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Computational ghost imaging generally requires a large number of patterns to obtain a high-quality result. It
has been shown that both pre-modulated orthogonal patterns and post-processing orthonormalization improve
imaging quality and reduce the required pattern number. In this work, we propose and experimentally demon-
strate a sub-Nyquist computational ghost imaging technique using the orthonormal spectrum-encoded speckle
patterns. Our method enables the reconstruction of grayscale images at very low sampling ratios. Addition-
ally, we show that this technique can be combined with compressive sensing to enhance image quality further.
Reconstructed images are analyzed using quality indicators such as mean square error, signal-to-noise ratio,
correlation coefficient, and mean square error of the detected edge. With our method, high-quality images can
be obtained at a sampling ratio significantly lower than conventional methods.

I. INTRODUCTION

Computational ghost imaging (CGI) [1, 2], an ameliorated
scheme on traditional ghost imaging (GI) [3–5], owns the abil-
ity to reconstruct the object via a single-pixel detector. CGI
grants advantages in an expanding range of non-conventional
applications such as wide spectrum imaging [6, 7] and depth
mapping [8, 9]. It also finds application to various fields,
such as temporal imaging [10], X-ray imaging [11], and re-
mote sensing [12]. However, it usually requires the number
of speckle patterns used in CGI to be much greater than the
total number of pixels in the speckle pattern in order for good
quality imaging to be obtained, which is time-consuming and
resource-intensive. Furthermore, it produces limitations such
as only being suitable for static object reconstruction.

The problem has been addressed by a number of methods.
Compressing sensing (CS) is a well-known technique for re-
ducing the required sampling ratio by exploring sparsity prop-
erties [13, 14]. Nevertheless, it is strictly limited by the spar-
sity of the image. Deep learning has also demonstrated its
ability to achieve sub-Nyquist ghost imaging [15–17]. One
limitation is that most of the networks are trained by exper-
imental CGI results, and therefore numerous measurements
have to be done in advance. Also, the training inputs and
the training environment for image reconstruction should be
almost identical to the experiment to make the system effec-
tive. Furthermore, only simple objects can be imaged with
deep learning based ghost imaging techniques, which restricts
its application. The use of CGI with an orthonormal pat-
tern, such as the Hadamard pattern or Fourier basis pattern
can also reduce sampling ratios [18–20]. In particular, Luo
et al. introduced a data post-processing algorithm to improve
the reconstruction process in a GI system with pseudo-thermal
light [21]. The required number of speckle patterns is re-
duced by applying the Gram-Schmidt process to the speckle
patterns and the intensity sequence collected by the bucket
detector. However, such a method is sensitive to noise, and
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the image quality is not comparable with standard CGI when
the sampling ratio is high, due to the information loss dur-
ing the post processing. Gaussian white noise patterns are
typically used for GI. These speckle patterns have a flat spec-
trum over the range of spatial frequencies. Our recent de-
velopment involves customizing the power spectrum distribu-
tion of speckle patterns to realize superresolution and noise-
robustness in imaging system [22, 23]. In contrast to white
noise, these speckle patterns generally have unique spectrum
distributions and non-zero cross-correlations between adja-
cent pixels.

In this work, we present a method on generating orthonor-
mal spectrum-encoded speckle patterns, which can signifi-
cantly reduce the CGI experiment sampling ratio. In addition,
the CS algorithm is used in combination with the speckle pat-
terns to enhance imaging quality further. We also compare the
orthonormal spectrum-encoded pattern GI (OSGI), sequential
Hadamard pattern GI (SHGI), orthonormal white noise pat-
tern GI (OWGI), traditional white noise pattern GI (WGI), and
their corresponding CS-combined methods OSGI-CS, SHGI-
CS, OWGI-CS, and WGI-CS. The results are tested using the
quality indicators such as the mean square error (MSE), signal
to noise ratio(SNR), correlation coefficient (CC), and MSE of
the detected edge [21, 24, 25]. The first three indicators eval-
uate the overall quality of the images, and edge detection is to
find the boundaries of objects within images, which is particu-
larly useful in extracting the feature of the images. Our results
show that OSGI always performs well in the non-CS amelio-
ration CGI system and OSGI-CS further maximizes its qual-
ity, at very low sampling ratios. In a matter of fact, the sam-
pling ratio may be reduced one order lower, while the image
quality is still better as compared to the standard CGI. Addi-
tionally, it suggests an optimal choice of different orthonormal
methods with different sampling ratios when noise is present.

II. ORTHONORMAL SPECTRUM-ENCODED SPECKLE
PATTERNS

Most natural images are apparently different in the spatial
distribution, but share a common feature in the frequency do-
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main, i.e., their spatial frequencies tend to be concentrated on
the low-frequency parts [26, 27]. Therefore, it is natural to
seek speckle patterns that emphasize the low-frequency com-
ponents, especially when the sampling ratio is low. Mean-
while, these patterns are better on an orthogonal basis in the
spatial frequency domain to cover the entire frequency range
efficiently. Here we present a general generation method for
this type of speckle pattern. Firstly, a group of low-frequency
dominated speckle patterns should be generated by filtering
random white noise in the Fourier spectrum. For example, the
initial speckle patterns are generated by applying a ω−1 fil-
ter (or any low pass filter) on the ω0 white noise patterns in
the Fourier domain. Then, the inverse Fourier transformation
upon the filtered spectrum will deliver a group of the low-
frequency dominated speckle patterns with random phase ma-
trices assigned to each pattern. The Gram-Schmidt process
is then performed to orthonormalize the patterns. The ini-
tial patterns are represented by matrices P1, P2, P3, · · · , PN,
and the orthonormal patterns are represented by matrices
P̃1, P̃2, P̃3, · · · , P̃N, all of which contain 64×128 elements. We
define the projection coefficient as cmn =

〈Pm,P̃n〉F

〈P̃n,P̃n〉F
, where 〈 , 〉F

denotes Frobenius inner product operation. The orthonormal
patterns can be generated by

P̃1 = P1,

P̃m = Pm −

m−1∑
n=1

cmnP̃n.
(1)

Then, we re-normalize the histogram of P̃1, P̃2, P̃3, · · · , P̃N to
[0, 255], which we define as P̃′1, P̃

′
2, P̃

′
3, ......, P̃

′
N. According

to the number of orthogonal vector space, we generate 8192
patterns for each kind, which is equal to the number of to-
tal pixel in a single pattern. We thus have a complete set of
orthonormal patterns. After the orthonormalization, the spa-
tial frequency distribution of the speckle patterns tends to shift
from their initial low frequency to high frequency. The later
the speckle patterns in orthonormalization process, the greater
the frequency shift, as shown in Fig. 1. We also perform
the orthonormalization process to the white noise patterns for
OWGI measurements as a comparison. These patterns still
exhibit the white noise characteristic, i.e., each pattern is still
uniformly distributed over the frequency range. Alternatively,
each of the orthonormal spectrum-encoded pattern has its own
spatial frequency distribution. All the distributions of a com-
plete set result in a uniform distribution in the spatial fre-
quency. We note here that, unlike the post-processing method
shown in [21], we directly generate these orthonormal patterns
but with heterogeneous spatial frequency distribution and ap-
ply them to DMD. Therefore, the orthonormalization coeffi-
cients and patterns are made at once. Besides, we don’t have
any intensity losses during the orthonormalization process. In
our scheme, the intensity is measured as Ii = 〈T, P̃′i〉F , where
T represents the spatial transmission coefficient matrix of the
object, P̃′i is the i-th orthonormal pattern. The image is then
retrieved by calculating the correlation pattern Γ(2), a matrix
that maintains the same dimensions and size as the patterns,
between patterns and collected light intensity sequence as

Γ(2) =
1
N

N∑
i=1

IiP̃′i −
1

N2

N∑
i=1

Ii

N∑
i=1

P̃′i , (2)

where N is the number of speckle patterns. The sampling ratio
is then define as β = N/Npixel.

FIG. 1: The orthonormal spectrum-encoded speckle pat-
terns: (a) the 1st pattern, (b) the 1000th pattern, (c)
the last pattern (8192nd); (d), (e), and (f) are normal-
ized spatial frequency distributions of the 1st pattern,
the 1000th pattern, and the 8192nd pattern, respectively.

We investigate the spatial frequency, auto-correlation, and
cross-correlation properties of the orthonormal spectrum-
encoded speckle pattern. As shown in Fig. 1, the frequency
peak moves to the higher end when the pattern number in-
creases. Under orthonormalization, the pattern gradually tran-
sits from low- to high-frequency dominated distribution. This
is apparent since the orthonormalization protocol naturally
involves the spatial frequency domain. Consequently, these
types of speckle patterns keep the low frequency in domina-
tion when β is small. Their corresponding high and broad
cross-correlation gives a great advantage in noise suppression
and signal boost. Later, they can enhance the resolution con-
tinuously as β increases. Indeed, both OSGI and SHGI own
the OWGI’s feature when β approaches 1, as shown in Fig. 2..

A random pixel p(x, y) is chosen and its auto-correlation
and cross-correlation with all other pixels are calculated. The
cross-auto correlation ratio Rca is defined as,

Rca =
Γ

(2)
p(x−1,y) + Γ

(2)
p(x+1,y) + Γ

(2)
p(x,y−1) + Γ

(2)
p(x,y+1)

4Γ
(2)
p(x,y)

. (3)

The pink line in Fig. 2 shows that the cross-auto correlation
ratio is gradually dwindling. The cross-correlation starts from
nearly 1 when β is small. It then gradually decreases to 0 when
β = 1, the same as the white noise speckle pattern. From the
spatial frequency distribution of an arbitrary pattern, we can
precisely predict the change of result during the image retriev-
ing process with the spatial correlation. It is also expected that
the OSGI, SHGI, and OWGI measurements will converge to
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FIG. 2: The ratio of the cross-correlation and auto-
correlation Rca as a function of the sampling ratio
β. Inserted pictures: 2D plotted auto- and cross-
correlation of 5%, 10%, 20%, 30%, 50%, and 100%
total pattern number over full patterns, respectively.

the same results when β approaches 1, as shown in the follow-
ing.

III. SIMULATION RESULTS

FIG. 3: Reconstructed images with sampling ratios from
5% to 50%. The simulation is done with various speckle
patterns (OSGI, SHGI, OWGI, and WGI), and the cor-
responding results processed with compressive sensing al-
gorithms. The total pixel in the image is 64 × 128.

To test the feasibility of the OSGI method, we firstly per-
form simulation with part of a sample image ‘girl’ as the ob-
ject with total pixel of 64× 128. The simulation is done in the
ideal condition without any noise. As shown in Fig. 3, OSGI
gives image result when the sampling ratio is only 5%, and a
clear image at 20%. On the other hand, we see SHGI can give
clear results around 20%, and become comparable with OSGI

FIG. 4: Evaluation on simulation results based on the OSGI,
SHGI, OWGI, WGI, OSGI-CS, SHGI-CS, OWGI-CS, and
WGI-CS methods. Image qualities via different sampling ra-
tio are given by (a) MSE, (b) SNR, (c) CC, and (d) Edge MSE.

at 50%. OWGI only give a blurred image at 50% with noisy
background. Traditional WGI cannot retrieve the image even
at the sampling ratio of 50%. A direct comparison between
OSGI and OWGI suggest that the orthonormal process in the
spatial frequency domain is essential for this method. By im-
plementing the CS algorithm, we notice that the image quality
is in general improved for all the methods. The image quality
of SHGI-CS is also slightly improved as compared to SHGI.
We also notice that the CS technique will improve the imaging
quality of WGI and OWGI by giving a blurred image at 50%,
which is not at all comparable to OSGI and OSGI-CS. The
simulation results thus suggest that OSGI and OSGI-CS have
the best performances in the sub-Nyquist sampling region.

To better judge the performance of various methods, we
utilize four evaluating indicators of image quality, i.e., MSE,
SNR, CC, and edge MSE, which are defined as

MSE =
1

Npixel

Npixel∑
i=1

(Ri −Gi)2, (4)

SNR = 10 log10(
∑

i Ri∑
i |Ri −Gi|

), (5)

CC =
Cov(R,G)

√
Var(R)Var(G)

, (6)

and

MSEedge =
1

Nedge

Nedge∑
j=1

(R′j −G′j)
2. (7)
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Here R represents the imaging result, G represents the
ground truth. Var( ) is the variance of its arguments, Cov( )
is the covariance of its arguments. R′j is the extracted edge of
the imaging result, and G′j is the extracted edge of the ground
truth. Here, we use the Sobel edge detection, a sophisticated
built-in function in MatLab [28, 29].

As shown in Fig. 4, OSGI-CS and OSGI are better than
other methods while β is below 40%. While the quality of
OSGI increases with the increase of β, the image quality of
OSGI-CS has a peak around β = 30% then starts to decrease.
This is mainly due to the saturation of the image quality at
such a low sampling ratio. The imaging result will then be
overfitted by CS. We note here that SHGI performs better than
WGI and OWGI, but worse than OSGI especially at low sam-
pling ratio. When the sampling ratio approaches 1, these two
methods are almost identical since they are both orthonormal
patterns. SHGI-CS outperforms other methods as β reaches
50%, but it also has an overfitting problem. It is obvious
that OWGI and WGI perform poorly with all sampling ra-
tios. In the ideal condition, the orthonormalization process
on the low-frequency dominated speckle patterns ultimately
maximizes the information encoding-decoding efficiency, ei-
ther in low sampling ratio with OSGI, OSGI-CS or in high
sampling ratio with SHGI, SHGI-CS.

IV. EXPERIMENTAL RESULTS

FIG. 5: Schematic of the setup. The digital micromirror
device (DMD) is illuminated by a CW laser. orthonormal
patterns are loaded on the DMD then imaged onto the ob-
ject plane. Correlation measurement is made between the
patterns and the intensities recorded by the bucket detector.

We then experimentally test our scheme. The experimen-
tal setup is shown in Fig. 5. This is a typical CGI setup: a
CW laser illuminates the digital micromirror device (DMD),
where the speckle patterns with designed distributions are
loaded. The pattern generated by the DMD is then projected
onto the object plane. A bucket detector (simulated with a
CMOS camera MQ022CG-CM by adding all the pixel values

of the active area) is put right after the object to record the
transmitted light intensity. The DMD contains micro-mirrors,
each of which is 16µm × 16µm in size. Each speckle pattern
has Npixel ≡ Nx × Ny independent pixels in the experiment,
and each independent pixel consists of 10× 10 micro-mirrors.
In the experiment, we measure the ‘cameraman’ (partial) with

FIG. 6: Experimental results of ‘Cameraman’ (partial) with
sampling ratios from 5% to 50%. The measurement is done
with various speckle patterns (OSGI, SHGI, OWGI, and WGI)
and the corresponding results processed with compressive
sensing algorithms. The total pixel in the image is 64 × 128.

the presence of environmental noise and the thermal noise of
the detector. The noise level is measured to be ∼ 2% by block-
ing the laser light. The exposure time of the CMOS is set to
be 30 µs. Npixel = 64 × 128 is used in the experiment. The
main results are shown in Fig. 6. Again, OSGI already re-
trieves an image when β is only 5% while other methods fail.
OSGI-CS improves OSGI results further by suppressing the
environmental noise. SHGI and SHGI-CS can present clear
images only when β reaches to 20%. It can be seen from
Fig. 6 that the OSGI and OSGI-CS results have better reso-
lution as compared to SHGI, and SHGI-CS. However, SHGI
and SHGI-CS outperform in noise-robustness, i.e., smoother
background. This is particularly because of the binary pat-
tern feature, which contributes a large fluctuation correlation
against noise interference in the second order measurement.
We also note here that, since the SHGI uses differential pat-
terns in real measurement [30], the number of patterns used
for the measurement is actually doubled. With the presence
of noise, doubled pattern numbers can also improve image
quality. On the other hand, WGI and OWGI both give cog-
nitive but very low visibility images at β ∼ 50%, and the im-
age obtained with OWGI is clearer than WGI. OWGI-CS and
WGI-CS improve the results to a visible level at β ∼ 50%,
which is comparable to OSGI, but much worse than OSGI-
CS, SHGI, and SHGI-CS. In a word, we can select OSGI-CS
and SHGI-CS based on β to achieve the recognisable and even
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clear images in sub-Nyquist sampling region.

FIG. 7: Evaluation on experimental results based on
the OSGI, SHGI, OWGI, WGI, OSGI-CS, SHGI-
CS, OWGI-CS, and WGI-CS methods. Image
qualities via different sampling ratio are given by
(a) MSE, (b) SNR, (c) CC, and (d) Edge MSE.

The qualities of the reconstructed images by different meth-
ods are shown in Fig. 7. As suggested by the indicator val-
ues, the experimental results with all methods are more or
less affected by the experimental noise. The OSGI and OSGI-
CS results are still much better in the low sampling ratio re-
gion than other methods. In particular, OSGI and OSGI-CS
are better at constructing recognizable images than SHGI and
SHGI-CS at low sampling ratios (β ≤ 30%). This is mainly
because Hadamard patterns have larger individual speckles
(larger than 1×1) at low β, the orthonormal spectrum-encoded
speckle patterns maintain the 1 × 1 individual speckle resolu-
tion. When β increases, SHGI and SHGI-CS are evaluated
better than OSGI and OSGI-CS because of the extremely low
noise fluctuation, as well as the doubled speckle pattern num-
ber used in the measurements. Different from the ideal case,
the evaluators show that OSGI and OWGI-CS work less bet-
ter at high sampling ratios. This is mainly due to the devia-
tion from orthogonality induced by noise accumulation [21].
Some of the indicators suggest SHGI-CS gives the best result

when β ∼ 50%, similar as in the simulation case. However,
here OSGI-CS has the best result at β ∼ 20%. This is mainly
due to the competition between sampling ratio and the affect
of the noises. The optimal sampling ratio will move to the
higher end when the noise decreases. We note here that the
quality of the SHGI-CS result at β = 50% and OSGI-CS re-
sult at β = 20% cannot be surpassed at nearly full sampling
ratio using other conventional methods with uniformly spatial
frequency distributed speckle patterns. It is also interesting
to notice that the evaluators MSE and SNR, as a perception
based model, are more consistent with human vision judge-
ment of Fig. 6, i.e., OSGI-CS has advantage at sampling ratio
below 30%.

V. CONCLUSION AND DISCUSSION

To conclude, we developed a generally applicable orthonor-
mal spectrum-encoded speckle pattern based on the CGI sys-
tem to improve image reconstruction for low sampling ra-
tios. Since most of the natural images are concentrated in the
low spatial frequencies, the orthonormal spectrum-encoded
speckle pattern is favorable in the low sampling ratio. The
most significant advantage of this scheme is the continuous
change of cross-correlation and the distribution in the fre-
quency domain. This effectively reduces the sampling ratio
while maintaining high image quality. We give a general way
to generate this type of speckle pattern. Image quality can
be improved further using the CS algorithm. It also suggests
an optimal sampling ratio for the measurement when noise is
present.

In addition, this method is quite analogous to the orthog-
onal wavelets, which also have the relationship between the
spatial frequency distribution and orthogonality (orthogonal
wavelets scan the frequency domain with finite bandwidth).
Consequently, it can also guide ultrafast spectroscopy experi-
ments by designing the pulse shape to acquire the spectra with
the highest efficiency.
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