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 The ensemble average of non-interacting particles in a nonlinear oscillator system is investigated.  

Depending on the initial phase space distribution, the nonlinearity-induced dephasing mechanism can lead to 

temporal decays of the average particle position that can be quite different from the standard exponential 

decay.  In fact, the approach to the equilibrium can be Gaussian or even non-monotonic in time.  In the long-

time limit, it is possible to construct a single differential equation for the time-evolution of the average 

position.  Unlike the infinite set of coupled nonlinear differential equations derived from the standard 

approach based on the Liouville equation, this equation can be even linear.  We also show that the predicted 

dephasing mechanisms have their direct counter-part in the corresponding dynamics of quantum mechanical 

wave packets. 
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1. Introduction 

 While the time evolution of expectation values of quantum mechanical single-particle systems can 

rarely be predicted by a single particle orbit associated with the classical mechanical limit, the 

corresponding averages of classical mechanical ensembles are more useful as they reveal a much closer 

connection to quantum mechanics.  For example, the average position of a suitable classical mechanical 

ensemble follows the quantum expectation value for short times in the chaotic domain and even for longer 

scales if the dynamics is regular [1].  The classical-quantum discrepancies are most significant at long 

times, at which the underlying discrete energy structure of the quantum system can become relevant.  In 

this case, the initial collapse associated with dephasing of the states of different energy can even be 

followed by a quantum mechanical revival, as quasi-periodic quantum states can return arbitrarily close to 

their initial state [2-4]. 

 The dephasing stage and the approach to equilibrium is an important issue in molecular and atomic 

spectroscopy [5-6], and in the condensed matter physics of mesoscopic devices.  In some cases, it can be 

associated with a loss of coherence, reflected by the reduction of the off-diagonal elements of a density 

matrix.  The rate of the dephasing process can also provide us with information about the energy level 

structure in the system.  For example, in many-body physics, the dephasing of ensembles of particles can 

be used as a direct probe of the strength of the inter-particle interaction.  In most of these examples, the 

processes are usually characterized by a decay that is exponential in time [7,8].  The most prominent 

example of such an exponential decay is related to the famous Fermi Golden rule. 

 Recently, the possibility of a temporal Gaussian decay was discussed by Izrailev and coworkers 

[9,10] in the context of the return probability for closed systems of interacting particles.  These authors 

showed that a new Gaussian decay regime can exist before the usual long-time exponential behavior sets 

in.  Whether exponential or Gaussian dephasing, each decay discussed in the literature so far is 

characterized by monotonic decreases in time. 

 In this work, we introduce the possibility of a new class of dephasing mechanisms that can lead even 

to non-monotonic decays.  We demonstrate this for the long-time-evolution of the average position of an 

ensemble of non-interacting particles in a non-linear (quartic) oscillator potential.  To provide three 

examples, if the initial positions of the particles are Lorentzian distributed, we reproduce the usual 

exponential decay.  However, if this distribution is Gaussian we observe a Gaussian decay, and if the 

particles are distributed uniformly over a certain range, the decay can be characterized by a series of partial 

revivals.  In fact, our proposed theoretical description for these ensemble averages suggests that the non-
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linearity provided by a cubic oscillator is sufficiently general to permit nearly any desired type of time 

decay behavior of the average position if the initial spatial distribution is designed appropriately.  

 The traditional phase-space method to study the approach to equilibrium is based on the Liouville 

equation, which, however, leads in this case to an infinite set of coupled differential equations for the 

moments of products of the position and momentum variables.  To compute the average position is 

practically impossible as any truncation scheme applied to this infinite set leads to large errors and 

therefore does not present a practical way to progress. 

 This manuscript is organized in the following way.  In Section 2, our non-linear system and its 

induced dephasing of ensemble average are defined and discussed.  In Section 3, we perform a harmonic 

decomposition of a representative single orbit of the cubic oscillator.  In Section 4, an analytical 

investigation of the long-time behavior of ensemble-averaged position is presented.  In Section 5, we 

construct differential equations for ensemble averaged position for the Lorentz initial spatial distribution.  

In Section 6, we suggest that classical mechanical based decay mechanisms have their direct counterpart in 

the time evolution of quantum mechanical wave packets.  Finally in Section 7, a summary and outlook into 

future challenges are presented.   

 

2. Nonlinearly-induced dephasing of ensemble averages  

 It is well-known that the frequency of a particle moving in a simple harmonic oscillator potential 

does not depend on its initial elongation x0.  As a result, in a non-interacting, multi-particle dynamics, all 

particles take the same time for a round trip along their respective elliptical phase space orbits.  This means 

that if we introduce spherical coordinates (radius and angle), the corresponding angular speed is identical 

for any particles.  This means they stay "in phase" and the time-evolution of the ensemble's average 

position X(t) is identical to that of a particular single orbit x(t).  In this work, we use the lower-case symbol 

x(t) to denote the position of a single particle and the upper-case symbol X(t) for the corresponding 

ensemble average of position.  Unlike a harmonic potential, if the oscillator's potential energy is quartic, 

such as V(x) = x4/4, each orbit (initially at rest) has its own (initial position dependent) period Tperiod(x0) 

and the orbits can get out of phase, leading to a non-trivial evolution of X(t), which can be obtained 

numerically [11-14].  More specifically, we assume that the periodic time evolution of each orbit is 

governed by d2x/dt2 = – x3 with the initial position x(t=0) = x0 and vanishing initial velocity, dx/dt(t=0) = 

0.  Any general pre-factor of –x3 can be absorbed into a rescaled time.  Due to the non-linear nature of the 
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cubic restoring force, useful closed-form analytical solutions for the single-particle orbits x(t; x0) exist but 

they are complicated as we discuss in Appendix A. 

 The average position X(t) can be obtained from the single-particle orbits x(t;x0) as  

 

                                                   X(t)  =  dx0 (x0) x(t;x0) (2.1) 

 

where (x0) denotes the probability distribution of the set of initial positions x0.  The numerical data for 

X(t) were obtained as an average of several ten thousand individual orbits, whose initial positions were 

Lorentz distributed according to L(x0)  (X0)–1 / [1 + (x0 –X0)2/X0
2], which is centered around a 

given average position X0 with a spatial width X0.   

 To the best of our knowledge, the only systematic way to derive the equations of motion for X(t) is 

based on the classical mechanical Liouville equation for the underlying phase space density.  As we show 

in Appendix B, the solution for X(t) is governed here by an infinite coupled set of first-order differential 

equations for the average values of all products of the position and the momentum.  However, these 

coupled equations would require a truncation to be numerically feasible.  We have shown in this appendix 

that these truncation schemes distort the actual solution X(t) significantly as the resulting equation cannot 

even predict the short-time behavior [associated with only the first few oscillation cycles of X(t)] reliably. 

 To obtain X(t) for all times, we have therefore solved the differential equation for each initial 

condition x0 numerically and then used the integral in Eq. (2.1) to average over all solutions to compute 

X(t).  In Figure 1 we display a typical example for the initial average X0 = –3 and width X0 = 0.1.   

 

 

Figure 1   The time-evolution of the (Lorentzian) ensemble's average position X(t), velocity dX/dt 

and acceleration d
2
X/dt

2
 as well as a phase space portrait {X(t), dX/dt}.  We averaged over 20,000 

orbits with X0 = –3 and X0 = 0.1.  Each single-particle orbit fulfills d
2
x/dt

2
 = –x

3
 with x(t=0) = x0 

and dx/dt(t=0) = 0.  
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As the orbits get out of phase with each other, the resulting amplitude of the average position X(t) decays 

in time.  However, it is important to note that this decay is entirely different from that of any damped single 

orbit solution, which would be described by d2x/dt2 = – x3 –  dx/dt.  In this equation, the period would 

increase significantly as the particle motion slows down.  In contrast, Figure 1 clearly suggests that the 

period in the decaying function X(t) remains the same for all times.  The non-harmonic and non-trivial 

nature of the average X(t) becomes most apparent in its second derivative d2X/dt2 as shown in the figure.  

During the first early time oscillations its structure is rather different from the long-time behavior, which 

appears to become more (modulated) sinusoidal.  The early-time non-harmonic nature is also apparent in 

the square-like shape of the parametric orbit in (X, dX/dt) phase space, which approaches an inward 

elliptical spiral only for long times.   

 

3.  Harmonic decomposition of a single orbit of the cubic oscillator 

 While the complicated expressions for the orbits x(t;x0,p0) of the cubic oscillator of appendix A 

cannot provide any new intuitive insight into the solution structure or the amount of deviation from 

sinusoidal solutions, it offers an alternative algorithm to the direct numerical solution integration technique 

for differential equations.  

 We will show in this section that the periodicity of the solution permits us to obtain a rather rapidly 

converging expansion.  In order to follow a more systematic approach where the error can be directly 

controlled, we can use a harmonic expansion, which is suggested by the periodic nature of the orbits x(t; 

x0,p0)  

  x(t; x0,p0)  =  n [An(x0,p0) Sin(n  t) + Bn(x0,p0) Cos (n  t)] (3.1) 

 

where the coefficients follow from the Fourier integrals An  (2/T) 0
T dt x(t;x0,p0) Sin(n t) and Bn  (2/T) 

0
T dt x(t;x0,p0) Cos(n t).  The period of any orbit with energy E   p0

2/2 + x0
4/4 is given by T = 2 –xm

xm 

dx [2(E–x4/4)]–1/2, where the maximum elongation is xm  (4E)1/4.  The energy dependence of the 

corresponding frequency  2/T follows as (E) =1.19814 E1/4 as shown in Appendix A. 

 If we introduce the phase space angle , then x0
   (4E)1/4 Cos()1/2 and p0

   (2E)1/2 Sin(), all 

expansion coefficients have the same universal energy dependence and we obtain expansion   

 

  x(t; x0,p0)  =  E1/4 n=odd [ an() Sin(n t) + bn() Cos(n t)] (3.2) 
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This can lead to a significant simplification if either x0 or p0 vanishes.  For example, for x0 = 0, 

corresponding to  = /2, we can solve d2x/dt2 = – x3 numerically and derive from the Fourier integrals the 

expressions for the lowest-order coefficients a1(/2) = 1.35058, a3(/2) = – 6.0881110–2, a5(/2) = 

2.6311410–3 and a7(/2) = – 1.1653410–4, while all bn(/2) vanish.  Similarly, for p0 = 0, corresponding 

to  = , we find a remarkable symmetry.  Here all an() vanish and b1() =  a1(/2), b3() = – a3(/2), 

b5() =  a5(/2) and b7() = – a7(/2).  The coefficients therefore fall off rather rapidly with increasing 

order, which suggests that the lowest-order approximation for x(t; x0,p0)   E1/4 a1() Sin(t) + b1() 

Cos(t)] is qualitatively not so bad. 

 In the case of p0 = 0, we can therefore model each single-particle trajectory approximately by its first 

few terms in the harmonic expansion,  

 

               x(t; x0)  =  2–1/2 x0 b1 Cos(t) + b3 Cos(3t) + b5 Cos(5t)  + …] (3.3) 

 

with b1 = 1.35058, b3 = 6.0881110–2 and b5 = 2.6311410–3.  Here the frequency  = (x0) is a function 

of the initial position x0, see the discussion above.  The coefficients fall off rather rapidly with increasing 

order, which suggests that an approximation to x(t) based on only the lowest three terms might be 

sufficient.  For example, for the initial condition t = 0 we obtain x(t=0; x0)  2–1/2 x0 (b1+b3+b5) = 

0.999914 x0, which is excellent compared to the exact value x0.   

 If we insert the expansion (3.3) for each single orbit into Eq. (2.1) based on Lorentz distribution 

(x0), we obtain for the position average X(t) the following expression 

 

 X(t)  =   dx0 (x0) x(t;x0) 

         =  dx0 (x0) 2–1/2 x0 b1 Cos(t) + b3 Cos(3t) + b5 Cos(5t)  + …]                        

  =  X0 2
–1/2 {b1 Exp(– t) Cos(t) +  Sin(t)/]  

                          + b3 Exp(–3 t) Cos(3t) +  Sin(3t)/] 

                          + b5 Exp(–5 t) Cos(5t) +  Sin(5t)/] + ..} (3.4) 
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 Note that for a cubic oscillator (see Appendix A) the frequency x0  Tperiod   x0 happens to 

be just a linear function of the initial elongation x0, where   0.8472.  This relationship permits us to 

perform the integration over all positions x0.  In Eq. (3.4) we have also introduced the decay constant   

X0, which depends linearly on the initial spatial width X0 of the ensemble.  The central frequency of 

X(t), defined here as  X0| is related to the initial average position of the ensemble.   

 

 

4.  Analytical analysis of the long-time behavior of X(t) and non-monotonic decays  

 Higher order terms in Eq. (3.4) decay faster than the first term.  As a result, in the long-time limit 

only the first term survives.  Using this fact, we can consider the long-time behavior of ensemble average 

position of arbitrary initial position distribution(x0).  Using the substitution   x0, we can replace the 

integration over the (weighted) initial positions x0 by the frequency integral X(t) =  –2  d (x0 = 
–

1) 2–1/2 b1 Cos( t), which then can be re-expressed as  

 

                           X(t) = 2–1/2 b1 
–2  d/dt  ImagPart {  d (x0 = 

–1) Exp (i  t)} (4.1) 

 

This form suggests that the ensemble's approximate time evolution of X(t) is directly related to the time-

derivative of the imaginary part of the Fourier transformation of the probability distribution of the initial 

positions.  Eq. (4.1) provides a unique one-to-one mapping of the initial density (x0) to the resulting decay 

of X(t).  This relationship might be even (within some mathematical constraints) fully reversible.  This 

means that each (x0) has its own unique dephasing mechanism.  This result allows us to study various 

interesting decay patterns in more generality.  For example, let us examine the decay law associated with 

the three frequently used probability densities given by a Lorentz, Gaussian and uniform distributions.  

Each is centered around the average position X0
 and has a spatial width proportional to X0  

 

   L(x0)    (1/) X0
–1 / [1 + (x0 –X0)2 / X0

2] (4.2a)  

   G(x0)    (2)–1/2 X0
–1 Exp[–(x0 –X0)2 / (2 X0

2)]   (4.2b)  

   U(x0)    (2X0)–1 (x0 –X0) (x0 + X0)    (4.2c)  
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where (x)  x/|x|+1 denotes the Heaviside unit-step function.  For each case, the corresponding integral 

(4.1) can be performed fully analytically, leading to the following three decay laws: 

 

          XL(t)  =  X0 Exp(– t) Cos(t) +  Sin(t)/]  (4.3a) 

          XG(t)  =  Exp(–2
 t

2/2) X0 Cos(t) – t  Sin(t)]  (4.3b) 

          XU(t)  =  X0  Sinc(t) Cos(t) – Sinc(t)]  + X0 Sinc(t) Cos(t)   (4.3c) 

 

where Sinc(x)  Sin(x)/x and where again the decay constant is   X0 and the central frequency is  

X0.   

 In general, the usual inverse scaling relationship between the variances of the frequency and temporal 

distributions suggests that an increasing frequency width (measured by the spatial width X0) leads to a 

decreasing temporal width (measured by the inverse of the decay constant ).  This suggests the 

proportionality X0 for any general initial distribution (x0).  For the three specific examples discussed, 

we found consistently for the decay constant  = 0.8472X0.   

 To examine the accuracy of these predictions, in Figures 2 we have compared the approximate 

solutions XL(t), XG(t) and XU(t) with the exact ensemble averages over the true orbits associated with the 

quartic potential V(x) = x4/4.  The agreement even for shorter times is quite impressive. 

 While most decay processes based on various dephasing mechanisms follow an exponential decay, 

we see that depending on the initial distribution of the positions, also a more rapid Gaussian decay process 

is possible.  While Gaussian distributions for all kinds of random variables are routinely being studied, to 

the best of our knowledge, the possibility of a temporal Gaussian decay has been considered only twice in 

the literature [9,10].  The most interesting decay form, however, occurs for initially uniformly distributed 

positions.  Here the dephasing of all particles leads to a non-monotonic decay that is characterized by 

periodic reversals.   
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Figure 2   Comparison of the time-evolution of the approximate ensemble averages XL(t), XG(t) and 

XU(t) with the exact averages over 10,000 orbits of the cubic nonlinear oscillator, where X0 = –40 

and X0 = 2.  

 

 It is rather interesting that an irreversible dephasing mechanism based on a continuous distribution of 

particles can lead in some cases even to a non-monotonic decay law for the decaying envelope function of 

X(t).  It is certainly well-known that in quantum mechanical systems collapses can be accompanied with 

revivals [5,6], which are a direct consequence of the underlying discrete energy level structures of some 

quantum systems.  However, in our classical mechanical system there is no discreteness as we have a 

continuous distribution of all time scales, each given by Tperiod = 7.41629871 x0
–1.  The asymptotic long-

time behavior of XU(t) in Eq. (4.3c) is given by XU(t) = X0  Sinc( t) Cos(t), where   min(and   

max(.  This means that the characteristic revival times occur with a period of 2/  This characteristic 

time scale for U(x0) is entirely different from the Poincare reversal time, which would characterize the 

dynamics if the number of orbits was chosen finite [15]. 

 

5.  Differential equations for the Lorentz distributed initial conditions 

 Let us examine the Lorentz initial condition in more detail.  As the orbit {(x(t),v(t)} shown in Figure 

1 does not cross itself, X and dX/dt could be considered as phase space variables, whose evolution might 

be describable by two first-order differential equations.  We therefore feel motivated to search for 

differential equations that could describe the long-time behavior of X(t).   

 Eq. (3.4) predicts that the exponential decay rates increase linearly with the increasing (odd) order of 

the harmonics of .  This suggests that the long-time behavior is described by just the first two terms that 

are proportional to b1.  This long-time function, proportional to Exp(– t) Cos(t) +  Sin(t)/], 

fulfills the second-order differential equation of a simple linearly damped harmonic oscillator  
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                     d2X/dt2  =  – 2  dX/dt   –  ( 2+2) X (5.1) 

 

 If we include the third-order harmonic term with frequency 3 in X(t) of Eq. (3.4), then this solution 

is the sum of the orbits of two harmonic oscillators with frequencies  and 3 and dissipation rates  and 

3, respectively.  While this seems to be just a linear superposition of two solutions, X(t) no longer 

satisfies a second-order differential equation.  However, one can derive that X(t) satisfies a fourth-order 

differential equation, which is (surprisingly) again linear.  It takes the form 

 

         d4X/dt4 = – 8  dX3/dt3   – 2(112+52) dX2/dt2 –24 (2+2)  dX/dt   –9 (2+2)2 X (5.2) 

 

Its structure is obviously richer than the simple generalization of Eq. (5.1), which is not even unique and, 

for example, could also read d4X/dt4 = – 2  dX3/dt3 –  (2+2) dX2/dt2

 The rather slow fall off of the Lorentzian density L(x0) with increasing |x0| leads to the interesting 

fact about a discontinuity in the second derivative of X(t).  In fact, the initial average acceleration 

d2X/dt2(t=0)  = dx0 (x0) d2x/dt2(t=0;x0) = – dx0 (x0) x0
3 is not finite.  This means that one cannot use t 

= 0 as an initial condition for the fourth-order differential equation (5.2).  However, this is not a 

contradiction as this equation is valid anyway only in the long-time limit when d2X/dt2 is finite.   

 As a last point, we should remark out that the observation that a simple second-order differential 

equation can govern the long-time ensemble dynamics is not at all obvious or even expected.  Let us 

illustrate this for an ensemble of N different linear oscillators, whose positions are governed by Hooke's 

law d2xj/dt2 = –j
2 xj with j=1, 2,..., N.  While for N = 1, a single differential equation is trivially sufficient 

to describe the average position X(t)   x1(t), for the N = 2 system, the position X(t)  [x1(t) + x2(t)]/2 

requires already a fourth-order equation.  In order to derive the equation for the N-oscillator average X(t)  

N–1 j
N

 xj(t) for a general N, we can first construct the set of N linear differential equations for M = 0, 2, 4 

…, 2N-2 

 

                                                      dMX/dtM  =  N–1 j
N

 (–j
2)M/2 xj (5.3) 

 

where we have used the corresponding equations for each oscillator j
N

 d
Mxj/dtM = j

N
 (–j

2)M/2 xj.  These 

N equations are obviously linear in xj and therefore they can be inverted to construct each of the N orbits 
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xj(t) in terms of all even-order derivatives of X up to the (2N-2)-th order.  We would then obtain xj = fj(X, 

d2X/dt2, d4X/dt4, …, d2MX/dt2M).  If we insert these expressions for xj back into the rhs of the single 2N-th 

order differential equation d2NX/dt2N = N–1 j
N

 (–j
2)N xj we obtain  

 

  d2NX/dt2N = N–1 j
N

 (–j
2)N fj(X, d2X/dt2, d4X/dt4, …, , d2N-2X/dt2N-2) (5.4) 

 

This final expression shows that the time-evolution of the average position of this N-particle system is 

governed by a linear differential equation of order 2N-2.  Quite interestingly, this would suggest that in the 

limit of infinite numbers N a governing differential equation would have to be of infinite order and 

therefore cannot be found.  However, quite remarkably, in the (continuum) limit of infinitely many 

oscillators (N), (as we have shown in this section), the long-time behavior can actually be described by 

a single equation of just second order, see Eq. (5.1). 

 Traditionally, non-linear dynamical systems can be analyzed by Liouville equation approach in phase 

space as we outlined in Appendix B.  However, due to the non-linearity, the differential equation for the 

position average is coupled to all moments of products for space and momentum.  This leads to an infinite 

set of coupled first-order but non-linear equations.  A truncation of the infinite set of equations has not 

been found possible and any truncation for computational sake, as illustrated in the appendix, has proven to 

be completely inadequate.  In fact, not even a single oscillation of X(t) can be recovered before it diverges 

away from the true solution.    

 

6. Quantum mechanical counterpart of the dephasing mechanism 

 In this section, we will briefly sketch a suggestion for future studies about the question, if the various 

decay patterns (predicted from the classical mechanical analysis) have any qualitative counterpart in 

quantum mechanics.  To do so, we have to solve the time-dependent Schrödinger equation of an initial 

quantum wave packet in the oscillator potential V(x) and examine the time-evolution of the expectation 

value of its position. 

 In atomic units and in one-spatial dimension, the time-evolution of the initial quantum wave function 

(x,t=0) is determined by i (x,t)/t = – (1/2) 2(x,t)/x2 + V(x) (x,t).  In general, it is not possible to 

uniquely construct a wave function (x,t=0) from a classical ensemble phase space density (x,p) = 

x(x)p(p).  In our case, discussed above, we had p(p) = (p–0), representing all particles to be initially at 

rest.   To establish the relationship to the initial spatial distributions of the classical ensembles of Eqs. (4.2), 
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we have used the three initial wave functions L(x,t=0)  L(x)1/2, G(x,t=0)  G(x)1/2 and U(x,t=0)  

U(x)1/2.  These particular choices naturally guarantee that the spatial probability |(x,t=0)|2 matches 

initially exactly the corresponding density x(x)of the corresponding classical ensemble.  As (x,t=0) was 

chosen real, the initial momentum expectation value vanishes, p(t=0) = 0, corresponding to a quantum 

particle at rest.  However, the associated momentum distribution |(p,t)|2 with (p,t)  (2)–1/2 dx Exp(–

ipx) (x,t) has a non-zero width p  0, which is different from the classical distribution, where we 

assumed that all particles were initially at rest.  This non-vanishing momentum variance is, of course, 

unavoidable due to the Heisenberg uncertainty principle as the position variance x(t=0) = X0 was not 

infinite. 

 Before we discuss the non-linearity induced irreversible decay for V(x) = x4/4, we summarize the 

linear case for V(x) = x2/2.  Here for any initial quantum mechanical wave function, the quantum 

expectation value x(t) remains oscillatory and does not decay.  In fact, it is identical to the classical 

ensemble average at all times. 

 In Figure 3 we have graphed the time evolution of the quantum expectation value of the position 

x(t)   dx (x,t) x (x,t) for the three different initial wave functions for the non-linear potential V(x) = 

x4/4. 

 
Figure 3   Comparison of the time-evolution of the quantum mechanical average values X(t)  x 

(t) with the analytical expressions Eqs. (4.3), which are based on classical mechanical ensemble 

averages.  The initial wave functions were chosen to be (x,t=0) = (x)
1/2

  with the corresponding 

densities of Eq. (4.2).  The Schrödinger equation was solved on a 9000300 space-time grid with 

equidistant spacings x= 0.0033 and t= 0.066.  The initial densities were Lorentzian L(x) from 

Eq. (4.2a) with X0 = –7 and X0 = 0.2, Gaussian G(x) (4.2b) with X0 = –7 and X0 = 0.2 and 

uniform U(x) (4.2c) with X0 = –10 and X0 = 0.5. 

  

Fully consistent with the predictions of the classical mechanical ensemble, we find also here that the 

spatially Gaussian quantum distribution leads to a temporally Gaussian decay of the position's envelope 

and the Lorentzian-like distributed wave function leads to an exponential decay.  It is quite remarkable that 
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even the revival-based predictions for U(x) find in the wave function U(x,t) their direct quantum 

mechanical counterpart.  Obviously, the non-vanishing momentum variance p(t=0) could add another 

dephasing mechanism that might contribute to the overall decay, but at least for our chosen sets of initial 

conditions for X0 = –10 and X0 = 0.5, the agreement with the analytical expressions Eqs. (4.3) that were 

derived for the classical mechanical ensemble averages is still superb.   

 As a last comment, we note that -due the noncommutativity of the position and momentum quantum 

operators- the corresponding Heisenberg equations of motion for the expectation values xnpm are in 

principle different than those equations derived in Appendix B based on the classical mechanical Liouville 

equation.  But apparently, these differences do not affect the time evolution of x too much. 

 

7. Summary and outlook into future challenges 

 In the present work, we have discussed the decay mechanisms based on the dephasing of ensembles 

of single orbits with different frequencies each.  We suggest that in the long-time limit, it is possible to 

design the initial distribution in a way to produce a wide variety of temporal decay behaviors for the 

ensemble-averaged position beyond the usual exponential decay.  To be concrete, we have focused our 

attention on individual orbits in a quartic potential.  However, the main conclusions obtained here can be 

generalized to other classes of non-linear oscillators as well.  Our analysis has relied on the periodicity of 

the average position as well as the knowledge about how the local frequency depends on each particle's 

turning point coordinate.   

 To better understand the dynamics under which mechanisms non-linear classical as well as quantum 

systems can relax into their steady states is, of course, of wide interest to the atomic and molecular physics 

communities.  In our example, we have also assumed that particles do not interact with each other, apart 

from their interactions with the potential.  The possibility of an inter-particle interaction will likely present 

an additional challenge, which would certainly be of also interest to the many-body particle physics 

community.  We have also assumed that each orbit is in an isolated environment.  It might be interesting to 

observe how the inclusion of dissipative mechanisms on each orbit would affect the global dephasing 

behavior. 

 The present investigation has been completely based on a classical mechanical analysis.  If in 

addition, the internal energy spectrum needs to be considered as discrete, the finite energy spacing in that 

case will serve as an additional degree of freedom in how the ensemble average may vary in time.   
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 The excellent agreement between the classical mechanical and quantum mechanical wave packet 

calculations suggest that the various aspects of the newly predicted decay patterns can possibly also have 

experimental implications.  For example, using suitable tuned and tailored laser pulses, it has become 

possible to prepare electronic (as well as vibrational) states in atoms and molecules as spatially localized 

wave packets.  For example, following some theoretical suggestions [20,21], the pioneering experimental 

work by the Stroud group [22] created wave packets in sodium atoms.  Here the electron was localized by 

exciting a stationary extreme Stark state from the n = 30 manifold in a dc electric field followed by the 

application of a terahertz electromagnetic half-cycle pulse.  While the resulting classical-like orbit was 

governed here by the non-linearity of the Coulomb potential, the non-linear dephasing mechanism of this 

initially localized wave packet could be described by a similar approach as outlined in the present work.  

All these are interesting questions to be further investigated.  
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Appendix A  Analytical analysis for a single orbit of the cubic oscillator 

 The solutions to the equation, d2x/dt2 = – x3 with the initial conditions x(t=0) = x0 and p(t=0) = 

dx/dt(t=0) = p0 can be expressed [16] in terms of the complicated Jacobi elliptic sine function Jsn(x) with 

parameter –1.  This meromorphic and periodic function oscillates between –1 and 1 and can be defined as 

an inverse of an incomplete elliptic integral, such that Jsn[u()] = Sin(), where u()  0
 d [ 1+ 

Sin2()]–1/2.  The exact solution is 

 

                            x(t;x0,p0)  = s e 21/2 Jsn(e t + ) (A.1) 

 

where s  p0/|p0| is just a sign factor, the "scaled frequency" e  E1/4  [p0
2/2+ x0

4/4]1/4 is related to the 

energy E and the "phase" is defined in terms of the inverse Jacobi elliptic function IJsn as   s IJsn[ x0    

2–1/2/e] with parameter –1.  The occurrence of the sign factor s is not so unusual, as it is also required in the 

sine-solution of the ordinary harmonic oscillator.  The amount of the prefactor e 21/2 is the maximum 

amplitude, such that (e 21/2)4/4 = p0
2/2+ x0

4/4, which follows from energy conservation.  The Jacobi 

function Jsn(t) has a period of 4 E(–1) = 5.24412.., where E(t) is the complete elliptic integral of the first 

kind.  As we also show in our analysis below, the solution (A.1) has therefore a period T = 5.244/e 

corresponding to a true frequency defined as (E)  2/T = 1.1981 e.   

 When p0 = 0, using energy conservation (dx/dt)2/2 + xn/n = x0
n/n, the period of a particle of mass 

m=1 evolving in any nonlinear binding potential V(x) = xn/n is given by Tperiod =  2 (n/2)1/2 -x0 x0 dx [x0
n – 

xn ]–1/2, which amounts for our case of the quartic potential (n=4)  to Tperiod = 7.41629871 x0
–1.  This 

means that for a this oscillator the frequency x0    Tperiod   x0 is just a linear function of the 

initial elongation x0, where      
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Appendix B  Liouville equation approach 

 To the best of our knowledge, the only way to derive systematically the governing equations of 

motions for ensemble averages [17-19] is based on the Liouville equation for the time evolution of the 

phase space density (x,p,t).  We will illustrate in this appendix, that while this indirect approach for X(t) is 

in principle exact, it cannot be easily implemented numerically.  For an ensemble of classical mutually 

non-interacting particles of unit mass, the phase space density (x,p,t) in a potential V(x) follows from the 

preservation of the local phase space volume d/dt = 0 as  

 

   (x,p,t) / t = – p (x,p,t) /x  +  dV(x)/dx  (x,p,t) / p                        (B.1) 

 

This partial differential equation in t, x and p allows us to derive the set of governing equations of motion 

for any ensemble average value, defined as xnpm(t)   dx dp xnpm (x,p,t) for any integers n and m.   

Taking first the time derivative of this average value xnpm, transferring the derivative to  inside the 

integral and using integration by parts with regard to x and p, we obtain  

 

             d xnpm /dt  =  n xn–1pm+1  –  m  xn pm–1 dV/dx                               (B.2) 

 

This means that for general potentials V(x) that contain higher powers than x2, each moment is typically 

coupled to moments of even higher power.  For our specific case, where V(x) = x4/4, there is an infinite set 

of coupled first-order linear differential equations for xnpm.  For example, the first eight equations that 

govern the time-evolution of X(t) = x are 

 

n=1 m=0  d X /dt  =  p   (B.3a) 

n=0 m=1  d p /dt  =  – x3   (B.3b) 

n=3 m=0  d x3 /dt  =  3 x2p  (B.3c) 

n=2 m=1  d x2p /dt  =  2 xp2  – x5 (B.3d) 

n=1 m=2  d xp2 /dt  =  p3  –  2 x4p (B.3e) 

n=5 m=0  d x5 /dt  =  5 x4p   (B.3f) 

n=0 m=3  d p3 /dt  =  – 3 x3p2  (B.3g) 
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n=4 m=1  d x4p /dt  =  4 x3p2  –  x7  (B.3h) 

 

While it can be shown that any single differential equation of N-th order is equivalent to N sets of coupled 

equations of first-order, the reverse is not always true in general.  We have not been able to rewrite Eqs. 

(B.3) to construct a single (even just approximate) differential equation for X(t).  In addition, the set of Eqs. 

(B.3) is also rather unsuitable for obtaining numerical solutions for X(t).  Unfortunately, these eight 

coupled equations cannot be solved consistently, as this set is not closed and we would need the 

corresponding equations for x3p2 and x7.  If we were able to find an approximation such that we could 

replace these two specific moments in terms of functions of the lower moments, then this set would be 

closed, as it is the case for linear and quadratic potentials.

 There are some special cases for which these approximations are reasonable, for example if the initial 

phase space density is sharp, i.e., (x,p,t=0) = (x-X0)(p-P0), then all initial moments would factorize, i.e. 

xnpm(t)  X0
n(t) P0

m(t).  In order to evaluate the predictive power of this Liouville-based approach, we 

have artificially truncated the set of equations by setting the higher-order moments equal to zero.  In the 

first case, we put the rhs of Eqs. (B.3g) and (B.3h) equal to zero, i.e., dp3/dt = dx4p2/dt =0 and solved 

the resulting closed set of 8 equations.  In the second case, we assumed that dxp6/dt = dx5p4/dt = 

dx9p2/dt= dx13/dt = 0 and solved the 28 coupled equations.  In each case, we assumed an initial 

Gaussian phase space density (x,p,t=0) = (p) X0
–1(2)–1/2 Exp[–(x–X0)2 2–1 X0

–2] with X0 = –3 and 

X0 = 0.1 to calculate the initial moments.   

 

Figure 4   The time-evolution of the ensemble average XG(t) obtained from the truncated set of 

coupled eight and twenty eight first-order differential equations (B.3) for X0 = –3 and X0 = 0.1.  It 

is compared to the exact graph obtained by averaging over 10,000 orbits. 

 

The initial values for the moments xnpm with m0 vanish, while xn was computed via  dx dp xn (x,p).   
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In Figure 4 we compare the two solutions for X(t) with the exact graph, obtained numerically from the 

average over 10,000 initially Gaussian distributed orbits.  It is clear that with 8 as well as 28 coupled 

equations, the predictions of the Liouville-based approach fail completely to predict correctly even just the 

very first quarter cycle of X(t).  It might be possible to find some truncation schemes that might accelerate 

the convergence of these equations, but this challenge is far beyond the scope of this appendix, whose main 

purpose was to show that this systematic Liouville-based approach to derive a governing equation of 

motion for X(t) is very problematic for the cubic oscillator. 
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