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We theoretically investigate PT symmetry, induced mechanical lasing and force sensing in an
optically levitated nanoparticle with coupled oscillation modes. The coupling in the levitated system
is created by the modulation of an asymmetric optical potential in the plane transverse to the beam
trapping the nanoparticle. We show that such a coupling can lead to PT-symmetric mechanical
behavior for experimentally realistic parameters. Further, by examining the phonon dynamics and
the second-order coherence of the nanoparticle modes, we determine that induced mechanical lasing
is also possible. Finally, we demonstrate that tunable ultra-sensitive force sensing (∼ zN/

√
Hz) can

be engineered in the system. Our studies represent an advance in the fields of coherent manipulation
of coupled degrees of freedom of levitated mechanical oscillators and their application for sensing.

I. Introduction

Coupled optomechanical systems have garnered a lot
of attention in the recent years owing to their potential
applications in the field of sensing [1–4], quantum infor-
mation processing [5–7], and entanglement [8, 9]. In con-
nection with these applications, a variety of phenomena
such as PT (Parity-Time) symmetry [11, 48], quantum
synchronization[12, 13], photon blockade [14], quantum
state transfer [15, 16], etc have been studied in the cou-
pled systems. Most of these proposals involved coupled
cavities or coupled clamped nanomechanical resonators,
which may be less efficient in obtaining high fidelity en-
tanglement, quantum state transfer, ultra-sensitive sens-
ing, etc. owing to their high decoherence rates [17].
In contrast, realizing a coupled optomechanical config-

uration using an optically levitated system can be advan-
tageous in overcoming this difficulty as these well-isolated
systems are known to have very low decoherence rates
[18, 19]. Indeed, because they present such advantages,
optically levitated systems have been used in applications
such as force sensing [20, 21], magnetic sensing [22], and
rotational sensing [23]. Apart from these uses, optically
levitated systems have also been used to study squeezing
[24], bistability [25], superposition states [26, 27], phonon
lasing [28], etc. However, all these studies are mainly fo-
cused on using a single mechanical mode of the optically
levitated system.
Recently, coherent dynamics of a two mode coupled

levitated system have been studied by Frimmer et.al.
[29]. In their work, they have coupled the two transverse
modes of an optically levitated nanoparticle by modulat-
ing an asymmetric trap potential in the transverse plane
of the system. By exploiting this coupling, they have
implemented cooling of the transverse modes in this sys-
tem. However, to the best of our knowledge, apart from
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the above mentioned studies on coherent dynamics, not
much has been explored about this coupled nanoparticle
system. Hence, it is timely and important to explore dif-
ferent quantum phenomena arising in this coupled mode
system. Specifically, realization of a few phenomena such
as PT symmetry, simultaneous lasing and sensing, in this
system can be advantageous because these can be further
used to study the resulting phenomena of PT-symmetric
phonon lasing [30], squeezing enhancement [31], gener-
ation of non-classical state [32], efficient quantum state
transfer [33], quantum synchronization [34], and ultra-
sensitive sensing [35], which has potential application to-
wards imaging [36] and quantum information process-
ing [37]. Also, due to low decoherence rate, levitated
coupled-mode systems can show higher efficiency in re-
alizing the above phenomena than the conventional op-
tomechanical systems. Apart from this, study of this
simple coupled mode system can be a basis for future
exploration of the aforementioned phenomena in more
complicated systems such as two or more particle cou-
pled levitated system, wherein multimode coupling can
arise [38].

Consequently, in this work we propose to use the
coupled-mode levitated nanoparticle as a tool box for
studying the aforementioned phenomena, see Fig. 1. The
coupling is introduced by manipulating the trap potential
in the plane transverse to the trapping beam, which prop-
agates along the z axis, as proposed by Frimmer et. al.
[29]. The modulation of the asymmetric potential results
in the coupling of the two transverse oscillation modes x
and y. By suitably amplifying and cooling the mechan-
ical motion in the two modes, respectively, we find that
the system can be driven into the PT-symmetric regime.
Numerical studies of phonon dynamics and second-order
coherence imply that the system remains in a thermal
state in this regime. However, we show that when one
of the modes is a lasing mode, then the coupling drives
the other modes also towards lasing. We also show that
when a nonlinearly damped mode is coupled to a gain
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mode, both the modes achieve lasing. Finally, we ex-
ploit the mode-mode coupling to achieve highly tunable
ultra-sensitive force sensing. We find that in the strong
coupling regime, weak forces can be measured with high
sensitivity at different frequencies tunably using this sys-
tem.

In our simulations we use realistic experimental param-
eters and take into account relevant sources of noise and
dissipation. Our work on analyzing various implications
of modal coupling in an optically levitated nanoparti-
cle opens up new possibilities for coherent manipulation
and sensing using these highly isolated systems. In the
remainder of this paper, we introduce our theoretical for-
mulation in Section II, present the results and discussion
in Section III, and our conclusions in Section IV.

II. Theoretical Formulation

A. Model

We consider a single dielectric nanoparticle of mass
m optically trapped in the potential created by a fo-
cused Gaussian beam under high vacuum, as shown in
Fig. 1. The created optical potential is harmonic to a
good approximation around the focus of the Gaussian
beam. Hence the trapped nanoparticle can be consid-
ered as a harmonic oscillator, whose three modes of os-
cillation are decoupled for small amplitudes, along the
three principal axes x, y and z, respectively [39].

In this paper, we concentrate on the particle dynamics
in the x-y plane only, while freezing the particle motion
along z direction using feedback cooling. Further, the
coupling of the motion along x and y direction is achieved
by modulating the polarization of the trap laser beam
using an electro-optic modulator [29]. This modulation
varies the asymmetric potential in the x-y plane, thereby
coupling the modes. In order to study the dynamics of
the coupled-mode system, we write the master equation
for this system [28, 40] as

ρ̇m = −i
∑

j=x,y

(

ωj[a
†
jaj , ρm] +

(

γgj − γaj
2

)

[Qj , {Pj , ρm}]
)

−
∑

j=x,y

(

Dtj

2
D[Qj ]ρm − Dj

2
D[Pj ]ρm

)

−
∑

j=x,y

(

iγcj [Q
3
j , {Pj, ρm}]− ΓcjD[Q3

j ]ρm

)

+ i
κδ

m
√
ωxωy

cos(ωrt)[QxQy, ρm], (1)

where, ρm is the density matrix for the two-dimensional
coupled system and the dimensionless position and mo-
mentum operators for the nanoparticle are denoted as
Qj and Pj , respectively. Here, j ∈ {x, y} and symbolizes
the two transverse modes x and y, respectively. Further,

FIG. 1. A schematic diagram for the levitated nanoparticle
system considered in this work. A lens Lf is used to trap
the nanoparticle at the focus of the trap laser and the infor-
mation about particle position is collected by the lens Lc to
be processed. The figure labeled as (a) in the inset shows an
asymmetric potential created in the transverse x− y plane at
the focus of the trap laser.

the commutators and anti-commutators are represented
by square [ ] and curly brackets { }, respectively. The
mechanical modes are also represented by phonon cre-

ation (a†j) and annihilation (aj) operators that obey the

bosonic commutation relation [a, a†] = 1. The Lindblad
superoperator D[O] is defined as

D[O] = O†Oρ+ ρO†O − 2O†ρO. (2)

The first term on the right hand side of Eq. (1) corre-
sponds to the harmonic motion of the system with fre-
quencies ωx and ωy in the directions x and y, respectively.
The second term represents damping (anti-damping) due
to the surrounding gas (linear feedback amplification) of
the system with a rate γgj(γaj) [28]. However, in our
case, linear amplification of only one of the modes is
of interest, namely the y mode of the coupled system.
The third term depicts the net momentum diffusion with
rate Dtj(= Atj +Dpj + 2Γaj), due to photon scattering
(Atj), gas scattering (Dpj) and linear feedback amplifi-
cation backaction (Γaj). Further, the backaction rates
Γaj are small in comparision to the rates Atj and Dpj

and hence can be neglected [28]. The fourth terms repre-
sents the position diffusion (due to gas scattering) with
rate Dj . The fifth and sixth term appear due to non-
linear feedback and its concomitant back-action effect,
respectively. The rates of feedback cooling and cooling
back-action are given by γcj and Γcj, respectively. The
last term in Eq. (1) arises due to the coupling of the
two transverse modes x and y modes. The coupling is
introduced by periodically rotating the asymmetric po-
tential around z-axis by a small angle δ at the frequency
ωr(≈ ωy −ωx). Further, κ ≃ m(ω2

y −ω2
x)/2 denotes the

change in trap stiffness due to the asymmetry in the trap-
ping potential. Throughout this paper, we will analyze
the effect of this coupling on the dynamics of the system,
and its relation to the realization of various interesting
and useful phenomena.
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B. Quantum Langevin equations

In order to study the effect of coupling on the position
dynamics of both the modes of the coupled system, we
use the full quantum Langevin equations of motion in-
cluding all quantum fluctuations for the system, derived
from Eq. (1). The complete equations of motion for the
coupled system are given as

Q̇x = ωxPx, (3)

Ṗx = −ωxQx − 2(γgx + 3γcxQ
2
x)Px

+
κδ

m
√
ωxωy

cos(ωrt)Qy,

+

√

2KBTγgx
~ωx

ξT +
√

DtxξFa + 12Q2
x

√

Γ2
cx

γcx
ξFc,

(4)

Q̇y = ωyPy, (5)

Ṗy = −ωyQy − 2(γgy − γay + 3γcyQ
2
y)Py

+
κδ

m
√
ωxωy

cos(ωrt)Qx,

+

√

2KBTγgy
~ωy

ξT +
√

DtyξFa + 12Q2
y

√

Γ2
cy

γcy
ξFc, (6)

where the correlations corresponding to the zero-mean
noise from environment (ξT ), feedback amplification
(ξFa) and cooling (ξFc) are represented as 〈ξT (t)ξT (t′)〉 =
δ(t− t′), 〈ξFa(t)ξFa(t

′)〉 = δ(t− t′), and 〈ξFc(t)ξFc(t
′)〉 =

δ(t− t′), respectively.

Now, in order to further simplify the above equations
of motion, we use the following transformations

Qx = Q0Re
{

ax(t) exp
[

i
(

ω0 −
ωr

2

)

t
]}

, (7)

Qy = Q0Re
{

ay(t) exp
[

i
(

ω0 +
ωr

2

)

t
]}

, (8)

whereQ0 is the initial amplitude of the oscillation modes,

ω0 =
√

ω2
x + ω2

y/2 is the carrier frequency and the com-

plex amplitudes for the oscillation modes along x-mode
and y-mode are represented as ax and ay, respectively.

In our present work we are interested in studying the
dynamics of mean position for both the modes in the
classical limit [41]. Hence, we neglect the quantum fluc-
tuations and use the slowly varying amplitude approxi-
mation and the rotating wave approximation to obtain
the mean-value equations for the oscillation amplitudes
of the coupled system as

〈ȧx〉 = − i

2
(∆− iΓx)〈ax〉+ iβx〈ay〉, (9)

〈ȧy〉 = iβy〈ax〉+
i

2
(∆ + iΓy)〈ay〉. (10)

where ∆ = ω1 − ωr, ω1 = (ω2
y − ω2

x)/2ω0, Γx =

2(γgx + 6γcx〈ax〉2), Γy = 2(γgy − γay + 6γcy〈ay〉2), βx =

ω3

√

ωx/ωy, βy = ω3

√

ωy/ωx, and ω3 = [δ(ω2
y−ω2

x)]/2ω0.
A detailed description of the analysis for deriving the
above equation of motion is provided in appendix (VI).
Further, we can study the dynamics of phonon popu-
lation in both modes via |ax(t)|2 and |ay(t)|2. In the
classical limit, |ax(t)|2 and |ay(t)|2 give the description
of phonon dynamics of the system. Study of phonon
dynamics is very important as a saturation-like behav-
ior of the phonon number can indicate lasing action in
the system [28]. However, such behavior in the phonon
dynamics is necessary but not sufficient for validating
lasing action. Therefore, we also study the second-order
coherence for the coupled-mode system in the following
section.

C. Second order coherence

Study of the second-order coherence is useful in char-
acterizing various quantum states of a system. For exam-
ple, a system in a thermal state has a Lorentzian g(2)(τ)
with 1 6 g(2)(τ) 6 2, and that in a coherent state has
a constant g(2)(τ) = 1 indicating the presence of las-
ing [42]. Finally, 0 6 g(2)(τ) < 1 represents a system
in a non-classical state [43]. Hence, to characterize the
coupled-mode levitated system, we also study the second-
order correlation function for it. The second-order corre-
lation function can be expressed in terms of the creation
and annihilation operators as,

g
(2)
j (τ) =

〈â†j(t)â
†
j(t+ τ)âj(t+ τ)âj(t)〉
〈a†j(t)âj(t)〉2

, (11)

where â†j = (Qj − iPj)/2, and âj = (Qj + iPj), with

j ∈ {x, y}. Further, 〈〉 indicates an ensemble average
and τ represents time delay.

III. Results and Discussion

A. PT symmetry

In this subsection, we theoretically realize PT symme-
try in a coupled-mode levitated nanoparticle. With this
aim in mind, we first rewrite the dynamical equations
Eqs. (9)-(10) into the following matrix form:

i





〈ȧx〉

〈ȧy〉



 = H





〈ax〉

〈ay〉



 (12)
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FIG. 2. PT symmetry in the coupled-mode levitated nanopar-
ticle system. Panels (a) and (b) show the variation of the
imaginary and real parts of the eigenvalues λ+(blue dashed),
and λ−(red solid) [see Eqs. (14)] with coupling strength β
for ∆ = 0 Hz, respectively. Panel (c) shows the variation
for the imaginary part of eigenvalues for ∆ = 1.0 Hz. Pa-
rameters are ωx = 2π × 115 KHz, ωy = 2π × 141 KHz,
γgx = γgy = γ = 2π × 10 mHz, γay = 4π × 10 mHz, and
γcx = γcy = 0.0 Hz. Experimental values of the parameters
are taken from Ref. [39].

where H is the non-Hermitian Hamiltonian for the cou-
pled mode system and is described as

H =





1
2 (∆− iΓx) −βx

−βy − 1
2 (∆ + iΓy)



 (13)

Next, we study the behavior of the eigenvalues of the
Hamiltonian H which are given by

λ± =
−(C2 − C1)±

√

(C2 − C1)2 + 4(β2 + C1C2)

2
(14)

where C1 = 1
2 (∆ − iΓx), C2 = 1

2 (∆ + iΓy) and β =
√

βxβy. We first consider the resonant case where ∆ = 0,
with x-mode acting as a linearly damped oscillator and
y-mode as an oscillator with linear gain. The variation
of the eigenvalues with coupling strength for this case is
presented in Fig 2. It can be seen from Fig 2(a)- 2(b)
that, for the parametric regime where β > γ/2 with
γgx = γgy = γ, and γay = 2γ, the imaginary part of both
the eigenvalues are zero, while the real parts are non-
zero depicting a PT-symmetric behavior [44]. Further,
for the non resonant case ∆ 6= 0, the imaginary part of
the eigenvalue is non-zero as shown in Fig 2(c) depicting
the system to be in broken-PT-symmetric regime. This is
due to the fact that, in the non-resonant case, the energy
transfer between the x -mode and y-mode is unbalanced
[29]. Next, in order to have a better understanding of
this PT-symmetric behavior, we study the dynamics of
oscillator x and ymodes using Eqs. (7)-(10). The solution
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FIG. 3. The evolution of oscillation amplitudes for a coupled-
mode levitated nanoparticle. Panels (a)-(c) show the dynam-
ics of the x-mode and panels (d)-(e) show the dynamics for
the y-mode, respectively. Parameters for panels (a) and (d)
are δ = 0, for panels (b) and (e) are δ = 10−4 and ∆ = 0
Hz, and for panels (c) and (f) are δ = 10−4 and ∆ = 1 Hz,
respectively. The remaining parameters are ωx = 2π × 115
KHz, ωy = 2π × 141 KHz, γgx = γgy = γ = 2π × 10 mHz,
γay = 4π × 10 mHz, γcx = γcy = 0.0 Hz, Q0 =

√
4× 105, and

T = 1K. Experimental values of the parameters are taken
from Ref. [39].

for the complex amplitude for both the modes is given as

ax(t) =
a0
2Γs

e−
(Γx+Γy+iΓs)t

4 (Γs

(

e
iΓst

2 + 1
)

+

(iΓx − iΓy − 2∆− 4ω3)
(

e
iΓst

2 + 1
)

) (15)

ay(t) =
a0
2Γs

e−
(Γx+Γy+iΓs)t

4 (Γs

(

e
iΓst

2 + 1
)

+

(−iΓx + iΓy + 2∆− 4ω3)
(

e
iΓst

2 + 1
)

), (16)

where, Γs =
√

(2∆− i(Γx − Γy))
2
+ (4ω3)2 and a0 is the

initial amplitude for the modes. At first, we probe the
dynamics of the oscillator modes in the uncoupled state
considering equal gain and loss values. The analytical
solution for this case (γgx = γgy = γ, and γay = 2γ) , for
the x and y modes are ax(t) = a0e

−γt and ay(t) = a0e
γt,

respectively. It is evident from these solution that, in
the uncoupled state the amplitude of oscillation for the
x-mode decreases depicting a damped oscillator while for
the y-mode it increases representing an oscillator with
gain, and can be seen in Fig 3(a) and 3(d), which depict
the behavior of oscillator displacements for the x and y

mode, respectively.

Next, to observe PT symmetry in the coupled system,
we now couple the x and y modes having equal gain and
loss values, which can be arranged experimentally. We
first consider the resonant case with ∆ = 0. In this case,
the solution of the complex amplitude for both the modes
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is given as

ax(t) =
a0e

− it
√

α

2

4
√
α

(
(

2iγ + 2
√
α− 4ω3

)

eit
√
α+

(

−2iγ + 2
√
α+ 4ω3

)

) (17)

ay(t) =
a0e

− it
√

α

2

4
√
α

(
(

−2iγ + 2
√
α− 4ω3

)

eit
√
α+

(

2iγ + 2
√
α+ 4ω3

)

), (18)

where α = 4ω2
3 −γ2. It is apparent from above equations

Eqs. (17)-(18) that both the modes shows sustained os-
cillation only when α > 0 else the oscillation increases
exponentially. The condition α > 0 is equivalent to the
condition β > γ/2 which is discussed above and repre-
sents the condition for observing PT symmetry in the
coupled system. Further, this parameter regime ensures
that the Hamiltonian of the system has real eigenvalues
[44]. Under these conditions, as expected, the coupled
system shows PT-symmetric behavior resulting in a pe-
riodic (Rabi) oscillation of mean position for both the
oscillator modes with constant amplitude as depicted in
Fig 3(b) and Fig 3(e). However, when we consider the
non-resonant case with ∆ 6= 0, we see from Fig 3(c) and
Fig 3(f) that the oscillation in both the modes increases
exponentially even in the parametric regime of β > γ/2.
As explained earlier, this is due to unbalanced energy
transfer between the two transverse modes. Hence, in
order to observe PT symmetry in this coupled system, it
is necessary to work in the resonant regime with ∆ = 0.

Recently, similar results on PT-symmetric dynamics
in clamped optomechanical system have been presented
by Xu et.al [45]. Comparing with the work by Xu et.al,
our result do have mathematical similarity between the
equation of motion in the linear regime and hence similar
PT-symmetric dynamics, however there are several im-
portant physical differences between our work and theirs.
First, we present a model based on cavity-less levitated
optomechanics, which is fundamentally different from the
model by Xu et.al which involves a passive cavity. Sec-
ond, the coupling in our work is initiated between two
mechanical modes, while in the work by Xu et.al, it is
between an optical mode and a mechanical mode. Al-
though all modes involved in both works are bosonic,
there is a large difference between the parameters (such
as mode frequencies, phonon and photon numbers) and
physical behavior (e.g. massive versus massless, localized
versus traveling at the speed of light, damping mecha-
nisms). Third, we not only study PT symmetry in the
linear regime but also use this phenomena to look for the
possibility of achieving lasing action in the coupled sys-
tem, which makes our analysis different from the work of
Xu et.al.

Moreover, we also demonstrate PT symmetry in the
nonlinear regime. Nonlinear PT symmetry is an interest-
ing phenomena in which a system shows stable dynamics
even in the regime where PT condition is not satisfied
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FIG. 4. Position dynamics of the x-mode panel (a) and the y-
mode panel (b) in the nonlinear PT-symmetric regime. The
parameters are ωx = 2π × 115 KHz, ωy = 2π × 141 KHz,
γgx = γgy = γ = 2π × 10 mHz, γay = 4π × 10 mHz, γcx =
γcy = 10−5 Hz, ∆ = 0 Hz, δ = 10−3, Q0 =

√
4× 105, and

T = 1K.

and has been used to study bistability and bifurcations
in nonlinear coupled systems [46]. In addition to this,
we also look for the possible application towards utilizing
the coupled levitated system in non-linear PT-symmetric
regime to achieve phonon lasing. These additional anal-
yses on non-linear PT symmetry and its applicability to
phonon lasing distinguishes our work from that of Xu et
al. [45].

In order to investigate PT symmetry in the nonlinear
regime, we consider the full dynamical equation for the
amplitudes ax and ay as in Eqs. (9)-(10) which includes
the nonlinear feedback terms corresponding to γcx and
γcy. In the parameter regime γgx = γgy = γ, γay = 2γ
and γcx = γcy = γn, the equation of motions for both the
modes is then expressed as

〈ȧx〉 = − i

2
∆〈ax〉 −

1

2
[γ + 3γn〈a2x〉]〈ax〉+ iβx〈ay〉, (19)

〈ȧy〉 = iβy〈ax〉+
i

2
∆〈ay〉 −

1

2
[−γ + 3γn〈a2y〉]〈ay〉. (20)

The above equation closely resembles the equation for
coupled nonlinear Schrödinger dimer [46]. We now nu-
merically solve the above equation of motion to study
the position dynamics of both the modes, the result of
which is shown in Fig 4. It is observed that the posi-
tion dynamics of both modes attains a steady value in
the long interaction time limit. The values for the ampli-
tude of oscillation in this limit can be obtained by solving
the Eqs. (19)-(20) in the steady state i.e. by considering
〈ȧx〉 = 〈ȧy〉 = 0. In steady state, for ∆ = 0 and γ 6= 0,
the dimer equations Eqs. (19)-(20) have two solutions,
notably symmetric (ax = ay = a) and antisymmetric
(ax = −ay = b). These two stationary solutions are
given as

a = [
√

4β2 − γ2/(3γn)]
1/2ei(θ1+

π
2 ), (21)

b = [
√

4β2 − γ2/(3γn)]
1/2eiθ2 . (22)
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FIG. 5. The time evolution of the phonon population for
a coupled-mode levitated nanoparticle. Panels (a) and (b)
show the phonon dynamics of the x-mode in the linear PT-
symmetric regime for δ = 0 and δ = 10−4, respectively with
∆ = 0 Hz. Panels (d) and (e) show the dynamics of the y
mode also in the linear PT-symmetric regime for δ = 0 and
δ = 10−4, respectively for ∆ = 0 Hz. Panels (c) and (f) show
phonon dynamics for the x-mode and y-mode, resectively, in
the nonlinear PT-symmetric regime with δ = 10−4, γcx =
γcy = 10−5 Hz, and ∆ = 0 Hz. Here N0 = 2 × 105, while
other parameters are the same as in Fig 3.

where sin(θ2 − θ1) = −γ/(2β) [46]. From above analy-
sis, it is evident that the system shows sustained oscilla-
tion in the long interaction time limit and hence can be
considered to be in nonlinear PT-symmetric regime [46]
represented by ∆ = 0 and β > γ/2. A more detailed
analysis on the dynamics of the dimer equation can be
found in Ref. [47].
Moreover, when the system is sufficiently cooled down,

then the noise terms in Eqs. (3)-(6) plays an important
part and should be taken into account [48]. Following our
theoretical demonstration of PT symmetry in both lin-
ear and nonlinear regime in this levitated system, which
can be realized experimentally and be utilized to fur-
ther explore phenomena such as PT-symmetric phonon
laser [30], squeezing enhancement [31], generation of non-
classical states [32], efficient entanglement [49] and for
studying nonlinear dynamics in coupled many-body sys-
tem [50].
In particular, we are interested in the possibility of

realizing a PT-symmetric phonon laser in this system.
Hence, we now investigate if the sustained oscillation
showed by the system in the linear and nonlinear PT-
symmetric regimes can be linked to lasing-like behavior.
For this, we first study the phonon dynamics as well as
the second-order coherence for the coupled-mode system
in the linear PT-symmetric regime. In the classical limit,
the phonon dynamics can be well represented by |ax(t)|2
for x-mode and |ay(t)|2 for y-mode, respectively. In the
uncoupled state, with equal gain and loss value, the evo-
lution of phonon population in both x and y mode is

represented by the form Nx(t) = |ax(t)|2 = N0e
−2γt and

Ny(t) = |ay(t)|2 = N0e
2γt, respectively. It is clear from

these analytical expressions that, in the absence of cou-
pling, the phonon population for the x-mode decays ex-
ponentially while it rises for the y-mode and is shown in
Fig. 5(a) and Fig. 5(d), respectively. This is simply due
to the fact that in the uncoupled state, the x-mode acts
as a damped oscillator while y-mode acts as an amplified
oscillator.

Further, when both the modes are coupled, the an-
alytical solution for the phonon population in the two
transverse modes is given as

Nx(t) =
N0

2α
(8ω2

3 − (γ2 − iγ
√
α)eit

√
α−

(γ2 + iγ
√
α)e−it

√
α) (23)

Ny(t) =
N0

2α
(8ω2

3 − (γ2 + iγ
√
α)eit

√
α−

(γ2 − iγ
√
α)e−it

√
α), (24)

where, N0 = |a0|2 is the initial phonon number. It is
evident from above Eqs. (23) and (24) that for α > 0
(PT condition), the phonon dynamics for both the modes
shows oscillatory behavior also can been seen in Fig. 5(b)
and Fig. 5(e). This sustained oscillation in the phonon
dynamics is due to the fact that the mean phonon num-
ber N is proportional to the square of mean position Q
(〈N〉 ∝ 〈Q2〉). Now, in the PT-symmetric regime, the
position dynamics of both the modes shows sustained
oscillation. Hence, in this regime, the phonon number
dynamics for both the modes also have sustained oscil-
lation. From the above study, it is apparent that the
PT-symmetric system does not show a saturation-like be-
havior in the phonon dynamics [28], which is one of the
criteria for validating lasing action. Hence, the self sus-
tained oscillation of the PT-symmetric system in linear
regime cannot be linked to lasing-like phenomena.

In order to further verify our conclusion, we also study
the second-order coherence for the PT-symmetric system
in the linear regime. In this regard, we solve Eqs. (7)-
(10) using the numerical method in Ref. [51, 52]. In the
numerical evaluation process, at each time step, we find
the position (Qj) and momentum (Pj) values and then
add the noise term as in Eqs. (3)-(6) to the momentum
(Pj) values. Next, from the modified Qj and Pj , we find
the modified complex amplitudes ax and ay. We then
use the new ax and ay as the initial condition and solve
the Eqs. (9)-(10) for the next time step and follow the
same procedure to find the full solution for ax and ay in
presence of noise. Later, we use these complex amplitude
values to find the second order coherence as in Eq. (11),
the result of which is shown in Fig. 6. It is evident from

Fig. 6(a) and Fig. 6(c) that g
(2)
x (τ) and g

(2)
y (τ) for both

the modes show a Lorentzian-type feature indicating that
both modes are in the thermal state [53].

Next, we proceed to study the phonon dynamics and
the second order coherence for the coupled system in the
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FIG. 6. Variation of second-order coherence with scaled
time delay for the PT-symmetric system. Panels (a) and

(b) show g
(2)
x (τ ) for the x-mode in the linear and nonlin-

ear PT-symmetric regime, respectively. Panels (c) and (d)

show g
(2)
y (τ ) for the y-mode in the linear and nonlinear PT-

symmetric regime, respectively. Corresponding parameters
for each regime are the same as in Fig 4.

nonlinear PT-symmetric regime. In this regime, the sys-
tem have a steady value of population in both modes in
the long interaction time limit as shown in Fig. 5(c)-5(f),
and the value of which can be evaluated either by |a|2
or by |b|2 from Eqs. (21)-(22). However, though the sys-
tem have stable phonon population, the test of second-
order coherence as depicted in Fig. 6(b) and Fig. 6(d)
still shows both modes to be in thermal state.

Hence, from above studies of phonon dynamics as well
as the second-order coherence, it appears that lasing-like
phenomena in the system remain inaccessible, when the
system is either in linear or in nonlinear PT-symmetric
regime. However it may be possible to attain simultane-
ous lasing action in such a gain-loss system by working
in a nonlinear regime considering the value of gain to
be very much higher than that of loss [54, 55]. Pres-
ence of such high gain along with nonlinearity in a mode
drives the corresponding mode towards lasing [28]. Co-
herent coupling of any non-lasing mode to this lasing
mode can then induce lasing in the former mode. In
the next section, we present a detailed discussion on this
induced lasing mechanism and also discuss how the pres-
ence and absence of the nonlinearity in the modes affects
this mechanism.
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FIG. 7. Initial configuration of the coupled-mode levitated
system. Panels (a)-(c) show the position dynamics, phonon
dynamics and second order coherence for the x-mode, respec-
tively. Panels (d)-(e) show the position dynamics, phonon dy-
namics and second order coherence for y-mode, respectively.
The parameters are ωx = 2π× 115 KHz, ωy = 2π× 141 KHz,
γgx = γgy = γ = 2π × 10 mHz, γcx = 10−5 Hz, γcy = 10−5

Hz, Γcx = 10−6 Hz, Γcy = 10−6 Hz, γay = 100 Hz, δ = 0,
∆ = 0 Hz, Q0 =

√
4× 105, N0 = 2 × 105, Atx = Aty = 1

KHz, Dpx = Dpy = 24 KHz, Dx = Dy = 5 × 10−8 Hz, and
T = 1K. Experimental values of the parameter are taken from
Refs. [28, 39].

B. Lasing transfer and creation

In this subsection, we demonstrate coupling induced
lasing transfer between the two transverse modes of the
levitated nanoparticle, prepared in various initial config-
uration. Apart from this, we also show coupling induced
simultaneous lasing of the transverse modes via nonlinear
feedback, when neither of them show lasing action ini-
tially. At first, we consider the x-mode as a non-linearly
damped oscillator, i.e., x-mode is subjected to nonlin-
ear feedback cooling[40] and y-mode as a phonon laser
which requires both amplification and cooling [28]. The
initial configuration for both the modes are characterized
by studying the position dynamics, the phonon dynamics
and the second-order coherence. In this regard, we first
study the position dynamics for both the modes of the
coupled system using Eqs. (9)-(10). For the uncoupled
case, we can write the approximate analytical solution
for both the modes as

ax(t) = a0

√
γgx

√

e2γgx(t+θ1) − 6a20γcx
, (25)

ay(t) = a0

√
γgy − γay

√

e2(γgy−γay)(t+θ2) − 6a20γcy

, (26)

where θ1 = log[6a20γcx+ γgx]/2γgx and θ2 = log[6a20γcy +
γgy − γay]/[2(γgy − γay)].
It is clear from the above solutions and as expected,
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that the x-mode simply damps, while the y-mode initially
shows exponential rise and then saturates to a higher am-
plitude (≈

√

γay/γcy) as shown in figures 7(a) and 7(d),
respectively. Further, Eqs. (26) revals that the nonlinear
cooling term γcy plays an important role in attaining the
saturation value in the amplitude of y-mode. The compe-
tition between nonlinear feedback cooling γcy and linear
heating γay is the basic phenomenon behind the attain-
ment of such a saturation value and hence the cause of
lasing in y-mode.

Further, the phonon dynamics for the modes can be
studied numerically by solving Eqs. (9)-(10). The evolu-
tion of the phonon population for x and y mode is then
evaluated from Nx(t) = |ax(t)|2 and Ny(t) = |ay(t)|2,
respectively, and the result is shown in Fig. 7. It is ev-
ident from Fig. 7(b) and 7(e) and also can be predicted
from the analytical expressions in Eqs. (25)-(26), that the
phonon population in the x-mode decays, while for the
y-mode, the phonon population shows a saturation effect
with a value (≈ γay/γcy) (previously observed in [28]),
respectively.

We also study the second-order coherence for both the
modes, which is evaluated using the same procedure as
discussed above in PT symmetry section. Fig. 7(c) and
Fig. 7(f) show the behavior of second-order coherence

g
(2)
x (τ) for the x-mode and g

(2)
y (τ) for the y-mode, re-

spectively. It is seen in the figure that g
(2)
x (τ) has a

Lorentzian profile depicting the mode to be in a ther-

mal state and g
(2)
y (τ) has a constant profile representing

it to be in a coherent state, respectively [42]. The above
analysis confirms that x-mode acts as a damped oscil-
lator and y-mode as a phonon laser, which is expected
from the initial condition. Next, we use this analysis to
establish lasing transfer in the coupled case as well.

In this regard, we first study the position dynamics
of the x-mode and y-mode, when both the modes are
coupled, the result of which is shown in Fig. 8(a) and
8(d), respectively. Fig. 8(a) shows that, when the modes
are coupled, the y-mode induces a sustained oscillation
in the x-mode (which was initially a nonlinearly damped
oscillator). Further, to check that the sustained oscilla-
tion of the x-mode indeed leads to lasing of the mode,
we study the phonon dynamics for the coupled system.
Figure. 9(a) shows the phonon dynamics for the x-mode
in presence of coupling. It is apparent from the figure
that the phonon population in x-mode attains a satu-
ration value, which points to a lasing-like phenomenon,
indicating lasing transfer to x-mode.

Next, to fully establish this induced lasing transfer, we
also study the second-order coherence for the x-mode, the
result of which is shown in Fig. 10. It can be seen from
Fig. 10(a) that, with the introduction of coupling in the

system, g
(2)
x (τ) for the x-mode shows a constant profile,

which initially had a Lorentzian profile, indicating that
the mode has evolved to a coherent state. Hence, our
study of both phonon dynamics and the second order co-
herence confirms the induced lasing transfers between the
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FIG. 8. Induced lasing transfer and creation in a coupled-
mode levitated system. Panels (a)-(c) show the position dy-
namics of the x-mode and panels (d)-(e) for the y-mode, re-
spectively, for δ = 10−3. Parameters for panels (a) and (d)
are γcx = 10−5 Hz and γcy = 10−5 Hz. Parameters for panels
(b) and (e) are γcx = 0 Hz, γcy = 10−5 Hz. For panels (c) and
(f), parameters are γcx = 10−5 Hz, γcy = 0 Hz, with γay = 70
Hz. Other parameters are same as in Fig. 7.

modes in the coupled system. Now, as for the y-mode,
it can be seen from Fig. 8(d) and Fig. 9(d) that the am-
plitude of oscillation and the phonon population slightly
decreases while preserving the sustained oscillation and
saturation effect in the mode. This decrease in both os-
cillation amplitude and phonon population is due to the
coupling of y-mode to the nonlinearly damped x-mode,
which induces extra damping in the y-mode. Further,

g
(2)
y (τ) for y-mode as in Fig. 10(d) depicts that the state
of y-mode remains unchanged, i.e., it is still in coherent
state even after coupling.

Next, we consider the case when no nonlinear feed-
back cooling (γcx = 0) is applied to the x-mode i.e., the
mode acts as a linearly damped oscillator, while y-mode
is a considered as a phonon laser. We then introduce
the coupling and analyze the possibility of attaining in-
duced lasing in the x-mode for this case. In this regard,
we study the position dynamics, phonon dynamics and
second-order coherence for the x-mode. Now, when the
coupling is in effect, it can be seen from Fig. 8(b) that
the linearly damped x-mode shows sustained oscillation.
Further, the phonon population for the x-mode also at-
tains a saturation value as shown in Fig. 9(b). Both of
these results indicate induced lasing transfer in the x-

mode, which is further established from the g
(2)
x (τ) as

in Fig. 10(b), showing the mode to be in coherent state.
Moreover, in this case the state of the y-mode remains
unchanged as can be seen from Fig. 9(e) and Fig. 10(e).
Hence, from above analysis, we can affirm that both lin-
ear and non-linear damped oscillator modes achieve in-
duced lasing when coupled to a phonon laser.

At last, we discuss the case where initially x-mode acts
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FIG. 9. Saturation effect in phonon dynamics for the coupled-
mode levitated system. Panels (a)-(c) show the phonon dy-
namics of the x-mode and panels (d)-(e) for the y-mode, re-
spectively, for δ = 10−3. Parameters for panels (a) and (d)
are γcx = 10−5 Hz and γcy = 10−5 Hz. Parameters for panels
(b) and (e) are γcx = 0 Hz and γcy = 10−5 Hz. For panels
(c) and (f), parameters are γcx = 10−5 Hz, γcy = 0 Hz and
γay = 70 Hz. Other parameters are same as in Fig. 7.

as a nonlinearly damped oscillator, while y-mode acts a
linear gain oscillator(γcy = 0). We then couple both the
modes and discuss the possibility of achieving simultane-
ous lasing in the modes. For this, we study the dynamics
of position and phonon population along with the second-
order coherence for both the modes. When the modes
are coupled, it can be seen from Fig. 8(c) and Fig. 8(f)
that the position dynamics shows sustained oscillation for
both x and ymode, respectively . As a result, the phonon
dynamics for both x and y mode also attain saturation as
seen in Fig. 9(c) and Fig. 9(f), respectively. These results
represent that both the modes have attained simultane-
ous lasing due to this coupling.

Further, we confirm the induced lasing action from

g
(2)
x (τ) and g

(2)
y (τ), which shows both x and y mode to be

in a coherent state as seen in Fig. 10(c) and Fig. 10(f), re-
spectively. The induced lasing action in both the modes
can be attributed to the competition between linear am-
plification in the y-mode and nonlinear damping in the
x-mode [28]. All the above analysis on lasing transfer and
simultaneous lasing is done for resonant case ∆ = 0 and
we find that these results remain unchanged even for the
non-resonant case ∆ 6= 0 also. Simultaneous lasing in all
directions is very much essential as they might have ap-
plications in imaging using coherent phonons [36]. Apart
from this, the above presented results can stimulate stud-
ies on outcoupling of phonon lasers and obtaining high
fidelity quantum state transfer [33] as well as efficient syn-
chronization [34, 56], which have potential applications
in quantum information processing [37].
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FIG. 10. The second-order coherence as a function of scaled
time delay for the coupled-mode levitated system. Panels

(a)-(c) show g
(2)
x (τ ) for the x-mode and panels (d)-(e) show

g
(2)
y (τ ) for the y-mode, respectively. Parameters for panels (a)
and (d) are γcx = 10−5 Hz and γcy = 10−5 Hz. Parameters
for panels (b) and (e) are γcx = 0 Hz and γcy = 10−5 Hz.
Parameters for panels (c) and (f) are γcx = 10−5 Hz, γcy = 0
Hz and γay = 70 Hz. Other parameters are same as in Fig 8.

C. Force sensing

In this section, we study force sensing using a coupled-
mode levitated nanoparticle. In order to calculate the
force sensitivity, we consider both the modes as a nonlin-
early damped oscillator and write the equation of motion
for the coupled-mode system as

q̈x = −ω2
xqx − κδ

m
cos(ωrt)qy

− 2 [γgx + 3γcx(2〈Nx〉+ 1)] q̇x +
Fx

m
, (27)

q̈y = −ω2
yqy −

κδ

m
cos(ωrt)qx

− 2 [γgy + 3γcy(2〈Ny〉+ 1)] q̇y +
Fy

m
, (28)

where Fj=F j
T + F j

Fa + F j
Fc, and F j

T=
√

2KBTmγgjξT ,

F j
Fa=

√

Dtj~ωjmξFa, F
j
Fc=12q2j

√

Γ2
cj
m3ω3

j

~γcj
ξFc, with j ∈

{x, y}. Next, we solve the above equation in the Fourier
domain and express the solutions in the form qx(ω) =
χx(ω)Fx(ω) and qy(ω) = χy(ω)Fy(ω), where χx(ω) and
χy(ω) are the optomechanical susceptibilities for the x

and y modes, respectively. The susceptibilities for the
modes are given as
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FIG. 11. Shot noise force PSD as a function of frequency.
Panels (a) and (d) show Log[sx] with sx = Ssx(ω)/Ss0 of the
x-mode and Log[sy ] with sy = Ssy(ω)/Ss0 of the y-mode, for
δ = 10−5 (blue solid) and δ = 10−3 (red dashed), respectively.
Panels (b) and (d) show the enlarged view of the second mini-
mum of Ssx(ω)/Ss0 and Ssy(ω)/Ss0 for δ = 10−4, γcx = 10−4

Hz, γcy = 10−4 Hz (blue solid), δ = 10−3, γcx = 10−4 Hz,
γcy = 10−4 Hz (red dot-dashed) and δ = 10−3, γcx = 10−5

Hz, γcy = 10−5 Hz (green dashed), respectively. The pa-
rameters are ωx = 2π × 115 KHz, ωy = 2π × 141 KHz,
γgx = γgy = γ = 2π × 10 mHz, γcx = 10−4 Hz, γcy = 10−4

Hz, Γcx = 10−5 Hz, Γcy = 10−5 Hz, γay = 0 Hz, Atx = 10
KHz, Aty = 10 KHz, η = 2 × 10−7, φ = 5 × 1017photons/s,
Dpx = Dpy = 24 KHz, Dx = Dy = 5 × 10−8 Hz, and T
= 1K. The nanoparticle diameter D = 136 nm and density
ρ = 2200 kg/m3. Experimental values of the parameters are
taken from Ref. [39, 40]. The values of stochastic forces for the

parameters considered above are STx ≈ STy = 2× 10−42 N2

Hz
,

SHx ≈ SHy = 2.7 × 10−42 N2

Hz
, SCx ≈ SCy = 5 × 10−43 N2

Hz
,

and Ss0 = 1.8 × 10−38 N2

Hz
.

χj(ω) =
1 +Av(ω) +Bv(ω)

m((ω2
j − ω2) + iωΓj)

for j 6= v (29)

Av(ω) =
κδ

2m((ω2
v − (ω − ωr)2) + i(ω − ωr)Γv)

, (30)

Bv(ω) =
κδ

2m((ω2
v − (ω + ωr)2) + i(ω + ωr)Γv)

. (31)

where both j & v ∈ {x, y}. A detailed analysis of the
above derivation is provided in appendix VI. We now
include the effect of shot noise of the measured signal
and write the positional power spectral density (PSD)

for both the modes as

〈|qj(ω)|2〉 = |χj(ω)|2(STj + SHj + SCj) +
l2j
η2φ

. (32)

where η, φ are the optomechanical coupling coefficient
and photon flux [40], respectively, and lj =

√

~/2mωj is
the oscillator length, along with j ∈ {x, y}. Further, the
stochastic forces due to thermal, feedback heating and
feedback cooling are given as STi = 2mγgjKBT , SHj =

~mωjDtj , and SCj = 36~mωj
Γ2
cj

γcj
[4〈Nj〉2 + 4〈Nj〉 + 1],

respectively.

Now from the PSD equation as in Eq. (32), we can
write the force PSD for each mode as

〈|Fj(ω)|2〉 = STj + SHj + SCj + Ssj(ω). (33)

where Ssj(ω) = Ss0/|χj(ω/ωj)|2, with Ss0 =
m2l2jω

4
j/η

2φ and j ∈ {x, y} [40].

To obtain a minimum force sensitivity, we consider the
case where the frequency dependent term Ssj(ω) is mini-
mum. Hence, in this regard we numerically study Ssj(ω)
and present the result in Fig. 11. It can be seen from
Fig. 11(a) and Fig. 11(c), which apply for low values of
the coupling (blue solid line), that the force PSD (Ssj(ω))
attains a minimum value around the oscillation frequen-
cies for each mode. Considering optimal parameters as
in Fig. 11, we find a minimum force sensitivity for the
coupled system to be

√

〈|Fj(ω)|2〉min ≈ 10−21N/
√
Hz,

which is similar to the sensitivity observed in other single-
mode levitated systems [21, 57].

However, it is interesting to notice that in the case of
higher values of coupling (red dashed line), the force noise
PSD for the x-mode has an extra minimum at ωy + ωr

apart from the minimum at ωx, while the y-mode has an
extra minimum at ωx − ωr along with the minimum at
ωy, as shown in Fig. 11(a) and Fig. 11(c), respectively.
Further, the position of the extra minimum can be tuned
by changing the ωr i.e., by changing the asymmetry of
the potential in the transverse plane. In principle, the
asymmetry of the trapping potential can be modulated
by using either an elliptically [58] or a linearly polarized
[29, 59] trapping laser. The asymmetry in the potential is
maximum for a linearly polarized trapping laser, which
results in the maximum splitting between the eigenfre-
quencies of the x- and y-modes. For our current work,
we considered a linearly polarized trapping laser as in
Ref. [29] and hence 2π × 26 KHz is the maximum value
which can be achieved for ωr in this coupled levitated
system.

Apart from this, we can see from Fig. 11(b) and
Fig. 11(d) that not only the position of the second min-
imum but also its bandwidth can be controlled by tun-
ing the coupling strength. The bandwidth of the force
noise PSD minimum for x-mode at ωy + ωr and for y-
mode at ωx − ωr is found to be ∆ω/ωx = 0.004 and
∆ω/ωy = 0.007, respectively, for δ = 10−4 (blue solid
line). Also, with the increase in the coupling strength
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i.e., for δ = 10−3 (red dot-dashed line), the bandwidth
of force noise PSD for both x-mode and y-mode increases
and is found to be ∆ω/ωx = 0.014 and ∆ω/ωy = 0.02,
respectively.
We note that the parameter δ cannot be made arbitrar-

ily high and has to satisfy the condition δ ≪ 1 for the lin-
ear approximation of the coupling as in Eq. (1) to remain
valid [29]. From Fig. 11(b) and Fig. 11(d) we also see that
the strength of feedback nonlinearity does not have much
effect on the bandwidth (green dashed line) of the min-
ima for both the modes. Moreover, the presence of these
extra minima suggest that the coupled mode system can
be sensitive to small forces at these extra frequencies as
well. We find the minimum force sensitivity at the fre-
quencies relevant to the secondary minima of the force
noise PSD also to be

√

〈|Fj(ω)|2〉min ≈ 10−21N/
√
Hz in

the strong coupling regime.
These features in the force PSD can be attributed to

the phenomenon of mode-splitting which arises generally
in a coupled system and has recently been specifically
experimentally identified in a levitated nanoparticle [29].
Interestingly, these results imply that one can measure
weak forces at quite different frequencies with high sen-
sitivity by tuning the coupling in the system. Hence,
from the above study it is evident that the coupled lev-
itated systems are more suitable for designing tunable
ultrasensitive sensors than single mode levitated systems
due to their greater tunability [35, 60]. Experimentally,
feedback based in-loop protocols can be used to measure
the sensitivity of such coupled systems, wherein the error
in the sensitivity measurement arising due to uncertainty
in position measurement and improper feedback coupling
can also be accounted for [21, 57, 61].

IV. Conclusion

In conclusion, we have theoretically demonstrated PT
symmetry, induced and simultaneous lasing and tunable
ultrasensitive force sensing in a coupled-mode levitated
system. We have used quantum Langevin equations to
calculate phonon evolution and second order phonon co-
herence and quantify the dynamics of the coupled sys-
tem. We found that, in the regime where oscillation fre-
quencies of both the mechanical modes as well as their
strength of their coupling are very much larger than their
respective damping rates, the position dynamics for both
the modes show sustained modulation of oscillation, in-
dicating PT symmetry.
Although the system shows oscillation with constant

amplitude, the dynamics of phonon population and tests
of the second order coherence reveal both the modes to be
in thermal rather than coherent states. Further, we show
that the system enters a PT-symmetric broken phase in
the presence of non-resonant coupling. Next, we show
that when one of the modes is in a coherent state i.e.
in a lasing mode, the other mode also attains a coher-
ent state due to the coupling, indicating induced lasing

transfer. Moreover, we have also shown coupling-induced
simultaneous lasing of a nonlinearly damped mode and
a linearly amplified mode. We also studied tunable force
sensing in the coupled-mode levitated system and found
multifrequency sensitivity of the order of zN/

√
Hz. Our

theoretical work suggests new possibilities for an opti-
cally levitated coupled-mode nanoparticle for coherent
manipulation and force sensing.
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VI. Appendix

A. Equation of motion

In the appendix, we provide a detailed derivation of the
equation of motion for the coupled modes in the mean
field approximation limit [41]. In this limit, we neglect
the noise terms as in Eq. (3)-(6) and write the equation
of motion as

Q̇x = ωxPx, (34)

Ṗx = −ωxQx − 2(γgx + 3γcxQ
2
x)Px

+
κδ

m
√
ωxωy

cos(ωrt)Qy, (35)

Q̇y = ωyPy, (36)

Ṗy = −ωyQy − 2(γgy − γay + 3γcyQ
2
y)Py

+
κδ

m
√
ωxωy

cos(ωrt)Qx. (37)

We now take the derivative of the position for the two
modes as in equations Eqs. (34-37) with respect to time
and write as

Q̈x = −ω2
xQx − 2(γgx + 3γcxQ

2
x)Q̇x

+
κδ

m

√

ωx

ωy
cos(ωrt)Qy, (38)

Q̈y = −ω2
yQy − 2(γgy − γay + 3γcyQ

2
y)Q̇y

+
κδ

m

√

ωy

ωx
cos(ωrt)Qx. (39)

Next, we express the oscillation modes Qx and Qy in
terms of their complex amplitudes as

Qx = Q0Re
{

a1(t) e
iω0t

}

, (40)

Qy = Q0Re
{

a2(t) e
iω0t

}

. (41)
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FIG. 12. Panel (a) shows the phonon dynamics for the x-
mode and panel (b) shows the phonon dynamics for the y-
mode in the absence (blue solid line) and in the presence (red
dashed line) of coupling, respectively. Parameters are same
as in Fig. 11.

HereQ0 =
√
2N0 is the initial amplitude of the oscillation

modes, with N0 = kBT
~ω as the initial phonon number at

temperature T. The complex amplitudes for the oscilla-
tion modes along x-mode and y-mode are represented as
a1 and a2, respectively. The carrier frequency of the os-

cillation modes is represented as ω0 =
√

ω2
x + ω2

y/2. We

then substitute Eqs. (40-41) in Eqs. (38-39) and make use
of the slowly varying envelope approximation to neglect
the second order derivatives of the complex amplitudes
of the modes with respect to time and write the equation
of motion for the modes as

ȧ1 = − i

2
(ω1 − iΓx)a1 − iω3

√

ωx

ωy
cos(ωrt)a2, (42)

a2 = −iω3

√

ωy

ωx
cos(ωrt)a1 +

i

2
(ω1 + iΓy)a1. (43)

where ω1 = (ω2
y − ω2

x)/2ω0, Γx = 2(γgx + 3γcxQ
2
x),

Γy = 2(γgy − γay + 3γcyQ
2
y), and ω3 = [δ(ω2

y − ω2
x)]/2ω0.

In here, we have also used the approximation 2iω0+Γx ≈
2iω0,and 2iω0 + Γy ≈ 2iω0 to arrive at the above equa-
tions. Further, the parameters consider in this paper
for various simulation is such that this approximation is
always valid. In order to further simplify the above equa-
tions of motion, we make use of following transformation.

a1 = ax(t) e
−iωr

2 t, (44)

a2 = ay(t) e
iωr

2 t. (45)

We then use the rotating wave approximation, where we
neglect the counter rotating terms and write the final
equation of motion for the mean position of the modes
as

〈ȧx〉 = − i

2
(∆− iΓx)〈ax〉+ iβx〈ay〉, (46)

〈ȧy〉 = iβy〈ax〉+
i

2
(∆ + iΓy)〈ay〉. (47)

where ∆ = ω1 − ωr, βx = ω3

√

ωx/ωy, and βy =

ω3

√

ωy/ωx. Further, we also use the mean field approx-
imation Q2

x ≈ 2〈a2x〉 ≈ 2〈ax〉2, and Q2
y ≈ 2〈a2y〉 ≈ 2〈ay〉2

to express the nonlinear damping terms Γx and Γy as
Γx = 2(γgx + 6γcx〈ax〉2), and Γy = 2(γgy − γay +
6γcy〈ay〉2), respectively.

B. Force sensing

We consider the equations of motion as depicted by
Eq. (3)-(6) and take a derivative of the position with
respect to time for the two modes, and then write it in
the following form

Q̈x = −ω2
xQx − 2(γgx + 3γcxQ

2
x)Q̇x

+
κδ

m

√

ωx

ωy
cos(ωrt)Qy

+

√

2KBTγgx
~ωx

ξT +
√

DtxξFa + 12Q2
x

√

Γ2
cx

γcx
ξFc,

(48)

Q̈y = −ω2
yQy − 2(γgy − γay + 3γcyQ

2
y)Q̇y

+
κδ

m

√

ωy

ωx
cos(ωrt)Qx

+

√

2KBTγgy
~ωy

ξT +
√

DtyξFa + 12Q2
y

√

Γ2
cy

γcy
ξFc.

(49)

We now make use of the definitions Qx =
√

2mωx

~
qx and

Qy =
√

2mωy

~
qy, to write the above equations of motion

into their dimensional form as

q̈x = −ω2
xqx − κδ

m
cos(ωrt)qy

− 2 [γgx + 3γcx(2〈Nx〉+ 1)] q̇x +
Fx

m
, (50)

q̈y = −ω2
yqy −

κδ

m
cos(ωrt)qx

− 2 [γgy + 3γcy(2〈Ny〉+ 1)] q̇y +
Fy

m
, (51)

where Fj=F j
T + F j

Fa + F j
Fc, is the net stochastic force

due to thermal (F j
T ), feedback amplification (F j

Fa) and

feedback cooling (F j
Fc). The stochastic forces are rep-

resented as F j
T=

√

2KBTmγgjξT , F j
Fa=

√

Dtj~ωjmξFa,

F j
Fc=12q2j

√

Γ2
cj
m3ω3

j

~γcj
ξFc, with j ∈ {x, y}. Further, in

the process of achieving the above equation of motions,
we considered no heating in y-mode (γay = 0) and
have used the approximation Q2

x ≈ (2〈Nx〉 + 1), and
Q2

y ≈ (2〈Ny〉+ 1).

These approximations are valid for the case consid-
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ered here and their validity can be verified by analyzing
the phonon dynamics for both the modes in absence and
in presence of coupling. The phonon dynamics for the
modes both in absence and in presence of coupling are
shown in Fig. 12. It is evident from the figure that the
phonon dynamics for both the modes in the uncoupled
state is very similar to their corresponding dynamics in
the coupled case and attains a fixed value in the long time
limit. Hence, in this long time interaction limit, we can
safely assume Q2

x ≈ (2〈Nx〉+1), and Q2
y ≈ (2〈Ny〉+1) in

our calculation [40]. We then take a Fourier transform of
the above equations and rewrite into the following form

[

(ω2
x − ω2) + iωΓx

]

qx(ω) +
κδ

2m
qy(ω − ωr)

+
κδ

2m
qy(ω + ωr) =

Fx(ω)

m
,

(52)

[

(ω2
y − ω2) + iωΓy

]

qy(ω) +
κδ

2m
qx(ω − ωr)

+
κδ

2m
qx(ω + ωr) =

Fy(ω)

m
,

(53)

where Γx = 2 [γgx + 3γcx(2〈Nx〉+ 1)], and
Γy = 2 [γgy + 3γcy(2〈Ny〉+ 1)].

Next, we solve Eq. (52) and Eq. (53) and write the so-
lutions in the form qx(ω) = χx(ω)Fx(ω) and qy(ω) =
χy(ω)Fy(ω), where χx(ω) and χy(ω) are the optome-
chanical susceptibilities for the x and y modes, respec-
tively. Here, we consider both the modes to be under
nearly identical conditions such as being subjected to
the same gas damping, scattering rates, feedback rates
and temperature. Under this assumption, the mean ef-
fective forces acting on both modes can be considered to
be nearly equal i.e., 〈|Fx(ω)|〉 ≈ 〈|Fy(ω)|〉. In this ap-
proximation the optomechanical susceptibilities can be
expressed as

χj(ω) =
1 +Av(ω) +Bv(ω)

m((ω2
j − ω2) + iωΓj)

for j 6= v (54)

Av(ω) =
κδ

2m((ω2
v − (ω − ωr)2) + i(ω − ωr)Γv)

, (55)

Bv(ω) =
κδ

2m((ω2
v − (ω + ωr)2) + i(ω + ωr)Γv)

. (56)

where both j & v ∈ {x, y}..
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