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We analyze the continuous monitoring of a qudit coupled to a cavity using both phase-preserving
and phase-sensitive amplification. The quantum trajectories of the system are described by a
stochastic master equation, for which we derive the appropriate Lindblad operators. The mea-
surement back action causes spiralling in the state coordinates during collapse, which increases as
the system levels become less distinguishable. We discuss two examples: a two-level system, and
an N-dimensional system and meter with rotational symmetry in the quadrature space. We also
provide a comparison of the effects of phase-preserving and phase-sensitive detection on the master
equation, and show that the average behaviour is the same in both cases, but individual trajectories
collapse at different rates depending on the measurement axis in the quadrature plane.

I. INTRODUCTION

Continuously monitoring a quantum system allows us
to track its behaviour throughout the measurement pro-
cess [1–12]. Developments in the area of continuous quan-
tum measurement have resulted in many applications
to, among other things, quantum information, metrol-
ogy, and feedback control [13–22]. A continuously mon-
itored system is necessarily an open system, since the
measurement process requires interaction with the envi-
ronment [20, 23–25]. To perform each measurement on
the system, it is coupled to a meter, and a projective
measurement is performed on the meter. When these
measurements are performed, the state of the system is
disturbed. This disturbance, also known as measurement
back action, can be minimized by weakly coupling the
system and meter; this causes a trade-off where very lit-
tle information is gained from each measurement [26–29].
Continuous monitoring is realized by employing a se-

ries of weak measurements in time [13, 15]. The cou-
pling of the qudit with the cavity is dispersive [23], which
means the detuning between the resonator frequency and
the system level spacings is much larger than the coupling
between the system and the meter. In this regime, the
approximate Hamiltonian causes a coherent state of the
cavity to undergo a transformation depending on the sys-
tem state. To continuously track the state of the system,
we perform measurements on the cavity field at time in-
tervals that are short compared to the collapse time of
the system. Based on the measurement readout and the
corresponding inferred states of the system, a stochas-
tic master equation can be obtained which describes the
stochastic evolution of the system throughout the mea-
surement process (assuming the dynamics are Marko-
vian). Each solution to the master equation is a diffusive
quantum trajectory, which tracks the evolution of the
system state in time under both unitary dynamics and
measurement back action. The theory of quantum tra-
jectories has proven to be useful for quantum computing,
including having applications to feedback control [30–32]

and entanglement generation [33–36], but this has mostly
been restricted to trajectories of two-level systems.

In this paper, we study the continuous monitoring
of a quantum N-level system (or “qudit”) coupled to a
microwave cavity, using either phase-sensitive or phase-
preserving amplification (corresponding respectively to
homodyne and heterodyne measurements). It is pos-
sible, and sometimes advantageous, to use qudits for
computation. They are able to store more informa-
tion than a qubit, and require fewer entangling gates to
perform certain algorithms [37–39]. Qutrit-based pro-
cessors have drawn particular interest, and multi-qutrit
gate sequences have been implemented using both su-
perconducting and photonic qutrits [40, 41]. Higher-
dimensional systems are also relevant to standard qubit-
based computation, since a qubit is generally engineered
by using the two lowest energy levels of an anharmonic
oscillator as in the case of superconducting qubit [42].
With an anharmonic potential, the transition frequency
between the lowest two levels is sufficiently different from
the transitions between the higher lying states. This en-
ables one to operate within the qubit subspace by us-
ing the corresponding transition frequency. In practice,
there may be leakage of populations to the higher levels
of the system, leading to unwanted signals or errors [43–
45]. Leakage errors may degrade the performance of error
correcting codes because of a randomizing effect on the
qubits affected by leakage [46]. They can also lead to
time-correlated errors, since such states may be as long-
lived as the qubit states, further deteriorating the execu-
tion of quantum computing tasks [47]. The ability to use
trajectory-based techniques and to track leakage errors in
time provides us the motivation to study the continuous
measurement of a qudit in a microwave cavity.

At this point it is worthwhile to compare the paradigms
of operation of continuous quantum measurements and
those in quantum Zeno-like situations [48–50]. In both
cases, the system is measured repeatedly at short time
intervals. However, measurements leading to the quan-
tum Zeno effect are used to collapse a dynamically
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evolving quantum state back to its original condition,
with vanishing probability for it to wander off. On
the other hand, for continuous monitoring, the quantum
state changes under the joint influence of both unitary
and measurement-induced dynamics. By changing the
strength of the measurement, a continuous estimation of
the state of the quantum system is possible, even reduc-
ing the disturbance of the unitary dynamics to a mini-
mum, at the cost of reducing the acquired information
about the system.

There are other types of measurement settings avail-
able in literature, like quantum non-demolition measure-
ments, [51–59] for which back action can be completely
evaded. That is, a projective measurement of a single
observable can be built up in time. The important crite-
rion for such a measurement is that the observable must
commute with the interaction Hamiltonian between the
system and meter. This means when a measurement is
performed using the meter, there is no back action on the
system, and the measurement result is completely pre-
dictable using previous results. For a sequence of mea-
surements of an observable which at different times com-
mutes with itself, one can ensure that there is no back
action. This can be true for the observable at all times or
at some regular interval corresponding to continuous and
stroboscopic quantum non demolition measurements, re-
spectively. However, this commutation relation which
is so central to the whole scheme is dependent on the
free Hamiltonian of the system. This immediately puts a
constraint on the type of systems where continuous and
stroboscopic quantum non-demolition measurements can
be applied. Also, even if the Hamiltonian is conducive
for quantum stroboscopic measurements, the interval be-
tween two consecutive stroboscopic measurements can-
not be made arbitrarily small, as it is constrained by the
commutation properties of the relevant observable at dif-
ferent times. In the waiting time between stroboscopic
measurements, no knowledge about the trajectory of the
qudit is available. It is here that a continuous measure-
ment, approximated as a series of weak measurements at
short time intervals, can prove useful.

The measurement process is discussed in depth in Sec-
tion II. We present a detailed derivation of a stochastic
master equation (SME) for phase-preserving amplifica-
tion, along with the relevant Lindblad operators, and use
it to study the behaviour of individual stochastic trajec-
tories and ensemble averages in Section III. The equa-
tions of motion (EOM) for the generalized Bloch coordi-
nates are also presented. In Section IV, we demonstrate
the application of the master equation approach in order
to derive the equation of motions for two examples: a
qubit and an N-level system with rotational symmetry
in the quadrature space. Next in Section V, we provide
an equivalent derivation using Kraus operators, which
allows us to extend the framework to phase-sensitive
amplification. While the two measurement readouts of
a phase-preserving measurement correspond to the two
field quadratures, phase-sensitive measurements give a

single readout that corresponds to a one field quadra-
ture. Using this approach, the effects of phase-preserving
and phase-sensitive amplification are also compared. We
conclude in Section VI and discuss some possible appli-
cations of this work.

II. DISPERSIVE MEASUREMENT

A. Dispersive Jaynes-Cummings model

Consider a qudit coupled to a resonator, where the
qudit interacts with a single field mode. Typically the
Hamiltonian of such a qudit-resonator system would have
terms denoting the free Hamiltonians of the qudit and the
resonator and a term denoting the interaction between
the two. An excitation in the qudit corresponds to the
loss of a photon in the resonator while a relaxation in the
qudit creates a photon in the resonator. This situation
is best described by the generalized Jaynes-Cummings
Hamiltonian

H = ~ωrâ
†â+ ~

N
∑

j=1

ωjΠ̂j

+ ~

N−1
∑

j=1

gj(â
†σ̂−

j,j+1 + âσ̂+
j,j+1),

(1)

where ~ωj are the qudit level energies, ωr is the resonator
frequency, gj is the coupling strength between the res-
onator and the j ↔ j + 1 transition of the qudit, σ̂+,−

are raising and lowering operators between two adjacent
qudit levels, and Π̂j = |j〉〈j|. To read out the qudit
state, we work in the dispersive regime, where the detun-
ings ∆j = (ωj+1 − ωj) − ωr between the qudit and res-
onator field are large compared to the coupling strengths,
4〈â†â〉(gj/∆j)

2 ≪ 1. In this limit, we can eliminate the
interaction term to lowest order in

gj
∆j

by diagonalizing

the Hamiltonian [60–62],

HD ≈ ~ωrâ
†â+ ~

N
∑

j=1

(ω̃j + χj â
†â)Π̂j , (2)

where ω̃j = ωj +
g2

j

∆j
are effective frequencies of the qudit

levels, and χj =
g2

j−1

∆j−1
− g2

j

∆j
with χ1 = − g2

1

∆1
. The fre-

quency of the cavity ωr is shifted by a different amount
χj depending on the qudit state |j〉. In this lowest-order
dispersive approximation, the cavity frequency shifts lin-
early with the mean photon number 〈â†â〉. This ap-
proximation breaks down when the power in the cav-
ity becomes comparable to the critical photon number
ncrit = (∆j/2gj)

2, at which point the dependence on the
photon number becomes nonlinear [63, 64].
If we send in a microwave tone at frequency ωr, de-

scribed by a coherent state |α〉, the qudit-cavity system
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is initially in the state

|ψ(0)〉 =
N
∑

j=1

cj |j〉|α〉. (3)

During the dispersive interaction, the state evolves ac-

cording to the unitary operator e−iHDT/~, where T is
the length of time for which the qudit and resonator are
allowed to interact. Since there is no energy transfer,
this results in a state-dependent rotation of the coherent
state in the quadrature phase space,

|ψ(T )〉 = e−iH̃0T/~
N
∑

j=1

cj |j〉|αj〉, (4)

where αj = |α|eiθj , θj = −χjT , and H̃0 = ~ωrâ
†â +

~
∑N

j=1 ω̃jΠ̂j is the shifted free Hamiltonian. Through-
out this analysis, we will assume that the arrangement
operates in the bad-cavity limit κ >> χj , where κ is
the cavity line-width. Consequently, the light in the res-
onator escapes from the cavity and is sent to a phase-
preserving amplifier that measures the field quadratures.
This assumption ensures that the reduced qudit dynam-
ics is Markovian, and that the qudit equations of motion
in the following sections will not depend on any cavity
parameters.
In what follows, we work in the interaction picture with

respect to H̃0. This is equivalent to transforming to a
rotating frame in order to eliminate the dynamics due to
H̃0.

B. Phase-preserving amplification

In phase-preserving amplification, the cavity field is
mixed with a coherent local oscillator, which gives access
to both quadratures of the field [19, 20]. This method can
be realized by employing parametric amplifiers, travel-
ling wave parametric-amplifiers and Josephson paramet-
ric amplifiers [65–70]. After mixing with a local oscilla-
tor, the two resulting readout signals I and Q are pro-
portional to the real and imaginary parts of a random
field amplitude β [12, 17, 20], according to the probabil-
ity density

P (β) = TrS,M [Π̂β |ψ(T )〉〈ψ(T )|Π̂β ], (5)

where Π̂β = |β〉〈β| and the trace is taken over both the
qudit (system) and the resonator field (meter). This is
effectively the Husimi Q distribution [71, 72] of the state
∑N

j=1 |cj|2|αj〉〈αj |. This procedure also causes back ac-
tion on the qudit state, altering the coefficients cj .
We can repeat this procedure many times with a field

prepared in the same coherent state α. For the moment
let us take the case where there is no drive or dephasing,
and we delay normalizing the qudit state until the end.

After n measurements, returning a set of results {βk},
the coefficients are updated according to

c′j = cj

n
∏

k=1

〈βk|αj〉. (6)

where the c′j are unnormalized. Each measurement result
is independent of the qudit state at any previous time
steps because of the bad-cavity limit.

C. Time-averaged readout

The state dynamics do not depend on the order of the
βk, so we can consider the time average of the quadrature
results,

I =
C

n

n
∑

k=1

Reβk (7)

Q =
C

n

n
∑

k=1

Imβk, (8)

where the constant C is related to the degree of amplifi-
cation. By the central limit theorem (which is exact for
Gaussian distributions), the probability density for I and
Q will also be a mixture of N Gaussians. The means are
scaled by the amplification factor C, and the variances
are reduced by n. The photon measurements occur much
faster than the system dynamics, so we consider the re-
sults to be effectively continuous,

I(t) =
C

∆t

∫ t+∆t

t

dt′Re(β(t′)), (9)

Q(t) =
C

∆t

∫ t+∆t

t

dt′Im(β(t′)), (10)

where ∆t is the time interval of the measurement.
The probability of obtaining a certain I and Q for the

superposition of qudit states is given by

P (I,Q) =
∑

j

|cj |2Pj(I,Q), (11)

where

Pj(I,Q) ∝ exp

[

− ∆t

4τC2|α|2
[

(I − C|α| cos θj)2

+ (Q − C|α| sin θj)2
]

]

.

(12)

We use the polar representation of α, and τ ≡ T
4|α|2 is

the characteristic measurement time. Each set of results
I,Q follows a mixture of N Gaussian probability den-
sities, each associated with a different qudit level. Each
Gaussian is centered around the corresponding αj in both
the real and imaginary part. The time-averaged version
of the state disturbance relation (6) is

c′j = cj exp

[

∆t(I − iQ)

4τC|α| eiθj
]

. (13)
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The details of this state disturbance calculation can be
found in Appendix A. Positive I results cause positive
phase gain, while the opposite is true for positive Q re-
sults. Similarly, depending on the shift in α, growing
values of I or Q can cause the coefficients of given state
j to be suppressed or enhanced compared to the others,
leading to partial collapse of the state.
The full probability density P (I,Q) is a Gaus-

sian with means 〈I〉 = C|α|∑j |cj |2 cos θj and

〈Q〉 = C|α|∑j |cj |2 sin θj , and with variances Var[I] =

Var[Q] = 2τC2|α|2/∆t, with no cross-correlation. Con-
sequently, we can write the stochastic signal as

I(t) = C|α|
∑

j

|cj |2 cos θj + C|α|
√
2τξ1(t), (14)

Q(t) = C|α|
∑

j

|cj |2 sin θj + C|α|
√
2τξ2(t), (15)

where ξ1,2 are Gaussian white noise Langevin variables
with a mean of zero and variance 1

∆t , obeying

〈ξi(t)ξj(t′)〉 = δijδ(t− t′). (16)

D. Phase-sensitive amplification

Instead of performing phase-preserving measurements,
one can also carry out phase-sensitive measurements [73–
75]. In the phase-sensitive case, one quadrature is ampli-
fied while the other is suppressed, which is equivalent to
projecting along the eigenstate of one quadrature [19, 20].
This gives one measurement result rather than two, as is
typical in homodyne measurements. We measure along
the quadrature |X〉, which is an eigenstate of the dimen-

sionless operator X̂ = 1√
2
(âeiφ + â†e−iφ), where φ is an

angle in the IQ-plane measured from the I-axis. The kth
measurement gives a readout Xk. The state coefficients
are updated according to

c′j = cj

n
∏

k=1

〈Xk|αj〉, (17)

where 〈Xk|αj〉 is a coordinate representation of the co-
herent state |αje

−iφ〉, which is computed in Appendix B.
Similarly to I and Q in the coherent state case, we
define the time-averaged readout r = C

n

∑n
k=1Xk →

C
∆t

∫ ∆t

0 dt′X(t′). The total probability density to obtain
the readout r is

P (r) =
∑

j

|cj |2Pj(r), (18)

where

Pj(r) ∝ exp

[

− ∆t

4τC2|α|2 (r −
√
2C|α| cos(θj − φ))2

]

,

(19)

similarly to (11) and (12). The time-averaged state dis-
turbance relation is

c′j = cj exp

[

∆tei(θj−φ)

4τC|α| (
√
2r − C|α| cos(θj − φ))

]

, (20)

where we have followed the same method from Ap-
pendix A. The total probability density P (r) is a Gaus-

sian with mean 〈r〉 =
√
2C|α|∑n

k=1 |cj |2 cos(θj − φ) and
variance Var[r] = 2τC2|α|2/∆t, so we can write the read-
out as

r(t) =
√
2C|α|

∑

j

|cj |2 cos(θj − φ) +C|α|
√
2τξ(t). (21)

III. EQUATIONS OF MOTION

A. Stochastic master equation

The evolution of the reduced qudit system will be
Markovian because we are working in the bad-cavity
limit. Since the field escapes the cavity quickly, the equa-
tions of motion for the reduced system will not depend on
the cavity parameters. The dynamics of a Markovian sys-
tem being continuously monitored can be described by a
stochastic master equation in Lindblad form [13, 76, 77],

ρ̇ = − i

~
[Ĥ, ρ] +

∑

k

(Dk[ρ] +Mk[ρ]ξk(t)). (22)

The sum runs over the measurement operators {Lk} ap-

plied to the system. The Hamiltonian Ĥ gives the uni-
tary evolution, the Lindbladian superoperator Dk[ρ] =

LkρL
†
k − 1

2 (L
†
kLkρ + ρL†

kLk) gives the deterministic be-
haviour of the system due to the measurement, and

the measurement superoperator Mk[ρ] = Lkρ + ρL†
k −

ρT r(Lkρ+ ρL†
k) gives the stochastic evolution. We have

assumed perfect measurement efficiency. The act of
measuring the system causes stochastic evolution, which
is described by the last term in (22). The stochastic

variable ξk = dWk(t)
dt is the delta-correlated Gaussian

white noise associated with the kth measurement chan-
nel, where Wk(t) is a Wiener process.
The derivation of the SME is based on Itô calculus,

which makes the assumptions dW 2 = dt and dt2 =
dtdW = 0, where dW =W (t+ dt)−W (t) is the Wiener
increment [13, 20]. An equation in Itô form for a density
matrix element ρmn with a set of readouts {rp} can be
expressed as

dρmn = Amndt+
∑

p

Bmn,pdWp. (23)

In the following sections, we will derive a stochastic mas-
ter equation and list the appropriate Lindblad operators
for a qudit undergoing both phase-preserving and phase-
sensitive measurement.
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1. Phase-preserving measurement

We can now derive the equations of motion for a qudit
undergoing back action as a result of phase-preserving
measurement. Taking ∆t → dt in the state update re-
lation (13) and inserting the quadrature readouts (14)
and (15), we obtain Itô equations for the time-dependent
coefficients,

dcj =

[

∑

k

|ck|2e−iθkdt+
√
2τ(dW1 − idW2)

]

eiθjcj
4τ

.

(24)

The density matrix ρ consists of the normalized elements
ρmn = cmc

∗
n/
∑

k |ck|2. Using (24) and taking care to
apply the rules of Itô calculus, they are

ρ̇mn = −ρmn

4τ

(

1− e−iθnm
)

+
ρmn√
2τ

[

(

eiθm + e−iθn

2
−
∑

k

ρkk cos θk

)

ξ1

+

(

eiθm − e−iθn

2i
−
∑

k

ρkk sin θk

)

ξ2

]

.

(25)

These dynamics correspond to a stochastic master equa-
tion in the form (22) with Ĥ = 0 (due to the use of the
interaction picture) and Lindblad operators

LI =
1

2
√
2τ

∑

j

eiθj Π̂j

LQ = − i

2
√
2τ

∑

j

eiθj Π̂j .

(26)

The ensemble-averaged behaviour is obtained by setting
ξ1 = ξ2 = 0 in (25), which gives a set of differential
equations with solutions

ρ̄mn(t) = ρ̄mn(0)e
− t

4τ
(1−cos θnm)− it

4τ
sin θnm , (27)

where ρ̄mn are elements of the ensemble-averaged density
matrix and θnm ≡ θn − θm. These dynamics exhibit
exponential decay of the coherences, proportional to (1−
cos θnm), and oscillations proportional to sin θnm.

2. Phase-sensitive measurement

The equations of motion of a system undergoing phase-
sensitive measurement can be derived in the same way
using the state update relation (20). The Itô equations
for the time-dependent coefficients are

dcj =

[

dt
(

2
∑

k

|ck|2 cos(θk − φ)− cos(θj − φ)
)

+ 2
√
τdW

]

ei(θj−φ)cj
4τ

,

(28)

which lead to equations of motion for the density matrix
elements,

ρ̇mn = −ρmn

4τ

(

1− e−iθnm
)

+
ρmn√
τ

(

ei(θm−φ) + e−i(θn−φ)

2
−
∑

k

ρkk cos(θk − φ)

)

ξ.

(29)

Note that this result is the same as (25) under the trans-
formation

ξ1 →
√
2ξ, ξ2 → 0, θj → θj − φ. (30)

This can also be summarized by a stochastic master equa-
tion with a single Lindblad operator,

L =
1

2
√
τ

∑

j

ei(θj−φ)Π̂j . (31)

Note that this is proportional to the Lindblad opera-
tors for phase-preserving measurements in (26) under
a change of phase. The total Lindbladian

∑

k Dk[ρ] is
identical as under phase-preserving measurements, and
so the ensemble averages have the same set of solutions
(27) which are independent of φ. However, the stochastic
terms are different, and the two measurement schemes
will produce different individual stochastic trajectories.
These are known as different “unravelings” of the same
master equation [20, 78].

3. Inefficient detection

So far, we have assumed that measurements are done
with perfect detector efficiency. In the case of inefficient
detection, only a fraction ηk of the measurement signal in
a channel k is successfully detected. The master equation
including inefficient detection is [13, 20]

ρ̇ = − i

~
[Ĥ, ρ] +

∑

k

(Dk[ρ] +
√
ηkMk[ρ]ξk(t)). (32)

The readout signals are altered to

I(t) = C|α|
∑

j

|cj |2 cos θj + C|α|
√

2τ
η ξ1(t), (33)

Q(t) = C|α|
∑

j

|cj |2 sin θj + C|α|
√

2τ
η ξ2(t), (34)

for phase-preserving measurements and

r(t) =
√
2C|α|

∑

j

|cj |2 cos(θj −φ)+C|α|
√

2τ
η ξ(t). (35)

for phase-sensitive measurements. The effect of detec-
tor inefficiency is to increase the amount of noise in the
readout signal.
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B. Bloch coordinate dynamics

The generalized Gell-Mann matrices {Λq} [79], an ex-
tension of the Pauli matrices, are an appropriate set of
basis matrices for an N -dimensional system. The den-
sity matrix can be expressed [80–82] in terms of these
matrices as

ρ =
1

N
I+

1

2
q ·Λ, (36)

where q is an N -dimensional generalized Bloch vector.
This form is chosen because it preserves the relation
qi = Tr(ρΛi). There are N2 − 1 generalized Gell-Mann
matrices plus the identity, so there are N2 − 1 Bloch co-
ordinate equations of motion, each given by q̇ = Tr(Λq ρ̇).
There areN−1 diagonal generalized Gell-Mann matrices,
and as shown in (25), the diagonal elements ρnn all have
only stochastic evolution and no drift. The remaining
matrices take the form Λmn = |ψm〉〈ψn| + |ψn〉〈ψm| for
m < n and Λmn = −i(|ψn〉〈ψm| − |ψm〉〈ψn|) for m > n.
These result in the equations of motion

q̇mn = ρ̇mn + ρ̇nm, m < n

q̇mn = −i(ρ̇mn − ρ̇nm), m > n.
(37)

Here we will focus on the Bloch coordinate dynamics of
a qudit undergoing phase-preserving measurement, but
the phase-sensitive case can be studied in the same way.
Inserting the expression (25), we get the coupled pairs of
equations in Itô form

q̇mn = −qmn

4τ
(1− cos θnm)− qnm

4τ
sin θnm

+
1

2
√
2τ

[

qmn(ξm + ξn − 2
∑

k

ρkkξk) + qnm(ξ′m − ξ′n)

]

q̇nm = −qnm
4τ

(1− cos θnm) +
qmn

4τ
sin θnm

+
1

2
√
2τ

[

qnm(ξm + ξn − 2
∑

k

ρkkξk)− qmn(ξ
′
m − ξ′n)

]

,

(38)

where ξm = ξ1 cos θm + ξ2 sin θm, ξ′m = ξ1 sin θm −
ξ2 cos θm, and m < n. The drift terms are the equations
for a damped harmonic oscillator, which have solutions

q̄mn(t) = e−γnmt [q̄mn(0) cosωnmt− q̄nm(0) sinωnmt]

q̄nm(t) = e−γnmt [q̄nm(0) cosωnmt+ q̄mn(0) sinωnmt] ,

(39)

where ωnm = sin θnm

4τ , γnm = 1−cos θnm

4τ , and q̄mn are
ensemble-averaged Bloch coordinates. This means that
there is spiralling in each pair of coordinates (q̄mn, q̄nm)
that is independent of all the other coordinates.
The diagonal coordinates q̄nn (where 0 ≤ n ≤ N − 1)

have only stochastic evolution and no drift. These coor-
dinates can be written in terms of the diagonal density

a)

b)

FIG. 1. a) An illustration of the probability densities asso-
ciated with a 6-level clock system, where θj0 ≡ θj = πj

3
,

in the IQ-plane. The circular arrows indicate the angles
θ1, . . . , θ5. b) Pairs of spiralling coordinates for initial con-
ditions q̄mn(0) = 0 and q̄nm(0) = 1. Each curve is plotted
on a unit circle in the (q̄nm, q̄mn) plane. Since θnm sets the
frequency and decay constant, any pairs of coordinates with
the same angular separation θnm have the same behaviour, so
although there are 35 coordinates in a 6-level system, these
plots show the only possible spirals. Each plot corresponds to
coordinates appearing in a specific a super- or sub-diagonal
of ρ̄; the first and last plot, where the state does not evolve,
correspond to coordinates appearing on the main diagonal.

matrix elements as

q̄nn =

√

2

(n+ 1)(n+ 2)

n
∑

k=0

ρ̄kk −
√

2(n+ 1)

n+ 2
ρ̄n+1,n+1.

(40)
We can insert the noise terms from (25) into the time
derivative of the above expression to obtain the stochastic
evolution.

IV. EXAMPLES

A. N-level clock system

An N -level “clock” system, as illustrated in Fig. 1 (a),
is one where the quadrature angles θj are distributed
evenly at intervals of 2π/N . In this case, the Lind-

blad operators are LI = 1
2
√
2τ

∑

j e
−i2πj/N Π̂j and LQ =

− i
2
√
2τ

∑

j e
−i2πj/N Π̂j . This results in the ensemble av-
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eraged dynamics

q̄mn(t) = e−γnmt [q̄mn(0) cosωnmt− q̄nm(0) sinωnmt]

q̄nm(t) = e−γnmt [q̄nm(0) cosωnmt+ q̄mn(0) sinωnmt] ,
(41)

where ωnm =
sin( 2π

N
(n−m))

4τ and γnm =
1−cos( 2π

N
(n−m))

4τ .
As in the general case, the coordinates q̄nn correspond-
ing to diagonal generalized Gell-Mann matrices are un-
affected. See Fig. 1 (b) for plots of the spiralling Bloch
coordinates in a 6-level clock system. The frequency and
decay rate of the spirals depend only on how far away
from the diagonal the pair of coordinates appear in the
density matrix. Any pairs of coordinates q̄mn and q̄nm
that appear in the same super- or sub-diagonal of ρ̄ will
exhibit the same dynamics. Higher-dimensional systems
have the potential for smaller angle differences θnm, since
there are more levels to distribute around the circle, and
therefore have the potential for slower spirals. Fig. 1
shows the range of spirals that occur in a 6-level system.
All the simulations here are done assuming the use of the
interaction picture.

B. Qubit spiral trajectories

We can also use this framework to recover the be-
haviour for a qubit under both measurement schemes. As
an example, we present the results for phase-preserving
measurements. The deterministic equations of motion,
derived by averaging over the noise terms in the SME,
are

˙̄x = − x̄

4τ
(1− cos θge)−

ȳ

4τ
sin θge

˙̄y = − ȳ

4τ
(1− cos θge) +

x̄

4τ
sin θge

˙̄z = 0,

(42)

which have the deterministic solutions

x̄(t) = e−γget [x̄(0) cosωget− ȳ(0) sinωget]

ȳ(t) = e−γget [ȳ(0) cosωget+ x̄(0) sinωget]

z̄(t) = z̄(0),

(43)

where ωge =
sin θge

4τ , γge =
1−cos θge

4τ . We have chosen
θ0 → θe and θ1 → θg to be the dispersive shifts for the
readout corresponding respectively to the excited and
ground states of the qubit. If we choose a separation
along the I quadrature, i.e. θge = π, this reduces to the
standard exponential decay along x and y [20, 83]. For
all other values of θge, there is spiralling in the xy-plane.
The frequency of the spiralling is largest when θge = π/2.
If θge = 0, the two measurement outcomes are indistin-
guishable, and there is no measurement back action at
all. The quadrature angles θj , as shown in (4), are set by
the dispersive shifts χj and the qubit-resonator interac-
tion time T . Some examples of these dynamics are shown
in Fig. 2.

!!" " #$%

!!" " &#$%

!!" " #

!"#

!$#
!%#

!"#

!$#

!%#

FIG. 2. Sample dynamics in the phase-preserving amplifica-
tion case, for a qubit in the xy-plane, initially at q = (0, 1, 0),
undergoing measurement back action with τ = 1 µs and
dt = 10 ns for different values of θge ≡ θg − θe. The sim-
ulation was run for 50 µs to allow for each state to decohere
completely. Each smooth curve is an ensemble average of tra-
jectories, derived using the drift term of the master equation.
One sample trajectory is shown for each value of θge. When
θge = π, the averaged dynamics decay exponentially without
any spiralling. As θge → 0, the probability densities get closer
together, so there is less decoherence; the spiral approaches
a unit circle, and the period of rotation gets longer. When
θge = 0, in which case the two measurement outcomes are
equivalent, the spiral is simply the unit circle but the fre-
quency is ω = 0, so the state is unaffected. This case of
indistinguishable measurement outcomes is equivalent to not
making any measurement. The region θge ∈ [π, 2π] has the
same dynamics, but the rotations are clockwise.

V. COMPARISON OF PHASE-PRESERVING

AND PHASE-SENSITIVE MEASUREMENT

A. Stochastic quantum trajectories

Although the Lindbladian (non-stochastic) master
equation is identical for phase-preserving and phase-
sensitive measurements, and is unaffected by changes
in φ, the stochastic trajectories can behave differently.
This is an example of quantum steering [84–86], where
by changing the axis along which a system (in this case
the cavity field) is measured, we can alter the behaviour
of an entangled system (the qudit). As an example, we
study the rates at which a state collapses under these dif-
ferent types of measurements. These dynamics are shown
in Fig. 3. If we set the dispersive shifts to be θe = 0 and
θg = π, but amplify along an axis |X〉, the noise term in
ż is

ż =
1√
2τ

(1− z2)(ξ1 cosφ− ξ2 sinφ) (44)
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FIG. 3. Distribution of 1000 trajectories of the z-coordinate of
a qubit according to (44) and (45). The qubit is initialized at
q = (0, 1, 0), and measured using (row 1) phase-sensitive and
(row 2) phase-preserving amplification, with dispersive shifts
θe = 0 and θg = π, and time scales τ = 1 µs and dt = 50 ns.
Each column corresponds to a different amplification angle
φ. Ensemble averages (black) are shown for trajectories post-
selected on z ≥ 0 and z < 0. The normalized density of
trajectories is shown on the colorbar. The phase-sensitive
measurement decays slower as φ → π/2, since the amplifica-
tion axis gets farther from the informational quadrature. The
phase-preserving measurement is unaffected by changes in φ,
and decays at the same rate as the phase-sensitive measure-
ment for π/4.

FIG. 4. Different orientations φ of the phase-sensitive mea-
surement axis in the IQ-plane for N = 2. The two small
circles are the locations θe and θg of the probability densities
associated with the two eigenstates. In general, the orienta-

tion that gives the best discrimination is φopt =
π
2
−

θe+θg

2
.

for phase-preserving measurements (using the same θj →
θj − φ transformation), and

ż =
ξ√
τ
(1 − z2) cosφ (45)

for phase-sensitive measurements. Compare (ξ1 cosφ −
ξ2 sinφ)/

√
2, which has variance 1

2∆t , to ξ cosφ, which

has variance cos2 φ
∆t . Note that the variance caused by

phase-preserving measurements is independent of the
axis φ. When φ = 0, (column 1 of Fig. 3), phase-sensitive
measurements cause the state to collapse more quickly

than phase-preserving measurements, since they exclu-
sively measure along the informational quadrature, while
phase-preserving measurements also measure along the
quadrature containing no information. When φ = π/4
(column 2 of Fig. 3), the noise has the same variance
for both types of measurements, so the state collapses
at the same rate. When φ = π/2 (column 3 of Fig. 3),
phase-sensitive measurements only detect noise, and give
no information at all about the system state, so the state
does not collapse. This is an example of a no-knowledge
measurement, which has applications in feedback con-
trol [87, 88]. When using phase-sensitive measurements

on a qubit, the optimal value of φ is φopt =
π
2 − θe+θg

2 ,
as shown in Fig. 4.

B. Distinguishability of qudit states

The collapse rate of a qudit due to measurement back
action can be predicted by using the signal-to-noise ratio
of the measurement. We can quantify this by looking at
the distinguishability between pairs of Gaussian proba-
bility densities Pi and Pj , corresponding to distinguish-
ing qudit state i from j. We quantify the signal S for
phase-preserving measurements using the Bhattacharyya
distance [89, 90]

Sij = − log

(∫

dIdQ
√

PiPj

)

, (46)

which is a measure of the distinguishability of two proba-
bility densities. The integral is over the two measurement
quadratures I and Q, defined in (9) and (10). For phase-
preserving measurements, we use Pi(I,Q) and Pj(I,Q)
given in (12). The signal after a time ∆t is

Sij =
∆t

4T
|αi − αj |2, (47)

which is the distance between the probability densities
on the IQ-plane scaled by the inverse of their width.
For phase-sensitive measurements, we use the proba-

bility densities Pi(r) and Pj(r) given in (19), and use the
rotated basis θj → θj − φ. This gives

Pj(r) =

√

∆t

4πτC2|α|2 e
− ∆t

4τC2|α|2
(r−

√
2C|α| cos(θj−φ))2

.

(48)
Using a single-variable version of (46), the signal ob-
tained using phase-sensitive measurements is

Sij =
∆t|α|2
2T

[cos(θi − φ)− cos(θj − φ)]
2
. (49)

Take, for example, the qubit system in Fig. 3, where
θe = 0 and θg = π. Phase-preserving measurements give

a signal of Sij = ∆t|α|2
T , which is independent of the

measurement axis φ. Phase-sensitive measurements give

a signal of Sij = 2∆t|α|2
T cos2 φ. The signals are equal
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when φ = π
4 , just as the variances of trajectories are

equal in Fig. 3. When we measure along the informa-
tional quadrature φ = 0, phase-sensitive measurements
give more information about the system than phase-
preserving measurements, since none of the readout is
wasted on the no-information quadrature. When we
measure along the no-information quadrature φ = π/2,
phase-sensitive measurements give no information, i.e.
Sij = 0.

VI. CONCLUSION

We have modeled the continuous monitoring of a qu-
dit using phase-preserving and phase-sensitive measure-
ments using a stochastic master equation, and identi-
fied the appropriate Lindblad operators. The SME was
used to analyze two example systems: a qubit and an N-
level system with discrete rotational symmetry. We have
shown that phase-preserving and phase-sensitive mea-
surements have the same effect on the average dynam-
ics, but cause individual stochastic quantum trajectories
to behave differently, such as by inducing different col-
lapse rates. In the qubit case, the measurement results
in pairs of ensemble-averaged Bloch coordinates behave
like a damped harmonic oscillator, exhibiting the usual

decoherence but also spiralling around the phase space.
The spiralling is stronger when the dispersive shifts are
smaller, and completely absent when they lie at diamet-
rically opposite points in the IQ-plane.
This theoretical framework can be used to model and

simulate stochastic trajectories for higher-dimensional
systems such as qutrits. This allows us to study the be-
haviour of qudits undergoing any arbitrary operations,
and could lead to applications to feedback control. In
addition, the physical qubits used for quantum comput-
ing are often made using a two-level subspace in a higher-
dimensional system. While the dynamics are mostly con-
tained to the qubit subspace, there are often leakage er-
rors to higher levels, which can be tracked in time by
making continuous weak measurements and treating the
system as a qutrit or higher-dimensional system.
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Appendix A: State disturbance calculation

Starting from equation (6),

c′j = cj

n
∏

k=1

〈βk|αj〉

= cj exp

[

n
∑

k=1

−|βk − αj |2/2 + iIm(β∗
kαj)

]

= cj exp

[ n
∑

k=1

− (Reβk − Reαj)
2

2

]

exp

[ n
∑

k=1

− (Imβk − Imαj)
2

2

]

exp

[ n
∑

k=1

i(ReβkImαj − ImβkReαj)

]

.

(A1)

The product of n Gaussian functions is a Gaussian with variance 1
σ2 =

∑n
k=1

1
σ2

k

and mean µ = σ2
∑n

k=1
µk

σ2

k

.

Applying these rules and changing the sums to integrals using 1
n

∑n
k=1 → 1

∆t

∫ ∆t

0 dt gives

c′j = cj exp

[

− n

2C2
(I − C|α| cos θj)2

]

exp

[

− n

2C2
(Q− C|α| sin θj)2

]

exp

[

in|α|
C

(I sin θj −Q cos θj)

]

. (A2)

Defining the characteristic measurement time τ ≡ T
4|α|2 , where T = ∆t

n ∼ 1
κ is the time each photon has to interact

with the qudit, we get

c′j = cj exp

[

− ∆t

8τC2|α|2 (I−C|α| cos θj)
2

]

exp

[

− ∆t

8τC2|α|2 (Q−C|α| sin θj)2
]

exp

[

i∆t

4τC|α| (I sin θj−Q cosθj)

]

. (A3)

We can also drop any term in the exponent that is not state-dependent, and the terms quadratic in the time-averaged
quadratures, because they drop out when the state is normalized. The terms |αj |2 are the same for all j because of
the dispersive approximation, so they also drop out. This leaves a simplified update equation,

c′j = cj exp

[

∆t(I − iQ)

4τC|α| eiθj
]

, (A4)
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which matches (13). Using the same method, it can be shown that for phase-sensitive measurements, the state update
relation (17) becomes

c′j = cj

n
∏

k=1

〈Xk|αj〉

= cj exp

[ n
∑

k=1

(

− 1

2
(Xk −

√
2α cos(θj − φ))2 + iImαj(

√
2Xk − α cos(θj − φ))

)]

= cj exp

[

− ∆t

8τC2|α|2 (r −
√
2C|α| cos(θj − φ))2

]

exp

[

i∆t sin(θj − φ)

4τC|α| (
√
2r − C|α| cos(θj − φ))

]

,

(A5)

where 〈Xk|αj〉 is computed in Appendix B. By dropping terms that will cancel out when the state is normalized, this
can be simplified to

c′j = cj exp

[

∆tei(θj−φ)

4τC|α| (
√
2r − C|α| cos(θj − φ))

]

, (A6)

which matches (20).

Appendix B: Coordinate representation of a

coherent state

To derive the coordinate representation 〈X |α〉 of a co-
herent state, where X is dimensionless, we use the Fock
basis representation

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
|n〉, (B1)

to write

〈X |α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
ψn, (B2)

where ψn are the quantum harmonic oscillator eigenstate
wavefunctions. Inserting these gives

〈X |α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
2nn!

e−
X2

2 Hn(X), (B3)

where Hn are the Hermite polynomials. Using the gen-
erating function

e2Xt−t2 =

∞
∑

n=0

Hn(X)
tn

n!
(B4)

for the Hermite polynomials, this becomes

〈X |α〉 = exp

[

− |α|2
2

− X2

2
+
√
2Xα− α2

2

]

= exp

[

− 1

2
(X −

√
2Re(α))2

+ iIm(α)(
√
2X − Re(α))

]

.

(B5)

Appendix C: Kraus operator derivation of the

equations of motion

1. Kraus operator description of phase-preserving

measurement

Here, we perform an equivalent calculation to the one
in Section III using Kraus operators instead of a stochas-
tic master equation [19]. As mentioned previously, mak-
ing a phase-preserving measurement on the joint qudit-
resonator state (4) gives the real and imaginary part of
a field amplitude β. We define the coherent state phase
shift operator [91]

Û(θj) = eiθj â
†â, (C1)

which preserves the width of a coherent state |α〉, but
causes a rotation |α〉 → |αj〉 ≡ |αeiθj 〉 in the quadrature
phase space. We can then write a Kraus operator

Mβ = 〈β|





∑

j

Π̂jÛ(∆j)



 |α〉

=
∑

j

〈β|αj〉Π̂j

(C2)

that applies the measurement to the field mode, and acts
only on the qudit state. For a series of n measurements,
this becomes

Mβ =

n
∏

k=1





∑

j

〈βk|αj〉Π̂j



 . (C3)

This Kraus operator is normalized such that
dt

4πτC2|α|2
∫ ∫∞

−∞ dIdQMβM
†
β = I. This operator

can be approximated as Mβ ≈ I+ (λI+mβ)dt, where λ
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is a constant and

mβ =
I − iQ

4τC|α|2
∑

j

αjΠ̂j . (C4)

The equations of motion that result from applying this
Kraus operator to the system are given [19] by

ρ̇ ≈ mβρ+ ρm†
β − ρTr(mβρ+ ρm†

β). (C5)

Once the readout signals (14) are substituted in, the re-
sulting expressions will take the form

dρmn = Ãmndt+
∑

p

Bmn,pdWp, (C6)

where p = 1, 2 correspond to I,Q. It should be noted that
these equations of motion do not match the correspond-
ing equations (25) that were derived using a stochastic
master equation, which have the form

dρmn = Amndt+
∑

p

Bmn,pdWp. (C7)

However, we can transform between them using

Amn = Ãmn +
1

2

∑

i,j

∑

p

Bij,p∂ijBmn,p, (C8)

where ∂ij ≡ ∂
∂ρij

. The sum over (m,n) excludes the

final element ρN,N , since it can be expressed in terms
of the other elements using Tr(ρ) = 1. This is the
standard transformation for converting between Itô and
Stratonovich equations [13, 20, 92]. When (C6) is sub-
jected to a Stratonovich integral, it will give the same
result as when (C7) is subjected to an Itô integral.

2. Phase-sensitive measurement

Now we will look at phase-sensitive measurements
along the quadrature |X〉, which is an eigenstate of the

dimensionless operator X̂ = 1√
2
(âeiφ + â†e−iφ). We can

write the Kraus operator

MX =
∑

j

〈X |αj〉Π̂j , (C9)

where the coefficients are the coordinate representation
of the coherent state |αj〉 (see Appendix B for details).
For n measurements, the corresponding Kraus operator
is given by

MX =
n
∏

k=1





∑

j

〈Xk|αj〉Π̂j



 . (C10)

Similarly to the phase-preserving case, we expandMX in
∆t to obtain the first-order term

mx =
1

4τC|α|
∑

j

eiθj (
√
2r − C|α| cos θj)Π̂j , (C11)

which gives the Stratonovich equations of motion by us-
ing (C5), and is related to the Itô equation (29) by the
transformation (C8). The drift terms are unchanged
from the phase-preserving case, but the noise terms have
undergone the transformations ξ1 →

√
2ξ and ξ2 → 0,

effectively concentrating the noise into a single quadra-
ture. To measure along an arbitrary quadrature |X〉, we
substitute a→ aeiφ, which implies θj → θj − φ.
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[7] L. Diósi, Physics Letters A 129, 419 (1988).
[8] A. Barchielli and V. P. Belavkin, J. Phys. A: Math. Gen.

24, 1495 (1991).
[9] A. Barchielli, L. Lanz, and G. Prosperi, Il Nuovo Cimento

B (1971-1996) 72, 79 (1982).
[10] V. Belavkin, Commun.Math. Phys. 146, 611 (1992).
[11] N. Gisin, P. Knight, I. Percival, R. Thompson, and

D. Wilson, Journal of Modern Optics 40, 1663 (1993).
[12] H. Carmichael, An open systems approach to quantum

optics : lectures presented at the université libre de brux-
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