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According to von Neumann, the global Hamiltonian of whole universe must be Hermitian in order
to keep the eigenvalues real and to construct a self-consistent quantum theory. In addition to the
open system approach by introducing environmental degrees of freedom to a small system, a global
Hermitian Hamiltonian can also be generated through the dilation from a small Hilbert space. For
example, a local non-Hermitian PT -symmetric system can be simulated with a global Hermitian
one by the Naimark dilation. Recently, by introducing local measurements and investigating the
correlation functions of outcomes, the internal nonlocality in such dilated Hermitian systems is
revealed, but only for a special case with a two-fold structure. In this paper, we extend such a
discussion to the generalized case when the two-fold structure breaks. The internal nonlocality is
discussed with different correlation pictures and the corresponding correlation bounds. Our results
provide a device-independent test on the reliability of the simulation in the global Hermiticity.

I. INTRODUCTION

By introducing the environment of infinite free space to
an open system, an effective non-Hermitian Hamiltonian
can be obtained from a global Hermitian Hamiltonian af-
ter eliminating the environmental degrees of freedom [1].
Typically, complex eigenvalues of resonant states are pro-
duced due to the coupling between the local subsystem
and the macroscopic environment. However, parity-time
(PT ) symmetry assumes that the local subsystem can be
non-Hermitian but in a parameter regime of real eigen-
values [2]. The symmetry under the combination of time-
reversal and parity operations, or more generally an an-
tilinear operation combined with linear operations, can
be generalized to the pseudo-Hermiticity [3–6] and anti-
PT -symmetry [7, 8], with either real or conjugate pairs of
complex eigenvalues. Lots of theoretical and experimen-
tal applications of PT -symmetric systems were found [9–
14], and recently extended to the field of dynamics and
topology [15].

Similar to the Feshbach formalism dealing with an
effective description [1], PT -symmetric systems can be
viewed as effective models in the sense of open systems.
In 2008, Günther and Samsonov showed that a class of
unbroken two-dimensional PT -symmetric Hamiltonians
can always be dilated to some four-dimensional Hermi-
tian ones [16]. In fact, by using the dilation techniques,
one can simulate any finite dimensional unbroken PT -
symmetric systems in dilated Hermitian systems [17–20].
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By evolving states under the dilated Hermitian Hamil-
tonians, it is always possible to simulates the evolution
of unbroken PT -symmetric Hamiltonians in subspaces.
On the other hand, for broken PT -symmetric systems,
their evolutions can also be simulated by utilizing time
dependent Hermitian Hamiltonians [21].

In the simulation of PT -symmetric systems, the di-
lated Hermitian Hamiltonians play an important role,
which govern a composite system. By projecting the
dilated Hamiltonians to some subsystems, the effect of
PT -symmetric Hamiltonians can be realized [18]. Ow-
ing to the non-Hermiticity of PT -symmetric systems, the
dilated Hamiltonians usually bring nonlocal correlations
between the subsystems. Recently, by proposing differ-
ent correlation pictures, the internal nonlocality of these
dilated Hamiltonians were discussed [22]. By evaluating
the correlations with local measurements in three differ-
ent pictures, the resulting different expectations of the
Bell operator reveal the distinction of the internal nonlo-
cality. Such a result provides the figure of merit to test
the reliability of the simulation, as well as to verify a
PT -symmetric (sub)system.

However, the known discussions mainly focus on
Günther and Samsonov’s special example, depending
highly on the special form of the dilated Hamiltonian. In
general, such a two-fold structure may not exist in generic
dilated Hermitian Hamiltonian. Then how can one have
an effective way to verify a more general PT -symmetric
Hamiltonian when the two-fold structure breaks? Fur-
ther more, similar to the device-independent test on the
state nonlocality, can we also have detection-loophole-
free test on the reliability of the simulation in the global
Hermiticity?

In this paper, we propose a generalization of the sce-
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nario in Ref. [22]. The correlation pictures are extended
in different ways, obtaining the expectations of the Bell
operator and their bounds. It is shown that the correla-
tion behaviors are more complex and have new features
in the general case. A direct reflection of this is on the
generic Bell operator expectations. In contrast to the re-
sults in Ref. [22], the Bell operator expectations often
have some energy shifts in the general case. Moreover,
the deviation bounds should be tackled carefully, instead
of a simple order relation. This also leads to the con-
ception of genuine local Hermitian picture in the general
case. Interestingly, the energy shifts and the deviation
bounds can also help to distinguish the global Hermitian
Hamiltonians.
The remainder of this paper is organized as follows.

In Sec. II, we introduce the preliminaries on the related
notions of PT -symmetric systems, the concept of dila-
tion, and the previous known results on the extraction of
internal nonlocality [22]. In Sec. III, we propose differ-
ent correlation pictures for general Hermitian dilations.
The expectations of the Bell operator and their bounds
are obtained. Section IV concerns the problem of how to
distinguish a dilated Hermitian Hamiltonian. In section
V, some discussions are made. Finally, we conclude our
results in Sec. VI.

II. PRELIMINARIES

A. The concept of dilation

By dilating a time independent PT -symmetric Hamil-
tonian H , we mean that one can find some Hermitian

operator Ĥ =

[

H1 H2

H†
2 H4

]

and an invertible Hermitian op-

erator τ such that for any vector ψ,
[

iψ′

i(τψ)′

]

=

[

H1 H2

H†
2 H4

] [

ψ
τψ

]

=

[

Hψ
τHψ

]

. (1)

Ĥ is called a dilated Hermitian Hamiltonian or a Hermi-
tian dilation of H .
Note that for the first component, iψ′ = Hψ. Accord-

ing to the Schödinger equation,

ψ(t) = e−itHψ(0),

an effective PT -symmetric system is realized.
For an unbroken PT -symmetric Hamiltonian H , one

can prove that such an operator τ always exists and sat-
isfies the following condition,

H†(I + τ2) = (I + τ2)H. (2)

With τ , one can construct different Ĥ satisfying Eq. (1),
among which a typical one is

Ĥ = I2 ⊗H1 + iσy ⊗H2, (3)

H1 = (Hτ−1 + τH)(τ−1 + τ)−1, (4)

H2 = (H − τHτ−1)(τ−1 + τ)−1. (5)

Compared with the general case in Eq. (1), the dilated

Hamiltonian Ĥ in Eq. (3) only depends on H1 and H2.
Such a neat and symmetric form (two fold structure) has
some interesting properties. For example, one can prove
that the Ĥ in Eq. (3) has the same eigenvalues as H .
For more details of the dilation problem can be referred
to Refs. [16, 18, 19].

B. Two dimensional example

Let us start with the two-dimensional PT -symmetric
Hamiltonian [16, 24],

H = E0I2 + s

[

i sinα 1
1 −i sinα

]

. (6)

The eigenvalues of H are λ± = E0 ± s cosα. More-
over, there exists an exceptional point when sinα = ±1
(α = ±π

2 ), in which case the Hamiltonian cannot be
diagonalized. When α 6= ±π

2 , the Hamiltonian H has
real eigenvalues and can be diagonalized. Hence, PT -
symmetry is unbroken. In particular, when sinα = 0,
i.e. α = 0 or π, the Hamiltonian is also Hermitian. In
the following, we do not consider the case of broken PT -
symmetry, since time independent dilation only applies
to the case of unbroken PT -symmetry. We do not con-
sider the case of Hermitian since it is trivial.
For the PT -symmetric Hamiltonian in Eq. (6), a pos-

sible way to have the Hermitian dilation Ĥ is [16, 18]

Ĥ = I2 ⊗H1 + iσy ⊗H2, (7)

where

H1 = E0I2 +
ω0

2
cosασx, (8)

H2 = i
ω0

2
sinασz , (9)

ω0 = 2s cosα, (10)

and

τ =
1

cosα

[

1 −i sinα
i sinα 1

]

. (11)

It can be verified that the above example is a special
case of Eqs. (3)-(5). Moreover, Ĥ has the same eigen-
values as H , with multiplicities of two. According to Eq.
(3) or Eq. (7), the dilated Hermitian Hamiltonian Ĥ is

inseparable. That is, Ĥ cannot be written as a tensor
product of two local operators. As a consequence, such
a global Hamiltonian Ĥ can bring nonlocal correlations
to the subsystems, which leads to the discussion of non-
locality [22].

C. The internal nonlocality in simulating

PT-symmetric systems

A profound approach to discussing the nonlocality is
the CHSH (Clauser, Horne, Shimony, and Holt) sce-
nario [25, 26]. In this scenario, there are two observers



3

Alice and Bob sharing an entangled state, on which they
can perform local measurements. What they want to see
is whether the entanglement can bring some nontrivial
correlations between the subsystems. Suppose that Alice
can make local measurements A1 and A2, whose outcome
is denoted by a. Due to the randomness of the local
measurement, the outcome a can take different values,
e.g. a ∈ {+1,−1}. Similarly, Bob can perform two mea-
surements B1 and B2 with his outcome b ∈ {+1,−1}. A
natural way to see the correlations between the outcomes
is to investigate the expectation value of the product ab.
For instance, 〈AiBj〉 =

∑

ab abP (ab|ij) represents the
expectation value of ab for given measurements AiBj ,
where P (ab|ij) is the joint probability distribution. In
particular, one can calculate the expectation of the fol-
lowing Bell operator

S = B0A0 +B0A1 +B1A0 −B1A1.

In the classical setting, one does not concern the quantum
realization but only a classical (local) description of what
Alice and Bob can do. Under this assumption, the proba-
bility of Alice and Bob’s outcomes do not depend on each
other. Thus the joint probability distribution admits a
product decomposition of Alice and Bob’s marginal prob-
ability distributions p(ab|ij) =

∫

p(a|i, ν)p(b|j, ν)q(ν)dν,
where ν is some hidden variable with q(ν) its distribution.
In this case, derivations show that |〈S〉| 6 2. However, in
the quantum setting, Ai and Bj correspond to different
operators and the expectation value is 〈S〉 = Tr(Sρ),
where ρ is the density operator of the entangled state.
Now the bound of |〈S〉| is 2

√
2. The discrepancy between

the two bounds shows the difference between the classical
(local) and nonlocal correlations, having far reaching in-
fluence both theoretically and experimentally. For more
details of the standard CHSH inequality, see [25].

In the following, we briefly review a CHSH-like
discussion on the nonlocal correlations introduced by the
dilated Hermitian Hamiltonian of Eq. (7). Since now the
correlations come from the global Hamiltonian rather
than an entangled state, we call it internal nonlocality to
distinguish it from the standard CHSH scenario. Similar
to the CHSH’s quantum and classical settings giving
different Bell operator expectations and bounds, one can
also propose different pictures to discuss the internal
nonlocality [22].

The Simulation picture

Suppose Alice and Bob share the dilated Hermitian
Hamiltonian Ĥ in Eq. (7). Similar to the CHSH sce-
nario, they can make local measurements Ai and Bj .
Since now we are discussing the correlations introduced
by the Hamiltonian, Alice and Bob’s “local measure-
ments” are actually local states. Let Alice have the local
state {|u+〉 = u|0〉+v|1〉} for A0 and {|u−〉 = v|0〉−u|1〉}
for A1; while Bob have two local states {|0〉} and {|1〉}
for B0 and B1, respectively. Then the expectations of

BjAi can be calculated as follows:

〈B0A0〉 = Tr(|0〉〈0| ⊗ |u+〉〈u+|)Ĥ, (12)

〈B1A0〉 = Tr(|1〉〈1| ⊗ |u+〉〈u+|)Ĥ, (13)

〈B0A1〉 = Tr(|0〉〈0| ⊗ |u−〉〈u−|)Ĥ, (14)

〈B1A1〉 = Tr(|1〉〈1| ⊗ |u−〉〈u−|)Ĥ. (15)

Now, one can further consider the expectation value of
the Bell operator:

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉
= 2E0 + (uv + uv)ω0 cosα. (16)

For the last deviation term shown in Eq. (16), we have
the following bound

|(uv + uv)ω0 cosα| 6 |ω0 cosα| = |2s cos2 α|. (17)

The Classical picture

The classical picture means that one skips the details of
quantummechanics but only considers a classical descrip-
tion of what Alice and Bob do. To give such a classical
picture, several key points must be emphasized. Firstly,
the classical picture should be consistent with the simula-
tion picture. It requires that Alice has a “PT -symmetric
like” subsystem and the joint measurements of Alice and
Bob reveal the characteristics in the global Hamiltonian
Ĥ . A natural consequence is to assume that the mea-
surement results from Ai are just λ±, namely the eigen-
values of the PT -symmetric Hamiltonian H . Moreover,
note that the dilated Hermitian Hamiltonian Ĥ has the
same eigenvalues as the PT -symmetric Hamiltonian H
but with a multiplicity of two. Hence the results of Bi

should be 1, such that the correlation functions BjAi

trivially give the eigenvalues of Ĥ. Secondly, the “re-
sults” of Alice and Bob are independent, leading to a
classical (nonlocal) correlation. In fact, since Bob’s re-
sults always give 1, apparently the two observers’ results
and the corresponding probability distributions are inde-
pendent. Thus, we do have a classical local picture.
To calculate the expectation of the Bell operator, note

that 〈BjAi〉 =
∑

ab ab p(ab|ij), where the results a = λ±
and b = 1. Like the standard CHSH scenario, one can for-
mally write p(ab|ij) =

∫

p(a|i, µ)p(b|j, µ)q(µ)dµ, where µ
is a hidden variable with q(µ) its distribution such that
∫

q(µ)dµ = 1. By changing the variable dν = q(µ)dµ and
denoting Ai(ν) =

∑

a ap(a|i, ν), Bj(ν) =
∑

b bp(b|j, ν),
one can see that 〈BjAi〉 =

∫

Bj(ν)Ai(ν)dν, where
∫

1dν = 1. Unlike the standard CHSH scenario, we only
use local states rather than an entangled state, hence the
measurements Bj and Ai are completely independent,
without an interaction through ν (or µ). Thus one can
assume that Ai(ν) and Bj(ν) are constants independent
of ν. Moreover, by definition

∫

Ai(ν)dν =
∑

a ap(a|i)
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and
∫

Bj(ν)dν =
∑

b bp(b|j) = 1, hence we see that
Ai(ν) =

∑

a ap(a|i) and Bj(ν) = 1. Then

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉

=

∫

[B0(ν)(A0 +A1)(ν) +B1(ν)(A0 −A1)(ν)]dν

=

∫

[(A0 +A1)(ν) + (A0 −A1)(ν)]dν

= 2E0 + ω0 (p+ − p−), (18)

where p± = p(λ±|0) are the probabilities corresponding
to the situations when the results of A0 are λ±. More-
over,

|ω0(p+ − p−)| 6 |ω0| = |2s cosα|. (19)

Local Hermitian picture

In this picture, we try to give a description of what
Alice and Bob do by some Hermitian Hamiltonians Ĥl,
which is in a tensor product form of two local Hermitian
Hamiltonians. The key concept in this picture is that it
should be consistent with the simulation. To this end,
Ĥl = I ⊗Hh, where Hh = λ+|s+〉〈s+|+ λ−|s−〉〈s−| and
|s±〉 are two orthogonal states. Apparently, due to the

form of Ĥl, the results of Alice’s local measurements are
λ±, which is the same as the simulation picture. More-

over, the form of Ĥ ′ implies that it will not introduce
nonlocal correlations between the subsystems.
By replacing the Hamiltonian Ĥ in Eqs. (12-15) with

Ĥl, the expectation of the Bell operator is

〈B0A0〉+ 〈B1A0〉+ 〈B0A1〉 − 〈B1A1〉
= 2E0 + ω0 (p+ − p−), (20)

where p± = |〈u+|s±〉|2.
There are two motivations to consider the local Her-

mitian picture. The first one is to show the difference
between a dilated Hermitian Hamiltonian and a global
Hamiltonian which will not bring in nonlocal correlations
(thus it cannot be used for simulation). Such a global
Hermitian Hamiltonian is necessarily a tensor prodct of
two local Hermitian Hamiltonians. The second motiva-
tion is to consider a concrete quantum realization of the
classical picture. Since the classical picture is an abstract
description of the measurements from the perspective of
nonlocal correlations, through the comparison, a quan-
tum realization of the classical picture may give us a
deeper understanding on the features of internal nonlo-
cality. In fact, by comparing Eq. (20) with Eq. (16)
and Eq. (18), all the expectations in the three pictures
contain two terms. The common term 2E0 is the sum
of the two eigenvalues λ+ and λ−; while the other one
represents a deviation term. Apparently, the deviations
have a relatively simple order relation on their numerical
bounds. The classical and local Hermitian pictures have

the same form of deviation term, which usually gives a
larger bound than the simulation picture. Such a result
can help to distinguish the dilated Hermitian Hamilto-
nian [22].
In the above discussions, the special form of the dilated

Hamiltonian Ĥ implicitly plays a key role, especially in
the classical and local Hermitian pictures. It renders a
reasonable way to correlate Alice and Bob’s subsystems,
as well as to establish the connections between the dilated
Hamiltonian Ĥ and the PT -symmetric Hamiltonian H .
Based on this, one can propose the classical and local
Hermitian pictures and compare the corresponding Bell
operator expectations in different pictures [22].

III. THE GENERAL CASE

Now if we are considering the general case, Ĥ may
not have such a special form as Eq. (7). Moreover, the

dilated Hermitian Hamiltonian Ĥ may even have eigen-
values different from H . Then can we discuss the internal
nonlocality for a general Ĥ? In the following, we show
that this is possible.
Such a generalization is based on the following obser-

vation: If Ĥ is a Hermitian dilation of a PT -symmetric
Hamiltonian H (i.e. Eq. (1) is valid for Ĥ and τ), then
we have

[

H1 H2

H†
2 H4

] [

−τψ
ψ

]

=

[

−τH⊥ψ
H⊥ψ

]

, (21)

where

H⊥ = −H†
2τ +H4, (22)

H2 = (H −H1)τ
−1, (23)

H4 = (τH −H†
2)τ

−1. (24)

Utilizing Eqs. (1) and (2), one can verify Eqs. (21)-
(24) through direct calculations (see Appendix A for de-
tails). In addition, note that there is some freedom to

determine the dilated Hamiltonian Ĥ . In fact, Eqs. (23)
and (24), show that different Hermitian matrix H1 usu-

ally yield different Ĥ. Eq. (21) also shows that the eigen-
values of the Hamiltonian H⊥ are just the eigenvalues of
the dilated Hermitian Hamiltonian Ĥ .
Eqs. (1) and (21) show the effect of the Hermitian

dilation Ĥ when it is confined to the subsystems. In
fact, Eq. (1) can be written as

Ĥ(|0〉|ψ〉+ |1〉|τψ〉) = |0〉|Hψ〉+ |1〉|τHψ〉.

By post-selecting the ancillary system in state |0〉, we
have

Ĥ : |0〉|ψ〉 → |0〉|Hψ〉.

Similarly, Eq. (21) can also be written as

Ĥ(−|0〉|τψ〉+ |1〉|ψ〉) = −|0〉|τH⊥ψ〉+ |1〉|H⊥ψ〉.
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By post-selecting the ancillary system in state |1〉, we
have

Ĥ : |1〉|ψ〉 → |1〉|H⊥ψ〉.

Thus, the effect of Ĥ can be represented by two Hamil-
tonians, one is the PT -symmetric Hamiltonian H , the
other is H⊥.
In particular, it can be verified that if H1 takes the

special form in Eq. (4), then H⊥ = H and the dilated

Hermitian Hamiltonian Ĥ reduce to the special case of
Eq. (3). In this special case, we build up connections

between Ĥ and H to discuss the internal nonlocality.
Now for the general case, both H and H⊥ will be
connected with Ĥ . To be more precise, one can assume
that Alice is either measuring the Hamiltonian H or H⊥

and the joint measurements of Alice and Bob depict the
characteristics of the global Hamiltonian Ĥ . Similar to
the discussions in section II, it is possible to reconstruct
the different correlation pictures in the general case.

The simulation picture

In the following, we discuss the correlation pictures
for general dilated Hamiltonians of the PT -symmetric
Hamiltonian H in Eq. (6). For the convenience of discus-
sion, we specify some notations. Let us denote the special

dilated Hamiltonian in (7) still by Ĥ =

[

H1 H2

H†
2 H4

]

, where

H4 = H1. Denote a generally dilated Hermitian Hamil-

tonian by Ĥ ′ =

[

H ′
1 H ′

2

(H ′
2)

† H ′
4

]

. When confined to the sub-

spaces, the effect of Ĥ ′ can be depicted by H and (H⊥)′.

Denote Ĥ ′′ = Ĥ ′ − Ĥ , then we have Ĥ ′′
i = Ĥ ′

i − Ĥi. In
particular, we denote

H ′′
1 = Ĥ ′

1 − Ĥ1 =

[

a+ c d+ ib
d− ib a− c

]

.

In a general simulation picture, what Alice and Bob do
is the same as the special case. They conducts measure-
ments and calculate the expectation of the Bell operator,
which is given by Eqs. (12)-(15) with Ĥ replaced by

Ĥ ′. Calculations show that the numerical value of the
expectation is (see Appendix B and C for details)

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉
= 2E0 + 2a+ ω′′

0 (p
′′
+ − p′′−), (25)

where

ω′′
0 = 2

√

(s cos2 α+ d)2 +
(b+ b sin2 α+ 2a sinα)2

cos4 α
+ c2

(26)
is the difference of the two eigenvalues of H ′

4, p
′′
± =

|〈u+|s′′±〉|2 and |s′′±〉 are the eigenstates of H ′
4.

Comparing Eq. (25) with Eq. (16), one can see that
now the expectation of the Bell operator has an energy

shift 2a. For the deviation term, we have

|ω′′
0 (p

′′
+ − p′′−)| 6 ω′′

0 .

The classical picture

The classical picture gives a generic description of what
Alice and Bob do, regardless of the details of realization.
The key to this picture is that Alice and Bob’s results
are independent, only with classical (local) correlations.
To have such a classical picture, we consider the fol-

lowing scenario. Suppose Alice can make two measure-
ments A0 and A1. The results of A0 are the eigenvalues
of H and the results of A1 are the eigenvalues of (H⊥)′.
However, Alice only knows that one of Ai outputs the
eigenvalues of H and the other outputs the the eigen-
values of (H⊥)′. Moreover, we assume that Alice makes
measurements in some black box. That is, she is unaware
of which measurement she has conducted. Briefly speak-
ing, Alice can only obtain the measurement results but
cannot distinguish between A0 and A1. As for Bob, his
results are always 1. Thus, their results are independent,
implying the correlations are classical (local). Denote
the eigenvalues of (H⊥)′ by λ′±. The expectation of Bell
operator is (see Appendix B and C for details)

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉

= E0 + E′
0 +

1

2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)], (27)

where

E′
0 =

1

2
(λ′+ + λ′−) = E0 +

2(a+ b sinα)

cos2 α
(28)

and

ω′
0 = λ′+ − λ′−

= 2

√

(s+
2d

cos2 α
)2 cos2 α+

4c2

cos2 α
+

4(b+ a sinα)2

cos4 α
.

(29)

p′± are the probabilities that the measurement results are
λ′±. For the deviation term, we have

|1
2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)]| 6

1

2
(ω′

0 + |ω0|).

The local Hermitian and genuine local Hermi-

tian picture

There are different approaches to generalizing the lo-
cal Hermitian picture, which we call local Hermitian and
genuine local Hermitian pictures for the general case.
Still, the local Hermitian picture aims at describing

what Alice and Bob do by using local Hermitian Hamil-
tonians. As was mentioned, when the ancillary system is
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post-selected in |0〉 or |1〉, the effect of Ĥ can be repre-
sented by H and (H ′)⊥ respectively. Hence to be consis-
tent with the simulation, the global Hamiltonian in the
local Hermitian picture is

Ĥ ′
l = |0〉〈0| ⊗Hh + |1〉〈1| ⊗ (H⊥)′h, (30)

whereHh and (H⊥)′h are Hermitian Hamiltonians having
the same eigenvalues as H and (H⊥)′, respectively. Due
to this, when the ancillary system is in the state |0〉 or

|1〉, the measurement results of Ĥ ′
l are the eigenvalues of

Hh or (H⊥)′h, which is similar to Ĥ ′.
Suppose that Hh = λ+|s+〉〈s+| + λ−|s−〉〈s−| and

|s±〉 are two orthogonal states. Similarly, (H⊥)′h =
λ′+|s′+〉〈s′+| + λ′−|s′−〉〈s′−| and |s′±〉 are two orthogonal

states. Replacing Ĥ with Ĥ ′
l in Eqs. (12) - (15), the

expectation of the Bell operator is (see Appendix B and
C)

〈B0A0〉+ 〈B1A0〉+ 〈B0A1〉 − 〈B1A1〉
= 2E0 + ω′

0(p
′
+ − p′−), (31)

where p′± = |〈u+|s′±〉|2. Apparently, for the deviation
term

|ω′
0(p

′
+ − p′−)| 6 ω′

0.

In the special case of Ref. [22], the local Hermitian
picture can be viewed as a quantum realization of the
classical picture, yielding the same form of Bell operator
expectation. However, Eqs. (27) and (31) show that
they often differ in the general case. In particular, the
deviation bounds do not have a simple order relation as
that in Ref. [22].
To realize the Bell operator expectation in the classical

picture by utilizing local Hermitian Hamiltonians, we in-
troduce the genuine local Hermitian picture. The global
Hamiltonian is given by

Ĥ ′
g =

1

2
I ⊗ (Hh + (H⊥)′h). (32)

Replacing Ĥ with Ĥ ′
g in Eqs. (12-15), the expectation

of the Bell operator is (see Appendix B and C)

〈B0A0〉+ 〈B1A0〉+ 〈B0A1〉 − 〈B1A1〉

= E0 + E′
0 +

1

2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)], (33)

where p± = |〈u+|s±〉|2 and p′± = |〈u+|s′±〉|2.
Direct calculations show that the deviation term is

smaller than
√

(
ω0

2
)2 + (

ω′
0

2
)2 + 2

ω0

2

ω′
0

2
cos 2δ, (34)

where δ is some parameter related to the angle of |s±〉
and |s′±〉. In particular, when ω0

2 cos 2δ = |ω0

2 | (this is
possible when cos 2δ = 1 or−1), the above bound reduces
to 1

2 (|ω0|+ω′
0), which is the same as the classical picture.

IV. TO DISTINGUISH THE DILATED

HAMILTONIAN Ĥ
′

Suppose we have a set of devices that can produce
a dilated Hermitian Hamiltonian and simulate a PT -
symmetric system. One may wonder whether the device
is reliable, or if it faithfully realizes the simulation design.
Apparently, this question is closely related to whether the
dilated Hermitian Hamiltonian is well prepared.

In particular, it is instructive to distinguish between
the dilated Hermitian Hamiltonian and the local Hermi-
tian. Take the dilated Hamiltonian Ĥ in Eq. (7) and

Ĥl = I ⊗ Hh in the local Hermitian picture in section
II as an example. Suppose we want to simulate a PT -
symmetric system, whose effective Hamiltonian is H in
Eq. (6). One can use the device to produce a global

system whose Hamiltonian is Ĥ to realize such a simu-
lation in the subsystem. Since a PT -symmetric system
is usually non-Hermitian, the dilated Hermitian Hamil-
tonian Ĥ necessarily brings nonlocal correlations to the
subsystems.

However, the local Hermitian Hamiltonian Ĥl = I⊗Hh

cannot produce such correlations, although it has similar
properties to the dilated Ĥ when local measurements are
conducted. Briefly speaking, to see whether the device is
reliable, one needs to distinguish the Hamiltonian it pro-
duces from that cannot bring nonlocal correlations. Note
that Ĥ has the same eigenvalues as Ĥl. Hence one cannot
distinguish them only by measurements. However, one
can calculate the Bell operator expectations. Indeed, for
the special case of Eq. (7), it is shown that the classical
and local Hermitian pictures give larger deviation term
than the simulation picture. Thus the expectations in
different correlation pictures can help to distinguish the
dilated Hermitian Hamiltonian and have potential appli-
cations [22].

In the general case, one can also discuss how to dis-
tinguish Ĥ ′ from Ĥ ′

l . In fact, once the Bell operator
expectations differ in the simulation and local Hermitian
pictures, one can distinguish between Ĥ ′ and Ĥ ′

l . Eqs.
(25) and (31) show that such a difference may come from
two parts, one is an energy shift of 2a, the other is a
different bound of the deviation term.

However, in the general case, the correlation be-
haviours of the global Hamiltonians are more complex
and generally one may not distinguish Ĥ ′ from Ĥ ′

l . In

fact, if we take a = b = c = 0 and d = s(cos2 α−cos3 α)
cosα−2 ,

then Eqs. (26) and (29) show that the simulation pic-
ture and the local Hermitian picture give the same form
of Bell operator expectation and deviation bound. Thus
one cannot distinguish between them. Such a result is
natural in some sense. In fact, Ĥ ′

l in Eq. (30) is not in
a tensor product form. Thus it actually brings nonlocal
correlations between the subsystems, just like the Her-
mitian dilation Ĥ . Hence it is not unexpected that the
Bell operator expectations in the two pictures sometimes
have the same ranges.
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On the other hand, in most cases, such a distinguish-
ment is possible, e.g. when H and (H⊥)′ have the same
eigenvalues or when d = 0. In these two cases, one can
distinguish between Ĥ ′ and Ĥ ′

l , by observing either an
energy shift or a smaller deviation bound in the the Bell
operator expectation of the simulation picture (see Ap-
pendix D for details). This result can be viewed as a
natural generalization of that in Ref. [22].

One may also discuss the problem for Ĥ ′ and Ĥ ′
g.

When Ĥ ′ and Ĥ ′
g do not have the same eigenvalues, one

can distinguish them by making measurements directly.
When Ĥ ′ and Ĥ ′

g have the same eigenvalues, one can
either see an energy shift in the the Bell operator expec-
tations or a smaller deviation bound in the simulation
picture, which distinguish the two types of Hamiltoni-
ans.
The above results show that when Ĥ ′ and H , or equiv-

alently (H⊥)′ and H , have the same eigenvalues, the
Bell operator expectations have better properties and can
help in the task of distinguishing Ĥ ′. In fact, since the
eigenvalues of H are also the eigenvalues of Ĥ ′, when
Ĥ ′ and H have different eigenvalues, Alice can obtain
more than two outcomes. Such a situation is quite differ-
ent from the standard CHSH scenario. However, when
Ĥ ′ and H have the same eigenvalues, Alice obtains ex-
actly two outcomes. This is similar to CHSH’s discussion,
which partly explains why the Bell operator expectations
behave better in this case.

V. DISCUSSIONS

Compared to the the special case revealed in Ref. [22],
here, the physical implications behind the general results
are discussed. A significant difference exists in deriving
the classical pictures. To obtain a classical picture for the
general case, one needs an extra assumption that Alice
cannot distinguish between the measurements Ai. Such
an assumption is not needed in the special case [22].
However, in the general case, due to the fact that H

and (H⊥)′ usually have different eigenvalues, there are
four outcomes of measurements, which is quite different
from the usual CHSH scenario. If we calculate the usual
expectation of the Bell operator, that is, if Alice is aware
of the details of his measurements, then she can get an ex-
pectation value only related to H but irrelevant to (H⊥)′

(see Appendix C for details). Intuitively, such a biased
value is not suitable for investigating the properties of
the global Hamiltonian Ĥ. For this reason, the extra
assumption is needed and gives a more reasonable expec-
tation value. Moreover, such an assumption is implicitly
valid for the special Hermitian dilation in Eq. (7), in
which case (H⊥)′ = H . Only with the same measure-
ment results, Alice cannot distinguish between A0 and
A1. Hence such an assumption is natural and the classi-
cal picture will reduce to the special one in section II.
In the special case of Eq. (7), the classical and local

Hermitian pictures have the same expectation of the Bell

operator. However, in the general case, Eqs. (27), (31)
and (33) show that the Bell operator expectation of the
classical picture is different from the local Hermitian pic-
ture but the same as the genuine local Hermitian picture.
The reason is that the form of Ĥ ′

l is not a tensor product.
Although we still use the term “local Hermitian picture”
by comparison with the [22], it is actually nonlocal, which
cannot be described by a classical picture. As mentioned,
the form of Ĥ ′

l implies that when the measurement is A0

(the ancillary system is post-selected in |0〉), the results
of Alice are the eigenvalues of H . When the measure-
ment is A1 (the ancillary system is post-selected in |1〉),
the results of Alice are the eigenvalues of (H⊥)′. Since
H and (H⊥)′ generally have different eigenvalues, Alice
can directly distinguish between A0 and A1 by simply
reading out the measurement results, contradicting with
the assumption that Alice cannot distinguish between the
measurements A0 and A1 in the classical picture. Hence
the Bell operator expectation generally differs in the local
Hermitian and classical pictures.
To see why the classical and genuine local Hermitian

pictures still have the same expectations, note that if
Alice mistaken A1 for A0, then the Hamiltonian should
be

Ĥ ′′
l = |0〉〈0| ⊗ (H⊥)′h + |1〉〈1| ⊗Hh.

Now, since Alice cannot distinguish between Ai, the
Hamiltonian realizing the Bell operator expectation in
the classical picture should be 1

2 (Ĥ
′
l + Ĥ ′′

l ) = Ĥ ′
g, which

is just Eq. (32). Hence it is natural that the classical
and genuine local Hermitian pictures have the same ex-
pectations.

VI. CONCLUSION

In this paper, we investigate the internal nonlocal-
ity of generally dilated Hermitian Hamiltonians of PT -
symmetry. It is shown that in addition to the PT -
symmetric Hamiltonian H , the effect of a generally di-
lated Hermitian Hamiltonian can also be characterized
by another Hamiltonian H⊥. Based on this observation,
the internal nonlocality is revealed in the general case,
even when the two-fold structure of the dilated Hamil-
tonian in Ref. [22] breaks. Different correlation pictures
are proposed and the Bell operator expectations are ob-
tained.
The results in this paper covers that in Ref. [22], giv-

ing a natural generalization. However, the correlation
behaviours are more complex and have new features in
the general case. From the aspect of construction of cor-
relation pictures, the generic classical picture utilized an
assumption which is not needed but implicitly valid for
the special case. A new correlation picture, i.e., the gen-
uine local Hermitian picture, is proposed. The Bell op-
erators often have some energy shifts and the deviation
bounds are also changed, which do not give a simple order
relation as in Ref. [22]. In particular, the Bell operator
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expectation in the local Hermitian picture can coincide
with the simulation picture but differs from the classical
picture. It is shown that when the dilated Hermitian and
the PT -symmetric Hamiltonians have the same eigenval-
ues, the Bell operator expectations have good properties
and can help in the task of distinguishment. Similar to
the device-independent test on the state nonlocality, our
results provide a detection-loophole-free test on the reli-
ability of the simulation in a global Hermiticity.
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VII. APPENDIX

A. The properties related to Ĥ and H
⊥

We show how the Eqs. (21)-(24) are obtained. Note
that τ is invertible, Eqs. (23) and (24) are direct results
of Eq. (1). To show Eqs. (23) and (24) do give a Hermi-

tian Hamiltonian Ĥ, we have to show H4 is Hermitian.

In fact, H†
4 = H4 is equivalent to

(τ−1)(H†τ −H2) = (τH −H†
2)τ

−1.

According to Eq. (23), we know H2 = (H − H1)τ
−1.

Thus, direct calculations show that the above equation
is equivalent to

H†(I + τ2) = (I + τ2)H,

which is just Eq. (2). Hence we know that H4 is Hermi-

tian and Ĥ is a dilated Hermitian Hamiltonian.
To see Eq. (22), note that Eq. (21) is equivalent to

the following equations

−H1τ +H2 = −τH⊥, (35)

−H†
2τ +H4 = H⊥, (36)

in which Eq. (36) is just Eq. (22). Now to show Eq. (21)
is valid, we only need to prove Eq. (35). Substituting
Eqs. (23)-(24) into Eq. (35), we find that Eq. (35) is
also equivalent to Eq. (2). Thus, Eq. (21) is valid.

It should be noted that Eqs. (3) and (5) can be ob-
tained from Eqs. (23) and (24) when H1 takes the form
in Eq. (4). In fact, by substituting Eq. (4) into Eq. (23),
one can obtain H2 in Eq. (5).
Now to obtain Eq. (3), we only need to showH4 = H1,

which is equivalent to

H1(τ + τ−1)τ = H4(τ + τ−1)τ.

According to Eqs. (23) and (24), the above equation can
be written as

H1(τ + τ−1)τ = [τH − τ−1(H† −H1)]τ
−1(τ + τ−1)τ.

Now using Eq. (4) and the fact (τ−1+ τ)τ = τ(τ−1 + τ),
we see that the above equation reduces to

τ−1H†(τ−1 + τ) = τHτ−1 + τ−1Hτ−1.

However, direct calculations show that this equation can
be proved by using Eq. (2). Thus we know H1 = H4 and

the dilated Hamiltonian Ĥ in Eq. (3) is indeed a special
case when H1 takes the special form in Eq. (4). In fact,
one can further prove that H⊥ = H in this special case.
To see this, firstly we note that now H1 = H4. Hence it

follows from Eq. (22) that H⊥ = −H†
2τ +H1. Thus to

show H⊥ = H we only need to prove

−H†
2τ +H1 = H,

from which we have

(−H†
2τ +H1)(τ

−1 + τ) = H(τ−1 + τ).

Now according to Eqs. (4) and (23), calculations show
that the above equation is also equivalent to Eq. (2).
Thus we know H = H⊥ in the special case.
To see the eigenvalues of H⊥ are also the eigenvalues

of Ĥ, let us assume that λ is an eigenvalue of H⊥ and φ
is an eigenvector. Now Eq. (21) implies that

Ĥ

[

−τφ
φ

]

=

[

−τH⊥φ
H⊥φ

]

= λ

[

−τφ
φ

]

,

showing that λ is an eigenvalue of Ĥ . Similarly, one can
show that the eigenvalues of H are also the eigenvalues
of Ĥ. Apparently, if H⊥ = H , then Ĥ has the same
eigenvalues as H , with multiplicities two.

B. Some calculations related to Ĥ
′

In this part, we show how the expectations in different
correlation pictures are obtained. For the convenience of
calculations, denote a general Hermitian dilation Hamil-

tonian by Ĥ ′ =

[

H ′
1 H ′

2

(H ′
2)

† H ′
4

]

and the special Hermitian

dilation Hamiltonian in Eq. (7) still by Ĥ =

[

H1 H2

H†
2 H4

]

,
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where H4 = H1. Moreover, assume that H ′
i = Hi +H ′′

i

and

H ′′
1 =

[

a+ c d+ ib
d− ib a− c

]

.

Now we see the effect of H ′′
1 . Note that H ′

1 = H1 +H ′′
1 .

Then according to Eq. (23),

H ′
2 = (H −H ′

1)τ
−1

= (H −H1)τ
−1 −H ′′

1 τ
−1

= H2 −H ′′
1 τ

−1. (37)

According to Eqs. (24) and (37),

H ′
4 = (τH −H†

2)τ
−1 + τ−1H ′′

1 τ
−1

= H4 + τ−1H ′′
1 τ

−1

= H1 + τ−1H ′′
1 τ

−1. (38)

Moreover, Eq. (21) shows that

(H⊥)′ = −(H ′
2)

†τ +H ′
4

= −H†
2τ +H4 + τ−1H ′′

1 (τ + τ−1)

= H + τ−1H ′′
1 (τ + τ−1), (39)

where the last equation holds because H⊥ = −H†
2τ +

H4 = H .
Direct calculations show that

τ−1H ′′
1 τ

−1

=

[

a+c+2b sinα+(a−c) sin2 α

cos2 α

d cos2 α+i(b+b sin2 α+2a sinα)
cos2 α

d cos2 α−i(b+b sin2 α+2a sinα)
cos2 α

a−c+2b sinα+(a+c) sin2 α

cos2 α

]

,

(40)

and

τ−1H ′′
1 (τ + τ−1)

=

[

2(a+c)+2(b+id) sinα

cos2 α

2d+2i(b+a sinα−c sinα)
cos2 α

2d−2i(b+a sinα+c sinα)
cos2 α

2(a−c)+2(b−id) sinα

cos2 α

]

.

(41)

Denote

A1 =
2(a+ b sinα)

cos2 α
,

A2 =
2(b+ a sinα)

cos2 α
,

C1 =
2c+ 2id sinα

cos2 α
+ is sinα,

C2 =
2d− 2ic sinα

cos2 α
+ s,

then

(H⊥)′ = (E0 +A1)I2 +

[

C1 C2 + iA2

C2 − iA2 −C1

]

.

The eigenvalues of (H⊥)′ are

λ′+ = E0 +A1 +
√

C2
1 + C2

2 +A2
2,

λ′− = E0 +A1 −
√

C2
1 + C2

2 +A2
2.

Accordingly,

ω′
0 = λ′+ − λ′−

= 2

√

(s+
2d

cos2 α
)2 cos2 α+

4c2

cos2 α
+

4(b+ a sinα)2

cos4 α
,

which is just Eq. (29).
Similarly, one can calculate the eigenvalues of H ′

4 by
using Eq. (38). Denote

A′
1 =

a+ 2b sinα+ a sin2 α

cos2 α
,

A′
2 =

b+ b sin2 α+ 2a sinα

cos2 α
,

C′
1 = c,

C′
2 = s cos2 α+ d,

then

H ′
4 = (E0 +A′

1)I2 +

[

C′
1 C′

2 + iA′
2

C′
2 − iA′

2 −C′
1

]

.

Direct calculation show that the two eigenvalues of H ′
4

are

λ′′+ = E0 +A′
1 +

√

(C′
1)

2 + (C′
2)

2 + (A′
2)

2,

λ′′− = E0 +A′
1 −

√

(C′
1)

2 + (C′
2)

2 + (A′
2)

2.

Accordingly,

ω′′
0 = λ′′+ − λ′′−

= 2

√

(s cos2 α+ d)2 +
(b+ b sin2 α+ 2a sinα)2

cos4 α
+ c2,

which is just Eq. (26).

C. The calculation of different expectations and

bounds in the general case

With the above results, one can calculate the simu-
lation bound. Note that a general dilated Hermitian
Hamiltonian Ĥ ′ can be written as

Ĥ ′ = |0〉〈0|⊗H ′
1+|1〉〈1|⊗H ′

4+|0〉〈1|⊗H ′
2+|1〉〈0|⊗(H ′

2)
†.

Denote H ′
4 = λ′′+|s′′+〉〈s′′+| + λ′′−|s′′−〉〈s′′−|, ω′′

0 = λ′′+ − λ′′−.

By substituting Ĥ ′ into Eqs. (12)-(15), direct calcula-
tions show that the simulation bound is

Tr[|0〉〈0| ⊗H ′
1 + |1〉〈1| ⊗ (|u+〉〈u+| − |u−〉〈u−|)H ′

4]

= TrH ′
1 + 〈u+|H ′

4|u+〉 − 〈u−|H ′
4|u−〉

= 2E0 + 2a+ 〈u+|H ′
4|u+〉 − 〈u−|H ′

4|u−〉
= 2E0 + 2a+ ω′′

0 (p
′′
+ − p′′−),
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which is just Eq. (25). The concrete expression of the
Bell operator expectation is

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉
= 2E0 + 2a+ (uv + uv)(ω0 cosα+ 2d)

+ uv
2i(b+ b sin2 α+ 2a sinα)

cos2 α

− uv
2i(b+ b sin2 α+ 2a sinα)

cos2 α
+ 2c(|u|2 − |v|2).

For the classical picture, the Bell operator expectation
is

〈B0A0〉+ 〈B0A1〉+ 〈B1A0〉 − 〈B1A1〉

=

∫

[B0(ν)(A0 +A1)(ν) +B1(ν)(A0 −A1)(ν)]dν

=

∫

[(A0 +A1)(ν) + (A0 −A1)(ν)]dν, (42)

where the last equation hold because the results of Bi are
1. Since the results of A0 are the eigenvalues λ±, then
the above equation gives

2E0 + ω0(p+ − p−), (43)

where p± are the probabilities that Alice’s results are
λ±. However, Alice is unaware of the details of the mea-
surements, hence she may mistaken A1 for A0. Thus the
Bell operator expectation will be calculated by changing
A0 and A1 in Eq. (42). Since the results of A1 are the
eigenvalues of (H⊥)′, i.e. λ′±, hence the the Bell operator
expectation will be

2E′
0 + ω′

0(p
′
+ − p′−),

where E′
0 = 1

2 (λ
′
+ + λ′−) and p′± are the probabilities

that the results are λ′±. Now the best Alice can do is to
calculate the mean value of the above two results, that is

E0 + E′
0 +

1

2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)],

which is just Eq. (27).
We now calculate the Bell operator expectation in the

local Hermitian picture. Note that Hh = λ+|s+〉〈s+| +
λ−|s−〉〈s−| and (H⊥)′h = λ′+|s′+〉〈s′+| + λ′−|s′−〉〈s′−|. By

replacing Ĥ with Ĥ ′
l = |0〉〈0| ⊗ Hh + |1〉〈1| ⊗ (H⊥)′h in

Eqs. (12-15), direct calculations shows

〈B0A0〉+ 〈B1A0〉+ 〈B0A1〉 − 〈B1A1〉
= Tr(|0〉〈0| ⊗Hh + |1〉〈1| ⊗ (|u+〉〈u+| − |u−〉〈u−|)(H⊥)′h)

= 2E0 + ω′
0(p

′
+ − p′−),

where p′± = |〈u+|s′±〉|2. This is just the result of Eq.
(31).
Similarly, one can calculate the Bell operator expecta-

tion for the genuine local Hermitian picture. Replacing

Ĥ with Ĥ ′
g = 1

2I ⊗ (Hh + (H⊥)′h) in Eqs. (12-15), direct
calculations show that

〈B0A0〉+ 〈B1A0〉+ 〈B0A1〉 − 〈B1A1〉
= 〈u+|Hh|u+〉+ 〈u+|(H⊥)′h|u+〉

= E0 + E′
0 +

1

2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)],

where p± = |〈u+|s±〉|2 and p′± = |〈u+|s′±〉|2. This is just
the result of Eq. (33).

We now calculate the bound of Eq. (34) in the gen-
uine local Hermitian picture. Note that such a bound is
obtained by altering |u±〉 but fixing |s±〉 and |s′±〉 in Eq.
(33). Since we are now considering two dimensional case,
one can parameterize the states in a way similar to the
Bloch sphere. Assume that |〈s±|s′±〉| = cos δ, where δ is
a parameter characterizing the angle between |s±〉 and
|s′±〉. Now without loss of generality, one may assume
that |s+〉 = |0〉 and |s−〉 = |1〉. In addition,

|u+〉 =
[

cosα
ei∆ sinα

]

,

|s′+〉 =
[

cos δ

ei∆
′

sin δ

]

, |s′−〉 =
[ − sin δ

ei∆
′

cos δ

]

,

where ∆, ∆′ and α are real parameters. Then direct
calculations show that

1

2
[ω0(p+ − p−) + ω′

0(p
′
+ − p′−)]

=
ω0

2
(cos2 α− sin2 α) +

ω′
0

2
(cos2(α+ δ)− sin2(α+ δ)

+ sin 2α sin 2δ + cos(−∆+∆′) sin 2α sin 2δ)

= cos 2α(
ω0

2
+
ω′
0

2
cos 2δ) +

ω′
0

2
sin 2δ cos(−∆+∆′) sin 2α

6

√

(
ω0

2
+
ω′
0

2
cos 2δ)2 + (

ω′
0

2
sin 2δ cos(−∆+∆′))2

6

√

(
ω0

2
)2 + (

ω′
0

2
)2 + 2

ω0

2

ω′
0

2
cos 2δ, (44)

where the last two inequalities hold due to the Schwartz
inequality and the fact cos(−∆ + ∆′)2 6 1. When
ω0

2 cos 2δ = |ω0

2 |, i.e., equivalently cos 2δ = ±1, Eq. (44)
saturates its largest value.

D. To distinguish the Hamiltonian Ĥ
′

When H and Ĥ ′, i.e. (H⊥)′ have the same eigenvalues,

one can distinguish Ĥ ′ from Ĥ ′
l by comparing the Bell

operator expectations. Firstly, note that H and (H⊥)′

have the same eigenvalues iff λ′+ + λ′− = λ+ + λ− and
λ′+ − λ′− = |λ+ − λ−|. That is,

E′
0 = E0, ω′

0 = |ω0|.

Thus, according to Eq. (28), we have a = −b sinα. Now
if a 6= 0, then Eq. (25) shows that there is an energy
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shift 2a in the simulation picture. However, Eq. (31)
shows that such a shift does not exist in the local Her-
mitian picture. Thus by comparing the Bell operator
expectations, one can distinguish Ĥ ′ from Ĥ ′

l . Now we
consider the case a = 0. Since a = −b sinα, we have
b = 0 (sinα = 0 is the trivial case that H is Hermitian,
which is not considered). Now ω′

0 = |ω0| implies that

√

(s+
2d

cos2 α
)2 cos2 α+

4c2

cos2 α
= |s cosα|. (45)

It follows that

c2 =
cos2 α

4
[s2 cos2 α− (s+

2d

cos2 α
)2 cos2 α]. (46)

Note that c2 > 0, from Eq. (46) we have

−ds > d2

cos2 α
.

Now we calculate (ω′
0)

2 − (ω′′
0 )

2. By substituting Eq.
(46) into Eqs. (26) and (29), as well as utilizing the fact
−ds > d2/ cos2 α, we have

(ω′
0)

2 − (ω′′
0 )

2

= 4[(s+
2d

cos2 α
)2 cos2 α+

4c2

cos2 α
− (s cos2 α+ d)2 − c2]

= 4s2 cos2 α− 4(s cos2 α+ d)2 − s2 cos4 α+ (s cos2 α+ 2d)2

= 4(s2 cos2 α sin2 α− ds cos2 α)

> 4(s2 cos2 α sin2 α+ d2) (−ds > d2/ cos2 α)

> 0.

Thus we know ω′
0 = |ω0| > ω′′

0 . That is, the local Hermi-
tian picture gives a larger deviation bound than the local
Hermitian picture.
To summarize, when H and (H⊥)′ has the same eigen-

values, one can distinguish Ĥ ′ from Ĥ ′
l by investigating

the Bell operator expectation, there is either an energy
shift or a smaller range of deviation. In particular, the
above discussions generalize the results in section II. C,
which can be viewed as a special case when H = (H⊥)′.

Another special case is d = 0. In this case, Eqs. (26)
and (29) show that ω′′

0 > |ω0 cosα| and ω′
0 > |ω0|. By

comparing Eqs. (26), (29), (31) with Eqs. (17), (18),
(20), one can see that when d = 0, the simulation, clas-
sical and local Hermitian bounds are usually larger than
the special case. Moreover, one can still distinguish Ĥ ′

from Ĥ ′
l by utilizing the Bell operator expectations. In

fact, when a 6= 0, then there is a shift in the Bell opera-
tor expectation for the simulation picture. Thus one can
immediately distinguish Ĥ ′ from Ĥ ′

l . When a = 0, by
taking d = 0 in Eqs. (26) and (29), we see that ω′

0 > ω′′
0 ,

thus the different bounds of deviation can help distin-
guish Ĥ ′.

One can also discuss the problem for Ĥ ′ and Ĥ ′
g. Note

that when they have different eigenvalues, one can dis-
tinguish between them by measurements. Hence we only
need to consider the situation Ĥ ′ and Ĥ ′

g have the same
eigenvalues as H . Now without loss of generality, one can
rewrite the Hamiltonian Ĥ ′ in Eq. (32) as Ĥ ′

g = I ⊗Hh,
where Hh has the same eigenvalues as H . Now the Bell
operator expectation of Ĥ ′

g is given by Eq. (20) and the
deviation bound is |ω0|. Eqs. (20) and (25) show that

when a 6= 0, one can distinguish Ĥ ′ from Ĥ ′
g by the en-

ergy shift 2a. Hence we only need to consider the case
a = 0. However, the fact that Ĥ ′ and H (or equivalently
(H⊥)′ and H) have the same eigenvalues also implies
that E0 = E′

0 and |ω0| = ω′
0. As shown in the above dis-

cussion of distinguishing between Ĥ ′ and Ĥ ′
l , we know

|ω0| = ω′
0 > ω′′

0 in this case. Thus, by comparing the

different deviation bounds, one can distinguish Ĥ ′ from
Ĥ ′

g.
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