oscillatory behavior,

Cfg(t) =
∑
j

eiωjtf̂∗j ĝj , (D9)

which does not decay to zero as t→∞.

Next, by definition of V (see (6) and (D6)), 0 is always
an eigenvalue with a constant corresponding eigenfunc-
tion, φ(x) = 1. It is a fundamental result that the sim-
plicity of this eigenvalue provides a characterization of er-
godicity, stated in stated in terms of the generator: A µ-
preserving flow is µ-ergodic if and only if the 0 eigenvalue
of the generator on L2(µ) is simple (i.e., the nullspace of
the generator is one-dimensional and consists of constant
functions). In addition, we have an equivalent, spectral
characterization of weak-mixing: A µ-preserving flow is
µ-weak-mixing if and only if 0 is the only eigenvalue of
the generator. Therefore, for weak-mixing systems, the
generator on L2 (and thus the associated Koopman oper-
ators) are manifestly non-diagonalizable, and have non-
trivial continuous spectrum. Moreover, it can be shown
that observables of weak-mixing systems exhibit a long-
term loss of correlation in the following time-averaged
sense:

lim
T→∞

1

T

∫ T

0

|Cfg(t)− f̄∗ḡ| dt = 0, (D10)

where f̄ =
∫
X
f dµ and ḡ =

∫
X
g dµ. As with (D2), the

above is consistent with what one would expect for the
statistical behavior of chaotic systems.

As a third type of ergodic behavior, we mention the
so-called mixed-spectrum systems. These systems sit
between pure-point-spectrum systems and weak-mixing
systems in the sense that the generator has non-constant
eigenfunctions, but the point spectrum subspace He is
a strict subspace of L2(µ). Defining Hc = H⊥e as the
orthogonal complement of He in L2(µ) associated with
the continuous spectrum of V , we have the Koopman-
invariant orthogonal decomposition

L2(µ) = He ⊕Hc.

Thus, for a mixed-spectrum system, every observable f ∈
L2(µ) has the orthogonal decomposition f = fe + fc,
where fe ∈ He has the integrable evolution from (D7) and
oscillatory cross-correlation from (D9) with any g ∈ He,
whereas fc ∈ Hc exhibits the loss of correlation in (D10)
for any g ∈ L2(µ) .

We close this subsection by describing how V behaves
analogously to a first-order differential operator (even
though the state space X need not have differentiable
structure), and examining the group structure of the
point spectrum σe(V ) that can be deduced from this
property. In particular, it can be shown that V :=
D(V ) ∩ L∞(µ) is an algebra with respect to pointwise
multiplication of functions, and V acts on this algebra as
a derivation, i.e., a linear map obeying the Leibniz rule,

V (fg) = (V f)g + f(V g), ∀f, g ∈ V. (D11)

Recently, it has been shown [95] that (D11) is a neces-
sary and sufficient condition for a skew-adjoint operator
V to be the generator of a group of unitary Koopman
operators on L2(µ). That is, we have U t = f ◦ Φt for a
dynamical flow Φt : X → X if and only if (D11) holds.
Since vector fields on manifolds can be identified with
first-order differentiation operators on functions, we can
intuitively think of V as a generalization of a vector field
field generating a dynamical system on a differentiable
manifold. This intuition can be made precise in the case
that X is a differentiable manifold (with tangent bundle
TX), and Φt : X → X is generated by a vector field
~V : X → TX, i.e., the orbit x(t) = Φt(x) is the solution
of the initial-value problem

ẋ(t) = ~V (x(t)), x(0) = x.

In this setting, we can identify ~V with the directional
derivative operator V : C1(X) → C(X) acting on con-

tinuously differentiable functions on X as Vf = ~V · ∇f .
Then, the generator V is an extension of the vector field,
in the sense that C1(X) is a subspace of the domain of
V , and V f = Vf for C1(X) functions.

Using (D11), we can deduce that the eigenvalues of V
form an additive group (in contrast to the eigenvalues of
U t, which form a multiplicative group). That is, if iω and
iω̃ are eigenvalues of V corresponding to eigenfunctions
φ and φ̃, respectively, then i(ω+ ω̃) is also an eigenvalue,

corresponding to the eigenfunction φφ̃. An implication
of this fact is that if the set of eigenvalues σe(V ) contains
two rationally independent elements (i.e., two incommen-
surate eigenfrequencies), then it is a dense subset of the
imaginary line. In that case (since the spectrum of an
operator on a Banach space includes the closure of the
set of its eigenvalues), the spectrum of V on L2(µ) is the
entire imaginary line.

An important consequence of the group structure of
the point spectrum of V is that it admits generating sets.
Specifically, a set iA ⊆ σe(V ) is a generating set if for
every iω ∈ σe(V ) there exists a finite collection of eigen-
frequencies {α1, . . . , αq} ⊆ A and integers j1, . . . , jq such
that ω =

∑q
k=1 jkαk. The rank of σe(V ), denoted by

rankσe(V ), is defined as the minimal number of elements
of its generating sets.

Characterizing the rank of the point spectra of
measure-preserving ergodic flows is a challenging problem
which has not been completely solved. It is known that if
the state space X is a differentiable closed manifold, then
the rank of the point spectrum of any smooth measure-
preserving ergodic flow Φt : X → X with differentiable
Koopman eigenfunctions is bounded by the dimension
of X [96]. Meanwhile, smooth, measure-preserving, er-
godic flows on manifolds with discontinuous Koopman
eigenfunctions and point spectra of arbitrarily large rank,
including infinity, can been constructed (as suspension
flows generated by suitable diffeomorphisms [97]). The
form of these systems is, however, not typical of dynam-
ical systems encountered in physical applications.
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4. Conjugacy with torus rotations

We now come to an important property of Koopman
eigenfunctions of measure-preserving, ergodic dynamical
systems with pure point spectrum, namely that they pro-
vide measure-theoretic, and if continuous, topological iso-
morphisms with ergodic rotations on tori.

First, let φ ∈ L2(µ) be an eigenfunction of the gener-
ator corresponding to a nonzero eigenfrequency α ∈ R.
As in Sec. D 2, we normalize φ such that |φ| = 1, so that
we can view φ : X → T1 as a map from X into the unit
circle in the complex plane, T1 ⊂ C. Let Rtα : T1 → T1

be the circle rotation with frequency α, i.e.,

Rtα(θ) = θ + αt mod 2π,

where θ is the argument (phase angle) of the complex

number eiθ. Note that eiR
t
α(θ) = eiαteiθ, so Rtα can be

identified with the multiplicative action z 7→ eiαtz of the
complex number eiαt on C. Then, since U tφ = φ ◦ Φt =
eiαtφ, it follows that for µ-a.e. x ∈ X,

φ(Φt(x)) = Rtα(φ(x)). (D12)

Thus, the following diagram commutes in a measure-
theoretic sense (µ-a.e.):

X X

T1 T1

Φt

φ φ

Rtα

.

If, in addition, φ is continuous, then φ : X → C is a
surjective (onto) map, and (D12) holds for every x ∈ X.
Such a continuous map φ which intertwines the flows Φt

and Rtα is called a topological semiconjugacy. In partic-
ular, for each point x ∈ X, φ provides a corresponding
angle coordinate through its argument,

θ(x) = arg(φ(x)) ∈ [0, 2π). (D13)

We can extend this construction to higher dimensions
by considering multiple eigenfunctions and their corre-
sponding eigenfrequencies. Specifically, each collection
~α = (α1, . . . , αd) of distinct nonzero eigenfrequencies
αj ∈ σe(V ) induces a map φ~α : X → Td with

φ~α(x) = (φ1(x), . . . , φd(x)),

where φj ∈ L2(µ) is an eigenfunction corresponding to
φj (normalized such that |φj | = 1). This map provides
a measure-theoretic semiconjugacy between Φt and the
torus rotation Rt~α : Td → Td with rotation frequencies ~α,
i.e.,

φ~α(Φt(x)) = Rt~α(φ~α(x)) (D14)

for µ-a.e. x ∈ X, where

Rt~α(θ1, . . . , θd) = (θ1 + α1t, . . . , θ
d + αdt) mod 2π.

Moreover, φ~α becomes a topological semiconjugacy if
φ1, . . . φd are continuous, and it is an onto map if, in ad-
dition, the α1, . . . , αd are rationally independent. In the
latter case, the φj induce d canonical angle coordinates
θj on X analogously to (D13).

By a classical result of von Neumann [98], for a pure
point spectrum system with d generating frequencies
~α = (α1, . . . , αd) (i.e., rankσe(V ) = d), the map φ~α :
X → Td is a measure-theoretic isomorphism, i.e., it is
an invertible, measure-preserving transformation, com-
patible with the dynamics in the sense of (D14). If, in
addition, the associated eigenfunctions φj are continu-
ous, then φ~α is a topological isomorphism (conjugacy),
i.e., it is a continuous map with continuous inverse, satis-
fying the dynamical compatibility condition in (D14) for
every x ∈ X.

Since the construction of the QECD scheme described
in the main text is based on spaces of continuous func-
tions on X, for our purposes a pure point spectrum sys-
tem with finitely generated spectrum and continuous cor-
responding eigenfunctions can be identified with an er-
godic rotation on a torus. It is important to note that the
transformation φ~α : X → Td is based entirely on intrin-
sic spectral objects (i.e., eigenfunctions and eigenvalues
of V ), and and does not require a priori knowledge of co-
ordinates on X. In particular, the Koopman eigenfunc-
tions φj define canonical angle coordinates θj via (D13),
which one can then use for other purposes (e.g., to define
kernels as in Sec. III B).

It should be kept in mind that by assuming that (a) the
eigenvalue spectrum has finite rank; and (b) the Koop-
man eigenfunctions are continuous we are not treating
the most general class of systems with pure point spec-
trum (see Appendix D 2). These assumptions could be
potentially relaxed at the expense of increasing the tech-
nical complexity of the analysis (if σe(V ) has infinite
rank) and/or weakening the form of convergence in the
infinite qubit limit (e.g., from uniform convergence with
respect to x ∈ X to µ-a.e convergence if the eigenfunc-
tions are discontinuous). Arguably, however, typical sys-
tems encountered in applications have finite-rank eigen-
value spectra and continuous eigenfunctions, so our as-
sumptions are not too restrictive.

Appendix E: Numerical approximation schemes

There are several mature algorithms for data-driven
approximation of the eigenvalues and eigenfunctions of
the Koopman operator. Examples include Fourier-based
techniques [27, 39], dynamic mode decomposition (DMD)
[40, 99], extended DMD [41], and RKHS-based tech-
niques [24, 100]. There is also extensive literature on
spectral approximation of the transfer operator [38, 42],
which is dual to the Koopman operator and acts on Ba-
nach spaces of measures (see Sec. II A). Note that if H
is a Hilbert space of observables on which the Koopman
operator acts as a unitary map U t : H → H, then the
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transfer operator can be identified with the adjoint of
U t, i.e., U t∗ = U−t. In such cases, which include the
spaces H = L2(µ) and H = A employed in the main
text, working with the Koopman vs. transfer operator is
merely a matter of convention.

In this appendix, we provide a brief outline of a
class of methods for spectral approximation of Koop-
man/transfer operators for measure-preserving, ergodic
systems [23, 25, 29, 101, 102] which are based on kernel
techniques and should thus be well-suited for integration
with the quantum computational techniques described in
this paper.

We consider that available to us is a time series
y0, y1, . . . , yN−1 of observations taken along an orbit of
the dynamical system under a map Y : X → Rm. That
is, we have yi = Y (xi), where xi = Φi∆t(x0) ∈ X are
(unobserved) states, x0 ∈ X is an arbitrary initial condi-
tion, and ∆t > 0 is a fixed sampling interval. We assume
throughout that Φt : X → X is a measure-preserving,
ergodic flow on a compact, differentiable manifold X for
a Borel probability measure µ (with compact support by

compactness of X). Given the data {yi}N−1
i=0 , we compute

a collection of eigenvectors φ0,φ1, . . . ,φL−1 ∈ CN with
L ≤ N and associated eigenfrequencies ω̂0, . . . , ω̂L−1

which are approximations of the eigenvalues and eigen-
frequencies of the Koopman generator V on L2(µ).

In particular, the eigenvectors φj =
(φ0j , . . . , φN−1,j)

> and eigenfrequencies ω̂j have
the properties that

φij ≈ φj(xi), ω̂j ≈ ωj , (E1)

where φj and ωj are eigenfunctions of the generator, i.e.,
V φj = iωjφj . Under the assumption that the eigenfunc-
tions φj are continuous, the convergence of this approx-
imation holds in the limit of large data, ∆t → 0 after
N →∞, in the C(X) (uniform) norm. Importantly, the
computation of the φj and ω̂j is entirely based on the
time series data yi, and does not require a priori knowl-
edge of coordinates for X. It should also be noted that
the methods described below for a single training time se-
ries y0, y1, . . . , yN−1 can be readily generalized to ensem-
bles of time series with equidistributed initial conditions
with respect to µ.

1. Data-driven basis

To compute the eigenvectors φj , we first compute a
set of basis vectors u0,u1, . . . ,uL−1 ∈ CN by solving the
eigenvalue problem for an N ×N kernel matrix K with
positive spectrum, constructed from the data yi. That
is, we solve the eigenvalue problem

Kul = Λ̂lul,

where the eigenvalues Λ̂l are positive, and the entries
Kij = k(Y )(yi, yj) of K are obtained from a kernel func-

tion k(Y ) : Rm × Rm → R on data space. The basic

requirements on the kernel k(Y ) is that as N → ∞ the
eigenvectors uj should converge to an orthonormal basis
{u0, u1, . . .} of L2(µ), such that each basis vector uj lies
in the domain of the generator V and the corresponding
eigenvalues Λ̂j have a strictly positive limit Λj . In addi-
tion, we will normalize K such that it is a row-stochastic
matrix with strictly positive elements (i.e., Kij > 0 and∑N−1
j=0 Kij = 1). This ensures that Λ̂l ∈ [0, 1] and there

is a simple eigenvalue Λ̂0 = 1 corresponding to the con-
stant eigenvector u0 = (1, 1, . . . , 1)> ∈ CN . By conven-

tion, we order the eigenvalues Λ̂l in decreasing order, i.e.,
0 = Λ̂0 > Λ̂1 ≥ Λ̂2 ≥ · · · ≥ Λ̂N−1.

There are several commonly used kernels in the ma-
chine learning literature that meet the requirements
stated above (see Refs. [25, 29]), but as a concrete exam-
ple we mention here the class of Markov-normalized ra-
dial basis function kernels proposed in the diffusion maps
algorithm [103]:

k(Y )(y, y′) =
k̃(Y )(y, y′)

w2(y)w1(y′)
. (E2)

Here,

k̃(Y )(y, y′) = exp

(
−‖y − y

′‖22
ε2

)
is the radial basis function kernel with bandwidth param-
eter ε > 0, and w1, w2 : X → R are “right” and “left”
normalization functions, respectively, defined by

w1(y′) =

N−1∑
j=0

k(Y )(y′, yj), w2(y) =

N−1∑
j=0

k(Y )(y, yj)

w1(yj)
.

As in the case of the generator eigenvectors φj , we think
of ul = (u0l, . . . , uN−1,l)

> as representing the values
ûl(xi) of a function ûl : X → R sampled along the tra-
jectory x0, . . . , xN−1. If desired, the function ûl can be
constructed by means of a suitable out-of-sample exten-
sion technique, such as the Nyström method (e.g., [104]).

The asymptotic behavior of the eigenvalues and eigen-
vectors of K as the dataset size N increases can be char-
acterized through a diverse range of approaches available
in the literature [105–111]. At a general level, if the ker-
nel k(Y ) is continuous, there is an associated compact
integral operator K : C(X)→ C(X) defined by

Kf =

∫
X

k(Y )(Y (·), Y (x))f(x) dµ(x). (E3)

Then, using the results of Ref. [107] in conjunction with
ergodicity, it can be shown that for every nonzero eigen-
value Λl of K there is a sequence of eigenvalues Λ̂l of
K that converges to it as N → ∞ (including multiplic-
ities), and there is an associated notion of convergence
of the eigenvectors ul to eigenfunctions ul ∈ C(X). The
eigenfunctions ul corresponding to nonzero eigenvalues
are continuously differentiable if k(Y ) is a C1 kernel (and
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thus ul lies in the domain of the generator), and can be
chosen to be orthonormal in L2(µ). Moreover, if all eigen-
values Λl are strictly positive, the ul form an orthonormal
basis of L2(µ). The strict positivity of Λl holds, e.g., if
Y is an injective map and k(Y ) is the normalized Gaus-
sian kernel from (E2). If Y is not injective, then Takens
embedding theory [112] can be employed to construct an

injective map Ỹ : X → Rqm (q here being the number of
delays), which can in turn be used to build kernels with
strictly positive corresponding eigenvalues, e.g., [101].

Under the additional assumption that the support
M ⊆ X of µ is a Riemannian manifold, more special-
ized results [105, 106, 108–111] connect the asymptotic
spectral behavior of K in the limit of vanishing band-
width parameter, ε → 0, with the spectrum of the
Laplace-Beltrami operator, ∆, on M . In such cases,
the eigenfunctions ul converge as ε → 0 to eigenfunc-
tions of ∆, which are extremizers of the Rayleigh quo-
tient E(f)/‖f‖L2(µ) associated with the Dirichlet energy
functional

E(f) =

∫
M

‖∇f‖2 dµ. (E4)

Here, ∇ and ‖·‖ are the Riemannian gradient and norm
on tangent vectors, respectively. Intuitively, we think
of E(f) as a measure of roughness of functions induced
by the Riemannian metric of M . Correspondingly, the
basis {u0, u1, . . .} can be thought of as having optimal
regularity, in the sense that for any l ∈ N, ul has the
smallest possible energy E(ul) while having unit norm
and being orthogonal to u0, . . . , ul−1.

In summary, given the observed data yi, we can con-
struct by means of several kernel algorithms basis vec-
tors ul with the appropriate regularity and asymptotic
behavior for representing the Koopman generator V . In
the ensuing subsections, we outline the structure of the
resulting data-driven approximations of V and their spec-
tral convergence.

2. Finite-difference approximation

Recall from (D6) and (D11) that the generator V be-
haves as a directional derivative operator on observables
associated with the flow on L2(µ) induced by the Koop-
man operator. Based on that, we can approximate the
action of V on an observable f : X → C in its domain
by a finite-difference approximation,

V f(xi) = lim
t→∞

U tf(xi)− f(xi)

t

= lim
t→∞

f(Φt(xi))− f(xi)

t

≈ f(xi+1)− f(xi)

∆t
, (E5)

where xi is a state underlying our training dataset with
i < N − 1. Note that the last expression in the right-
hand side can be evaluated given only the values of f

on the trajectory xi, without requiring knowledge of the
states xi (which we consider to be unknown). If f is
continuously differentiable, the approximation converges
as ∆t→ 0, uniformly with respect to xi ∈ X. Moreover,
other variants of this approximation such as backward,
central, and/or higher-order finite-difference schemes can
be employed.

We can represent the finite-difference approximation
in (E5) by means of a linear operator V : CN → CN
defined as Vf = g, where

f = (f0, . . . , fN−1)>, g = (g0, . . . , gN−1)>,

gi =

{
(fi+1 − fi)/∆t, 0 ≤ i ≤ N − 2,

0, i = N − 1.

Note that if f is the vector storing the values of f on
the trajectory, fi = f(xi), then the elements gi of g with
i ≤ N − 2 are equal to the terms of the right-hand side
of (E5). Moreover, the definition gN−1 = 0 was arbi-
trary; one could set gN−1 to any constant without affect-
ing the asymptotic behavior of the scheme as N →∞.

Next, fixing a parameter L ≤ N −1, we form the L×L
antisymmetric matrix V̂ = [V̂ij ]

L−1
i,j=0 with elements

V̂ij =
1

2N
(
u>i Vuj − u>j Vui

)
. (E6)

Using the pointwise ergodic result in (D4) in conjunc-
tion with the convergence of the eigenvectors uj to the
eigenfunctions uj ∈ C1(X) (see Appendix E 1) it can

be shown (e.g., [29, 101]) that V̂ij converges to matrix
element Vij = 〈ui, V uj〉L2(µ) of the generator with re-

spect to the {ul}∞l=0 basis of L2(µ) in the iterated limit of
N →∞ followed by ∆t→ 0. Thus, for any fixed L ∈ N,
the L × L data-driven matrix V̂ converges (in any ma-

trix norm) to the matrix representation V = [Vij ]
L−1
i,j=0 of

the projected generator on the L-dimensional subspace
of L2(µ) spanned by u0, . . . , uL−1. Note that the ap-

proximation error V̂ij − Vij of the matrix elements is
not uniform with respect to i, j ∈ N, so we fix L to
an N -independent value in order to control the error
of the operator approximation of V̂ by V as N → ∞.
Moreover, by employing an antisymmetric approxima-
tion from (E6), V̂ij = −V̂ji, our approximation scheme
is structurally compatible with the antisymmetry of the
generator, Vij = −Vji.

3. Regularization

Despite the fact that V̂ converges to V at fixed L, this
matrix is not suitable by itself for spectral approximation
of the generator V . First, V may be a non-diagonalizable
operator with non-trivial continuous spectrum. Since ev-
ery skew-adjoint finite-rank approximation of V , includ-
ing V̂ and V , is diagonalizable and has discrete spec-
trum, there are no a priori guarantees that the eigenval-
ues of the approximate operators converge in some sense
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to the spectrum of V , nor is it clear that the correspond-
ing eigenvectors have a meaningful relation with proper-
ties of V . Even in the case of systems with pure point
spectrum, if V has a dense set of eigenfrequencies (as
is typically the case; see Appendix D 3) the eigenvalues

of V̂ and V will not behave stably as L increases (see,
e.g., Fig. 5 in Ref. [29]). Essentially, the only case (up
to conjugacies) where stable numerical approximation of
the spectrum of V is possible by the “raw” generator ma-
trices V̂ and V is that of a circle rotation, X = T1, where
the spectrum σ(V ;L2(µ)) is a discrete set containing all
integer multiples of the rotation frequency. When dealing
with systems of higher complexity than this basic case,
numerical approximation schemes require some type of
regularization in order to ensure spectral convergence.

a. Diffusion regularization for systems with pure-point or
mixed spectrum

Arguably, the simplest class of systems to analyze be-
yond circle rotations is that of finitely-generated pure
point spectrum systems with smooth Koopman eigen-
functions and smooth manifold structure of the support
M ⊆ X of the invariant measure. In such cases, it is
possible to equip M with a smooth Riemannian metric
whose corresponding Laplace-Beltrami operator ∆ com-
mutes with V [25], i.e.,

[V,∆]f := V∆f −∆V f = 0, ∀f ∈ C∞(M). (E7)

Moreover, the eigenvalues and eigenfunctions of ∆ can
be consistently approximated by a kernel integral oper-
ator K from (E3), where the kernel k(Y ) is constructed
using delay-coordinate maps. In more detail, in a limit
of infinitely many delays and vanishing kernel bandwidth
parameter (ε→ 0) the eigenfunctions ul of K converge to
eigenfunctions of a Laplace-Beltrami operator ∆ satisfy-
ing (E7), and the quantities ηl = (Λ−1

l − 1)/ε converge
to corresponding eigenvalues. Equivalently, we have that
the operator D = (K−1 − I)/ε (which is self-adjoint on a
dense subspace of L2(µ)) is an unbounded operator that
spectrally approximates ∆. The restriction of D to the L-
dimensional subspace of L2(µ) spanned by u0, . . . , uL−1

is represented by an L × L diagonal matrix, D, with
diagonal entries Dii = 〈ui,Dui〉L2(µ) = ηi. In the data-
driven setting, we approximate D by the L × L diag-
onal matrix D̂ with D̂ii = η̂i := (Λ−1

l − 1)/ε. Note
that the eigenvalues of D are ordered in increasing or-
der, 0 = η0 < η1 ≤ η2 ≤ · · · ηL−1, and we employ a

similar ordering for the eigenvalues of D̂. Moreover, D̂
converges to D in the large-data limit, N → ∞ for any
fixed L.

Next, for a parameter τ > 0, we introduce the regular-
ized generator, W : C∞(M)→ C∞(M), defined as

Wτ = V − τ∆. (E8)

Let Ej = E(φj) be the Dirichlet energy of Koopman
eigenfunction φj from (E4). One readily verifies that

for any τ > 0, Wτ has the same eigenfunctions φj as V ,
and a discrete spectrum of corresponding eigenvalues γj ,
where

γj = −τEj + iωj .

Observe, in particular, that the effect of adding a com-
muting diffusion operator to V is to shift the eigenvalues
along the negative real line by an amount proportional
to the Dirichlet energy of the corresponding eigenfunc-
tions. This results in a spectrum of isolated eigenvalues
for Wτ , even if the set of eigenfrequencies ωj is dense in
the imaginary line iR. In particular, Wτ has a compact
resolvent, and its eigenvalues and eigenfunctions can be
approximated using Galerkin methods. Moreover, the
operators Wτ converge to V in a spectral sense, since
each γj clearly converges to ωj as τ → 0.

In applications, we approximate the eigenvalues and
eigenfunctions of Wτ through the following steps:

1. Approximation of the Laplacian: Approximate Wτ

by Wτ := V − τD.

2. Finite-rank projection (Galerkin approximation):
Approximate Wτ by W = V − τD.

3. Data-driven approximation: Approximate W by
Ŵ = V̂ − τD̂.

Having made these approximations, we solve the eigen-
value problem for the L× L matrix W ,

Ŵ cj = γ̂jcj ,

normalizing the eigenvectors cj = (c0j , . . . , cL−1,j)
> to

unit 2-norm, ‖cj‖2 = 1. The eigenvalues γ̂j ∈ C approx-
imate γj from (E 3 a). In particular, the imaginary part
ω̂j := Im γj approximates the generator eigenfrequency
ωj , whereas the real part approximates the correspond-

ing Dirichlet energy via Êj := −Re γ̂j/τ . Moreover, the
elements of the eigenvectors cj are expansion coefficients
of vectors φj ∈ CN ,

φj =

L−1∑
i=0

cijuj ,

which represent discretely-sampled functions approxi-
mating the eigenfunctions φj in accordance with (E1).
By convention, we order the eigenpairs (ωj ,φj) in order

of increasing corresponding Dirichlet energy Êj . Effec-
tively, this means that we order numerical eigenfunctions
in order of decreasing regularity (see Appendix E 1). This
is a natural choice since the eigenfunctions φj with high
regularity (low Dirichlet energy) are expected to be less
sensitive to sampling and/or finite-difference errors.

The scheme described above converges in an iterated
limit which parallels the sequence of approximations
leading to Ŵ from from W ; that is, N → ∞, ∆t → 0,
L → ∞, and τ → 0, taken in that order. We refer the
reader to Refs. [25, 101] for additional details. It should
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be noted that the C∞ assumption on the eigenfunctions
can be relaxed to mere continuity, φj ∈ C(M), so long
as the eigenvalue spectrum σe(V ) has finite rank and the
observation map Y is continuously differentiable [101].
Moreover, the same class of techniques can be employed
to approximate the point spectrum of mixed-spectrum
systems [101], though in this case the eigenfunctions φj
provide an orthonormal basis of He only, which is a strict
subspace of L2(µ) (see Appendix D 3). It is also worth-
while noting that relaxing the continuity assumption on
the φj is non-trivial. Indeed, there are known examples
[113] of advection–diffusion flows, generated by operators
of the form Wτ = V − τ∆, where the advection opera-
tor V has discontinuous eigenfunctions, and the small-
viscosity (τ → 0) spectral behavior of Wτ as a function
of τ is highly singular.

b. Spectral approximation by generator compactification

When the generator V on L2(µ) has non-trivial con-
tinuous spectrum, the behavior of regularization schemes
based on addition of diffusion is significantly more chal-
lenging to characterize. First, in many applications of in-
terest the support of the invariant measure µ is not a dif-
ferentiable manifold, even if the flow Φt on X is smooth.
A classical example is the Lorenz 63 system [114], which
is generated by a smooth vector field on X = R3, but due
to dissipative dynamics the invariant measure µ is con-
centrated on a fractal attractor (the famous “butterfly”
attractor) of zero Lebesgue measure. To our knowledge,
in such systems with fractal attractors the construction of
a diffusion operator ∆ with compatible domain to that
of the generator V on L2(µ) is an open problem. As
mentioned in Appendix E 3 a, even if µ is supported on
a manifold, the τ → 0 limit of Wτ can be challenging to

characterize when V has no eigenfunctions of sufficient
regularity (which includes the case of mixing systems,
where V has no non-constant eigenfunctions).

As an effort to address these issues, Ref. [29] pro-
posed an alternative approach, where instead of addi-
tion of diffusion, V is regularized by composition with
appropriate smoothing operators. In brief, for each
τ > 0, we construct a family of kernel integral opera-
tors Gτ : L2(µ) → L2(µ) with τ > 0 such that (a) the
associated kernel is C1; (b) Gτ is an ergodic Markov op-
erator; and (c) as τ → 0, Gτ converges strongly to the
identity. We then have that for any τ > 0, the operator
Wτ : L2(µ)→ L2(µ) define as

W̃τ = GτV Gτ (E9)

is skew-adjoint and compact. As a result, W̃τ has a dis-
crete, bounded spectrum of eigenfrequencies iωj,τ , and
an associated orthonormal basis of eigenfunctions, φj,τ ,
i.e.,

W̃τφj,τ = iωj,τφj,τ .
Moreover, as τ → 0, there is a notion of spectral conver-
gence of W̃τ to V , even if V has non-trivial continuous
spectrum. More specifically, for every element iω of the
spectrum of V , there is a sequence of eigenvalues iωjτ ,τ
converging to iω as τ → 0, and the spectral measures of
W̃τ (which are purely atomic by compactness) converge
to the spectral measure of V in a suitable sense. While
quantum simulation of systems with continuous spectrum
is beyond the scope of this work, it is possible that the
approach of Ref. [29] could be employed as an initial step
to approximate the Koopman group generated by V by
the unitary evolution group generated by W̃τ , and then
employ the quantum computational framework described
in the paper to simulate that system.
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