
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Third order modal exceptional degeneracy in waveguides
with glide-time symmetry

Farshad Yazdi, Tarek Mealy, Alireza Nikzamir, Robert Marosi, and Filippo Capolino
Phys. Rev. A 105, 052230 — Published 31 May 2022

DOI: 10.1103/PhysRevA.105.052230

https://dx.doi.org/10.1103/PhysRevA.105.052230


YAZDI, et al.: Third Order Modal Exceptional Degeneracy in Parity-Time Glide-Symmetric…                 UC IRVINE, OCT 2021 

 

Third Order Modal Exceptional Degeneracy in 

Waveguides with Glide-Time Symmetry 

 Farshad Yazdi, Tarek Mealy,  Alireza Nikzamir, Robert Marosi, and Filippo Capolino 

Department of Electrical Engineering and Computer Science  

University of California, Irvine, CA 92697 USA 

 
Abstract—The dispersion of a three-way waveguide is 

engineered to exhibit exceptional modal characteristics. Two 

coupled waveguides with Parity-Time (PT) symmetry have been 

previously demonstrated to exhibit second order exceptional 

points of degeneracy (EPDs). In this work, we introduce and 

investigate a particular class of EPDs, applicable from radio 

frequency to optical wavelengths, whereby three coupled 

waveguides satisfy Glide-Time (GT) symmetry to exhibit a third 

order modal degeneracy with a real-valued wavenumber. GT 

symmetry involves glide symmetry of lossless/gainless components 

of the waveguide in addition to changing the sign of passive/active 

elements while applying a glide symmetry operation. This GT-

symmetry condition allows three Floquet–Bloch eigenmodes of the 

structure to coalesce to a real-valued wavenumber at a single 

frequency, in addition of having one branch of the dispersion 

diagram with a purely real wavenumber. The proposed scheme 

may have applications including but not limited to distributed 

amplifiers, radiating arrays, and sensors, from radio frequency to 

optics.   

I. INTRODUCTION 

We propose and investigate a periodic three-way 

electromagnetic waveguide with a glide-time (GT)-symmetric 

topology that exhibits a distinguished class of degeneracy 

conditions based on the coalescence of three degenerate modes 

with a real wavenumber. The concept presented in this paper is 

based on applying concepts inspired by PT symmetry [1,2] to a 

glide-symmetric waveguide  [3]. We call this combination GT 

symmetry. It is different from PT symmetry since the 

waveguide does not possess parity symmetry. In this paper we 

show that a waveguide with GT symmetry, i.e., with a balanced 

condition of gain and loss, possesses an exceptional point of 

degeneracy (EPD) of order three, with a real-valued 

wavenumber. 

Exceptional degeneracies of order 2, 3, and 4 of eigenmodes 

in periodic media have been previously investigated in  [4–10], 

demonstrating the existence of unique features associated with 

modal degeneracies; even though they did not name them 

“exceptional points”, they provided the math and physics 

associated to such degeneracy points. Exceptional points and 

their perturbation have been studied previously in more general 

terms  [11–14] (note that the term exceptional point was already 

mentioned in the 1966 book of Kato  [13], Ch. 2.). These 

degeneracies are not just in the eigenvalues but also in the 

polarization states (eigenvectors).  

The concept of EPD associated with the coalescence of 

modes is relatively recent in the study of active devices. The 

recent interest in this class of degeneracies was mainly 

motivated by their relevance in the study of Parity-Time- (PT-) 

symmetric systems in physics  [1,2,15–25].  

 
The GT-symmetric waveguide in this paper is implemented 

by adding balanced gain and loss (it can be radiation loss due to 
antennas radiation), to a glide-symmetric waveguide. A periodic 
waveguide is said to possess glide (G) symmetry if it remains 
invariant under the glide operation, consisting of a translation by 
half of the geometrical period, d, followed by a reflection in the 
so-called glide plane  [3,26–33]. We define GT symmetry as 
regular glide symmetry of lossless and gainless components of 
the waveguide, in addition to changing the sign of passive/active 
elements while applying such glide symmetry operation. In other 
words, it is a combination of PT symmetry and glide symmetry. 

Previously, different kinds of EPDs have been found in 

lossless guiding structures in  [4–6,20,34,35]. In particular, an 

EPD of order three in a lossless waveguide, called stationary 

inflection point (SIP) has been demonstrated in  [34,36–38], 

whereas an EPD of order four in lossless waveguides, referred 

 
 
Fig. 1. (a) An example of dispersion relation of the mode with purely real 

wavenumber in an infinitely long periodic waveguide made of three coupled 

waveguides with loss and gain satisfying GT symmetry. The third order EPD 

occurs at the angular frequency ωe with real-valued Floquet-Bloch 

wavenumber ke, where three eigenvectors (schematically represented by three 

vectors) coalesce. (b) As an example, the 3-way periodic waveguide with third 

order EPD is made of three coupled microstrips over a grounded substrate (in 
blue) with periodic gain and loss, shifted by half a period. The structure in (b) 

can be seen in a more general way as two transmission lines coupled through 

a third serpentine transmission line. The 3-way periodic waveguide supports 

three modes in each longitudinal direction. 
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to as the degenerate band edge (DBE), has been demonstrated 

in multimode waveguides  [7,39–44]. 

A third order EPD occurs when three eigenmodes of the 

system coalesce in both their eigenvalues and eigenvectors.  

EPD conditions (i.e., where the eigenvectors degenerate) cannot 

be found when the associated matrix describing propagation in 

the system is Hermitian. However, as described previously 

in [4–7,9,38,41,42,45,46], the dynamics of the fields in a 

waveguide that does not have loss or gain may still be described 

using a non-Hermitian matrix, where such matrix becomes 

similar to one that contains a non-trivial Jordan block; this is the 

case for an SIP. A more precise description about Hermiticity is 

provided in [47]. 

To clarify, a third order EPD that occurs in lossless and 

gainless waveguides is often referred to as the stationary 

inflection point (SIP) or frozen mode regime. The SIP is 

obtained by the coalescence of three eigenmodes (in 

eigenvalues and eigenvectors), where two eigenmodes are 

evanescent and one eigenmode is propagating to form a frozen 

mode that has a vanishing group velocity at a particular 

frequency. When the waveguide possesses gain and loss, the 

possibility to find a mode with purely real wavenumber and a 

degeneracy of order three is not apparent; this paper shows that 

it is possible. We use the more general term “third order EPD” 

rather than “SIP” here to describe this third order eigenmode 

coalescence in presence of gain and loss.  Therefore, the SIP is 

a special case of a third order EPD. In other words, the SIP is a 

third order EPD, but not all third order EPDs are SIPs. 

At radio frequency (RF), the SIP was experimentally 

demonstrated in a three-way waveguide made of three coupled 

microstrips in  [38]. The occurrence of the DBE has also been 

experimentally demonstrated at RF in  [41,42,47]. In  [48], the 

authors experimentally demonstrated a split band edge, which 

is a degeneracy closely related to the DBE, in a metallic circular 

waveguide loaded with anisotropic scatterers.   

On the other hand, EPDs of order 2, 3, and 4 have been 

demonstrated theoretically and experimentally in  [2,49–55]  

and  [17,47,56,57], respectively, by proper balancing of the 

loss/gain, using the concept of PT and anti-PT symmetry.  

The general subject of this paper is the investigation of third 

order modal degeneracy in a three-way waveguide with 

balanced loss and gain, satisfying GT symmetry. For 

waveguides made of three coupled transmission lines (i.e., three 

ways) like the one we consider in this work, the allowed orders 

of EPD are 2nd, 3rd, 4th, and 6th.  The 3rd order EPD is the only 

one that does not have a stopband above or below the EPD 

frequency (it is the only odd order) and has a group velocity that 

does not change sign above and below the EPD frequency.  This 

makes the 3rd order EPD beneficial for amplifier applications. 

(For an amplifier application of an SIP, i.e., a 3rd order EPD 

without gain and loss, see  [58].) 

In the vicinity of third-order EPDs, the dispersion diagram 

of eigenmodes in a periodic waveguide satisfies 

   
3

e ek k    , where e is the angular frequency at 

which three modes coalesce and ek  is the real-valued Bloch 

wavenumber at the degeneracy point. Note that /ek d , 

meaning that the EPD will not occur at the edge, or middle, of 

the Brillouin zone. An illustration of an ideal dispersion relation 

exhibiting a third order EPD is shown in Fig. 1(a), where only 

the real branch of the k dispersion diagram (where k is the 

Bloch-wavenumber and ω is the angular frequency) is shown. 

This kind of degeneracy obtained in a lossless waveguide has 

been named SIP. Here, instead, we investigate the occurrence 

of analogous third order EPDs in GT-symmetric waveguides, 

i.e., where both gain and losses are present. The periodic set of 

losses in the GT-symmetric waveguide in Fig. 1, represent the 

radiation resistances of an array of antennas.  

The fundamental concept offered here is potentially useful 

for a variety of applications. Indeed, the use of the DBE has 

been proposed already for low threshold oscillators with a stable 

oscillation frequency  [59–61]. Recently the DBE oscillator has 

been experimentally demonstrated in  [62]. Oscillators based on 

EPD with balanced loss and gain have been proposed 

in  [50,51,63,64] that are, in principle, able to radiate high 

power.  

The SIP application has been proposed for delay lines  [37]. 

High efficiency, high gain amplifiers based on SIP have also 

been proposed in  [58] based on the concept of three-mode 

synchronization, in traveling wave tubes. 

The third order EPD studied here can be applied to the case 

of distributed amplifiers interleaved with an array of antennas 

for high power radiation, since, in principle, the EPD can be 

designed with large gain balanced with large radiation loss.  

The paper is organized as follows: in Section II, we 

introduce and discuss the two kinds of unit cell structures for 

the three-way waveguide, where the transfer matrix of the unit 

cell is modeled using coupled transmission lines (CTLs). The 

modal dispersion of the periodic structure is investigated where 

we demonstrate the existence of third order EPDs in the 

dispersion diagram for a few designs. We also provide a 

thorough analysis of the power distribution for the semi-infinite 

structure as well the engineering of the dispersion diagram to 

have different characteristics by tuning the parameters of the 

unit cell. Section III is dedicated to the finite length studies of 

the periodic structure with proper terminations where we study 

the resonance behavior and stability through the S-parameters 

of the three-way waveguide. We also investigate the power 

performance of the finite-length structure for a distributed 

radiating amplifier application and its important characteristic 

aspects such as stability analysis and radiating and load power 

gains. Throughout this paper, we implicitly assume that the 

time-dependence is in the form of j te  . 

II. THREE-WAY COUPLED WAVEGUIDE WITH GT 

SYMMETRY 

We define GT symmetry as the combination of two 

operators: the G- glide symmetry, and the T- time reversal 

symmetry operators. In the modeling of an 

optics/electromagnetic system, the time reversal operators T 

makes the imaginary unit 𝑗 → −𝑗, hence when applied to a 

refractive index, it implies that  𝑛(𝑥, 𝑧) → 𝑛∗(𝑥, 𝑧), i.e., loss 

goes into gain and vice versa. The glide symmetry operators G 

makes a translation by half of the geometrical period, d, followed 

by a reflection in x.  In terms of refractive index, it implies that 

𝑛(𝑥, 𝑧) → 𝑛(−𝑥, 𝑧 + 𝑑/2), The glide symmetry is considered a 

higher symmetry. The combined GT operator leads to 𝑛(𝑥, 𝑧) →
𝑛∗(−𝑥, 𝑧 + 𝑑/2).  

In the following we investigate a three-way waveguide that 

satisfies these properties. However, we focus on a metal-

dielectric structure with lumped loss and gain, which is 

described in more details in the next section. 

The goal of this paper is to show that a structure that satisfies 

GT symmetry has a third order EPD with real-valued 

wavenumber. The study of the spectrum of the GT operator is 

left to future investigations.  
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A. Unit Cell Design of the Coupled Serpentine Waveguide 

with Gain and Loss  

We consider two distinct periodic waveguide geometries in 

microstrip technology based on the three-way CTLs with unit 

cells as shown in Fig. 2. The designs are modeled by two 

uniform transmission lines that are coupled through a third 

serpentine-shaped transmission line in the middle, similar to the 

structure in  [38]. In this paper, we have altered the structure by 

adding balanced gain and loss. This is implemented using a set 

of periodic lumped line-to-ground admittances on the first (top) 

microstrip with a conductance of G (gain) and another set of 

periodic lumped line-to-ground admittances in the third (bottom) 

microstrip with the conductance of +G (loss, or radiation loss) to 

achieve a GT-symmetric design for the three-way microstrip 

structure.   We find the degeneracy condition of order 3 by 

selecting proper periodic loss and gain values. The third order 

EPD is more general than the SIP that is found in passive, 

lossless three-way waveguides. However, the presence of 

lumped gain and loss elements makes the system more 

complicated.  In terms of applications, the periodic gain provides 

amplification and losses may represent discrete radiating 

elements (e.g., antennas). Therefore, this scheme can be viewed 

either as a distributed radiating amplifier or as a structure that 

may radiate and oscillate (i.e., lasing) at the same time. 

Moreover, the degeneracy may bring advantages in terms of low 

noise, enhanced coherency among the radiating elements, etc.  

 

We provide two potential implementations of such a GT-

symmetric structure: in Fig. 2(a), the discrete elements of 

gain/loss are located at the uncoupled sections of the CTLs 

whereas in Fig. 2(b) they are located at the coupled sections. We 

provide in Appendix A the design parameters for both structures 

in Fig. 2. We assume that the conductance, G, has a pure real 

value representing either loss or gain in the structure. The three-

way CTL supports three modes in each longitudinal direction. 

Thus, the structure can exhibit a third order EPD by tuning the 

microstrip geometry and admittances. In designing the unit cell 

to attain the EPD, for the sake of simplicity, it is assumed that all 

the transmission lines have the same width w, same separation 

distance between the coupled lines, s, and the length of each unit 

cell is set to d. We used a substrate with a relative dielectric 

constant of 2.2, no loss tangent (tan(δ)=0), and height of hs = 

1.575 mm. Also, the microstrip and ground plane metal layers 

were assumed to be lossless. To achieve the degeneracy 

condition at the desired frequency (fe = 2 GHz), we fixed values 

for some of the dimensions including w = 5 mm for the line 

widths (corresponding to lines with Z0 = 50 Ohm characteristic 

impedance, when uncoupled) and s = 0.5 mm for the distance 

between the lines. We then tune other dimensions such as the 

length of the unit cell, d, the height of the serpentine section, h, 

and the value of the conductance, G, to search for the third order 

degeneracy at the desired frequency. The optimization we have 

done to find a third order EPD is based on tuning the 

prementioned parameters to minimize the coalescence parameter 

associated with three eigenmodes in the system, as will be 

discussed later.  

B. Transfer Matrix Formalism 

We use a three-CTL transfer matrix formalism to construct 

the total transfer matrix for a single unit cell, in analogy to 

what was done  in [38,47,51]. We will also use this transfer 

matrix in our analysis of the finite-length periodic structure 

composed of cascaded unit cells to model and investigate the 

various aspects of the modal degeneracy under study. The 

details of the transfer matrix formalism are provided in 

Appendix B.  Other related matrix-based approaches have 

previously been used to analyze systems under PT and broken 

PT symmetry regimes in works such as  [51,65–69].

 
In the investigation of the EPDs’ properties through transfer 

matrix and eigenvalues for a 6-port system, it is convenient to 

define the position-dependent state-vector in the form 

               1 0 1 2 0 2 3 0 3( ) , , , , , ,
T

z V Z I V Z I V Z IΨ   (1) 

where voltages and currents are evaluated at z along the three-

way CTLs. The state vector describes the spatial evolution of 

the eigenmodes as they propagate through the structure. A 

transfer matrix, 2 1(z ,z )T , is used, which uniquely relates the 

state vector ( )zΨ  between two points in the structure such 

that 

 2 2 1 1( ) ( , ) ( ),z z z zΨ T Ψ   (2) 

where we use the forward transfer matrix notation with 2 1z z  

along the z axis. The 66 transfer matrix UT  of a unit cell 

shown in Fig. 2(a), is then defined as ( ) ( )Uz d z Ψ T Ψ  and is 

expressed and calculated in terms of the geometric and 

electrical parameters of the unit cell using formulas found in 

Appendix B. Accordingly, the unit cell transfer matrix for the 

waveguide in Fig. 2(a) is obtained by cascading the transfer 

matrices of each segment of the unit cell 

                      U G A C B G B C A T T T T T T T T T .           (3) 

The expression for unit cell transfer matrix for Fig. 2(b) is 

presented in Appendix B. For an infinitely long stack of CTL 

unit cells, a pseudo-periodic solution for the state vector ( )zΨ  

exists in the Bloch form and the transfer matrix UT  translates 

the state vector across a unit cell as the eigenvalue equation of 

                              ( ) ( ),jkd
U z e zT Ψ Ψ   (4) 

where k is the complex-valued Bloch wavenumber. The 

eigenvalues of the transfer matrix and hence the Bloch 

wavenumber are obtained as solutions of the characteristic 

equation 

                                 Det 0,U  T I   (5) 

in which we define �̱�  to be the 6 6  identity matrix. For the CTL 

with three lines ( 6 6  transfer matrix) discussed in this study, 

six eigenvalues, ζi=e
−jkid , with 1,2,...,6i  , of the UT matrix 

are calculated from equation (5). 

 
Fig. 2. (a) Unit cell of the 3-way periodic microstrip structure that exhibits a 
third order degeneracy for Case A (also used in Secs. III and IV). The structure 

is composed of two uniform transmission lines coupled through a third 

serpentine transmission line in the middle, and two shunt conductances, gain 
and passive (e.g., a radiation resistance) added to the uncoupled sections with 

real positive and negative values as shown. (b) Unit cell of an alternative 

design (Case B and Case C) of the 3-way periodic microstrip structure where 
the shunt conductances (gain and loss) are added to the coupled sections 

instead. 
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Note that, because of periodicity, each eigenvalue corresponds 

to an infinite set of wavenumbers 2 /ik n d , with 

0, 1, 2,...n    , called Floquet harmonics. In the following, 

we show the dispersion diagrams with wavenumbers in the range 

0 Re( ) 2 /k d  that we refer to as the fundamental 

Brillouin zone.  
 Because of the reciprocity of the system, the transfer matrix 

satisfies  Det 1U T . Consequently, if ζ is an eigenvalue of the 

system then 𝜁−1 is another eigenvalue. Therefore, the modes 
supported by the structure have wavenumbers  
𝑘1, 𝑘2, 𝑘3, −𝑘1, −𝑘2 and −𝑘3. At the third order EPD studied in 

this paper, three eigenvalues coalesce at ek  while the other 

three coalesce at  ek . Moreover, at the EPD, the transfer matrix 

UT   cannot be diagonalized because the three eigenvectors of  

(4) associated with each  
ek  and 

ek wavenumber, coalesce, 

as discussed in  [38,43]. The coalescence of three eigenvectors 
is a necessary and sufficient condition for a third order EPD to 
occur. This means that the existence of an EPD can be found by 
checking the coalescence of three eigenvectors. This is the 
technique implemented in this paper to find the EPD conditions 
while maintaining GT symmetry. At the EPD, only two 
polarizations states,  

1eΨ  and 
2eΨ , are the eigenvectors of the 

system. This implies that the geometric multiplicity of each 
degenerate eigenvalue is equal to 1 while its algebraic 
multiplicity is equal to 3, hence the transfer matrix 

UT   is not 

diagonalizable  and it is similar to a matrix containing two Jordan 
blocks of dimensions 3 × 3, as explained in details in  [43]. At 
the EPD, the transfer matrix  

UT is represented as  

 J,1 1

J,2

 ,U


 
 
 
 

Λ 0

T V V
0 Λ

  (6) 

    
where 

J,1
Λ  and 

J,2
Λ  are two Jordan blocks

 

1

1

J,1 J,2
1

  

 ,  ,

1 01 0

0 1 0 1

0 0 0 0

ee

e e

e e



 

 







 
   
    
   
     

Λ Λ   (7) 

and the similarity transformation matrix V  is composed of 

one degenerate eigenvector and two generalized eigenvectors, 

associated with each of the eigenvalues  e and 
1  e


. 

 The theory explained in  [43] is for a lossless three-way 
waveguide but there are many similarities with the waveguide in 
this paper which has periodic gain and loss elements. Also in this 
paper, we find a branch of the dispersion diagram that 
corresponds to a purely real wavenumber (shown in Fig. 1), 
while the other two branches in Figs. 3-5 represent waves with 
complex wavenumbers, as discussed in the next section. 

C. Dispersion Relation and Coalescence Parameter 

Featuring Third Order EPD 

The periodic three-way microstrip in Fig. 2 can support a third 

order degeneracy. We design three different CTLs (Cases A, B, 

C) where the EPD occurs at an operating frequency of 2 GHz. 

Our unit cell designs have been determined by using the fixed 

parameters provided in Appendix A, such as the microstrip 

width, spacing between coupled microstrips, substrate dielectric 

properties, and substrate thickness. We then tuned the other 

parameters such as the length of the unit cell d, the “height” h 

of the serpentine sections, and the choice of lumped gain and 

loss conductances G and G, respectively, to obtain EPDs at a 

desired frequency. Both the EPD frequency and the flatness of 

the dispersion curve in the vicinity of the degeneracy condition 

can be altered by tuning the dimensional and electrical 

parameters of the unit cell.  

An EPD is represented by the coalescence of the eigenvalues 

(i.e., wavenumbers) and by the coalescence of the eigenvectors 

(i.e., polarization states). The coalescence of the eigenvalues is 

necessary to have an EPD, however, the coalescence of the 

eigenvector guarantees the existence of an EPD. In the 

following, we assess the occurrence of a third order EPD by 

observing the coalescence of three eigenvectors. Accordingly, 

we define a figure of merit to measure how close the system is 

to an ideal third order degeneracy condition at the frequency of 

interest, called Coalescence Parameter (CEPD). This concept was 

developed in  [47] for a fourth order degeneracy, and used also 

in  [38] for an SIP; it is here analogously defined here for a third-

order EPD as 

 

 
   

 3

1, 2

Re ,1
sin , cos ,

3

m
EPD mn mn

m nm n
n m

n
C  

 


 
Ψ Ψ

Ψ Ψ

  (8) 

where 
mn  represents the angle between two eigenvectors 

mΨ  and 
nΨ   in a six-dimensional complex vector space, with 

norms 
mΨ  and 

nΨ , and  , nmΨ Ψ  is their inner product. The 

coalescence parameter defined in equation (8) is always positive, 
with small values indicating how well the eigenvectors of the 
structure are close to each other in the frequency range of 
interest. EPDs of third order occur when CEPD = 0. Using this 
coalescence parameter as the error function to be minimized at 
the EPD frequency of interest, an optimization algorithm in 
MATLAB was used to select the conductance of the lumped 
elements, serpentine height h, and period of our unit cell d to 
make the device exhibit an EPD of third order. 
 We provide three examples of EPDs that occur in three-way 
microstrip waveguides as in Fig. 2, denoted as Cases A, B and C. 
These cases were each found using the optimization method 
discussed above.  
 

 

Fig. 3. Case A: (a) complex wavenumbers plotted in the complex k plane 

varying frequency. This plot shows the existence of the third order modal 
degeneracy condition and coalescence of the three modes at two different EPD 

real-valued wavenumbers, 
ek and 2 /ek d  . It also shows than one 

branch is purely real. (b) Coalescence parameter plotted versus normalized 

frequency in the vicinity of the EPD. (c) and (d) Typical modal dispersion 
diagram of the eigenmodes, showing both the real and imaginary parts of the 

normalized complex Floquet–Bloch wavenumber k versus normalized angular 

frequency around the EPD frequency ωe. The purely real branches are shown 
in solid black. Dashed-line branches represent the modes with complex 

wavenumber, using the same colors as in (a). Besides the lumped elements, 

we have assumed the three-way waveguide to be lossless for all the graphs 

shown in this figure.  
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Case A: In this example, the tuned unit cell parameters were 

found to have a conductance value of G = 0.1398 S (or 

equivalently R =1/G= 7.15 Ω), serpentine height of h = 5.35 

mm, and period of d = 54.15 mm. The active (gain) and passive 

conductances in this case are located on the unit cell as 

illustrated in Fig. 2(a). 

Figure 3 shows the existence of third order degeneracy in 

the dispersion diagram and the coalescence parameter. The 

imaginary part of the dispersion diagram is plotted versus the 

real part in Fig. 3(a) where it shows the existence of third order 

degeneracy condition and the coalescence of the three modes at 

two different locations in the fundamental Brillouin zone, at ke 

and − ke +2π/d due to reciprocity.  In other words, we show an 

EPD in the region 0 < kd < π, in the dispersion diagram of Fig 

3(c). There are three coalescing branches, one (in solid black) 

has a purely real wavenumber with positive group velocity for 

frequencies around the EPD frequency as can be seen by the 

black curve on the left side of Fig 3(c). The second EPD is in 

the region π < −kd + 2π < 2π, where there are three coalescing 

branches. One branch (solid black) has a purely real 

wavenumber with negative group velocities for frequencies 

around the EPD. Through the rest of the paper, we consider the 

mode in the region 0 < ked < π as our EPD of the interest 

associated with forward waves in our dispersion diagram. 

In Fig 3. (b), the Coalescence Parameter is plotted versus 

normalized frequency around ωe (corresponds to 2 GHz) to 

demonstrate how close we are to the third order degeneracy 

condition in our design. And finally, in Fig. 3(c) and (d), we plot 

the modal dispersion diagram of the infinite structure, showing 

both the real and imaginary parts of the normalized complex 

Floquet–Bloch wavenumber k versus normalized angular 

frequency around the designed frequency ωe where the third 

order behavior is observed. We used dashed lines in Fig. 3(c) and 

(d) for wavenumbers that are complex valued to show different 

overlapping curves of real and imaginary parts. In other words, 

the curves with dashed lines of different colors represent two 

overlapping branches. We follow the same scheme in Fig. 4 and 

Fig. 5.   

The normalized dispersion relation around the desired third 

order EPD can be approximated using the third order equation  

    
3

/ 1 / – /e ekd k d        (9)  

where
e is the angular frequency at which three modes 

coalesce and 
ek  is the Floquet-Bloch wavenumber at the 

degeneracy point. The nondimensional parameter ζ determines 
the flatness of the normalized dispersion at the EPD which is 

related to the third derivative of d 3ω/dk 3 around the degeneracy 

point. Lower values of the flatness factor ζ mean flatter 
dispersion relations at the EPD which is an important factor in 
designing a 3rd order EPD for possible applications based on the 
desired characteristics and properties. For Case A shown in Fig. 

3 the flatness factor is calculated as ζA ≈ 2.1. 

 

Case B: Using the same optimization method, we find 
additional solutions which exhibit third order modal degeneracy. 
The unit cell design of Case B differs from that of Case A in that 
the lumped elements are positioned in the center of the coupled 
sections of the transmission line, as is illustrated in Fig. 2(b). For 
this second solution, the tuned unit-cell was found to have the 
conductance value of G = 0.105 S (or equivalently R =1/G= 9.5 
Ω), serpentine height of h = 6.36 mm, and period of d = 46.3 
mm. Like the previous case, the dispersion diagrams and 
coalescence parameter are plotted in Fig. 4, where we show the 
existence of the EPD for the new values and discuss its modal 
behavior. For the case B shown in Fig. 4, the flatness factor is 

calculated as ζB ≈ 7.2 which is higher than Case A, meaning a 
narrower dispersion diagram compared to the previous case (i.e., 
less flat). 

Case C: To show the flexibility of our design we have 
provided a third solution that exhibits third order modal 
degeneracy in its dispersion diagram by again tuning the 
dimensions around initial values which seem appropriate for a 
practical design and search for a new set of parameters to achieve 
the third order EPD. The tuned unit-cell parameters were found 
to be a conductance value of G = 0.0099 S (or equivalently R 
=1/G= 100.55 Ω), serpentine height of h = 1.07 mm, and period 
of d = 48.08 mm. As in Case B, the lumped elements are centered 
in the CTL sections, as illustrated in Fig. 2(b). The existence of 
the third order EPD for this case is shown in the results of the 
Fig. 5, where we have plotted the dispersion diagram and the 
coalescence parameter in a fashion similar to the previous cases. 
For the case C shown in Fig. 5, the flatness factor is calculated 

as ζC ≈ 188 which is much higher than the two previous cases A 
and B indicating a more-narrow EPD in the dispersion diagram, 
as can be seen from the results in Fig. 5. 
 

 
 

Fig. 4. Case B: The description is as in Fig. 3 but plots are for Case B.  
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These three different solutions show that our design to 

achieve the third order modal degeneracy in the three-way CTL 
is flexible, and the parameters of interest can be tuned around 
some initial practical values based on the application.  

D. Engineering of the Dispersion Diagram  

One of the interesting features of the designs that we 

propose, which exhibit a third order modal degeneracy around 

a desired frequency, is that the slope of the dispersion diagram 

can be tuned easily by altering one or more design parameters 

of the unit cell. As a result, we can have a slightly positive local 

slope (small positive group velocity) or a slightly negative local 

slope (small negative group velocity) in proximity of the EPD, 

rather than the ideal case of zero slope. In Fig. 6(a), we show 

how the slope of the dispersion diagram for Case A, can be 

engineered to be positive or negative in the vicinity of the EPD 

by simply adjusting the value of the R =1/G, for both the gain 

and radiation loss elements while still maintaining GT 

symmetry in the system. We observe a slightly positive slope 

for slightly lower values of R (R = 5.27 Ω) than the EPD one of 

R = 7.15 Ω, shown in solid blue. We observe a slightly negative 

slope for R = 9.11 Ω, i.e., slightly higher than the EPD one, 

shown in solid red. The case with R = 7.15 Ω that leads to the 

ideal third order EPD for case A with zero slope is shown in 

solid black in Fig 6(a). In this figure, we only show the branches 

with purely real wavenumber, i.e., those with complex-valued k 

are not shown for simplicity.  

Another method to alter the slope of the dispersion diagram 

in the vicinity of the third order degeneracy is by tuning the 

height of the serpentine microstrip (h) as shown in Fig. 6(b).  

Note that by just altering h, the structure remains GT symmetric. 

As observed from the results of Fig. 6(b), by slightly lowering 

the height (h = 4.748 mm) we achieve slightly positive slope 

(shown in solid blue) for the dispersion diagram of the case A 

where the ideal EPD with zero slope occurs for h = 5.348 mm. 

Instead, by slightly increasing the height (h = 5.948 mm), we 

can also achieve a slightly negative slope (shown in solid red).  

The results of these dispersion engineering examples 

demonstrate the flexibility of the proposed design for specific 

applications where the group velocity can be tuned by varying 

the design parameters about their nominal values. Increasing the 

slope of the dispersion diagram around the EPD frequency to 

reach a positive group velocity will potentially increase the 

bandwidth of the resonance peak associated to EPD, which will 

be desirable for reaching higher bandwidth-gain products in 

amplifier applications  [58]. Alternatively, decreasing the slope 

to negative values in the dispersion diagram around EPD results 

in higher Q-factors for the EPD resonance peak  [58], which 

may be beneficial for oscillator applications. 

 

E. Power Analysis Based on Modes Around EPD 

Exactly at the EPD (ω = ωe), where three modes coalesce in 

their wavenumber k1 = k2 = k3 = ke, with ke purely real (Im(ke)=0), 

the eigenwaves propagating from unit cell to unit cell do not 

exhibit exponentially growing or decaying behavior. We 

checked this by using the single degenerate eigenvector as input 

state-vector in a semi-infinite structure i.e., 𝚿(𝑧 = 0) = 𝚿𝑒. 

This investigation of the power flow in the semi-infinite long 

periodic structure shows that at the EPD the power over G and 

G is balanced, meaning they both have equal powers that cancel 

one another (i.e., PG = PG), as is discussed later in this section.  

The obtained dispersion diagrams, shown in Fig. 3, 4 and 5, 

for the proposed GT-symmetric structures show that, at 

frequencies slightly lower or higher than the EPD frequency, the 

three modes are slightly perturbed from the EPD, and they are 

no longer coalescing. These three modes have one mode that has 

a purely real wavenumber (black curves in Fig. 3, 4 and 5), 𝑘1, 

and the other two modes have wavenumbers that are complex 

conjugates of each other (red and green curves in Fig. 3, 4 and 

5), 𝑘2 = 𝑘3
∗. Another set of simulations were performed for the 

same proposed structures but with asymmetric gain and loss 

(broken GT symmetry) and we found that the dispersion diagram 

did not exhibit the prementioned conjugate property for the 

wavenumbers 𝑘2 = 𝑘3
∗.  

Based on the prementioned conjugate property of the 

wavenumbers, the proposed GT-symmetric structures have two 

modal complex wavenumbers with Im(𝑘2) = −Im(𝑘3) which 

means that one mode is growing whereas the other one is 

decaying mode along z. One (red curve) of those two modal 

complex wavenumbers has Im (k2) < 0 for 𝜔 < 𝜔𝑒  whereas it 

has Im (k2) >0 for 𝜔 > 𝜔𝑒. For the purely real mode, k1, there is 

no growing/decaying behavior in the signal and the power is 

balanced.  

 
Fig. 5. Case C: The description is as in Fig. 3 but plots are for Case C.  

 
Fig. 6. Engineering of the dispersion diagram of the mode with purely real k to 

exhibit different group velocities (different slopes) around the EPD frequency.  

(a) By tuning the value of the R (or G) elements for Case A we observe a 
slightly positive slope for R = 5.27Ω and a slightly negative slope for R = 

9.11Ω, whereas the ideal case with zero slope has R = 7.15Ω.  

(b) By tuning the value of the h (serpentine height) for Case A we observe a 
slightly positive slope for h = 4.748 mm and a slightly negative slope for h = 

5.948 mm, whereas the ideal case with zero slope has h = 5.948 mm.  For all 

the graphs shown above only the purely real branches of the dispersion diagram 
are plotted and we have assumed the structure to be lossless.  
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The mode with Im (k) > 0 has a growing behavior in the 

signal over the unit cells moving along z. For this case, there is 

more power provided by G (gain) than the power consumed by 

+G (loss). Thus, the total power carried by this mode exiting a 

unit cell to the right is higher than the power entering the unit 

cell from the left. On the other hand, the mode with a negative 

imaginary part, has a decaying behavior, and in this case, there 

is more power consumed by +G (loss) than the one provided by 

G (gain). A graphical summary of this investigation is 

presented in Fig. 7(a) where, for each of the three modes 

associated to a perturbed third order EPD, the propagating, 

growing, and decaying modes are shown. At the EPD the three 

modes coalesce to form one degenerate mode with a purely real 

𝑘 = 𝑘𝑒.  

To better understand the power distribution inside the unit 

cells, we consider Case A: in Fig. 7(b) the power over the three 

lines of the semi-infinitely long periodic structure is plotted 

versus normalized z, evaluated exactly at EPD frequency and 

wavenumber such that 0 < ked < π. The plot was obtained by 

assuming an input state vector at z = 0 is the EPD degenerate 

eigenvector, 𝚿(𝑧 = 0) = 𝚿𝑒 ,  associated with positive value ke  

with  0 < ke  < /d, and the degenerate state eigenvector has been 

normalized such that ||𝚿𝑒|| = 𝚿𝑒
𝑇𝚿𝑒

∗ = 2.31v2. This 

eigenvector excites voltages and currents on each of the three 

TLs. The other degenerate mode with ke has a different 

eigenvector, therefore the one used in this simulation, 𝚿𝑒, 

excites only the three degenerate modes with positive ke.   

In Fig. 7(c), the total power (summation of the powers 

flowing in the three lines of the circuit, top, middle, and bottom) 

is plotted versus normalized z. We observe two different jumps 

in the power in each period that are associated to the power 

dissipation and contribution of the +G and G lumped elements 

to the circuit, respectively. Since this power flow is evaluated 

exactly at the EPD condition, where the three coalesced 

wavenumbers are purely real, the power entering each unit cell 

from the left is the same as the one exiting to the right.  

Therefore, at the EPD the power over +G and G is balanced, 

with PG = P+G. The conservation of the power is also verified 

in our numerical simulations by directly calculating these two 

quantities (the plot in Fig. 7(c) is obtained by summing the three 

powers) where we see that the total power carried by this 

degenerate mode exiting any unit cell to the right is equal to the 

power entering it from the left.  

We have selected Case A for demonstration purposes in Fig. 

7(b) and Fig. 7(c), but the general concept of the power analysis 

provided here is analogous with the other two cases featuring 

third order EPDs. This study provides us with some physical 

insight into how different modes behave and how the 

signal/power is propagating throughout the structure. In the 

following section, we will provide more investigation of the 

powers and gain for a finite-length and terminated periodic 

structure.  

III. FINITE-LENGTH STRUCTURE PROPERTIES  

As discussed earlier, devices featuring EPDs may exhibit 

special properties and enhanced characteristics which make 

them potential candidates for applications. To provide an 

example application of the regime presented in this paper, we 

consider a finite-length three-way waveguide constructed by 

cascading the proposed GT-symmetric unit cells and adding 

proper excitation and terminations to make a distributed 

amplifier, with the G as distributed gain and with the +G 

elements as radiative loads (modeling antennas). In this section, 

we first provide an investigation of the resonance behavior and 

stability analysis of such finite-length three-way waveguide and 

then show the amplification at the EPD frequency.  

A. Resonance Behavior and Stability Analysis 

We consider the three-way waveguide structure of Case A in 
Fig. 2(a), consisting of N cascaded unit cells as depicted in Fig. 

8(a). We have omitted the right-most G element, as shown, to 
make the terminated structure symmetric and help to improve 
stability. We excite the middle line of the three CTLs with 
terminations of Zs = ZL =50 Ω.  For the terminals of the bottom 
line, we are assuming Zy = 50 Ω, and for the top line we are 
assuming short circuit terminations (Zx = 0 Ω) as shown in Fig. 
8(a). We have selected this loading scenario based on the 
stability and gain performance of the three-way structure. First, 

  

 
Fig. 7. (a) Graphical representation of how the signal/power propagates along 
the periodic structure in the +z direction, for three different wavenumbers:  

purely real k1, complex wavenumber with positive imaginary part (k2), and 

with negative imaginary part (k3).  (b) Power (in mW) over the three lines of 
the semi-infinite long periodic structure plotted versus z evaluated exactly at 

EPD frequency for the design of Case A, for the EPD in the region 0 < ked < 

π. This plot exhibits how the power moves over the structure for the specific 
degenerate eigenmode on each line of the three-way waveguide. (c) 

Summation of the powers of the three lines shown in part (b), plotted versus 

z for the semi-infinite periodic circuit. The jumps in the power are associated 

to the +G and G contributions. 
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to check the stability and the resonance behavior, we check the 
S parameters. Based on  [70], for two port networks, oscillations 
are possible when either the input or output port present a 
negative resistance, which occurs when |S11|>1 or |S22|>1 in our 
structure setup, treated as a two port network (because of 
symmetry, S11 = S22). To check stability, we need to evaluate S11.  
For the design of Case A, the results for the S11 and S21 
parameters, assuming N=8 unit cells and lossless structure 
(besides the lumped elements), is provided in Fig. 8(b) over a 
wide frequency range. The structure is stable based on the S11 

response shown in Fig. 8(b). For other configurations or loading 
scenarios, stability could also be reached by using impedance 
matching circuits (filters). The S21 parameter plotted in Fig 8(b) 
versus frequency shows a sharp resonance peak denoted by r  

associated to the third order EPD frequency of 2GHz. 

 

B. Gain Evaluation 

To evaluate the behavior of the proposed distributed 

amplifier, we consider the power delivered to the loads (ZL and 

Zy) as well as the power delivered to all the N passive elements 

(+G) for different structure lengths. We calculate the load power 

gain (GLoads) and radiation power gain (GRadiation). In our 

analysis, the load gain is defined as GLoads = PLoads-total / Pin in 

which PLoads-total is summation of the power over ZL and the two 

Zy, and Pin is the input power at the second (middle) line input. 

The radiation gain is defined as GRadiation = PRadiation-total /Pin, in 

which PRadiation-total is the summation of the powers delivered to 

the +G elements and Pin is the input power at the second 

(middle) line input. All the other parameters are the same as 

previously discussed for case A.  

In Fig 8(c), the radiation gain and load gain are plotted versus 

the length of the finite-length structure (N) at the strong-peak 

resonance frequency nearest to the third order EPD in Case A, 

still assuming absence of lossless in the substrate, tan(δ)=0, and 

in the metals. We observe high values of radiation gain, 

significantly larger than the load gain. These results are based 

upon the terminations of Zy= Zs= ZL= 50 Ω for the bottom and 

middle lines and two short circuits for the top line (Zx = 0 Ω), 

similar to the previous section. The result of Fig. 8(c) shows 

that, while being stable, for the case of N = 8, we reach a 

radiation gain of GRadiation = 8.8 for the passive radiating 

elements with +G, while the load gain has a lower value of GL 

= 4.5 at the EPD resonance frequency. The radiation gain 

increases significantly by increasing the radiator’s length, 

which makes the proposed structure a potential scheme for 

distributed amplifier applications. 

IV. CONCLUSION 

We have reported the existence of third order EPDs with real 

valued wavenumbers in three-way waveguides with a GT 

symmetry. At the EPD, three eigenmodes coalesce at a desired 

frequency and purely real wavenumber. Besides having a real 

valued wavenumber in the presence of gain and loss, there is 

also one branch (solid black, Figs. 1,3,4, and 5) of the dispersion 

diagram which has purely real wavenumbers.  

We have provided two different waveguide configurations, 

demonstrated how the group velocity of the mode with purely 

real wavenumber can be slightly altered by tuning the physical 

parameters, which may be beneficial for various applications. A 

potential scheme using this third order EPD could be in high-

gain distributed amplifiers with distributed power extraction. 

Indeed, the simultaneous presence of distributed gain and losses 

(modeling radiation conductances) and the same slope sign of 

the propagating-wavenumber branch (black curves in Figs. 

1,3,4, and 5) at frequencies below and above the EPD 

frequency, paves the way to a new set of applications of EPDs 

in high power radiating “apertures”. We have briefly discussed 

such an application and provided the radiation gain analysis for 

finite-length array of antennas, where each antenna is 

represented by a lumped “radiation resistance”. The 

fundamental idea here presented is not limited to the specific 

design shown in this paper but can be potentially applied to a 

variety of periodic waveguide structures implemented in 

different technologies, including EPD lasers with distributed 

power extraction.  

Importantly, the kind of third order EPD studied in this paper 

is exhibited in the presence of periodic gain and antennas (loss), 

so arrays of this kind can radiate high power if gain and loss are 

designed to be large. This is very different from the concept of 

an SIP (i.e., frozen mode) in a lossless/gainless waveguide, 

where distributed gain was then introduced as in  [58]; in that 

case, the SIP is increasingly destroyed when higher and higher 

gain is introduced in each unit cell, whereas the 3rd order EPD 

in this paper is fully maintained even with large gain elements 

if properly designed, enabling very high power applications of 

EPDs. Examples of a second order EPD in waveguiding 

 

 
 

Fig. 8. (a) Finite-length three-way structure with period 𝑑 made by cascading 

N unit cells with the total length of L = Nd.  (b)  Plot of |S11| and |S21| for the 

finite length structure of Case A with N=8 unit cells and substrate with 

tan(δ)=0, around the EPD frequency, 𝑓𝑒= 2 GHz, where we observe that |S11|<1 
and hence unconditionally stability.  (c) Radiation gain and loads gain (both 

in linear scale) versus the length N of the finite structure of Case A, evaluated 

at the strong-peak frequency nearest to the EPD. For all results shown above 
we have assumed Zy= Zs= ZL= 50Ω for the bottom and middle lines, and two 

short circuits for the top line (Zx = 0 Ω). 
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structures that exists while high power is continuously extracted 

along the waveguide are provided in the oscillator concept 

shown in  [51], and in the backward oscillator concept presented 

in Ref.  [50,63,64] leading to high power and high efficiency. 

Analogously, the third order EPD shown in this paper can be 

exploited for high power radiating oscillators, lasers with 

distributed power extraction, and distributed amplifiers with 

distributed power extraction. 
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APPENDIX A: PARAMETERS USED IN SIMULATIONS 

   In our simulations, we considered a periodic coupled three-

way waveguide composed of unit cells, each made of three 

coupled TLs as in Fig. 2. For all the designs discussed in this 

paper, the microstrip line widths are fixed to have w = 5 mm 

(i.e., with 50 Ω characteristic impedance) and s = 0.5 mm for 

the distancing between the lines. The substrate is assumed to 

have a relative dielectric constant of 2.2, loss tangent of 0 

(lossless dielectric), and thickness of hs = 1.575 mm. Metal 

layers are assumed to be lossless as well. 
Case A: The tuned unit-cell parameters that led to an EPD 

were found to have conductance values of G = 0.1398 S (or 
equivalently R =1/G = 7.15 Ω), serpentine height of h = 5.35 
mm, and period of d = 54.15 mm. 

Case B: For this case, the tuned unit-cell parameters have a 
conductance value of G = 0.105 S (or equivalently R =1/G = 9.5 
Ω), serpentine height of h = 6.36 mm, and period of d = 46.3 
mm.   

Case C: For this case, the tuned parameters have a 
conductance value of G = 0.0099 S (or equivalently R =1/G = 
100.55 Ω), serpentine height of h = 1.07 mm, and period of d = 
48.08 mm. 

APPENDIX B: TRANSFER MATRIX FORMALISM  

A. Transfer Matrices for CTLs 

In order to construct the transfer matrix and tune the physical 
unit cell dimensions to acquire a third order EPD, we have 
divided the unit cell of the three-way microstrip waveguide into 
smaller segments as shown in Fig. 1 and modeled each segment 
to obtain the unit-cell transfer matrix. We built the T-matrix of 
each segment using TL analytic formulas based on quasistatic 
models in  [71,72].  

 
The transfer matrices of each smaller segment of the unit cell 

shown in Fig. 1(a) are expressed and calculated in terms of the 
parameters of the unit cell of the system (length, width, height, 
separation). Finally, the transfer matrix for the whole unit cell 

(without the added conductances and gain elements) is obtained 
by the product of the transfer matrices for each smaller segment 
of three CTLs inside the unit cell as 

                             U A C B B C AT T T T T T T .                     (A1) 

B. Transfer Matrix for Lumped Conductances 

We find the transfer matrices for the added conductance and 
gain lumped elements in each unit cell. For the first admittance 

added on the top line with the value of G (active device) we 
have 

0 3 3

3 3 3 3

1 0 0

1 0
,

0 0 1
G

GZ 


 

 
 
 
 
 
 

0
T

0 I

                       (A2) 

where G is the conductance value (assumed positive) of the 

active gain device. For the second admittance added on the 

bottom line with the value of G (passive device) we have 
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I 0

T
0

                     (A3) 

Therefore, the total transfer matrix for the unit cell of Case 

A shown in Fig. 2(a), including the added lumped radiation 

conductance and gain device, is calculated as 

                 U G A C B G B C A T T T T T T T T T .           (A4) 

The total transfer matrix for the unit cell of Case B shown in 

Fig. 2(b), including the added lumped radiation conductance 

and gain device, is calculated as 

                      U G A C B G B C AT T T T T T T T T .               (A5) 
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