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Motivated by a recent prediction to engineer the dispersion relation of a waveguide constructed
from atomic components [Phys. Rev. Research 4, 013080 (2022)], we explore the possibility to create
directional transport in an open, collective quantum system. We characterize the optical response
of this atomic waveguide through a scattering-matrix formalism built upon theories of photoelec-
tric detection that allows us to find the conditions for directional mode-to-mode transmission to
occur. We find that directional waveguides allow for an efficient outcoupling of light by reducing
backscattering channels at the edges. This reduced backscattering is seen to play a major role on
the dynamics when disorder is included numerically. A directional waveguide is shown to be more
robust to localization, but at the cost of increased radiative losses.

I. INTRODUCTION

An excited atom in free space will eventually find a way
to its ground state. In this spontaneous emission process,
energy is originally localized inside a small volume from
which it is set to travel outwards in the form of free pho-
tons [1, 2]. When the atom is part of a dense and ordered
atomic array, the excitation still finds a way out of the
ensemble, but it does so through collective decay chan-
nels whose spatial and temporal profiles depend on the
geometry of the array [3-8]. The most simple example
is that of a one-dimensional (1D) chain where an exci-
tation can travel without losses until it finds an edge to
escape through. These atomic arrays provide a versa-
tile platform to study the controlled scattering of light in
open, collective quantum systems whose response can be
engineered and probed in real time [9].

Such versatility can be used to generate directional
transport along a 1D array by altering individual atomic
constituents. Directional transport—where transmission
is allowed in one direction and blocked in the other—
has been at the center of intense research motivated
in part to understand the motion of biological sys-
tems [10-12]. Ratchet-type models predict that direc-
tional transport occurs when parity and time reversal
symmetry are violated in otherwise unbiased source [13],
and have been studied using elaborate atomic configu-
rations where the internal degrees-of-freedom are used
to generate periodic but asymmetric potentials to cre-
ate directionality [14-16]. These predictions have been
supported by experimental observations using colloidal
particles [17], polystyrene spheres [15, 18], and cold ru-
bidium atoms [16].

While these experiments describe the transport of ma-
terial particles guided by an electromagnetic potential,
an analogy is found in photonic systems where light is
guided by matter [19-22]. The motivation behind direc-
tional transport in these platforms is to generate robust
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optical systems where backscattering is inhibited [23, 24].
Through this constrain one can reduce the coupling to
parasitic channels and, for imperfect materials, the in-
terferences that give rise to localization [25-28].

In this manuscript we present a systematic descrip-
tion of the transport of excitations along a directional
atomic chain. We begin by reviewing an idealized model
for an atomic chain whose optical response is engineered
to display directionality and calculate the transmittance
of excitations via a scattering matrix. This approach
is suitable to describe photons entering an atomic chain
through a particular channel before leaving in another.
We then derive the conditions for directionality and ex-
plore how to retrieve excitations efficiently from a direc-
tional chain. To finish, we include the effect of imper-
fections that break the periodicity of the array and show
that backscattering is suppressed even in the presence of
disorder.

II. BACKGROUND: ATOMIC CHAINS

We consider an atomic chain made of N tightly
trapped atoms separated a distance a from their near-
est neighbors. Each atom is characterized by its posi-
tion r, and is assumed to have a ground state |g) and
three excited states [e”) of angular momentum projec-
tions s = {0,4}. States |e!t) and |e”) are connected by
a Raman transition as sketched in Fig. 1, where one leg
of the transition is driven by a laser beam of amplitude
Q4 and phase ik.z, (dependent on the atomic position)
while the other is driven by a counter-propagating beam
with amplitude £2_ and phase —ik.z,. Both beams share
the same frequency w, = k.c and are far detuned from
the atomic transition by A = wy — w,. Their superposi-
tion defines a control field that distorts the atomic state.

Under this configuration—and moving to an interac-
tion picture with free Hamiltonian ), Juwc|el)(el|—an



Figure 1. Energy-level diagram to realize the effective Hamil-
tonian of Eq. (1) where two excited states, denoted by |et)
and |e”), couple via a far-detuned Raman transition. Bold
arrows represent the drive amplitudes 2+ generated by two
counter-propagating beams of wavevector k. and polariza-
tions €4 and e_, such that the phase acquired from this two-
photon process depends on the atomic position z,.

effective Hamiltonian for the nth atom is realized [9]:
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Here aig,) = |el)(el| is an operator connecting two
atomic states; § = (Q2 + Q2)/2A is the light shift in-
duced by the beams; and § = 2 arctan(€Q /Q_) is a mix-

ing angle.

Atoms forming the chain interact with each other
through the exchange of photons scattered in and out
of the electromagnetic environment. In free space their
dynamics can be understood in terms of an open quan-
tum system by tracing out the state of the electromag-
netic field under the Born and Markov approximations.
The master equation for the collective state of the atomic
chain p then reads

) 1
p== ;;( nm+h2Ass,a "), p| + Lo,
(2)
where L is the Lindblad superoperator
Fygs’ n m m n
L] = Z 5 (20'( )oag q) g q) (n )o ( ) ((]S))7

n,m,s,s’

and the parameters ATI', v represent the collective
frequency shift and decay rate. These parameters de-
pend on the relative position between two atoms n and
m and their transition dipole moment through the free-
space electromagnetic Green function [29].

This chain supports the lossless transport of excita-
tions via collective subradiant states generated by de-
structive interference of individual radiation paths. Sub-

radiant states appear below a limiting lattice constant [5]
a < Xp/2=wp/4me (3)

and are characterized by vanishing eigenvalues of the col-
lective decay matrix vi2". As we show below, the sub-
radiant channels can be engineered to be directional by
changing the parameters of the effective Hamiltonian of
Eq. (1). This is a consequence of the control field that
deforms the atomic dipole moment. First by creating an
asymmetric frequency shift that breaks the degeneracy
between |e'}) states as an effective magnetic field would.
And second by orienting the dipole moment in a spatially-
dependent way and, in so doing, changing the way each
atom of the array probes the local environment and its
coupling to neighbouring sites.

III. SCATTERING MATRIX FORMALISM

Previous research on the transport through atomic ar-
rays has been focused on the flux of excitations from one
end of the chain to the other. Yet, when it comes to de-
scribe the light that enters and leaves the array, standard
studies rely on physical intuition [30, 31] or additional
boundary conditions [32-35] that restrict the coupling to
the edges of the array. This has proved to be a powerful
tool to describe collective atomic systems, but overlooks
the spatial and temporal profiles of the input and output
fields that are ultimately measured in an experiment and
can be problematic when discussing the mode-to-mode
transmissions required for directional transport [21].

We develop here a scattering approach that describes
the transport of excitations along an atomic chain. This
method captures the absorption of a traveling photon by
the chain and its ensuing emission into a desired chan-
nel. The method is built from the theory of photoelectric
detection [36] and calculations for the scattering ampli-
tudes of a photon by atomic systems [37]. In contrast
to the master equation shown above, our focus now lies
on free electromagnetic fields that, once detected, can be
used to infer the emission path followed.

To find the scattering matrix we take a step back and
consider a system composed of the chain and its sur-
rounding electromagnetic environment. These are de-
scribed, respectively, by free Hamiltonians

R=Y_ hwbl \bicx, (5)
kA

where bk » is the annihilation operator for a free electro-
magnetic mode of wavevector k, frequency wyg, and po-
larization ey . The subsystems couple through a dipolar
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whose coupling parameter
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illustrates how atoms probe the local amplitude of the

electric field through their dipole moment ds. For con-

venience we have considered a quantization volume V for

the electromagnetic modes that will later be taken to in-
finity.

The free electric field operator is obtained by solv-
ing the Heisenberg equations of motion for the complete
Hamiltonian H = Hg + Hgr + Hsr under the Born and
Markov approximations. The resulting field separates
into free and scattered fields [37-39]:

E(R; t) = Efrcc(R; t) + Escatt (Ra t)v (8)
where the positive frequency component of the latter is
given in the far-field by
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Here R,, = R —r,, is the distance between the nth-atom

and a point where the field is probed, while &, is an
unitary vector pointing in the direction R, x (R,, x dy)
that accounts for the radiation profile of each atom with
an individual decay rate

1 ufld?
" dmey 3hc3

(10)

The scattered field can be used to probe the state of the
atomic chain using Eq. (9). Consider then a set of pho-
todetectors surrounding the atomic chain that record all
the photons being scattered into the environment. These
detectors are placed at the positions Ry = (R, 0, ¢),
with each one covering a surface area RZA( of solid angle
AQ and considered capable of resolving the polarization
state €y and arrival time of the photons. The informa-
tion gained after each detection can be traced back to
the state of the chain by applying the jump operator

2€pC
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and accounting for the necessary free evolution. These
operators have units of square root of photon flux, such
that

Pogr = 7Trs {jgijgw} (12)

gives the probability for a chain in state p to scatter into
the detector (Rg,g4,€x) during a small time interval .
The trace is taken over atomic variables only.

Equations (9)-(12) give the basic tools to unravel the
state of the atomic chain subject to a particular measure-
ment record and recover the path an excitation followed
across the chain [36]. We, however, are not interested
in the particular times at which an input photon enters
and an output photon leaves an otherwise empty chain;
but in the probability amplitude for the process to take
place. A sum over all the records where this process took
place is given by the scattering S-matrix whose compo-
nents Spe = (g;b|S|g; a) give the probability amplitude
for a free field of energy E, and state |a) (e.g. |k, Aa))
to scatter into one of energy FEj and state |b). In the
reciprocal space these components are written as [37]:

Sba(Ea) = 5)\a7)\b5(ka — kb) — 27Ti5(Ea — Eb)Tba (13)
with
Tho = (14)
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This transmission matrix T divides environment and
chain by connecting free fields to spin-waves through the
operator @ =Y |e?;0)(eZ; 0], a projector into the sub-
space where one excitation populates the chain and the
field is in the vacuum state. Once in this subspace, the
resolvent G(F) = (E — H)™! determines the channels
the excitation can follow. This is done through a non-
Hermitian Hamiltonian

N
H=Hs— Y > hAL+iyimeelm,  (15)
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that acts over atomic states only and displays the col-
lective frequency shifts and decay rates caused by their
self-consistent interaction with the environment [in con-
nection to the master equation of Eq. (2)].

We now bring together the picture provided by the
jump operators of Eq. (11) and the S-matrix of Eq. (13)
to study the transport along the chain. The key point
is that the atomic ensemble only responds to free-field
modes whose frequencies are close to the atomic res-

onance frequency wpy. For these frequencies, we can
write [38]
Zﬁkb)\b Ogs 27rg(wo) Pbqb b ( )

where g(wg) = R/6mc is the optical mode density at
the atomic transition frequency. Thus, after integrating
Eq. (13) over a small range of output modes (N, N 4+dN)
with dN = g(wo)dwy, the S-matrix takes the form

S(E) =1 — it(E) (17)



where 1 is the identity matrix and the transmission ma-
trix

1

accounts for all input and output modes through a sum
of jump operators JB,JO]: that runs over all detectors
(0,0,)\). This transmission determines the channels
through which a photon enters the chain, propagates
across it, and then scatters out.

Equations (17) and (18) describe the main result of this
section. They present a contextual description for the
transport of excitations where input and output channels
are given by the jump operators ng and Jpexr. And,
while developed with a scattering picture in mind, these
equations can be written in a form that is more suitable
for transport by choosing a different set of jump opera-
tors. We could choose, for example, the jump operators
given by the eigenvectors of the collective decay matrix
A7 denoted here by |¢*)) = 37 ¢{|en) with eigenval-
ues v,. Under this unraveling the jump operators take
the form

tE) = > Js
8

Tv =V ch/s)og(;sl) . (19)

The normal mode representation written in Eq. (19)
and the physical space representation of Eq. (11) are con-
nected through the equality

D ey ol =3 Ja- T (20)
n,m,s «

where « runs along {v} or {0, ¢, A} to select a represen-
tation. For a = {6, ¢, A} the right-hand side describes
fields measured at particular points while for a = v it
focuses on fields radiated by the normal modes, which
have only a formal meaning. Notice that both sets of
jump operators guarantee a unitary S-matrix since

H-H => TiTa. (21)

[e3

A similar formula for the S-matrix has been used to
study nuclear reactions [41, 42] and has also emerged in
the context of mesoscopic systems [30, 31] where focus
is placed on the resonance spectra and its relation to its
transport properties [43] rather than on the connection
to scattering records.

IV. TRANSPORT IN DIRECTIONAL CHAINS

The scattering matrix is now used to analyze the trans-
mission across an atomic chain with emphasis on its
directionality. This is done by considering the system
Hamiltonian of Eq. (4) and the normal mode represen-

tation of Eq. (19) (jump operators with a = v). We
begin by shifting our attention from the scattered field
towards the atomic states using the components S,s.m.
of Eq. (17), which represent the probability amplitude
for a photon to enter the chain through the individual
atomic state |e}) and leave through |e) disregarding
the photonic spatial profile.

An optical medium presents directionality when the
propagation of excitations along two opposing paths dis-
plays different mode-to-mode transmissions [21]. This
occurs when reciprocity is broken, a condition that is rep-
resented by an asymmetric scattering matrix such that

Sns;ms/ (E) 7£ Sms’;ns (E) . (22)

For the atomic chain described above, reciprocity is bro-
ken when collective decay and free operators do not com-
mute

N 1
He, Y. Y yimolmolm

nm=1s=—1

£0. (23)

This condition is satisfied for 6 # nm and w.z,/c # nn/2
for all n. The first requirement leads to an asymmetric
frequency shift of |e’}) and |e™) states, an effective Zee-
man shift created from the atomic response to the elliptic
polarization of the control field. The second requirement
corresponds to a subwavelength rotation of the atomic
dipoles that is generated from the polarization gradient
of the same field. These two requirements—simultaneous
time-reversal and parity symmetry breaking—were found
to be necessary for a waveguide made from plasmonic
particles to break reciprocity and display directional-
ity [19]. Equation (23) formalizes this result and extends
it for an atomic chain.

Figure 2 shows the transmittance as a function of the
input photon frequency for a chain of AV = 205 atoms
under conditions of reciprocity in Fig. 2a and nonre-
ciprocity in Fig. 2b. The transmittance is given by
Yo 1(n,8SIm, s")[> with n = 1 (or V) and m = N
(1), which gives the probability for a photon to be ab-
sorbed by an atom at one end of the chain and be emit-
ted at the opposite end. The transmittance for right-
and left-propagating excitations, plotted as green and
blue lines respectively, displays an imbalance when reci-
procity is broken. In both cases transmission channels
appear as narrow resonances due to the atom-atom inter-
actions [40]. As more atoms are added to the chain, ad-
ditional resonances with a narrowing width begin to ap-
pear, thus openning a broad transparency window where
an excitation can propagate without losses. We have
considered atoms at the edges since subradiant channels
tend to scatter out of the chain at these points. While
not shown in the figure, the transmittance is reduced for
atoms n, m separated from the edge as they are more
likely to absorb photons through short-lived superradi-
ant channels.

We also plot the dispersion relation of the atomic chain
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Figure 2. Dispersion relation for an infinite chain and trans-
mittance of a finite chain of N = 205 atoms under conditions
of regular and directional transport. The transmittance is
obtained from Zs,s’ |(n, s|S|m, s")|? [see Eq. (17)] with n,m
denoting the emission from atoms at the end of the chain.
The dispersion displays two transparency windows given by
the frequencies of |u, k) (dashed pink) and |1, k) (solid blue)
subradiant states of Eq. (24). A non-zero transmittance is
found for incoming photons whose energies match the narrow
resonances of the subradiant modes that fill the transparency
window; as shown by gray dashed lines. Red lines in the trans-
mittance indicate the average over a small energy interval to
visualize the infinite chain limit. For both plots the lattice
constant is a = Ao/8 and the Raman channels of Eq. (1) have
a strength § = 10I'0/3 and phase k. = 7/5a with 6 = 0 in (a)
and 0 = /4 in (b).

in Fig. 2. The dispersion marks the location and fre-
quency spread of the subradiant states. It is obtained
in the infinite chain limit by diagonalizing the non-
Hermitian Hamiltonian (15) as done in Ref. [9]. In this
limit subradiant states are determined by a wavevector
k directed along the chain axis and a polarization index
{u,1}. Written within the free basis these states read

[ ky = e 3 e 5 )N, (24a)
n s==+
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where the local phase k.z, is inherited from the Raman
transition sketched in Fig. 1 and the probability ampli-

tudes c](;;i , take a simple form given in Ref. [9]. The
dispersion relations of these two branches are drawn in
Fig. 2 as dashed pink lines for the upper u-branch and

solid blue lines for the lower l-branch. Subradiant states

are shown to appear for quasimomentum lying beyond
the light line |k £ k.| > wo/c, where radiation paths be-
tween different atoms can interfere destructively and can-
cel out the collective radiation, and create a transparency
window whose width scales with the atomic separation a
as ~ T'g/(koa)®. As shown in Fig. 2 the transparency
window obtained by the scattering matrix method coin-
cides with that generated by the dispersion relation of
the subradiant states. Subradiant states can then be un-
derstood as guided modes that propagate along the chain
without scattering.

The dispersion relation also provides a geometrical pic-
ture for the density of states of the chain and, through its
derivative, the group velocities of travelling spin-waves.
When reciprocity is satisfied, the dispersion is symmetri-
cal and the chain displays two counter-propagating chan-
nels for each frequency. When reciprocity is broken, the
dispersion relation becomes asymmetrical and counter-
propagating channels display different transmittances.

A. Emission from a traveling spin-wave

The radiation paths are not cancelled completely for
finite arrays, thus coupling subradiant modes to the en-
vironment and to each other. The backscattering into
other modes, however, can be inhibited for directional
chains and light can be routed into a given direction.
This is exemplified in Fig. 3 where we plot the intensity
of a field scattered by a spin-wave travelling inside the
chain under conditions of regular and directional trans-
port. We illustrate the different behaviors by considering
a single-excitation initial state

. ~a%(n—no)
ia(k+ke) Y |67i> ,

_ QN a
V) = cglg)™ +ce Zn: me

(25)
that is set to evolve under the non-Hermitian Hamil-
tonian of Eq. (15). The chain is weakly populated
(Jce|> = 0.2) and the excitation is centered around the
site ng = 100 with spatial width Az? = 60a? and central
quasimomentum k = 0. The evolution of this spin-wave
is sketched in panels (a) and (d) where the atomic pop-
ulation is plotted at three different times: (i) before the
wave reaches the end of the chain, (ii) as it reaches this
end and is backscattered, and (iii) as the backscattered
wave reaches the opposite end. The scattered field in-
tensity at times (ii) and (iii) is plotted, respectively, at
panels (b) and (c) for the regular chain and in (e) and (f)
for the directional chain, following Eq. (9). In both cases
the intensity of the field is concentrated at one end of the
chain as the spin-wave is bounced of the edge [(b) and
(e)], but, with imbalanced backscattering channels, the
ensuing spreads vary significantly [(c) and (f)]. A spin-
wave bouncing off one end of a regular chain backscat-
ters into several subradiant channels that guide it to the
opposite end. This is suggested by the scattered field
intensity and the interference profile in the atomic popu-



lation. In a directional chain, by contrast, the spin-wave
has fewer channels to backscatter into and the emission
remains localized off one end, as suggested by the popu-
lation profile. The scattered field remains trapped on one
edge, radiating efficiently into one direction and causing
for the interference pattern in the atomic population to
vanish.

@

()

Intensity [arb. units]

Figure 3. Backscattering from a spin-wave bouncing off the
ends of a chain under conditions for regular (a-c) and di-
rectional transport (d-f) used in Fig. 2. Panels (a) and (d)
represent the atomic population before (left) and after the
first (center) and second bounces (right). Notice the inter-
ference that arises in the central panel of the regular chain
and is missing in the directional chain. Through Eq. (25) we
have decided to excite two different-frequency modes of the
directional chain to exemplify how the backscattering is com-
pletely supressed for the left-propagating mode while reduced
for the right-propagating one. The scattered field intensity at
first [(b) and (e)] and second [(c) and (f)] bounces shows the
inbalance in left and right transmissions of a directional chain
that can be used to route light efficiently.

Figure 3(d-f) shows two different spin-waves prop-
agating along the directional chain. These counter-
propagating waves result from the initial state of Eq. (25)
that overlaps with both excitation branches since the Ra-
man channels responsible of the directional response cou-
ple [e™) and [’} ) states. The response of each wave helps
to illustrate the difference when backscattering channels
are inhibitted or completely absent. In the case of the
u-branch the spin-wave can find states to backscatter,
thus leading to a low-intensity field travelling along the
chain and a reduced interference pattern on the atomic
population. Both these properties are reduced for the
l-branch.

While we have attributed the imbalance between right-
and left-propagating channels to the density of subradi-
ant states, alternative methods can be used to quantify
this behavior. For instance, in arrays of plasmonic par-
ticles, it was shown recently that the coupling between
an excitation and a directional array can be exponen-
tially weaker in one direction than into the other [44].
This was shown through a detailed study of the analyt-
ical properties of the Green function of the chain. Ulti-
mately, both the Green function method of Ref. [44] and
the eigenstates of Eq. (24) describe the propagation of

single excitations inside arrays, but are traditionally used
in different frameworks and regimes. Their close connec-
tion (compare, e.g., the structure of Eq. (7) of Ref. [9] and
Eq. (24) of Ref. [44]) suggests that results found in classi-
cal optical systems can be explored in atomic arrays, such
as conditions for non-reciprocity beyond one-dimensional

chains [45].

V. EFFECT OF DISORDER

Throughout the last two sections we have joined to-
gether the dynamics inside an atomic chain to the scat-
tered field with the objective of studying the transport
properties of a directional chain and their relation to the
far-fields measured in an experimental setting. We have
emphasized the role of subradiant states that guide an
excitation from one end of the chain towards the other
through lossless collective channels. With subradiant
states emerging from the phase coherence between in-
dividual atomic constituents, the question remains as to
how the transport of excitations is affected by imperfec-
tions of the array.

Imperfections can manifest in our model through indi-
vidual frequency shifts caused by the trapping potential
or displacements in the atomic positions due to weaker
traps. The effect in both cases is to break the periodicity
of the array, in a similar way to the boundary conditions
above. We introduce these imperfections in the following
and compare the response between reciprocal and non-
reciprocal chains, showing that the transport properties
of the latter are more resilient to disorder.

We focus on individual frequency shifts for simplicity.
They are given by an additional potential

V=> &oll, (26)

where &, is a stochastic variable distributed over a fre-
quency band of zero mean and variance v W,

<gn>avg = 07 <gn5m>avg - W(Snm . (27)

Since we are interested in the effect over atomic coherence
it is convenient to write this potential in the reciprocal
space where

V=33 Gl e k) e, K] (28)

n,s k,k’/

as obtained from the relation <k|e§")> = e*znle,). A
similar decomposition can be done for random atomic
positions with the added complexity that the interaction
strength can diverge for small lattice sites.

The role of this imperfection is to couple states of dif-
ferent quasimomentum k, causing a state of well-defined
wavevector, e.g., a spinwave or a normal mode, to spread
in reciprocal space and localize in position. For weak en-



ergy shifts whose variance is significantly smaller than the
transparency window, the impurities can be treated as a
stochastic disorder that deform the dispersion relation by
coupling states of approximately the same energy. Ulti-
mately, this coupling reduces the atomic coherence with
a more pronounced effect over frequencies with a high

density-of-states [28].
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Figure 4. Transport of a spinwave in the presence of disorder
for the regular and directional chains of Fig. 2. Dashed gray
lines denote the initial distribution while solid pink (blue)
lines the population of |ey(_)) states after a time ¢ = 13y~!
has passed. The populations oscillate with a frequency given
by the energy difference between upper and lower branches
and signal the excitation of two modes. Backscattering is
completely inhibited for the blue mode. As the disorder
strength is increased from \/W/Fo = 0,0.625,1.0 between
top and bottom pannels, the collective state of the regular
chain losses coherence while that of the directional chain pre-
serves it. The disorder strengths are to be compared with the
transparency window of 2.5T.

Due to the asymmetry in the dispersion relation of a
non-reciprocal chain (see Fig. 2) a state of well-defined
wavevector finds less modes to backscatter to than one
inside reciprocal chain, thus reducing the momentum
spread. This is exemplified in Fig. 4 where we plot the
population of a spin-wave propagating inside an atomic
chain for different disorder strengths and compare re-
ciprocal and non-reciprocal responses. The spin-wave is
again prepared in the state (25). The plots show the dis-
tribution in position and reciprocal spaces after a time
t =131y ! has passed with pink and blue lines used, re-

spectively, for |e;) and |e_) polarizations. Notice first
that when reciprocity is broken the superposition of the
two excitation branches manifests as a beating in the
population of |e4 ) states, readily seen in reciprocal space.
The beating frequency corresponds to the energy separa-
tion between u and 1 branches. As the disorder strength is
increased in panels (b) and (c) the state begins to scat-
ter into different quasimomentum components. In the
reciprocal case the spread begins to occupy all the avail-
able states while in the non-reciprocal case there is only a
small spread over the upper branch |u) where few modes
are available. There is virtually no spread for the lower
branch |I) as there are no modes available.

The back and forward scattering eventually leads to
localization of the excitation that prevents its trans-
port [26]. For an atomic chain this localization describes
a transient behavior: an excitation will eventually scatter
out of the system through individual or collective chan-
nels. While the non-reciprocal chain has shown a reduced
spread in momentum it arrives at the cost of a doubled
radiation zone. It is found that, for the slow modes con-
sidered here, the loss is higher in the non-reciprocal case.
This effect can be reduced for chains with a smaller lat-
tice site.

VI. CONCLUSIONS

In summary, we have presented a method to generate
and probe the directional transport of excitations along
an atomic chain. Directionality is achieved through an
external control field that breaks the degeneracy between
two excited states and induces a locally-varying dipole
moment that follows a helical pattern, thus breaking
time-reversal and parity symmetries. We find a simple
formula where the probability for a free photon to en-
ter the chain, propagate along collective decay channels,
and then scatter out is readily calculated. This approach
is based on detected events and has a direct connec-
tion to methods developed for electron transport in con-
densed matter physics [46]. We show that defect-induced
backscattering is suppressed in directional chains, and
the phase coherence between atoms of the chain survived
for stronger disorder in comparison to regular chains.
This, however, comes at the cost of increased decay rate
for strong disorder due to the open nature of the system.
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