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Two classes of Bell diagonal indecomposable entanglement witnesses in C4 ⊗ C4 are considered.
Within the first class, we find a generalization of the well-known Choi witness from C3 ⊗ C3, while
the second one contains the reduction map. Interestingly, contrary to C3 ⊗C3 case, the generalized
Choi witnesses are no longer optimal. We perform an optimization procedure of finding spanning
vectors, that eventually gives rise to optimal witnesses. Operators from the second class turn out
to be optimal, however, without the spanning property. This analysis sheds a new light into the
intricate structure of optimal entanglement witnesses.

I. INTRODUCTION

Quantum entanglement is arguably the most pe-
culiar feature of quantum theory that also demar-
cates it from the classical one [1–3]. It is a crucial
ingredient in quantum information processing appli-
cations, such as (entanglement-based) quantum cryp-
tography [4], quantum dense coding [5], quantum
teleportation [6], measurement-based computation [7]
etc. However, despite tremendous progress in under-
standing of entanglement, we still lack its full char-
acterization, especially in terms of entanglement de-
tection, i.e. methods that can faithfully discriminate
between entangled and separable states. Indeed, a
wealth of various operational entanglement criteria
for bipartite quantum states already exist in the liter-
ature, in particular, the partial transposition criterion
[8, 9], the majorization criterion [10], the cross-norm
or realignment criterion [11–13], the covariance ma-
trix criterion [14, 15] to name a few. However, due
to a very rich structure of entanglement, most of cur-
rently available techniques are either only sufficient
in characterization or restricted to a narrow class of
states [1–3]. Therefore, it is of paramount impor-
tance to have robust ways of entanglement detection,
in particular operational (i.e. measurable) tools are
of special interest. One such method is based on the
notion of entanglement witness (EW) - an observable
that is capable of detecting entangled states [9, 16–
18]. The central concept of EWs is based on the
ideas of the Hahn-Banach theorem on normed linear
spaces [19]. A special subclass of EWs called opti-
mal entanglement witnesses (OEWs) is considered the
gold standard for measurable entanglement detection,
since the observables that are OEWs allow to detect

the largest set (in terms of its cardinality) of entan-
gled states [20–22]. Thus, making them a suitable
choice for investigation.

In addition to this, a few experiments have been
performed in last two decades on whether a certain
quantum state is entangled or separable. The authors
in Ref. [23] have proposed a procedure for measur-
ing the entanglement of an unknown state by succes-
sively measuring witness operators, which has been
experimentally realized in Ref. [24]. Ref. [25] has de-
scribed a new method to detect the entanglement
of quantum states, about which nothing is known
except the dimension, using random local measure-
ments. Moreover, the authors in Ref. [26] have ex-
perimentally demonstrated the detection of entangle-
ment polytopes in a four-qubit system. Additionally,
quantum entanglement has been extensively studied
in terms of quantum resources [27–29], in particu-
lar, as a crucial ingredient for quantum computation
[30–32], where multipartite entanglement is exploited
(see for example case of variational quantum algo-
rithms [33, 34]). The multipartite case is substan-
tially more complex to analyze, however some ap-
proximate method already exist, even ones that are
based on the extension of EWs. The latter, can be
measured in quantum computing hardware [35], and
allows to asses if this quantum resource is exploited
in the computation, despite the detrimental effects of
noise.

In this paper, we analyze a family of EWs in
C4 ⊗C4 which are Bell diagonal and covariant w.r.t.
maximal commutative subgroup of the unitary group
U(4). This is a highly symmetric family that can be
analyzed in detail [36]. We consider a class of EWs in
C4⊗C4 displaying a characteristic circular structure.



Such class of circulant witnesses in C3 ⊗ C3 without
any connection to entanglement theory was proposed
in [37] as a generalization of a seminal indecompos-
able positive map of Choi [38]. Further analysis was
provided in [39–41]. In particular, it was shown that
these witnesses are optimal [39, 41].

In our paper, we show that the corresponding class
of circulant witness C4⊗C4 splits into two subclasses:
one class provides a generalization of the Choi wit-
nesses in C3 ⊗C3 and the other contains the witness
corresponding to the reduction map. Interestingly,
contrary to C3 ⊗ C3 the generalized Choi witnesses
are no longer optimal. Following a general frame-
work [20, 21] (see also [22] for a slightly different ap-
proach) we perform an optimization procedure which
eventually gives rise to optimal witnesses satisfying
the spanning property. Due to the symmetry of the
considered class, the optimization procedure can be
performed analytically. We show that the witnesses
from the second class are optimal, however, without
the spanning property. We believe that our analysis
in C4⊗C4 sheds a new light into the structure of opti-
mal entanglement witnesses and can find applications
in experimental entanglement detection.

This paper is organized as follows. In Sec. II, we
briefly introduce the theory of the optimal entangle-
ment witness. In Sec. III, we present covariant Bell
diagonal entanglement witnesses in Cn⊗Cn, and also
describe the corresponding entanglement witness in
C3⊗C3 and C4⊗C4. The main results on optimality
of the introduced classes is given in Sec. IV. Finally,
in Sec. V we provide concluding remarks.

II. PRELIMINARIES

The most general approach to discriminate be-
tween separable and entangled states of a quantum
composite system living in HA ⊗ HB is based on
the notion of positive (but not completely positive)
maps or equivalently entanglement witnesses (EWs)
[2, 3, 9, 16–18, 42–44]. A state represented by a
density operator ρ in HA ⊗ HB is separable iff it
can be represented as a mixture of product states

ρ =
∑
k pkρ

(k)
A ⊗ ρ

(k)
B , with ρ

(k)
A and ρ

(k)
B being den-

sity operators of subsystems A and B, respectively
[45]. Recall, that a Hermitian operator W acting on
HA ⊗ HB is an entanglement witness (EW) [17, 18]
if 〈ψ ⊗ φ|W |ψ ⊗ φ〉 ≥ 0 but W is not a positive op-
erator (cf. also [46, 47] for the concept of the ultra
EW and mirror EW, respectively). A state ρ is en-
tangled if and only if there exists an EW W such that

Tr(Wρ) < 0. Equivalently, a bipartite state ρ living
inHA⊗HB is entangled iff there exists a positive map
Φ such that (1lA⊗Φ)ρ is no longer a positive operator
(1lA denotes identity map acting on subsystem A).

In qubit-qubit or qubit-qutrit case the situation is
fully solved: a state ρ is separable if and only if it is
PPT, i.e. its partial transposition is positive (ρΓ =
(1lA ⊗ T )ρ ≥ 0) [8, 48]. However, in general the so-
called separability problem is notoriously hard, that
is, there exist PPT states which are entangled (they
belong to the class of so-called bound entangled states
[2]).

Recall, that an EW W is decomposable if

W = A+BΓ, (1)

where A,B ≥ 0 and Γ denotes the partial transposi-
tion. It is clear from the definition that a decompos-
able EW is unable to detect an entangled PPT state.
Therefore, it is more interesting to examine EWs that
are of indecomposable form, i.e. they fail to be rep-
resented in the form of Eq. (1). Equivalently, a linear
positive map Φ is decomposable if Φ = Λ1 + Λ2 ◦ T ,
where Λ1,Λ2 are completely positive and T denotes
transposition.

Given an EW, one may define a set of entan-
gled states DW detected by W , that is, DW =
{ρ | Tr(Wρ) < 0}. It is straightforward that if

DW ⊃ DW̃ , then W is more effective than W̃ , since

it detects more entangled states than W̃ does. Fol-
lowing the Refs. [20, 21], an entanglement witness
W is optimal if there is no other EW W ′ such that
DW ⊂ DW ′ . Therefore the knowledge of optimal
EWs is sufficient for the full characterization of sep-
arable/entangled states.

In this regard, the following sufficient condition for
optimality was provided in [20]: if a set of product
vectors |ψk ⊗ φk〉 satisfying

〈ψk ⊗ φk|W |ψk ⊗ φk〉 = 0, (2)

span HA ⊗ HB , then W is optimal. And therefore,
one can say that such W has the spanning property.
Several examples of EWs satisfying (2) (hence opti-
mal) already exist in the literature [39, 49–54] (cf.
also review papers [55, 56]). Since the condition (2)
is only sufficient, one may identify optimal EWs with-
out the spanning property. In [57], authors provided
such an example for a decomposable case.
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III. COVARIANT BELL DIAGONAL
ENTANGLEMENT WITNESSES IN Cn ⊗ Cn

Let us consider an n-dimensional Hilbert space. By
fixing a computational basis {|0〉, . . . , |n− 1〉}, we in-
troduce a family of Weyl unitary operators Umk de-
fined via [58–60]

Umk|`〉 = ωm`|`+ k〉 (mod n), (3)

with ω = e2πi/n. Weyl operators (matrices) satisfy

Uk`Urs = ωksUk+r,`+s, (4)

together with U∗k` = U−k`, U
†
k` = ωk`U−k,−`, and

Tr(Uk`U
†
rs) = n δkrδ`s (with all index summation be-

ing modulo n). One can define the generalized Bell
states in Cn ⊗ Cn via

|ψk`〉 = 1ln ⊗ Uk`|ψ+
n 〉, (5)

where |ψ+
n 〉 = 1/

√
n
∑n−1
k=0 |k ⊗ k〉 stands for the

canonical maximally entangled states. A bipartite
operator X in Cn ⊗ Cn is Bell diagonal if

X =

n−1∑
k,`=0

xk`Pk`, (6)

where Pk` = |ψk`〉〈ψk`|. Consider now a maximal
commutative subgroup of U(n)

T (n) = { U ∈ U(n) |U =

n−1∑
k=0

eiφk |k〉〈k| }, (7)

with φk ∈ R. Moreover, a bipartite operator X is
said to be T ⊗ T ∗-covariant whenever

U ⊗ U∗X(U ⊗ U∗)† = X, (8)

for any U ∈ T (n). Actually, any covariant operator
has the following structure

X =

n−1∑
k,`=0

Akl|k〉〈k| ⊗ |`〉〈`|+
n−1∑
k 6=`=0

Bkl|k〉〈`| ⊗ |k〉〈`|,

(9)
with complex parameters Ak` and Bk`. In this paper
we are going to analyze the Hermitian Bell diagonal
operators which are T ⊗ T ∗-covariant. It turns out
[59–61] that for such operators the Hermitian matrix

Ak` is circulant, i.e. Ak` = αk−` for some real vector
(α0, α1, . . . , αn−1). Moreover, all Bkl are constant,
i.e. Bk` = β ∈ R.

Now, the following Proposition provides the suffi-
cient condition for the circulant matrix Ak` and the
parameter β that guarantee that (9) defines a legiti-
mate entanglement witness.

Proposition 1. [62] If the circulant matrix Ak` sat-
isfies the following constraints

α0 + α1 + . . .+ αn−1 = n− 1, (10)

together with

AAT = I + (n− 2)J, (11)

where Jk` = 1, then

W =

n−1∑
k,`=0

αk−l|k〉〈k| ⊗ |`〉〈`| −
n−1∑
k 6=`=0

|k〉〈`| ⊗ |k〉〈`|,

(12)
defines an EW.

Introducing the following projectors

Πk = Pk0 + Pk1 + . . .+ Pk,n−1, (13)

for k = 0, 1, . . . , n − 1 formula (12) can be rewritten
in the compact form as

W = (α0+1)Π0+α1Π1+. . .+αn−1Πn−1−nP+
n , (14)

where P+
n = |ψ+

n 〉〈ψ+
n | stands for the projector onto

the canonical maximally entangled state.

A. EWs in C3 ⊗ C3

For n = 3 let us use the following notation a =
α0, b = α1, c = α2 and hence the circulant matrix
Ak` has the structure

A =

 a b c
c a b
b c a

 . (15)

Conditions (10) and (11) imply

a+ b+ c = 2 (16)

a2 + b2 + c2 = 2 (17)

ab+ bc+ ca = 1, (18)
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which after simple algebra gives rise to

a+ b+ c = 2, a2 + b2 + c2 = 2, (19)

or equivalently [37]

a+ b+ c = 2, bc = (a− 1)2, (20)

The corresponding EW (14) reads as follows

W [a, b, c] = (a+ 1)Π0 + bΠ1 + cΠ2 − P+
3 . (21)

Hence the above class may be parameterized by a
single parameter φ ∈ [0, 2π) [40, 63]

a =
2

3
(1 + cosφ),

b =
1

3
(2− cosφ−

√
3 sinφ), (22)

c =
1

3
(2− cosφ+

√
3 sinφ).

One proves [39] (see also [41] for another proof) that
if a ≤ 1, then W [a, b, c] defines an optimal EW. More-
over, if a < 1, then W [a, b, c] enjoys spanning prop-
erty [39, 41]. However, for a = 1, two EWs cor-
respond to Choi maps W [1, 1, 0] and W [1, 0, 1] for
which there are only seven vectors |ψk ⊗ φk〉 satisfy-
ing 〈ψk ⊗ φk|W [a, b, c]|ψk ⊗ φk〉 = 0.

B. EWs in C4 ⊗ C4

For n = 4, one has the corresponding circulant
matrix

A =

 a b c d
d a b c
c d a b
b c d a

 , (23)

where d = α3. Conditions (10) and (11) imply

a+ b+ c+ d = 3, (24)

a2 + b2 + c2 + d2 = 3, (25)

ac+ bd = 1, (26)

(a+ c)(b+ d) = 2. (27)

Simple algebra provides two solutions: class I is char-
acterized by the following condition

a+ c = 2, b+ d = 1, bd = (1− a)2, (28)

whereas class II is characterized by the following con-
dition

a+ c = 1, b+ d = 2, ac = (1− b)2. (29)

The corresponding EW has the following form

W [a, b, c, d] = (a+ 1)Π0 + bΠ1 + cΠ2 + dΠ3 − P+
4 .

(30)
In the next section, we provide the detailed analysis
of these two classes of EWs.

IV. OPTIMALITY

The key question we address in this section is
whether or not EWs constructed in the previous Sec-
tion for n = 4 are optimal.

A. Class I

For the class defined by (28), we introduce the fol-
lowing parametrization

a =
1

2
(2− sin θ),

b =
1

2
(1 + cos θ),

c = 2− a,
d = 1− b, (31)

with θ ∈ [0, π]. With this parametrization of θ, we
express the corresponding entanglement witness for
this class I as WI(θ). Here θ = 0 corresponds to
W [1, 1, 1, 0] which is the generalization of the Choi
EW from M3(C). Note that M3(C) denotes a set of
3 × 3 complex matrices. Similarly, for θ = π, we get
another Choi-like witness W [1, 0, 1, 1]. It is impor-
tant to mention here that the witness W [a, b, c, d] is
decomposable only if b = d [61], which is equivalent
to θ = π/2. To check the optimality of the entan-
glement witness WI(θ) for θ 6= π

2 , let us look for a
family of vectors |ψk ⊗ φk〉 satisfying Eq. (2). For
that purpose, we introduce a vector |ψ〉 ∈ C4 given
by

|ψ〉 =

3∑
k=0

eiβk |k〉, (32)

for arbitrary (real) phases βk, and we observe that

〈ψ ⊗ ψ∗|W [a, b, c, d]|ψ ⊗ ψ∗〉 = 0. (33)

One has the following

Proposition 2. The vectors |ψk ⊗ ψ∗k〉 ∈ Cn ⊗ Cn
with

|ψk〉 =

n−1∑
`=0

eiνk` |`〉 , (34)
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with real νkl, span n2 − (n− 1) dimensional space in
Cn ⊗ Cn.

For n = 4, it gives therefore 13 vectors. To have
a spanning property, one still needs three additional
linearly independent vectors satisfying Eq. (2). In-
terestingly, for θ = 0 and θ = π, i.e. for Choi-like
witnesses, we found only these 13 vectors, that sat-
isfy (2). This is in a full analogy with the property of
Choi witnesses for n = 3: in that case one has only
32− 2 = 7 linearly independent vectors [39, 41]. Now
we study the region θ ∈ (0, π), for which a < 1 and
b > 0. Introducing the following vectors

|ψ14〉 =
√

sin(θ/2) |0〉+
√

cos(θ/2) |1〉,
|ϕ14〉 =

√
cos(θ/2) |0〉+

√
sin(θ/2) |1〉,

|ψ15〉 =
√

sin(θ/2) |1〉+
√

cos(θ/2) |2〉,
|ϕ15〉 =

√
cos(θ/2) |1〉+

√
sin(θ/2) |2〉, (35)

|ψ16〉 =
√

sin(θ/2) |2〉+
√

cos(θ/2) |3〉,
|ϕ16〉 =

√
cos(θ/2) |2〉+

√
sin(θ/2) |3〉,

one can show that

〈ψk ⊗ ϕk|W [a, b, c, d]|ψk ⊗ ϕk〉 = 0,

for k = 14, 15, 16. However, these 16 vectors span
only 15 dimensional space in C4⊗C4. There exists no

other linearly independent vectors in this subspace.
We will show it by subtracting an amount of the pro-
jector onto its orthogonal complement and still ob-
taining an entanglement witness. Summarising: for
class I we have 15 linearly independent vectors for
0 < θ < π and 13 linearly independent vectors for
θ = 0, π. Recall that, if n = 3, then for the Choi
witness, we have only 7 (= n2 − n+ 1) linearly inde-
pendent vectors.

B. Optimization for the class I

It turns out that EWs from the class I are not opti-
mal. Note, that WI(π/2) is decomposable. Precisely,
for this case, we obtain the following decomposition

WI

(π
2

)
= W

[1
2
,

1

2
,

3

2
,

1

2

]
= 2P +AΓ, (36)

where P = |Ψ〉〈Ψ| is a rank-1 projector onto the max-
imally entangled state in C4 ⊗ C4 with

|Ψ〉 =
1

2

3∑
j=0

(−1)j+1|j ⊗ j〉, (37)

and A is a positive definite matrix

A =
1

2



. . . . . . . . . . . . . . . .

. 1 . . −1 . . . . . . . . . . .

. . 3 . . . . . −3 . . . . . . .

. . . 1 . . . . . . . . −1 . . .

. −1 . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . 1 . . −1 . . . . . .

. . . . . . . 3 . . . . . −3 . .

. . −3 . . . . . 3 . . . . . . .

. . . . . . −1 . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . 1 . . −1 .

. . . −1 . . . . . . . . 1 . . .

. . . . . . . −3 . . . . . 3 . .

. . . . . . . . . . . −1 . . 1 .

. . . . . . . . . . . . . . . .



, (38)

where we replaced all zeros by dots. It is therefore
clear that WI(

π
2 ) is not optimal since we can subtract

a positive operator 2P , that is,

WI

(π
2

)
− 2P = AΓ,
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is an EW. Let us observe that |Ψ〉 defined in (37) is
orthogonal to 15-dimensional subspace spanned by

{|ψk ⊗ ψ∗k〉, |ψ` ⊗ ϕ`〉},

for k = 1, . . . , 13 and ` = 14, 15, 16. Hence, following
Refs. [20, 21] one may try to optimise WI(θ) sub-
tracting a fraction of the projector P .

Theorem 1. The following operator

WI
′(θ) = WI(θ)− λP, (39)

with P = |Ψ〉〈Ψ| satisfying Eq. (37) and θ ∈ [0, π], is
an entanglement witness if and only if λ ≤ 2. More-
over, for λ = 2 the witness is optimal.

The proof is provided in Appendix A. Interestingly,
the optimal witness Wopt(θ) = WI(θ) − 2P has the
spanning property for θ ∈ (0, π). Indeed, we provide
the full set of spanning vectors given in Eqs. (A39)-
(A43) in Appendix A.

Now below by considering an example of a family
of PPT states, we show that there are region where
these states are detected by optimal entanglement
witness WI

′, but not by WI . The (unnormalized)
state is in the following form

ρε =



1 . . . . 1 . . . . 1 . . . . 1

. ε . . 1 . . . . . . . . . . .

. . 1 . . . . . 1 . . . . . . .

. . . 1
ε . . . . . . . . 1 . . .

. 1 . . 1
ε . . . . . . . . . . .

1 . . . . 1 . . . . 1 . . . . 1

. . . . . . ε . . 1 . . . . . .

. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . 1 . . 1
ε . . . . . .

1 . . . . 1 . . . . 1 . . . . 1

. . . . . . . . . . . ε . . 1 .

. . . 1 . . . . . . . . ε . . .

. . . . . . . 1 . . . . . 1 . .

. . . . . . . . . . . 1 . . 1
ε .

1 . . . . 1 . . . . 1 . . . . 1



,

(40)
with ε > 0. One can easily verify

Tr(WIρε) = Tr(WI
′ρε) = 4(a+c+εb+

1

ε
d−3). (41)

Let us find the critical value of ε which satisfies
Tr(WIρε) = 0, which are ε± = 1±cos θ

1+cos θ . Take any

point between these ε− and ε+, e.g., ε∗ = 1
2 (ε+ +

ε−) = 1
1+cos θ . One finds for ε = ε∗

Tr(WIρε) = −2 cos2 θ < 0, (42)

that is, ρε is detected both by WI and W ′I . Now we
consider a noisy state

ρ̃ε,γ = ρε + γI4 ⊗ I4, (43)

with γ > 0. Again, ρ̃ε,γ is not normalized. For this
state one finds

Tr(WI ρ̃ε,γ) = 2(6γ − cos2 θ),

Tr(WI
′ρ̃ε,γ) = 2(5γ − cos2 θ). (44)

Therefore, in the region 1
6 cos2 θ < γ < 1

5 cos2 θ, we

have Tr((WI ρ̃ε,γ) > 0 and Tr(WI
′ρ̃ε,γ) < 0. Hence,

a noisy state is still detected by the optimal witness
W ′I but it is NOT detected by the original one WI .
It clearly shows that W ′I provides more efficient tool
in the considered class.

C. Class II

In class II, obeying the condition (29), we have the
following parametrization

a =
1

2
(1 + cos θ),

b =
1

2
(2− sin θ),

c = 1− a,
d = 2− b, (45)

for θ ∈ [0, π]. Similarly like class I, we express the cor-
responding entanglement witness with θ parametriza-
tion for this class II as WII(θ). Note that for θ = π,
we find

WII(π) = W [0, 1, 1, 1], (46)

which recovers the EW corresponding to the reduc-
tion map. This witness is optimal having the span-
ning property, that is, 〈φ⊗ φ∗|W (π)|φ⊗ φ∗〉 = 0 for
any |φ〉 ∈ C4 and these vectors span the whole 16
dimensional space. For θ = 0, we get another decom-
posable witness

WII(0) = W [1, 1, 0, 1], (47)

with the following decomposition

W [1, 1, 0, 1] = BΓ + 2(P1 + P2), (48)

where

6



B =



. . . . . . . . . . . . . . . .

. 1 . . −1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . 1 . . . . . . . . −1 . . .

. −1 . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . 1 . . −1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . −1 . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . 1 . . −1 .

. . . −1 . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . −1 . . 1 .

. . . . . . . . . . . . . . . .



, (49)

and Pk = |Ψk〉〈Ψk|, k = 1, 2 with

|Ψ1〉 =
1√
2

(
|0⊗ 0〉 − |2⊗ 2〉

)
, (50)

|Ψ2〉 =
1√
2

(
|1⊗ 1〉 − |3⊗ 3〉

)
. (51)

Hence W [1, 1, 0, 1] is not optimal.
Next we investigate what happens when θ > 0.

Proposition 3. The expectation value of WII(θ)
vanishes on a product vector iff it is of the form
|ψ∗ ⊗ ψ〉, where

|ψ0| = |ψ2|, |ψ1| = |ψ3|. (52)

We provide prove this proposition in Appendix B.
Moreover, we show that such vectors span 14 dimen-
sional subspace of C4 ⊗ C4.

Theorem 2. The witness WII(θ) with θ ∈ (0, π) is
optimal (with only 14 vectors satisfying (2)).

We provide a proof of this theorem in Appendix C.
Summarising: the class II consists of optimal EWs
WII(θ) for θ ∈ (0, π], where we have the spanning
property only for θ = π.

Now for the sake of the completeness of the paper,
we consider the same example of a family of PPT
states ρε defined in Eq. (40), and show that there are
completely disjoint region in which these states are
detected by the two witnesses, WI and WII from the
first and second classes, respectively. We have already

shown in Sec. IV B that Tr(WIρε) = 0 (see Eq. (41))
implies the two roots of ε, which are ε± = 1±cos θ

1+cos θ .
In a similar way, for the second class, we obtain the
roots from Tr(WIIρε) = 0, and these are ε± = 2±sin θ

2−sin θ .

Therefore in the region θ ∈ (0, π/2), it is evident that
for class I, 0 ≤ ε± ≤ 1 and for the class II, 1 ≤ ε± ≤ 3.
This implies that for θ ∈ (0, π/2), these two sets of
ε± from class I and II are disjoint except 1. Therefore
we can say that if Tr(WIρε) < 0, then Tr(WIIρε) > 0
and vice versa.

V. CONCLUSIONS

In this paper, we considered two 1-parameter
classes of the entanglement witnesses in C4⊗C4, that
are diagonal in the Bell basis. Additionally, observ-
ables from these classes are covariant w.r.t. maxi-
mal commutative subgroup of U(4). The investigated
classes are natural extension of a well-studied con-
struction in C3 ⊗ C3 of optimal witnesses described
by a single parameter. Interestingly, the latter case
contains paradigmatic examples of EWs, that are in-
decomposable Choi witness and the witness corre-
sponding to the reduction map. Now in C4⊗C4, the
situation is different: instead of a single class, one
has two classes which display distinct properties, and
can serve as a playground for investigation of various
features of entanglement witnesses.

Class I contains only EWs which are not optimal.
This shows that a straightforward generalization of
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the Choi witness from n = 3 to n = 4 does not pre-
serve optimality. Let us recall that for n = 3 the
Choi witness is not only optimal but even extremal
[38, 39]. Moreover, all EWs from this class posses 15
linearly independent vectors satisfying condition (2).
The only exception is provided by Choi-like witnesses
for which one has only 13 vectors. Following the op-
timization technique developed in Refs. [20, 21], we
have shown that all EWs from class I can be op-
timized by subtracting a single projector. Interest-
ingly, the optimized entanglement witnesses possess
the spanning property (again with an exception of
Choi-like witnesses for which we have now 14 vectors
satisfying (2)).

Class II contains optimal EWs (with one exception
WII(0) i.e. at θ = 0). However, these EWs do not
have the spanning property (again with one exception
W (π) corresponding to the reduction map). This re-
sult is quite unexpected since it shows that in the
limit θ → 0, one obtains non-optimal witness WII(0)
out of optimal EWs WII(θ).

It should be stressed that checking for optimal-
ity of a given EW is in general a difficult problem.
This analysis sheds a new light into the structure of
optimal entanglement witnesses. We show that two
classes of EWs displaying the same symmetry posses
very different properties: one is optimal and the other
is not. Moreover, due to the symmetry of the problem
we were able to performed the full optimization pro-
cedure [20, 21]. It would be interesting to find general
characterization for arbitrary n. Another interesting
problem is the issue of extremality. For n = 3 it is
known that the considered class is already extremal.
For n > 3 the problem is open.
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Appendix A: Proof of Theorem 1

Due to the ChoiJamiokowski isomorphism, any en-
tanglement witness W in Cn ⊗ Cn corresponds to a
positive map Φ : Mn(C) ⊗Mn(C) via the following
relation

W =

n−1∑
i,j=0

eij ⊗ Φ(eij), (A1)

where eij = |ei〉〈ej |, {e0, e1, . . . , en−1} denotes an or-
thonormal basis in Cn. The map corresponding to
Eq. (14) has the following form

Φ(eii) =

n−1∑
j=0

aijejj ,

Φ(eij) = eij , i 6= j (A2)

where aij = αi−j ≥ 0. One can easily find the inverse
relation, which is

Φ(|χ〉〈χ|) = Tr1((|χ〉〈χ|)T ⊗ In W ), (A3)

where the transposition is performed with respect to
{e0, e1, . . . , en−1}. Now, to show the optimality of the
Theorem 1, i.e. the entanglement witness W ′I(θ) =
WI(θ) − 2P in first class, our idea is to find the 16
linearly independent vectors satisfying the spanning
criteria for the EW W ′I(θ). For that purpose, we act
with the corresponding map Φ on an arbitrary vector
|ψ〉 = {ψ0, ψ1, ψ2, ψ3} ∈ C4 and get

Φ(|ψ〉〈ψ|) = diag{y0, y1, y2, y3} − |ψ〉〈ψ| − 2D ◦ |ψ〉〈ψ| df= A−B − C, (A4)

where ◦ denotes the Hadamard product,

D =
1

4


1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1

 , (A5)
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and

y0 =

(
1 +

2− sin θ

2

)
|ψ0|2 +

1 + cos θ

2
|ψ1|2 +

2 + sin θ

2
|ψ2|2 +

1− cos θ

2
|ψ3|2, (A6)

y1 =

(
1 +

2− sin θ

2

)
|ψ1|2 +

1 + cos θ

2
|ψ2|2 +

2 + sin θ

2
|ψ3|2 +

1− cos θ

2
|ψ0|2, (A7)

y2 =

(
1 +

2− sin θ

2

)
|ψ2|2 +

1 + cos θ

2
|ψ3|2 +

2 + sin θ

2
|ψ0|2 +

1− cos θ

2
|ψ1|2, (A8)

y3 =

(
1 +

2− sin θ

2

)
|ψ3|2 +

1 + cos θ

2
|ψ0|2 +

2 + sin θ

2
|ψ1|2 +

1− cos θ

2
|ψ2|2. (A9)

Its determinant is equal to

det[Φ(|ψ〉〈ψ|)] = det[A0|A1|A2|A3]− det[B0|A1|A2|A3]− · · · − det[A0|A1|A2|B3]− det[C0|A1|A2|A3]

− · · · − det[A0|A1|A2|C3] + det[B0|C1|A2|A3] + det[C0|B1|A2|A3] + . . .

+ det[C0|A1|A2|B3] + det[B0|A1|A2|C3]. (A10)

This determinant is a multilinear function on
columns, hence we obtain 43 summands, but most
of them are zero - in each summand, there can be
at most one column from B and at most one column
from C (each two columns of B are linearly depen-

dent and then the summand would be zero, the same
holds for C). If one column from B and one column
from C enter the summand, they have to be neigh-
bours to produce a non-zero summand. Proceeding
in this way, we get

det[Φ(|ψ〉〈ψ|)] = y0y1y2y3 −
3

2
|ψ0|2y1y2y3 − · · · −

3

2
|ψ1|2y2y3y0

+ 2|ψ0|2|ψ1|2y2y3 + 2|ψ1|2|ψ2|2y3y0 + 2|ψ2|2|ψ3|2y0y1 + 2|ψ3|2|ψ0|2y1y2

= y0y1y2y3

[
1− 3

2

3∑
i=0

|ψi|2

yi
+ 2

(
|ψ0|2

y0
+
|ψ2|2

y2

)(
|ψ1|2

y1
+
|ψ3|2

y3

)]
. (A11)

Now, we will show that the second factor in the above
is non-negative. Denoting

z0 =
|ψ0|2

y0
+
|ψ2|2

y2
, (A12)

z1 =
|ψ1|2

y1
+
|ψ3|2

y3
. (A13)

We have the following condition

1− 3

2
(z0 + z1) + 2z0z1 ≥ 0

⇒ (4z0 − 3)(4z1 − 3) ≥ 1, (A14)

where

4z0 − 3 = − (x0+ + 3x1+)(3x0+ + x1+) + ((5 + 3s)x0− − 3cx1−)((1− s)x0− + cx1−)

(3x0+ + x1+)
2 − ((1− s)x0− + cx1−)

2 , (A15)

4z1 − 3 = − (x0+ + 3x1+)(3x0+ + x1+) + ((5 + 3s)x1− + 3cx0−)((1− s)x1− − cx0−)

(3x1+ + x0+)
2 − ((1− s)x1− − cx0−)

2 . (A16)
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Note that we denote here sin θ and cos θ as s and c
respectively, and also

x0± = |ψ0|2 ± |ψ2|2, (A17)

x1± = |ψ1|2 ± |ψ3|2. (A18)

Using Eqs. (A15) and (A16) in (A14), we obtain

2(1− s)(x0+ + 3x1+)(3x0+ + x1+)(x2
0− + x2

1−)+

(1− s)
(
c(x2

1− − x2
0−)− 2sx0−x1−

)(
(5 + 3s)x0− − 3cx1−

)(
(5 + 3s)x1− + 3cx0−

)
≥ −(1− s) (3x0+ + x1+)

2 (
(1− s)x2

1− − 2cx0−x1− + (1 + s)x2
0−
)2

− (1− s) (3x1+ + x0+)
2 (

(1− s)x2
0− + 2cx0−x1− + (1 + s)x2

1−
)2

+ (1− s)2
(
c(x2

1− − x2
0−)− 2sx1−x0−

)2
, (A19)

which implies

2(x2
0− + x2

1−)(x0+ + x1+)2 + s(x2
0− − x2

1−)(x2
0+ − x2

1+)− c(2x0−x1−)(x2
0+ − x2

1+)

+ c(1 + 4s+ 2s2)(2x0−x1−)(x2
1− − x2

0−)− s(1 + s)2(2x0−x1−)2 − c2(2 + s)(x2
1− − x2

0−)2 ≥ 0,

⇒ 2(x2
0− + x2

1−)(x0+ + x1+)2 − (s(x2
1− − x2

0−) + c · 2x0−x1−)(x2
0+ − x2

1+)

− (c(x2
1− − x2

0−)− s · 2x0−x1−)(c(2 + s)(x2
1− − x2

0−)− (1 + s)2 · 2x0−x1−) ≥ 0, (A20)

Clearly here x0+, x1+ ≥ 0 and x0− ∈ [−x0+, x0+],
x1− ∈ [−x1+, x1+]. Now we convert our system into
the polar coordinates (see Fig. 1) and rewrite the
above equation in these new coordinates.

In the new coordinate system, R ∈
[0,min

{ x0+

| cosφ| ,
x1+

| sinφ|
}

], and therefore the inequality

(A20) can be written as

R2
(
2(x0+ + x1+)2 − sin(2φ− θ)(x2

0+ − x2
1+)
)

−R4 cos(2φ− θ)(sin 2φ+ (2 + sin θ) cos(2φ− θ)) ≥ 0,

(A21)

and this equation has to be satisfied for all R men-
tioned in the above range. Hence

cos(2φ− θ)
(

sin 2φ+ (2 + sin θ) cos(2φ− θ)
)

min

{
x2

1+

sin2 φ
,
x2

0+

cos2 φ

}
≤ 2(x0+ + x1+)2 − sin(2φ− θ)(x2

0+ − x2
1+).

(A22)

First, we consider the scenario when
x2
1+

sin2 φ
≤ x2

0+

cos2 φ . Therefore,

cos(2φ− θ)
(

sin 2φ+ (2 + sin θ) cos(2φ− θ)
)
x2

1+

≤ sin2 φ
(
2(x0+ + x1+)2 − sin(2φ− θ)(x2

0+ − x2
1+)
)
.

(A23)
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FIG. 1. The polar coordinates representation. Here, φ ∈
[0, 2π).

Ordering the terms, we get

x2
0+ sin2 φ (2− sin(2φ− θ)) + 4 sin2 φ x0+x1++

x2
1+

[
sin2 φ(2 + sin(2φ− θ))− cos(2φ− θ) sin 2φ

− (2 + sin θ) cos2(2φ− θ)
]
≥ 0. (A24)

It is equivalent to say that the quadratic function

x0+

x1+
7→ sin2 φ (2− sin(2φ− θ))

(
x0+

x1+

)2

+

4 sin2 φ
x0+

x1+
+
(

sin2 φ(2 + sin(2φ− θ))−

cos(2φ− θ) sin 2φ− (2 + sin θ) cos2(2φ− θ)
)
,

(A25)

has to be positive in the range [| cotφ|,∞). As the
function is increasing for positive arguments, it is
equivalent to check its positivity at the end point,
i.e at the point | cotφ|

(2− sin(2φ− θ)) cos2 φ+ 4| sinφ cosφ|
+ sin2 φ(2 + sin(2φ− θ))− cos(2φ− θ) sin 2φ

− (2 + sin θ) cos2(2φ− θ) ≥ 0. (A26)

After simplification, we arrive at

2 + 2| sin 2φ| − sin(4φ− θ)− (2 + sin θ) cos2(2φ− θ)
≥ 0.

(A27)

To show that this inequality holds, it suffices to con-
sider φ ∈ [0, π/2] due to periodicity of the LHS.
And therefore one can remove the modulus from the
above inequality. Decomposing the coeffiecients of
the above inequality in the following way

sin(4φ− θ) = sin(2φ) cos(2φ− θ)+
cos(2φ) sin(2φ− θ), (A28)

sin(θ) = sin(2φ) cos(2φ− θ)−
cos(2φ) sin(2φ− θ), (A29)

and organizing terms, one can rewrite the above in-
equality (A27) as:

sin2(2φ− θ) (2− cos(2φ) sin(2φ− θ)) +

sin 2φ
(
2− cos(2φ− θ)− cos3(2φ− θ)

)
≥ 0.

(A30)

This inequality obviously holds, as all factors in
both summands are non-negative. One can clearly
see that the inequality is saturated iff 2φ = θ, hence
it is saturated for four values of φ if θ ∈ [0, π] due to
periodicity. Additionally, this inequality will never
be saturated if θ ∈ (π, 2π) because, in this range of
θ, φ > π/2 which implies we are already out of our
domain.

Now, we consider the other scenario i.e.
x2
1+

sin2 φ
≥

x2
0+

cos2 φ . Then

cos(2φ− θ)
(

sin 2φ+ (2 + sin θ) cos(2φ− θ)
)
x2

0+ ≤
cos2 φ

(
2(x0+ + x1+)2 − sin(2φ− θ)(x2

0+ − x2
1+)
)
.

(A31)

By ordering the terms, we obtain

cos2 φ
(
2 + sin(2φ− θ)

)
x2

1+ + 4 cos2 φ x0+x1+

+
(

cos2 φ(2− sin(2φ− θ))− cos(2φ− θ) sin 2φ

− (2 + sin θ) cos2(2φ− θ)
)
x2

0+ ≥ 0. (A32)

It is equivalent to say that the quadratic function:

x1+

x0+
7→ cos2 φ (2 + sin(2φ− θ))

(
x1+

x0+

)2

+ 4 cos2 φ
x1+

x0+
+
(

cos2 φ(2− sin(2φ− θ))

− cos(2φ− θ) sin 2φ− (2 + sin θ) cos2(2φ− θ)
)
,

(A33)

has to be positive in the range [| tanφ|,∞). As the
function is increasing for positive arguments, it is
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equivalent to check its positivity at the point | tanφ|:

sin2 φ (2 + sin(2φ− θ)) + 4| cosφ|| sinφ|
+ cos2 φ(2− sin(2φ− θ))− cos(2φ− θ) sin 2φ

− (2 + sin θ) cos2(2φ− θ) ≥ 0.

(A34)

Simplifying the above inequality, we obtain again the
same inequality (A27), which has been proven al-
ready.

The inequality (A30) is saturated if θ ∈ [0, π]
and φ = θ

2 + k π2 . We have obtained (A30) putting
x0+ = | sinφ|, x1+ = | cosφ|, and hence R = 1.
The inequality (A20) is satisfied in the following four
points:

x0+ = cos
θ

2
, x1+ = sin

θ

2
, x0− = cos

θ

2
, x1− = sin

θ

2
, (A35)

x0+ = sin
θ

2
x1+, = cos

θ

2
, x0− = − sin

θ

2
, x1− = cos

θ

2
, (A36)

x0+ = cos
θ

2
, x1+ = sin

θ

2
, x0− = − cos

θ

2
, x1− = − sin

θ

2
, (A37)

x0+ = sin
θ

2
, x1+ = cos

θ

2
, x0− = sin

θ

2
x1− = − cos

θ

2
. (A38)

Additional solutions are for R = 0. Then x0− = x1− = 0 and x0+, x1+ are arbitrary. The additional solution
exists for the whole range of θ. It corresponds to

|ψ0|2 = cos
θ

2
, |ψ1|2 = sin

θ

2
, |ψ2|2 = 0, |ψ3|2 = 0, (A39)

|ψ0|2 = 0, |ψ1|2 = cos
θ

2
, |ψ2|2 = sin

θ

2
, |ψ3|2 = 0, (A40)

|ψ0|2 = 0, |ψ1|2 = 0, |ψ2|2 = cos
θ

2
, |ψ3|2 = sin

θ

2
, (A41)

|ψ0|2 = sin
θ

2
, |ψ1|2 = 0, |ψ2|2 = 0, |ψ3|2 = cos

θ

2
, (A42)

|ψ0|2 = t, |ψ1|2 = 1− t, |ψ2|2 = t, |ψ3|2 = 1− t. (A43)

For such vectors |ψ〉 with the arbitrary choice of phases, the determinant of Φ(|ψ〉〈ψ|) is zero. Therefore, the
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kernel of Φ(|ψ〉〈ψ|) is spanned by respectively:

ker Φ



√

cos θ2√
sin θ

2e
iφ

0

0


[ √

cos θ2

√
sin θ

2e
−iφ 0 0

]
 = span


√

sin θ
2e
iφ√

cos θ2

0

0

 , (A44)

ker Φ




0√
cos θ2√
sin θ

2e
iφ

0


[

0
√

cos θ2

√
sin θ

2e
−iφ 0

]
 = span


0√

sin θ
2e
iφ√

cos θ2

0

 , (A45)

ker Φ




0

0√
cos θ2√
sin θ

2e
iφ


[

0 0
√

cos θ2

√
sin θ

2e
−iφ

]
 = span


0

0√
sin θ

2e
iφ√

cos θ2

 , (A46)

ker Φ



√

sin θ
2e
iφ

0

0√
cos θ2


[ √

sin θ
2e
−iφ 0 0

√
cos θ2

]
 = span


√

cos θ2

0

0√
sin θ

2e
iφ

 , (A47)

ker Φ



√
t√
1− teiα√
teiβ√
1− teiγ

[ √t √1− te−iα
√
te−iβ

√
1− te−iγ

] = span


√
t√
1− teiα√
teiβ√
1− teiγ

 . (A48)

Therefore we can say that for θ < π, the last
family (A43) along with arbitrary phases spans the
14-dimensional subspace and the additional solutions
(A39,A40,A41,A42) spans the whole 16-dimensional
space. Hence our entanglement witness W ′I(θ) is op-
timal. It completes the proof.

Appendix B: Proof of Proposition 3

In this section, we will prove the Eq. (52). For that
purpose, let us consider the local contraction of the
witness WII(θ) of the second class satisfying Eq. (45)
with the projector |ψ〉〈ψ| in the second subsystem,
and we get

Wψ(θ) = Tr2

(
I⊗ |ψ〉〈ψ|WII(θ)

)
= diag{y0, y1, y2, y3} − |ψ∗〉〈ψ∗|, (B1)

where

13



y0 =
3 + c

2
|ψ0|2 +

2− s
2
|ψ1|2 +

1− c
2
|ψ2|2 +

2 + s

2
|ψ3|2, (B2)

y1 =
3 + c

2
|ψ1|2 +

2− s
2
|ψ2|2 +

1− c
2
|ψ3|2 +

2 + s

2
|ψ0|2, (B3)

y2 =
3 + c

2
|ψ2|2 +

2− s
2
|ψ3|2 +

1− c
2
|ψ0|2 +

2 + s

2
|ψ1|2, (B4)

y3 =
3 + c

2
|ψ3|2 +

2− s
2
|ψ0|2 +

1− c
2
|ψ1|2 +

2 + s

2
|ψ2|2, (B5)

with s := sin θ and c := cos θ. The determinant of Wψ(θ) is given by

det[Wψ(θ)] = y0y1y2y3 − |ψ0|y1y2y3 − |ψ1|y2y3y0 − |ψ2|y3y0y1 − |ψ3|y0y1y2

=
[
(X0 +X1 +X2 +X3)2 −

(1 + c

2
(X0 −X2)− s

2
(X1 −X3)

)2] · [(X0 +X1 +X2 +X3)2−(1 + c

2
(X1 −X3) +

s

2
(X0 −X2)

)2]− [(X0 +X1 +X2 +X3)2 −
(1 + c

2
(X0 −X2)−

s

2
(X1 −X3)

)2] · [(X1 +X3)2 − 1 + c

2
(X1 −X3)2 + (X1 +X3)(X0 +X2)−

s

2
(X1 −X3)(X0 −X2)

]
−
[
(X0 +X1 +X2 +X3)2 −

(1 + c

2
(X1 −X3) +

s

2
(X0 −X2)

)2]·[
(X0 +X2)2 − 1 + c

2
(X0 −X2)2 + (X1 +X3)(X0 +X2) +

s

2
(X1 −X3)(X0 −X2)

]
= S1 + S2 + S3, (B6)

where

S1 =
(1 + c

2

)2(s
2

(X0 −X2)2 − s

2
(X1 −X3)2 + c(X0 −X2)(X1 −X3)

)2

,

S2 =
(1 + c

2
(X0 −X2)− s

2
(X1 −X3)

)2

·
(

(X1 +X3)(X0 +X1 +X2 +X3)−

(X1 −X3)
(1 + c

2
(X1 −X3) +

s

2
(X0 −X2)

))
,

S3 =
(1 + c

2
(X1 −X3)− s

2
(X0 −X2)

)2

·(
(X0 +X2)(X0 +X1 +X2 +X3)− (X0 −X2)

(1 + c

2
(X0 −X2)− s

2
(X1 −X3)

))
. (B7)

We introduce the following notation Xi := |ψi|2, for
i = 0, 1, 2, 3. We observe that S1 ≥ 0. Moreover

|(X1 −X3)
(1 + c

2
(X1 −X3) +

s

2
(X0 −X2)

)
|

≤ (X1 +X3)(X0 +X1 +X2 +X3),

(B8)

hence S2 ≥ 0. Similarly, we show that S3 ≥ 0.
If θ = π, then 1+c

2 = s
2 = 0, and the contraction is

always singular, because then the witness corresponds
to the reduction map. In other case, i.e. θ ∈ [0, π),
the inequality (B8) is never saturated, and the only

way to have zero determinant is: X0 = X2 and X1 =
X3. For such |ψ〉, we have Wψ(θ) = I|ψ|2 − |ψ∗〉〈ψ∗|
and its kernel is spanned by {|ψ∗〉}. Hence the vectors
|ψ∗ ⊗ ψ〉 are the only product vectors for which the
expectation value of WII(θ) vanishes.

One can observe that the vectors in Eqs. (50) and
(51) are orthogonal to all |ψ∗ ⊗ ψ〉 satisfying (52).
Hence

dim{ψ∗ ⊗ ψ : 〈ψ∗ ⊗ ψ|WII(θ)|ψ∗ ⊗ ψ〉 = 0

∧ |ψ0| = |ψ2| ∧ |ψ1| = |ψ3|} ≤ 14. (B9)

Taking random 14 vectors from the above subspace,

14



one easily checks that the above inequality is satu-
rated.

Appendix C: Proof of Theorem 2

To show optimality of the entanglement witness
WII(θ) in class II we show that for any vector
|Ψx,y〉 = x|Ψ1〉 + y|Ψ2〉, with |Ψ1〉 and |Ψ2〉 defined
in (50) and (51), respectively, the following operator

WII(θ)− λ|Ψx,y〉〈Ψx,y|, (C1)

is not an EW, whenever λ > 0. Consider the corre-
sponding linear map defined in Eq. (A3), that is,

Φθ,λ,x,y(X) := Φθ(X)− λDx,y ◦X, (C2)

where

Dx,y =


|x|2 xy∗ −|x|2 −xy∗

yx∗ |y|2 −yx∗ −|y|2

−|x|2 −xy∗ |x|2 xy∗

−yx∗ −|y|2 yx∗ |y|2

 . (C3)

Now, our idea is to show that the determinant of
Φθ,λ,x,y(|ψ〉〈ψ|) is negative for appropriately choosen
|ψ〉, if λ > 0 and x, y are arbitrary. Hence we claim
that no rank-1 projector (hence no positive opera-
tors) can be subtracted from the EW WII(θ) in this
class and this witness is optimal without having the
spanning property for θ ∈ (0, π).

For this purpose, let us consider the following vec-
tor

|ψλ,k〉 =


0

1√
2k sin θ

2λ

1 + k cos θ2λ

 , (C4)

with the correction λ and arbitrary small parameter
k > 0. The action of the positive map on the projec-
tor onto this vector is

Φθ(|ψλ,k〉〈ψλ,k|)− λDx,y ◦ |ψλ,k〉〈ψλ,k|.
(C5)

Now, we show that the determinant of the above op-
erator is negative. In order to do so, we consider its
determinant as a series of powers of λ. The leading
power is 3 and the corresponding coefficient reads

8k2
(
k sin

θ

2
cos2 θ

2
− |x|2 sin2 θ

2

)
. (C6)

Now it is clear, that for any value of θ and for any
non-zero value of x one can choose k small enough
to make the leading coefficient negative, hence the
determinant is negative for small enough λ. Clearly
here we cannot exclude the correction for x = 0, y =
1 in this way. However, in this case the correction can
be excluded by considering the same vector (C4), but
with permuted entries. This ends the proof.
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