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It is well established that linear dispersive modes in a flowing quantum fluid behave as though they
are coupled to an Einstein-Hilbert metric and exhibit a host of phenomena coming from quantum
field theory in curved space, including Hawking radiation. We extend this analogy to any nonrel-
ativistic Goldstone mode in a flowing spinor Bose-Einstein condensate. In addition to showing the
linear dispersive result for all such modes, we show that the quadratically dispersive modes couple
to a special nonrelativistic spacetime called a Newton-Cartan geometry. The kind of spacetime
(Einstein-Hilbert or Newton-Cartan) is intimately linked to the mean-field phase of the conden-
sate. To illustrate the general result, we further provide the specific theory in the context of a
pseudo-spin-1/2 condensate where we can tune between relativistic and nonrelativistic geometries.
We uncover the fate of Hawking radiation upon such a transition: it vanishes and remains absent in
the Newton-Cartan geometry despite the fact that any fluid flow creates a horizon for certain wave
numbers. Finally, we use the coupling to different spacetimes to compute and relate various energy
and momentum currents in these analog systems. While this result is general, present day exper-
iments can realize these different spacetimes including the magnon modes for spin-1 condensates
such as 87Rb, 7Li, 41K (Newton-Cartan), and 23Na (Einstein-Hilbert).

I. INTRODUCTION

The marriage of quantum mechanics and general rel-
ativity is one of the greatest outstanding problems in
modern physics. This is in part due to the fact that
this theory would only become truly necessary under the
most extreme conditions—the singularity of a black-hole
or the initial moments after the big bang. As such, it
is extremely difficult to theoretically describe, let alone
physically probe.

Despite the seeming intractability, some headway may
be made in the understanding of such extreme theories by
way of analogy. This idea traces back to Unruh, who in
1981[1] suggested that a flowing quantum fluid could re-
alize a laboratory scale analog of a quantum field theory
in a curved spacetime. Access to even the most rudi-
mentary quantum simulator for such a curved spacetime
could provide valuable insights into this otherwise inac-
cessible regime.

Since Unruh’s initial proposal, many systems have
been advanced as candidates for realizing analog space-
times [2], including liquid helium [3–5], Bose-Einstein
condensates [6–14], nonlinear optical media [15], elec-
tromagnetic waveguides [16], magnons in spintronic de-
vices [17], semi-conductor microcavity polaritons [18],
Weyl semi-metals [19, 20], and even in classical water
waves [21]. Analog gravity systems are no longer a the-
oretical endeavor; recent experiments have realized the
stimulated Hawking effect [22], and in the case of a Bose-
Einstein condensate a spontaneous Hawking effect [14].

In this paper we introduce a new kind of analog grav-
ity system, one which exhibits Newton-Cartan geome-

Goldstone mode Dispersion Analog spacetime Lagrangian
Type-I ω ∼ k Einstein-Hilbert Eq. (37)
Type-II ω ∼ k2 Newton-Cartan Eq. (43)

TABLE I. Analog spacetimes which appear for the different
Goldstone modes in the presence of a background conden-
sate flow. These spacetimes emerge as effective field theories
governing the long-wavelength behavior. As we demonstrate
in this work, the emergent geometry is determined by the
flow profile of the background condensate. This is explicitly
demonstrated in Sec. II D for the Type-I modes and Sec. II E
for the Type-II modes, where we also provide an overview of
the Newton-Cartan formalism.

try [23, 24]. This geometry naturally arises from a full
analysis of all Goldstone modes in a flowing spinor (or
multicomponent) condensate. Spinor condensates [25]
have been studied in the context of analog curved space
before [10, 26]; however a full accounting of all gap-
less modes has not been done to the best of our knowl-
edge. The Goldstone modes which realize the Newton-
Cartan geometry exhibit a quadratic ω ∼ k2 dispersion,
known as “Type-II” Goldstone modes [27, 28]. For ex-
ample, the spin wave excitations about an SU(2) symme-
try breaking ferromagnetic mean-field are such a mode.
Distinct from the linearly dispersing case (called “Type-
I” modes), Newton-Cartan spacetimes implement local
Galilean invariance, as opposed to local Lorentz invari-
ance. These results are general and summarized in Ta-
ble I, where we give a general prescription for separat-
ing out all Goldstone modes into either Type-I (linearly
dispersing) or Type-II (quadratically dispersing) modes
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and assigning them either an Einstein-Hilbert or Newton-
Cartan spacetime geometry. In the process of determin-
ing the analogue spacetimes of various Goldstone modes,
we also generalize the existing proofs of non-relativistic
Goldstone theorems [27, 28] to allow for inhomogeneous
mean-field textures. To this end, we explicitly show in
very general terms, how the Goldstone modes couple to
the spacetime variations in the mean-field texture, which
in principle paves the way for the applications towards
the study of nonequilibrium symmetry breaking dynam-
ics beyond the paradigm of analog gravity. It is of cen-
tral importance to our work that the symplectic struc-
ture which distinguishes the different types of Goldstone
modes still remains even in the inhomogeneous case, and
this explicitly shown in our proof.

Newton-Cartan geometry was developed by Car-
tan [23] and refined by others [29] as a geometric formu-
lation and extension of Newtonian gravity. It has since
found application across different areas of physics, in-
cluding in quantum Hall systems [24, 30, 31] and effec-
tive theories near Lifshitz points [32, 33] with interest to
the high-energy community with implications for quan-
tum gravity [34, 35]. We extend these applications here
to flowing condensates for the case of Type-II Goldstone
modes.

Heuristically, one may view the quadratic dispersion
relation ω ∼ |k|2 + ... as the limit of a linear disper-
sion relation ω ∼ v|k|+ ... with vanishing group velocity
v → 0. In terms of the analog spacetime, this corresponds
to an apparent vanishing of the speed of light. As such,
the formation of event horizons and their correspond-
ing Hawking radiation ought to be ubiquitous in such
spacetimes; however our results contradict this intuition.
Specifically, we find that fields propagating in Newton-
Cartan geometries exhibit an additional conservation law
which precludes the emission of Hawking radiation. It
is worth remarking that similar constraints on magnon
scattering amplitudes in an SU(2)-symmetric ferromag-
net have been discussed in the context of nonequilibrium
kinetic theories [36, 37]. It would be interesting to con-
nect these two observations in future works.

The immediate implication of this is that any Type-I
mode can have an effective event horizon and therefore
a Hawking effect (similar things have been noticed for
specific other Type-I modes), and further, no Hawking
effect can occur for Type-II modes, at least not without
introducing quasiparticle interactions (which corresponds
to going being a quadratic treatment of fluctuations).

Finally, we discuss the relationship between trans-
port phenomena and gravitational metrics in our the-
ory [24, 30, 38, 39]. Specifically, we obtain the stress-
tensor, energy flux, and momentum density for theories
both with the Einstein-Hilbert and Newton-Cartan ge-
ometries. In particular, we relate the energy-momentum
tensor calculated in an analog Einstein-Hilbert geome-
try to its nonrelativistic counterparts through the use of
Newton-Cartan geometry. This helps identify how the
analog Hawking effect results in nontrivial energy and

momentum currents in the underlying nonrelativistic sys-
tem.

The outline of the paper is as follows. Section II
contains the generalization of Goldstones theorem to
“curved” mean-field profiles, and shows that in the pres-
ence of a flowing background condensate Type-I and
-II Goldstone modes couple to Einstein-Hilbert (Sec-
tion II D) and Newton-Cartan (Section II E) geometries
respectively. In Section III, we present a minimal model
for these space-times and the phase transition that con-
nects them. In Sec. III A we develop the Bogoliubov-
de Gennes framework which we then use to analyze this
system. In Sec. IV we apply this to a specific step-like
flow geometry and show the effect of the geometry on
the emitted Hawking radiation. We then discuss trans-
port of energy and momentum in these different analog
spacetimes systems in Sec. V. We conclude the paper
in Section VI. Our two appendices include Appendix A
where we put the full fluctuation calculation of the La-
grangian and Appendix B where we review the Hawk-
ing calculation for the phonon problem. Throughout, we
take ~ = kB = 1 and our relativistic metrics have signa-
ture (+ − − −). We also indicate spatial vector with a
boldface (e.g. r), while spacetime vectors are indicated
without boldface (e.g. x = (t, r)).

II. RELATIONSHIP BETWEEN SPACETIME
AND GOLDSTONE’S THEOREM

In this work we consider models of ultra-cold bosonic
spinor quantum gases described by an N -component field
variable Ψ(r, t) = [Ψ1,Ψ2, . . . ,ΨN ]T residing in d spa-
tial dimensions (we do not make the distinction between
“spinor” and higher multiplet fields in this work). The
Lagrangian describing this system is taken to be of the
general form

L = i
2 (Ψ†

−→
∂tΨ−Ψ†

←−
∂tΨ)− 1

2m∇Ψ† ·∇Ψ−V (Ψ†,Ψ), (1)

where m is the mass of the atoms in the gas and V (Ψ†,Ψ)
is a general potential energy function that includes inter-
actions with an external potential as well as local inter-
particle interactions. Such a system may be realized by
cold-atoms, where in addition to the inter-particle in-
teractions external potentials such as a harmonic trap,
optical lattice, or magnetic field may be present. For a
comprehensive review regarding the theory and experi-
mental realization of spinor condensates see Ref. [25].

We consider the case where the Lagrangian exhibits
invariance under an internal symmetry described by a
Lie group G, according to which Ψ transforms under the
fundamental representation (we henceforth do not dis-
tinguish between the symmetry group and its represen-
tation), such that the action S =

∫
L dd+1x remains

invariant. That is,

Ψ(x)→ UΨ(x)⇒ S → S ∀U ∈ G. (2)
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Recall that a Lie group G is generated by its correspond-
ing Lie algebra g, and this has a representation of R(g)
when acting on the field Ψ. For ease of calculations, we
use the mathematical convention that Lie algebras con-
sist of anti-Hermitian elements. Hence, if A is an element
of R(g), then A = −A† and the corresponding group el-
ement is eA = ((eA)−1)†.

We pursue a semi-classical analysis of our system by
first obtaining the classical equations of motion (i.e. the
saddle-point of the action). Then we linearize the ac-
tion around the saddle-point, obtaining a description of
the symmetry-broken phases in terms of their Goldstone
modes. The primary point of our work is that this lin-
earized action admits a simple description in terms of
different emergent analog spacetimes and depending on
the nature of the saddle-point, this analog spacetime may
develop non-trivial curved geometry.

The rest of this section is organized as follows. We per-
form a quadratic fluctuation analysis in Section II A. In
Section II B we review the proof of the Goldstone theo-
rem in non-relativistic settings [27, 28] and show how this
allows us to classify Goldstone modes into Type-I and
Type-II. Section II C then presents the full Lagrangian for
the Goldstone modes while Sections II D and II E make
explicit the connection to curved space geometry.

A. Saddle-Point Expansion

We begin by looking for saddle-points of the La-
grangian Eq. (1), the spinor Gross-Pitaevskii equation

i∂tΨ = − 1

2m
∇2Ψ +

∂V

∂Ψ†
. (3)

Suppose that we have found a mean-field solution to this
equation Ψ0(r, t) ≡ 〈Ψ(r, t)〉 which describes the dy-
namics of a mean-field condensate (neglecting fluctua-
tion back-reaction); for a general out-of-equilibrium sys-
tem, the space-time dependence of Ψ0(r, t) may be non-
trivial [8, 25, 40].

The presence of a non-zero mean-field solution Ψ0

spontaneously breaks the internal symmetry group G
down to a subgroup H ⊂ G. Let h be the Lie alge-
bra that generates the subgroup H. This is defined by
the set of generators

h = {τ ∈ g | τΨ0 = 0}. (4)

We can form a complete basis for h = span{τk}. The
original Lie algebra then separates into two sub-spaces;
g = h ⊕ hc, where hc is simply the complement of h. It
is useful to form an explicit basis for hc ≡ span{σl} so
that g = span{τk} ∪ {σl} = span{σl, τk}. Formally, hc

is isomorphic to the quotient algebra g/h, and the basis
elements σl are isomorphic to coset spaces.

For the sake of simplicity, in this work we will only
concern ourselves with systems which have homogeneous
spin orders, and focus on the effects of inhomogeneous

condensate textures, as this is already very interesting
and non-trivial. However, our proof can be extended to
include the most general case which has both inhomoge-
neous spin and condensate textures. The resulting ex-
pression for the Goldstone mode effective action is given
in Appendix A 1. Studying the effects of inhomogeneous
spin order is both challenging and of great interest, as it
involves the introduction of a non-Abelian connection in
spacetime. We leave this problem open, to be addressed
in future works.

More precisely, we will assume that, although in gen-
eral the mean-field Ψ0(x) may break the symmetry group
G down to different subgroups H = H(x) at each space-
time point, we will only consider mean-fields which have
subgroups H(x) which only differ in the Abelian phase
subgroup, and thus have a homogeneous spin mean-field.

We now examine the quadratic fluctuations of the field
Ψ about the mean-field by expanding the Lagrangian in
powers of δΨ(x) = Ψ(x) − Ψ0(x). This separates into
two distinct contributions; the massless Goldstone modes
θl(x) which correspond to spontaneously broken symme-
tries, and massive fields βn(x) which describe all the re-
maining modes. Each Goldstone mode corresponds to a
broken generator σl ∈ h̄ acting on the mean-field conden-
sate Ψ0(x). These contribute to the fluctuation action as

(δΨ(x))Goldstone =
∑
l

θl(x)σlΨ0(x) ≡ σ(x)Ψ0(x), (5)

which serves to define the Goldstone matrix field σ(x).
The remaining degrees of freedom are generically massive
and are not amenable to a description in terms of the
Lie algebra’s generators. It is advantageous to param-
eterize the fluctuations δΨ in terms of real fields with
massive terms orthogonal to the massless terms in the
sense described below. Within the quadratic theory, this
implies the fluctuations reside within a real vector space
R2N ∼ CN . The Goldstone modes σlΨ0(x) form a sub-
space of this manifold while the remaining basis elements
are generically massive and are written as ξn(x). We
note that in general the basis elements are spacetime de-
pendent simply because the mean-field is also spacetime
dependent.

In order to make the notion of orthogonality precise we
lift the standard complex (CN ) inner product onto our
real vector space R2N to obtain the real inner product g
defined by

g(ξ, χ) ≡ 1
2 (ξ†χ+ χ†ξ). (6)

In terms of the Goldstone manifold and its complement,
the variation δΨ(x) takes the compact form

δΨ(x) = σ(x)Ψ0(x) + ξ(x), (7)

where we have defined the massive modes by

ξ(x) =
∑
n

βn(x)ξn(x). (8)
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We proceed to the expansion of the Lagrangian in
terms of the variation δΨ. First, we consider the po-
tential. It is locally invariant under under G, so we can
write

V (Ψ†,Ψ) = V (Ψ†eσ(x), e−σ(x)Ψ). (9)

Furthermore, we can use our expansion of Ψ(x) to obtain

e−σΨ ≈ e−σ[Ψ0 + σΨ0 + ξ]

≈ (1− σ + 1
2σ

2)[Ψ0 + σΨ0 + ξ]

≈ Ψ0 + ξ − σξ − 1
2σ

2Ψ0,

(10)

keeping terms up to quadratic order in fluctuations. This
allows us to expand the potential energy up to quadratic
order (dropping the terms constant and linear in the vari-
ation)

V (Ψ†,Ψ) = −
[
∂V

∂Ψ
·
(

1
2σ

2Ψ0 + σξ
)

+ c.c.

]
+

1

2
ξ∗ξ∗ · ∂2V

∂Ψ†∂Ψ†
+ ξ∗ · ∂2V

∂Ψ†∂Ψ
· ξ +

1

2

∂2V

∂Ψ∂Ψ
· ξξ,

(11)

where all derivatives of the potential are understood as
being evaluated at the mean-field. The terms quadratic
in ξ, ξ∗ represent massive terms, and the first line of
Eq. (11) drops out when combined on-shell with similar
terms from the kinetic part of the Lagrangian. Deriving
the full fluctuation Lagrangian is not instructive, and has
been relegated to Appendix A; the final result is given
below.

Focusing on the Goldstone modes, written in terms
of the “angle fields” θl(x), the resulting Lagrangian for
fluctuations is given by

Lfluc = θmP
µ
mn(∂µθn) + βmQ

µ
mn(∂µθn)

+ (∂jθn)T jkmn(∂kθn) + Lmass(βm, ∂µβm), (12)

where we have instituted the Einstein summation conven-
tion. In this and the following, Roman indices i, j, k, . . .
run over spatial dimensions while Greek indices µ, ν, . . .
run over both temporal and spatial dimensions (with
µ = 0 = t the temporal index). The Roman indices
n,m, . . . enumerate the different Goldstone modes or
massive modes and are similarly summed. The terms
Pµmn, Qµmn, and T jkmn depend on both space and time,
and are given by

P tmn = i
2Ψ†0[σn, σm]Ψ0,

P jmn = 1
4m (∂jΨ

†
0[σm, σn]Ψ0 −Ψ†0[σm, σn]∂jΨ0),

Qtmn = i(Ψ†0σnξm + ξ†mσnΨ0),

Qjmn = 1
2m (ξ†mσn∂jΨ0 − ∂jΨ†0σnξm

+ Ψ†0σn∂jξm − ∂jξ†mσnΨ0),

T jkmn = 1
2mδ

jkΨ†0σnσmΨ0.

(13)

As mentioned previously, it is also important to keep
track of the massive modes in the full Lagrangian and
we offer that full analysis in Appendix A.

B. Proof of the nonrelativistic Goldstone theorem

Before proceeding to simplify the Lagrangian and de-
rive the curved space analogues, we need to understand
and make use of the nonrelativistic Goldstone theo-
rem [27, 28], providing a complementary proof in the
process.

We consider the following ansatz for the mean-field

Ψ0(x) =
√
ρ(x)eiϑ(x)χ, χ†χ = 1, ∂µχ = 0. (14)

Importantly the spinor structure given by χ is indepen-
dent of space and time. This ansatz is justified since
if we prepare a static mean-field state and quench it dy-
namically with terms that only couple to mass (such that
the Gross-Pitaevskii equation describes its dynamics),
there are no terms in the hydrodynamics that generate
spin texture (i.e., the dynamics will preserve ∂µχµ = 0)
[25, 40, 41]. The global U(1) symmetry implies the phase
and density obey a continuity relation which can be con-
veniently written as

∂µJ
µ = 0, (15)

with the condensate four-current given by Jµ = ρvµs ,
where the superfluid four-velocity field is vµs = (1, 1

m∇ϑ).
This simplifies the term

Pµmn = − i
2J

µχ†[σn, σm]χ, (16)

which dictates which real fields θn are canonically conju-
gate to each other. In non-relativistic systems, the rela-
tionship between broken symmetry generators and Gold-
stone modes is not one-to-one. Instead, we must sepa-
rate out our modes into Type-I and Type-II Goldstone
modes, which is done by going to the preferred basis of
the matrix Pµmn.

To understand this, we return to the real vector space
defined by the Goldstone mode manifold, which we label
AR. That is,

AR = spanR{σlΨ0(x)}. (17)

The real dimension DR of this subspace is simply equal to
the number of broken generators. We can complexify this
vector space by allowing for complex-valued coefficients

AC ≡ spanC{σnΨ0}. (18)

It may be the case that two generators which are linearly
independent under real coefficients are linearly depen-
dent when multiplied by complex coefficients. For this
reason, this vector space has an associated complex di-
mension DC ≤ DR. The essence of the Goldstone mode
theorem is that DR is the number of broken generators
and DC is the number of modes, and these two quantities
can be formally related by classifying each basis element
σlΨ0(x) ∈ AR due to whether iσnΨ0 ∈ AR or not.

To establish this we need to return to our real inner
product g(·, ·). We can use the operation of multiplica-
tion by i to define a symplectic bilinear form ω(·, ·) by

ω(η, ξ) ≡ g(iη, ξ) = i
2 (ξ†η − η†ξ). (19)
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The multiplication by i (acting on the basis vectors
σlΨ0(x)) can be restricted to the real vector space AR,
which we define by the notation

i|AR ≡ I : AR → AR. (20)

Similarly, we define range I ≡ AII ⊂ AR as the range of I.
The null space of I is then defined to beAI and represents
states η ∈ AR which leave the real vector space upon
multiplication by i. As a simple example, consider unit
vectors ê1 = (1, 0)T and ê2 = (i, 0)T . As elements of a
real vector space these are linearly independent, however
iê1 = ê2 and so these are not linearly independent in
a complex vector space. In this case, we have DR =
2, DC = 1 and range I = AR, null I = 0. However, if
ê1 = (1, 0)T and ê2 = (0, 1)T then DR = 2 = DC and
range I = 0, null I = AR.

The classification of basis elements may be accom-
plished by taking the real inner product of iη with the
other elements of A—if this vanishes, then η is in the
kernel of I. But this is exactly given by the symplectic
bilinear form defined above so that

AI ≡ null I = {η ∈ AR | ω(η, χ) = 0,∀χ ∈ A}. (21)

This condition can be simplified into a matrix condition
if we note that we can let η =

∑
n anσnΨ0 and χ =∑

m bmσmΨ0, so that

0 = ω(η, χ) = − i
2anΨ†0[σn, σm]Ψ0bm. (22)

This relates the null-space of I to the null-space of the

matrix Ψ†0[σn, σm]Ψ0 ∝ Pµmn, the term appearing in our
Lagrangian which determines the canonically conjugate
pairs of modes. Using the rank-nullity theorem, we have

AR = AI ⊕AII. (23)

Since the matrix given by elements − i
2Ψ†0[σn, σm]Ψ0 is

real and antisymmetric, we can block-diagonalize the ma-
trix with a special orthogonal transformation. Going to
this basis and using our ansatz for the flowing mean-field
Ψ0 =

√
ρeiϑχ, the result is

− i
2Ψ†0[σn, σm]Ψ0 = − i

2ρχ
†[σn, σm]χ

= ρ



0 λ1 0 0
−λ1 0 0 0 · · · 0 · · ·

0 0 0 λ2

0 0 −λ2 0
...

. . .

0 0
...

. . .


,

AII AI

(24)

with λj > 0. This defines a preferred basis for the broken
generators {σl} which we henceforth assume is the basis
we are in. Note that in this basis AII takes the form of a
direct sum of decoupled symplectic forms.

This matrix provides a natural way to break up the
generators. First, we can define σII

n and its conjugate gen-

erator σII
n via − i

2Ψ†0[σII
n , σ

II
n ]Ψ0 = ρλn. This implies that

σII
nΨ0 = iσII

nΨ0 (however σII
n 6= iσII

n ). Let nII be the num-
ber of λj ’s, so that dim(AII) = 2nII. As the coefficient
of the temporal derivative term in the Lagrangian, this
matrix tells us that the two Goldstone fields described by

σII
nΨ0(x) and σII

nΨ0(x) are canonically conjugate to each
other and therefore describe the same mode, a Type-II
Goldstone mode. Finally, let dim(AI) = nI be dimen-
sion of the null-space of I. This is the number of Type-I
Goldstone modes; they represent modes which are canon-
ically conjugate to a massive mode. It is evident by the
rank-nullity result that

2nII + nI = DR (25)

is the number of broken generators, while

nII + nI = DC (26)

is the number of Goldstone modes in the system.
With this particular grading into nII basis elements

σII
nΨ0 and nI basis elements σI

nΨ0, we can rewrite our
real vector space

AR = span{σII
nΨ0, σII

nΨ0, σ
I
nΨ0}, (27)

and similarly, we can write the complexified vector space
in two equivalent ways

AC = spanC{σII
nΨ0, σ

I
nΨ0},

AC = span{σII
nΨ0, σII

nΨ0, σ
I
nΨ0, iσ

I
nΨ0}.

(28)

The modes represented by iσI
nΨ0 are exactly the massive

modes conjugate to σI
nΨ0 (by definition, they are not in

A and are thus not associated with a broken generator).
In fact, as we have shown P tmn = −ω(σnΨ0, σmΨ0)

while for the massive modes Qtmn = −2ω(σnΨ0, ξm).
These two matrices have different images, as we can
see since by construction ω(σI

nΨ0, σmΨ0) = 0 while

ω(σII
nΨ0, ξm) = g(σII

nΨ0, ξm) = 0. In other words, P t

has range AII, and Qt has range AI due to the real fields
being orthogonal by Eq. (6).

At low energies (below the relevant mass gaps), mas-
sive modes that are not conjugate to Goldstone modes
can be trivially integrated out and do not contribute in
the IR. This then leaves the Goldstone modes, which are
gapless, and a few massive modes which are canonically
conjugate to the Type-I Goldstone modes. These massive
modes cannot be trivially integrated out and they are to
be included in the low-energy theory. Doing so amounts
to adding the basis elements iσI

nΨ0 to our fluctuation
manifold.

C. Lagrangian for Goldstone Modes

We now employ this classification into Type-I and -II
modes to our benefit by using it to simplify the fluc-
tuation Lagrangian. Recall that in this work we restrict
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ourselves to flowing condensates which have a spatial tex-
ture to the phase mode (and thus inhomogeneously break
the global U(1) part of the symmetry group), but have
a homogeneous and static spinor texture. For instance,
one may consider a condensate of pseudo-spin- 1

2 atoms
in its ferromagnetic phase which has a definite homoge-
neous magnetization 〈Sz〉 = χ†Szχ = 1

2 but a non-zero
density and phase profile. As remarked earlier, this flow
produces a non-zero spatial component for the Noether
current Jµ(x). Going to the preferred basis of Pµmn, ob-
tained in Sec. II B then yields the partitioning into the

Goldstone modes given by {σII
nΨ0, σII

nΨ0, σ
I
nΨ0}. Let us

remind the reader that Type-I modes are those for which
iσnΨ0 cannot be written as a broken generator σ′nΨ0 and
therefore, the associated real field comes with a massive
term in the Lagrangian.

The basis elements {σII
nΨ0, σ

I
nΨ0} have the property

that they are orthogonal in the conventional sense (e.g.
η†χ = 0). As a result of this,

Ψ†0σ
I
nσ

II
mΨ0 = 0,

−Ψ†0σ
II
n σ

II
mΨ0 = λnδnmρ(x),

−Ψ†0σ
I
nσ

I
mΨ0 = µnδnmρ(x),

(29)

where we have defined µn ≡ −χ†(σI
n)2χ > 0 and used

the fact that λn = −χ†(σII
n )2χ > 0.

In this basis, the field variation δΨ(x) may be de-
scribed by three real Goldstone fields θn, θ̄n, and φn along
with the real massive field βn via

σ =

nII∑
n=1

(
θnσ

II
n + θ̄nσII

n

)
+

nI∑
n=1

φnσ
I
n,

ξ =

nI∑
n=1

βniσ
I
nΨ0 + · · · ,

(30)

where “· · · ” represents other massive modes that can be
trivially integrated out. In this basis, the coefficient Pµmn
simplifies to

Pµmn = δnm̄λnρ(x)vµs , (31)

where m̄ is defined as the index of the conjugate field
to the field labeled by m. Similarly, we may simplify
Qµmn which connects Type-I Goldstone modes to their
conjugate massive fields. We indeed find

Qµmn = 2δnmµnρ(x)vµs , (32)

where the massive field with index m is indicated by the
basis element iσI

mΨ0. Lastly, we have the kinetic energy
term which we can separate out into its contribution to
Type-I and Type-II fields

T jkmn|I = − 1
2mδ

jkρ(x)µnδmn

T jkmn|II = − 1
2mδ

jkρ(x)λnδmn
(33)

Notice that λn or µn can be absorbed into a redefini-
tion of the oscillator strength of the field it corresponds
to. Therefore, we can simply absorb the λ’s into a redef-
inition of the Type-II modes θn, θ̄n, and absorb the µ’s
into a redefinition of the Type-I modes φn, βn. In prin-
ciple, this would effect the coupling to external source
fields, and in the case of the Type-I modes also factors
into determining the speed of sound, but we are not con-
cerned with these effects here. Then, substituting the
form of our fluctuations, the Lagrangian is

Lfluc =

nI∑
n=1

ρ(x)
[
−2βnv

µ
s (x)∂µφn − 1

2m [(∇φn)2 + (∇βn)2]− 2mc2n(x)β2
n

]
+

nII∑
n=1

ρ(x)
{
−vµs (x)(θ̄n

−→
∂µθn − θ̄n

←−
∂µθn)− 1

2m [(∇θn)2 + (∇θ̄n)2]
}
. (34)

Since the basis for Type-I modes is not uniquely fixed by
the canonical conjugate structure of Eq. (24), this leaves
us free to diagonalize the mass tensor produced by the
variation of the potential in Eq. (11). Doing so produces
the effective chemical potential terms, mc2n(x).

We end this section with a note about the validity of
this fluctuation Lagrangian: it can be seen that the over-
all size of this action is set by the condensate density ρ(x),
which uniformly multiplies all terms. Thus, the conden-
sate density ρ(x) acts to enforce the saddle-point in the
sense that if it is large, the fluctuation contribution from
Lfluc is suppressed. This tells us that our approach ought

not be valid if either the condensate density is strongly
fluctuating or vanishing all-together, as might happen
at finite temperatures or near e.g. the core of a vortex.
Additionally, there may be breakdowns in smaller dimen-
sional systems, where long-range order is prohibited by
Mermin-Wagner [42–44]. Barring these considerations,
we proceed on to study the properties of the effective
field theory described in Eq. (34). We first consider the
case where the Goldstone mode is Type-I, and then we
study the case of a Type-II mode.
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D. Type-I Goldstones: Relativistic Spacetime

Consider an isolated Type-I Goldstone mode, with La-
grangian

LI = ρ(x)[−2βvµs (x)∂µφ− 1
2m [(∇φ)2 + (∇β)2]

− 2mc2(x)β2], (35)

we assume that mc2(x) is large enough to dominate over
the kinetic energy for β, so that β can be easily integrated
out via mc2(x)β = −2vµs ∂µφ. We get the resulting La-
grangian, valid at long wavelengths and times

Leff
I =

ρ(x)

2m

[(
vµs (x)∂µφ

c(x)

)2

− (∇φ)2

]
. (36)

This describes a scalar field propagating along geodesics
of an emergent space-time metric Gµν with

Leff
I = 1

2

√
−GGµν∂µφ∂νφ, (37)

and Gµν given by the line-element

ds2 =
ρ

c
[c2dt2 − (dx− vdt)2] = Gµνdxµdxν . (38)

This was first observed by Unruh in Ref. [1] where he
showed that metrics of the form given above can possess
non-trivial features including event-horizons. Indeed, the
metric for a Schwarschild black hole can take a very simi-
lar form in certain coordinate systems. One of the central
results of this paper is the extension of this analog to in-
clude the Type-II modes, which do not have emergent
Lorentz invariance. This is shown below.

E. Type-II Goldstones: Non-relativistic Spacetime

We focus on a single Type-II Goldstone mode, for
which there is no massive field to integrate out. We are
left with the fluctuation Lagrangian

LII = ρ(x){−vµs (x)(θ̄
−→
∂µθ − θ̄

←−
∂µθ)

− 1
2m [(∇θ)2 + (∇θ̄)2]}. (39)

To simplify things, we group the two real fields into one
complex field

ψ = θ + iθ̄, (40)

so that we have

LII = ρ[ i2v
µ
s (ψ∗

−→
∂µψ − ψ∗

←−
∂µψ)− 1

2m |∇ψ|
2]. (41)

It turns out this too has a simple geometric description
in terms of an emergent curved space-time. However,
instead of being an “Einsteinian” geometry, the resulting
description is in terms of a Newton-Cartan geometry [23,
24, 30, 31, 39].

Newton-Cartan geometry consists of three key objects:
(nµ, v

µ, hµν). These are not all independent, but rather
must satisfy the constraints

nµv
µ = 1, nµh

µν = 0. (42)

Also note that the indices on these objects are given as
covariant and contravariant specifically and cannot be
freely raised/lowered without the definition of a metric
tensor (which we describe how to construct in Sec. V).

To understand the geometry these objects encode, we
begin with the fundamental object that enforces time’s
special status within a nonrelativistic theory: nµ. As a
one-form, nµ (colloquially, we call it the “clock” one-
form) can be imagined as a series of surfaces (folia-
tions), and when a spacetime displacement vector is con-
tracted with it, it gives the elapsed time in a covari-
ant manner. In conjunction with the clock one-form,
we have the velocity field vµ, which must go forward a
unit of time (hence the constraint nµv

µ = 1) as a four-
velocity; flow along vµ causally connects spatial surfaces.
Lastly, the spatial metric hµν is degenerate (nµh

µν = 0)
since it solely describes the geometry confined to the d-
dimensional spatial foliations. While in what follows we
describe hµν emerging from intrinsic properties of the
fluid flow, it can also inherit extrinsic contributions (i.e.
if the fluid is flowing on an actual curved manifold).

In the presence of this curved Newton-Cartan geome-
try, the Lagrangian for a massless scalar field takes the
form

L = n0

√
h[ i2v

µ(ψ∗
−→
∂µψ − ψ∗

←−
∂µψ)− hµν

2m ∂µψ
∗∂νψ] (43)

where h = (|dethij |)−1[45] is the determinant of the
metric projected onto the non-degenerate subspace.

The Lagrangian of a Type-II Goldstone mode may be
brought into this form. Relating Eq. (41) to Eq. (43),
we can extract the geometric objects nµ, vµ, and hµν .
We see that in our systems h00 = 0 = h0i, and that
hij = h−1/dδij in d spatial dimensions. Therefore, we
know ni = 0; hence, n0v

0 = 1. Relating terms, we have

√
h = ρ,

n0

√
hvi = ρvis,

n0h
(d−2)/(2d) = ρ.

(44)

This gives us the geometric quantities

h = ρ2, n0 = ρ2/d, (45)

and hence

nµ = [ρ2/d,0],

vµ = ρ−2/dvµs ,

hij = ρ−2/dδij .

(46)

One important aspect of Newton-Cartan geometry is
the notion of “torsion” [46]. Regarded as a differential
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form, the clock one-form n = nµdx
µ is in general not

an exact differential. This is seen by taking the exterior
derivative, which defines the “torsion tensor” ω = dn.
Explicitly,

ωµν = ∂µnν − ∂νnµ. (47)

It is straightforward to see that in general, the torsion
tensor in our geometry is non-zero;

ω0j = ∂jn0 = ∂jρ
2/d. (48)

Were the torsion zero, we could define an absolute time
coordinate T , from which we would get the clock one-
form as n = dT . While the non-zero torsion implies
there is no such absolute time, we may confirm that the
more general condition

n ∧ dn = 0 (49)

is satisfied. This is a necessary and sufficient condition for
the foliation of spacetime into “space-like” sheets which
are orthogonal to the flow of time [46]. As such, there is
still a notion of causality in this geometry.

We conclude by commenting that the Newton-Cartan
geometry we find here is in fact intimately related to
the gravitational field first considered by Luttinger in the
context of calculating heat transport [38]. In that limit
nµ ∝ [eΦ,0], and so the gravitational potential (up to
scale factor in the logarithm) would be

Φ =
2

d
log(ρ). (50)

Using this connection, quantities like energy current and
the stress-momentum tensor can be calculated as we dis-
cuss in Sec. V. First, we explore a minimal realization of
these geometries and the associated quantum phases in
Sec. III as well as the fate of the Hawking effect across
such a transition in Sec. IV.

III. MINIMAL THEORETICAL MODEL

In this section, we introduce a minimal model which
exhibits a transition between an Einstein-Hilbert and
Newton-Cartan spacetime. We begin by analyzing the
ground state within mean-field theory. Once this is un-
derstood, we study the behavior of fluctuations about the
mean-field by employing a Bogoliubov-de Gennes (BdG)
description.

The model is that of a pseudo-spin- 1
2 bosonic field

Ψ(x) = (Ψ↑(x),Ψ↓(x))
T

with the following Lagrangian
density

L = Ψ†
(
i∂t +

1

2m
∇2 + µ

)
Ψ− 1

2
g0

(
Ψ†Ψ

)2
− 1

2
g3

(
Ψ†σ3Ψ

)2
(51)

where σj are the Pauli matrices for the pseudo-spin and
µ is the chemical potential, which controls the conserved
density of the bosons, ρ = Ψ†Ψ. The coupling g0 > 0
describes a U(2) = U(1) × SU(2) invariant repulsive
density-density contact interaction, as may be expected
in a typical spinor BEC, while the g3 parameter intro-
duces anisotropy into the spin exchange interaction. The
g3 coupling explicitly breaks the SU(2) symmetry down
to U(1) ⊗ Z2 comprised of rotations of the Bloch vector
by any angle about the z axis and reflections of the Bloch
vector through the xy mirror plane. Note that stability
requires that g3 > −g0.

Let us briefly comment that, while Lagrangian (51) is
a perfectly valid model, a more natural set-up may be
realized by the more experimentally available spin-1 sys-
tems such as condensed 7Li, 23Na, or 87Rb. All of these
atoms are bosons which have a total hyperfine spin F = 1
manifold [25]. In this case, the phase transition is be-
tween two phases which both respect the full SU(2) spin-
rotation symmetry—the ferromagnetic phase and polar
(nematic) phase [40, 47, 48]. In this case, rather than be-
ing driven by anisotropy, the transition is driven by the
overall sign of the spin-exchange interaction. It turns
out that the different ground-state phases have different
types of Goldstone modes and therefore exhibit different
analog spacetimes for the spin waves once condensate
flow is introduced. The relevant coupling constant is the
spin-exchange coupling c2, which is given in terms of the
scattering lengths by

c2 =
4π

m

a2 − a0

3
.

For 7Li and 87Rb,c2 < 0 while for 23Na c2 > 0 [25].
Thus, all else equal we can realize both the polar (ne-
matic) phase (which occurs for c2 > 0) as well as the fer-
romagnetic phase (c2 < 0) by using two different species
of trapped atom. All this is to say that, while Eq. (51) is
not as easily realized experimentally, there may be more
experimentally feasible models which realize the same
physics. We now move on to the analysis of the tech-
nically simpler model proposed above.

The mean-field ground state of Eq. (51) is identified as
the homogeneous minimum of the energy density

V =
1

2
g0

(
Ψ†Ψ

)2
+

1

2
g3

(
Ψ†σ3Ψ

)2 − µΨ†Ψ.

For µ < 0 the ground state is trivial and there is no con-
densate. For µ > 0 there is Bose-Einstein condensation
and the ground state is a BEC with a uniform condensate
density which obeys the equation of state

ρ = Ψ†Ψ =

{
µ
g0
, g3 > 0,
µ

g0−|g3| , −g0 < g3 < 0.

A non-zero condensate density always spontaneously
break the overall U(1) phase symmetry. The correspond-
ing Goldstone mode corresponds to the broken generator
iσ0 = i1 where 1 is the 2× 2 identity matrix.
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SU(2) 
Ferromagnet

Easy-plane 
Ferromagnet

Ising
Ferromagnet

FIG. 1. Illustration of the different ground-state Bloch-vector
manifolds as the parameter g3 is tuned. For g3 < 0 the
ground state manifold consists of the north and south poles
and thus the system realizes an Ising ferromagnet, sponta-
neously breaking the Z2 symmetry while maintaining the U(1)
symmetry. For g3 = 0 the full SU(2) symmetry is realized and
the ground-state manifold consists of the entire Bloch sphere.
Thus, the system is a Heisenberg ferromagnet which sponta-
neously breaks the full SU(2) down to U(1) ⊂ SU(2). Finally,
for g3 > 0 the ground state manifold consists of the equatorial
plane, rendering the system an XY (easy-plane) ferromagnet.
Thus, the initial symmetry is U(1) which is spontaneously
broken to the trivial group.

Phase Sound waves Spin waves
Ising Ferromagnet ω ∼ k Gapped
SU(2) Ferromagnet ω ∼ k ω ∼ k2

Easy-plane Ferromagnet ω ∼ k ω ∼ k

TABLE II. Goldstone modes associated to each phase shown
in Fig. 1. All phases have a Type-I Goldstone mode associ-
ated to the spontaneous breaking of the global U(1) phase,
corresponding to the conventional sound mode. Additionally,
there may also be Goldstone modes associated with sponta-
neous breaking of spin symmetries, leading to spin waves. In
the Ising phase, the broken symmetry is discrete and there
are no Goldstone modes. In the SU(2) invariant Heisenberg
phase there is a Type-II Goldstone mode describing transverse
fluctuations of the magnetization, while in the XY easy-plane
phase there is a Type-I Goldstone describing equatorial fluc-
tuations of the magnetization.

Depending on the value of g3, additional symmetries
may be broken, resulting in the phase diagram illustrated
in Fig. 1. We write the condensed Ψ in the density-phase-
spinor representation as

Ψ =
√
ρeiΘχ, χ†χ = 1 (52)

where χ yields the local magnetization density. It may
be parameterized in terms of one complex parameter ζ
via

χ =
1√

2(1 + |ζ|2)

(
1 + ζ
1− ζ

)
, ζ ∈ C. (53)

Alternatively, it may be represented in the more canoni-

cal Euler angle representation as

χ =

(
cos θ2

sin θ
2e
iϕ

)
, ϕ ∈ [0, 2π) θ ∈ [0, π).

We use both of these representations throughout. In
terms of ζ and θ, ϕ the anisotropic interaction is

V =
1

2
g3ρ

2 (ζ + ζ∗)2

(1 + |ζ|2)2
=

1

2
g3ρ

2 cos2 θ.

We now proceed to study the mean-field phase diagram
of the ground state.
Ising phase.—We begin by considering the case of g3 <

0, i.e. the “Ising ferromagnet” phase. The interaction has
a U(1)× Z2 symmetry generated by i

2σ3 composed with
inversion of the z component of the magnetization. In
this case it is energetically favorable for the Bloch vector
to align with the z axis. This breaks the Z2 symmetry
and preserves U(1) so the ground state manifold is the
symmetric space U(1)× Z2/U(1) ∼ Z2. This is depicted
in the left-most panel of Fig. 1, which shows the ground-
state manifold for the spinor χ for various couplings. The
Goldstone modes associated with the broken-symmetry
ground-state, along with their dispersions are shown in
Table II. As the ground-state manifold is discrete there
is no additional Goldstone mode in this phase and we no
longer consider this portion of the phase diagram in this
work.
Heisenberg phase.—When g3 = 0 the interaction term

is isotropic and the model has the full SU(2) invariance.
The ground state then spontaneously break the SU(2)
symmetry down to U(1) so that the ground state mani-
fold is the symmetric space SU(2)/U(1) ∼ S2—the full
Bloch sphere. This is illustrated in the middle panel of
Fig. 1. Without loss of generality, we take the ground
state magnetization to point along the positive x direc-
tion. Thus, ζ = 0 and χ = 1√

2
(1, 1)T . Then the unbroken

generators are { i2 (σ1−1)} and the broken generators are

{ i2 (σ1 +1), i2σ2,
i
2σ3, }. Using the formalism from Sec. II,

we find that the P matrix appearing in the Goldstone
mode Lagrangian is

P t = ρ

0 0 0
0 0 1

4
0 − 1

4 0

 , (54)

where the columns refer, in order, to the generators
{ 1

2 iσ0+ 1
2 iσ1,

1
2 iσ2,

1
2 iσ3}. In this case, we have one Type-

II Goldstone mode associated with the two generators
{ 1

2 iσ2,
1
2 iσ3} which exhibits a quadratic dispersion rela-

tion and hence realize the Newton-Cartan geometry in
the presence of inhomogeneous condensate flow. This is
summarized in Table II.
XY phase.—We now move on to the case where g3 > 0.

In this case there is an energy penalty associated with a
non-zero z component of the magnetization and thus the
ground state lies in the manifold defined by cos θ = 0⇒
θ = π/2. Thus, the ground state breaks the U(1) symme-
try but remains invariant under reflections through the
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z = 0 plane. As such, the ground state resides in the
symmetric space U(1)×Z2/Z2 = U(1) ∼ S1, as depicted
in the right panel of Fig. 1. Without loss of generality
we again take the Bloch vector to lie along the +x direc-
tion. Thus, only two generators remain unbroken in the
Lagrangian {i1, 1

2 iσ3} and the mean-field breaks both of
them. We again refer to Eq. (24) to obtain

P tmn = 0. (55)

Thus, there are no Type-II Goldstone modes in this sys-
tem, but instead two Type-I modes which are linearly dis-
persing and therefore exhibit an analog Einstein-Hilbert
spacetime, summarized in Table II.

A. Bogoliubov-de Gennes Analysis

We now proceed to examine the fluctuations about
the mean-field by obtaining and diagonalizing the
Bogoliubov-de Gennes equations of motion. To see how
the analog spacetime emerges we consider a mean-field
condensate ψ0 which is inhomogeneous, but has a con-
stant magnetization density. Taking the spin to point in
the +x direction, we obtain

ψ0 =
√
ρ(x)eiΘ(x)χ0 =

√
ρ(x)eiΘ(x)

(
1√
2

1√
2

)
. (56)

In this case, the mean-field describes a flowing conden-

sate with superfluid density ρ(x) = ψ†0(x)ψ0(x) and su-
perfluid velocity vs = 1

m∇Θ(x). Fluctuations about this
mean-field can be fully parameterized in terms of the two
complex fields φ and ζ as

δΨ = (φσ0 + iζσ2)ψ0. (57)

To quadratic order, the Lagrangian from Eq. (51) decou-
ples into two quadratic BdG Lagrangians

Lφ = ρ
[
i
2 (φ∗Dtφ− φDtφ

∗)− |∇φ|
2

2m + 1
2g0ρ(φ+ φ∗)2

]
,

Lζ = ρ
[
i
2 (ζ∗Dtζ − ζDtζ

∗)− |∇ζ|
2

2m + 1
2g3ρ(ζ + ζ∗)2

]
,

(58)

with Dt = ∂t + vs · ∇ the material derivative in the
frame co-moving with the superfluid flow. These two
Lagrangians are specific examples of the more general
Eq. (34). In particular, for g3 > 0 at long wave-
lengths we can apply the analysis of Sec. II D to obtain
the relativistic analog spacetime. If on the other hand,
g3 = 0, then at long wavelengths we can apply the anal-
ysis of Sec. II E to obtain the nonrelativistic Newton-
Cartan analog spacetime. Nevertheless, it is instructive
to instead follow Ref. [49, 50], and directly employ the
BdG equations when determining the consequences of
the changing spacetime structure. This is because the
BdG equations provide us with a single unified descrip-
tion with which we may capture both phases, as well as
the transition between them.

The BdG equations are obtained as the Euler-Lagrange
equations of Lagrangians Lφ,Lζ and are most transpar-
ently expressed in terms of the Nambu spinors

Φ0 =

(
φ
φ∗

)
, Φ3 =

(
ζ
ζ∗

)
(59)

for condensate and spin wave fluctuations, respectively.
We then find the BdG equations K̂0Φ0 = 0, and K̂3Φ3 =
0, with the BdG differential operators

K̂0 = τ3 (i∂t + ivs · ∇) +
1

2mρ
∇ · ρ∇τ0 − g0ρ (τ0 + τ1)

K̂3 = τ3 (i∂t + ivs · ∇) +
1

2mρ
∇ · ρ∇τ0 − g3ρ (τ0 + τ1) ,

(60)
written in terms of the Nambu particle-hole Pauli matri-
ces τa. Let us emphasize that the only difference between
K̂0 and K̂3 is the coupling constant appearing in front
of the τ0 + τ1 term. For sound waves it is g0, while for
the spin waves it is g3. Thus, both Goldstone modes end
up coupling to the same background condensate density
and velocity, albeit with different speeds of sound. Sound
waves end up propagating with the local group velocity

c0(x) =

√
g0ρ(x)

m

while the spin waves have the local group velocity

c3(x) =

√
g3ρ(x)

m
.

Thus, we see that the coupling g3 allows us to inde-
pendently tune the two speeds of sound relative to each
other.

For generic values of g3 > 0 and arbitrary condensate
flows we cannot find quantum numbers with which we
can diagonalize K̂3. However, at the SU(2) symmetric
point g3 = 0 we observe that the BdG kernel for spin
waves obeys

K̂3 = τ3 (i∂t + iv · ∇) +
1

2mρ
∇ · ρ∇τ0 ⇒

[
τ3, K̂3

]
= 0.

Since τ3 now commutes with the kernel, the two compo-
nents of the BdG spinor decouple and each independently
obeys a Galilean-invariant dispersion relation. This also
results in an additional U(1) symmetry generated by τ3
which imposes a selection rule for the allowed Bogoliubov
transformations. In particular, there is no matrix ele-
ment which scatters a “particle-like” Bogoliubov quasi-
particle into a “hole-like” particle. this process is the
one responsible for Hawking radiation and as such we
find, counter-intuitively, that it is impossible to gener-
ate Hawking radiation in the Newton-Cartan spacetime
despite the fact that all flow velocities vs are now super-
sonic. This is explicitly demonstrated for the case of a
step-like horizon, which we analyze in the following sec-
tion.
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IV. STEP-LIKE HORIZON

In order to get a more quantitative understanding of
how the changing spacetimes affect observable physics,
we imagine a specific flow profile and use the BdG equa-
tions to solve for the spin-wave scattering matrix. We
imagine a quasi-one-dimensional stationary condensate
flow with a superfluid density and velocity which obeys
∂tρ = ∂tvs = 0. The continuity equation for the conden-
sate then implies

∂x(ρvs) = 0⇒ ρ(x)vs(x) = const. (61)

The local speed of sound for the spin-waves (henceforth

simply written as c) is therefore c(x) =
√
g3ρ(x)/m.

To further simplify calculations, we consider the case
of a step-like profile for ρ(x), v(x) of the form

ρ(x) =

{
ρl x < 0

ρr x ≥ 0

v(x) =

{− |vl| x < 0

− |vr| x ≥ 0.

(62)

Note that continuity requires vlρl = vrρr ⇔ vlc
2
l = vrc

2
r.

In this work we adopt the convention that v is negative,
so that the condensate flows from the right to the left.
With this set-up, we can employ the BdG techniques
usually used for phonon modes to these spin waves [49,
50].

This step-like potential has the advantage that away
from the jump, momentum eigenstates solve the BdG
equations, and the scattering matrix reduces to a simple
plane-wave matching condition at the boundary. The de-
tails of this procedure may be found, e.g. in Appendix B.
Here we simply discuss the results of the calculation. We
start by considering g3 > 0 to be large and then decrease
down to zero. As we do so, while keeping the flow profile
fixed, we pass through three regimes.

The first regime occurs for large g3 so that cl > |vl|
and cr > |vr|. Thus, there is no sonic horizon and no
Hawking radiation.

Eventually as we continue decreasing g3 we enter the
regime where |vr| < cr but cl < |vl|. This exhibits a sonic
horizon at x = 0 and is thus accompanied by Hawking
radiation.

Finally, we reach the regime where |vl| > cl and |vr| >
cr. This is a novel regime wherein both the interior and
exterior of the jump are supersonic. However, due to
the non-linear Bogoliubov dispersion, there are still some
short-wavelength modes for which one or both sides of
the flow are not supersonic (this is due to the convex
dependence of the group-velocity on momentum). Thus
there is still Hawking radiation, however we find that as
we decrease g3 further, the total “flux” of modes which
are emitted decreases until we recover the result that at
g3 = 0 there is no radiation at all.

To see this, we define the “total number of Hawking
modes” at a given frequency to be N(ω) (see Eqs. (B20)
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FIG. 2. The total luminosity due to the Hawking radiation for
a fixed density profile ρ(x) and velocity profile v(x). We see
that there is no Hawking radiation when cr is sufficiently large
so that cl > vl (recall these are constrained by the continuity
equation). When cl < vl but cr > vr we get a region of
subsonic flow that flows into a supersonic region and we begin
seeing traditional Hawking radiation. As we further tune g3,
cr drops below vr and both regions become supersonic at low
frequencies. Evidently, there is still a channel for Hawking
radiation emission as seen by the non-zero integrated flux.
However, as cr drops to zero this channel closes, vanishing
precisely at the quantum phase transition into the Newton-
Cartan geometry (cr = 0 = g3). In this plot, vl = 1.3, vr =
0.9, m = 10, and ρ(x)v(x) = 1.

and (B22)). This is obtained by calculating the “Hawk-
ing” element of the scattering matrix for the BdG equa-
tions. From N(ω) we can then define the total “luminos-
ity” [51] leaving the horizon by

LH =

∫ ∞
0

dω
ω

2π
N(ω). (63)

Note that in the conventional black hole case, N(ω) is
the number of photons at frequency ω seen at asymptotic
infinity and thus this is simply the number flux per unit
frequency of the radiation.

The upshot is given by Fig. 2 which plots LH as a func-
tion of (cr/vr)

2 = g3ρr/mv
2
r . Thus, for fixed flow density

and velocity, this is essentially plotting as a function of
the control parameter g3. We see the three distinct re-
gions and importantly at g3 = 0 we see the Hawking
effect vanish.

To understand this effect, we consider the dispersion
relation of the waves away from the horizon, for which
momentum is a good quantum number. In the right and
left half-spaces we have the relations

(ω − vαk)2 = c2αk
2 +

k4

4m2
, (64)

where α = l, r for the left and right regions respectively.
This relates the lab-frame frequency of a wave ω to the
lab-frame momentum k. This dispersion relation is plot-
ted in Figs. 3 and 4. Due to the presence of a disconti-
nuity at x = 0 modes with different momenta mix and
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only ω can be fixed globally. Thus, the dispersion rela-
tion is to be solved by finding the allowed momenta at
each fixed lab-frame frequency. This amounts to finding
the roots of a quartic polynomial with real coefficients,
and as such there are always four solutions (which are
either real or complex conjugate pairs). The real mo-
menta represent propagating modes while we later find
that the complex roots describe evanescent modes local-
ized around the horizon.

A. Subsonic-Supersonic Jump

First, we consider the case of a jump between a sub-
sonic and supersonic flow, depicted graphically in Fig. 3.
In this case, we recover the well-known result that there
is Hawking radiation emitted. The dispersion relation in
each half-plane is plotted and intercepts with a constant
ω > 0 are found. These intercepts yield the momenta of
the propagating modes in each region for the given fre-
quency. Each curve is depicted with a color indicating
the sign of the group velocity in the co-moving frame,
which is what is used to distinguish between “particle-
like” (red) and “hole-like” (blue), in accordance with the
BdG norm (see Appendix B and in particular Eq. (B3)
for definition). We see that the outgoing Hawking mode
(combined with an evanescent piece at the horizon) is
connected to three incoming waves, one of which is a
negative norm state originating from the interior of the
horizon. This particle-hole conversion processes is the
origin of the Hawking effect, as this induces a Bogoli-
ubov transformation which connects the vacuum of the
asymptotic past to a one-particle state in the asymptotic
future (and vice-versa).

We see that due to the convex non-linear Bogoliubov
dispersion relation, there is a maximum frequency of the
emitted Hawking radiation obtained by finding the lo-
cal maximum of the negative norm dispersion relation.
Above this frequency, the flow is no longer supersonic
since the group velocity of modes depends non-trivially
on the frequency.

B. Supersonic-Supersonic Jump

As we decrease g3 beyond a critical value the sys-
tem enters a parameter regime where both sides of the
jump are supersonic flows. In this case, the dispersion
relation still exhibits a Hawking-like region, as we see
in Fig. 4. However, we also see a new region emerge
at low energies (labeled “super-Hawking” in the figure)
in which now both a positive and negative norm mode
can be scattered into. This opens a new channel in
the scattering matrix which leads to a reduction in the
amplitude for scattering into the Hawking channel, as
per generalized unitarity constraints. This is seen in
Fig. 5, which compares N(ω) for the case of a subsonic-
supersonic (red) and supersonic-supersonic jump (blue).

Hawking region

x=0 x

Hawking
Evanescent

Time Positive Norm
Negative Norm

FIG. 3. The Hawking effect for g3 such that cr > vr and
cl < vl (sub-sonic to super-sonic). In this situation, one side
(left) flows faster than the speed of some excitations, and the
other side (right) flows slower than the speed of any excita-
tion. The dashed line represents the constant lab frame en-
ergy ω. The mode that carries away energy from the horizon
is the “Hawking mode,” shown by the star marker. Tracing
this mode back in time (bottom of figure), we find that it
comes from a scattering process that includes positive (red)
and negative (blue) norm states. It is the negative norm state
to the left of the horizon that is responsible for particle cre-
ation in the Hawking channel. Notice that for frequencies
larger than those in the labeled “Hawking region,” there is no
Hawking effect due to lack of negative energy modes to have
scattered from at earlier times.

Both curves are qualitatively similar at high frequencies,
corresponding to the “Hawking” region of frequencies in
Figure 4. On the other hand, we see that at low ω, when
we have subsonic-to-supersonic flow, N(ω) diverges in
the universal thermal manner, while in the supersonic-
to-supersonic regime, there is a noticeable change in be-
havior between the Hawking and super-Hawking regimes,
cutting off this low ω divergence.

There are two effects occurring which are responsible
for decreasing the Hawking luminosity LH. First, in the
Hawking region the incoming negative norm states now
begin to more strongly backscatter into their correspond-
ing negative norm state, occupying the evanescent mode
on the right side of the horizon. Second, in this super-
Hawking region, the appearance of an outgoing negative-
norm mode provides an opportunity for the ingoing neg-
ative norm channel to avoid scattering into the positive
norm channel. We indeed find that the two channels be-
gin to decouple from each other, diminishing the amount
of Hawking radiation that can be produced.

C. Absence of Hawking Radiation for Type-II
modes

This takes us directly into the point where g3 = 0,
which exhibits the new Newton-Cartan spacetime ge-
ometry. One might expect that there should be some-



13
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FIG. 4. The Hawking effect for g3 such that cr < vr and
cl < vl (super-sonic to super-sonic). With both regions flow-
ing faster than the speed of excitations (relative to the hori-
zon), we still have a Hawking region, but now we also have a
“Super-Hawking” region where the positive and negative nor-
malization modes from both regions can scatter between one
another.
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FIG. 5. Hawking flux N(ω) as a function of frequency for
the subsonic-to-supersonic case (red) and the supersonic-to-
supersonic case (blue). As we approach the Heisenberg sym-
metric point g3 = 0, we find the Hawking flux disappears both
in its overall magnitude and singular behavior. The black
arrow indicates the onset of the “super-Hawking region” re-
sponsible for the absence of the singular distribution.

thing akin to a Hawking effect since some modes “see”
a horizon for any difference in |vl| and |vr|. However,
this horizon does not translate into a Hawking effect.
As explained earlier, at this point the BdG kernel K̂3

commutes with τ3. In terms of the BdG Lagrangian of
Eq. (58), we find that there is now a new global U(1)
symmetry ζ → eiϑζ. We can see explicitly from the BdG
analysis that this conserved charge density is given by

QBdG =

∫
d3x ρ|ζ|2.

On the other hand, by applying Noether’s theorem di-
rectly on the general Newton-Cartan action of Eq. (43),
in the limit where n0 is the only nonzero component of

nµ and the Lagrangian is independent of the x0, we find

QBdG =

∫
d3r
√
h|ψ|2. (65)

If we identify ψ = ζ and use the results of Eq. (46) we find
that these two indeed match each other. In particular,
Eq. (65) describes a conserved charge for the field ψ on
a curved manifold given by hµν .

Since, unlike the charge in Eq. (B3), this density is pos-
itive definite it can be genuinely interpreted as the num-
ber of BdG quasiparticles. This symmetry then imposes
a selection rule on the scattering matrix which prohibits
the scattering processes responsible for the Hawking pro-
cess, which leads to a creation of BdG quasiparticles.
This is evident if we see that when g3 = 0,[

i (∂t + v · ∇) +
1

2mρ
∇ · ρ∇

]
ζ = 0, (66)

and hence ζ and ζ∗ do not mix. Indeed, as Fig. 6 illus-
trates, though Hawking radiation is permissible by con-
servation of energy and momentum, as seen by the dis-
persion relation in Fig. 6, there is no permissible matrix
element for any scattering process which mixes positive
and negative norm modes. Thus, at low frequencies (be-
low the cutoff frequency on the right), negative norm
modes may be transmitted across the horizon but only
as outgoing negative norm modes. This is analogous to
the “super-Hawking” regime earlier, but since there is no
conversion between positive and negative norm modes,
there is no Hawking radiation effect.

Above the cutoff frequency on the right (in what we
refer to as the “regular Hawking regime”), all negative
norm modes incident from the interior of the horizon
must be reflected back. Even in this case, there is still a
finite penetration of the negative norm state across the
event horizon in the form of an evanescent mode which is
decaying away from the horizon, as originally predicted
in Ref. [49]. In fact, this evanescent tail is also present
when g3 > 0, but now it is not accompanied by any
other outgoing mode. Again, let us emphasize that this
evanescent mode is associated with a negative norm mode
and therefore does not couple to positive norm modes.
Thus, it cannot be spontaneously excited from the in-
going vacuum. Ultimately, as the negative norm mode
must be reflected, all the amplitude which initially went
into the outgoing positive norm states when g3 > 0 is
now transferred into the reflected negative norm state
and the evanescent tail.

V. TRANSPORT IN NEWTON-CARTAN
GEOMETRY

In this section we take up the issue of energy transport
in systems exhibiting Newton-Cartan geometry. Build-
ing on Luttinger’s work on computing heat transport via
coupling to a gravitational field [38], there has been a
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FIG. 6. For g3 = 0 in the Newton-Cartan geometry there
is an excitation number conservation that protects negative
norm states from scattering into positive norm states and as
a result, if we scatter a negative norm state in what used to
be the “Hawking region,” we find it fully back scatters into
a negative norm state and leaks past the horizon only with
an evanescent tail characteristic to a “classically forbidden”
region.

well-established method of coupling systems to Newton-
Cartan geometry in order to extract their heat transport
properties [24, 30, 31, 39]. With these methods, we can
begin with the results in Sec. II E and find the stress
tensor Tµν , energy current εµ, and momentum density
pµ. However, as we have mentioned previously, we can
also reformulate the relativistic Lagrangian in Sec. II D in
terms of a Newton-Cartan geometry with an additional
external field. Therefore, in the bulk of this section, we
make that precise and use the energy transport machin-
ery to relate the relativistic stress-energy tensor of Type-I
modes to its non-relativistic counterparts.

We begin by noting that the variations in the geometry
are not independent as they must satisfy the constraints
imposed by Newton-Cartan geometry that nµv

µ = 1 and
nµh

µν = 0. Parameterizing the variations so as to re-
spect these constraints is done by introducing the per-
turbations δnµ, δuµ and δηµν such that

δvµ = −vµvλδnλ + δuµ,

δhµν = −(vµhνλ + vνhµλ)δnλ − δηµν ,
(67)

where nµδu
µ = 0, and nµδη

µν = 0 so that δuµ and δηµν

are orthogonal to the clock one-form nµ.
To find the full Lagrangian it is useful to formally de-

fine a non-degenerate metric in the full spacetime by

gµν ≡ vµvν + hµν . (68)

Note that unlike relativistic metrics, this Newton-Cartan
has no invariant distinction between space-like and time-
like separations (simultaneity is a global concept imposed
by nµ). As gµν is non-degenerate, we may proceed to take
the inverse which is defined by

gµαg
αν = δνµ, (69)

where δνµ is the usual Kronecker delta. This also serves
to define the inverse of the degenerate metric hµν by

gµν ≡ nµnν + hµν . (70)

Note that the constraints on the geometry then imply
hµν obeys

hµσhσν = δµν − vµnν . (71)

The right hand side essentially acts to project onto the
manifold upon which hµν is not degenerate. These are
the “spatial” three-surfaces which are in some sense “iso-
temporal.”

Introducing g is helpful in particular because we then
find that if take the determinant g = det(gµν), we find

that
√
g = n0

√
h [52]. This is exactly the volume measure

of the Lagrangian Eq. (43). This assists in taking the
variation

δ[
√
g] =

√
g[vµδnµ + 1

2hµνδη
µν ]. (72)

We can then use the variations to find the stress tensor
Tµν , energy current εµ, and momentum density pµ via
[39]

δS =

∫
dd+1x

√
g
(

1
2T

µνδηµν − εµδnµ − pµδuµ
)
. (73)

Due to the constraints on δuµ and δηµν , these values of
pµ and Tµν are not unique. In fact, we can make any sub-
stitution pµ → pµ+anµ or Tµν → Tµν+bµvν+bνvµ. We
impose uniqueness by requiring pµv

µ = 0 and Tµνnν = 0.
Lastly, one can derive continuity equations for these
quantities by considering how these objects change under
a diffeomorphism (see Ref. [39]).

We now compute these quantities for both the Type-I
and Type-II modes. It is worth noting that these models
describe the free propagation of Goldstone modes and
thus are in a sense “non-interacting.” By this, we mean
there are no additional terms due to interactions [53].
For Type-II modes, the resulting transport quantities are
known [24, 30, 31, 54, 55]. We briefly recapitulate this
calculation here.

A. Energy transport for Type-II modes

We proceed to vary the Newton-Cartan geometry in
action Eq. (43). This straightforwardly yields the mo-
mentum density as

pµ = − i
2

[
ψ̄(∂µ − nµvα∂α)ψ − ψ(∂µ − nµvα∂α)ψ̄

]
.
(74)

The limit works out as expected: if we let nµ = (1,0) and
vµ = (1,0)T , only the spatial components survive and
we obtain the momentum current for a non-relativistic
theory with conserved density |ψ|2. Next, we compute
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the stress tensor, which describes the momentum flux.
We find

Tµν = − i
4v
α
[
ψ̄∂αψ − ψ∂αψ̄

]
hµν

+ 1
4m∂αψ̄∂βψ(hαµhβν + hανhβµ − hµνhαβ) (75)

and the energy current as

εµ = − 1
2m (∂αψ̄)(∂βψ)

[
vαhβµ + vβhαµ − vµhαβ

]
. (76)

Both have sensible flat-space limits as well.

B. Energy transport for Type-I modes

For Type-I modes, an analog relativistic theory
emerges from a nonrelativistic theory, and in both the
cases, we can compute energy densities, momentum den-
sities, and the stress-tensor. The objective of this section
is to compute how the quantities in the analog relativistic
system are related to their nonrelativistic counterparts,
motivated by the spacetime relations derived in Sec. II.

We have shown the Type-I modes can be thought of as
residing in a relativistic analog spacetime, equipped with
an analog metric tensor Gµν . If we vary with respect to
this tensor, we obtain a Lorentz-invariant stress-energy-
momentum tensor, T µν . Note Lorentz invariance con-
strains this to be symmetric, relating the energy current
and momentum densities to each other.

On the other hand, we have shown that one can obtain
the Type-I modes by gapping out one of the generators
of a Type-II mode. Thus, we can also consider vary-
ing the Newton-Cartan geometry that the Type-II mode
resides in before including a mass gap. This yields for
us the Newton-Cartan stress tensor, momentum density,
and energy current and provide for us a general rela-
tionship between the relativistic energy-momentum ten-
sor and the non-relativistic counterparts.

First, we return to Eq. (36) and rewrite the Lagrangian
in terms of the Newton-Cartan geometry prior to inte-
grating out the massive mode (recall that unlike a Type-
II mode, a Type-I mode is canonically conjugate to a
massive mode). We obtain

L =
√
g
(
− 2βvµ∂µφ− hµν

2m [∂µφ∂νφ+ ∂µβ∂νβ]

− 2mC2(x)β2
)
, (77)

where c2 = ρ2/dC2 is the speed of sound of the Gold-
stone mode (the factor of density essentially accounts for
the units of hµν). If we integrate out the massive mode
β in the limit where we can neglect the dispersion (i.e.
at long wavelengths), we recover the Type-I relativistic
Lagrangian

Leff =

√
g

2m

(
(vµ∂µφ)2

C2
− hµν∂µφ∂νφ

)
. (78)

From this, we can identify the relativistic metric Gµν by
observing that this Lagrangian must be of the form in

Eq. (6) such that

√
−GGµν =

√
g

m

(
vµvν

C2 − hµν
)
. (79)

This yields an equation relating the relativistic metric to
the Newton-Cartan object and the gap of the massive
mode. We find

Gµν = (mC)−
2
d−1

(
C2nµnν − hµν

)
,

Gµν = (mC)
2
d−1

(
vµvν

C2 − hµν
)
,

(80)

where d is the spatial dimension. As we can see, the rel-
ativistic metric depends crucially on the potential C(x).

This is helpful since, on the one hand, we can easily
obtain the stress-energy tensor in the relativistic theory
by varying δGµν . On the other hand, we can use the
above formulae to connect this result to the actual stress
tensor and energy current/momentum density of the non-
relativistic model. In particular,

δGµν = (mC)
2
d−1 [(vµhνλ + vνhµλ − 2 v

µvν

C2 vλ)δnλ

+ 1
C2 (vµδνλ + vνδµλ)δuλ + δηµν ]. (81)

Thus, we can directly relate the relativistic energy-
momentum tensor Tµν to its non-relativistic counterparts
by expanding

δS =

∫
dd+1x 1

2

√
−GTµνδGµν (82)

in terms of the geometric objects in the NC geometry.
Doing so, we obtain

Tµν = 1

m(mC)
4
d−1

(δµα − nαvµ)T αβ(δνβ − nβvν),

ελ = 1

m(mC)
2
d−1

vµT λ
µ ,

pλ = − 1
mC2 (Tλµvµ − vµTµνvνnλ).

(83)

where the indices on T µν and T λ
µ are raised with Gµν

while all Newton-Cartan objects use the metric gµν . Ig-
noring the factors in front of these expressions, one can
think of vν as a timelike vector with respect to the metric
Gµν . In this case, vµ is directly related to the field of the
fluid flow and the object Eλ ∝ vνT λ

µ is the energy cur-
rent measured by an observer comoving with that flow
(not the lab observer). By the same token Pλ ∝ Tλνvν
is the momentum density measured by the comoving ob-
server as well. Relativistically, these are strictly related
Eλ = GλµPµ. However, momentum is imposed by the
underlying non-relativistic field theory to be orthogonal
to flow vλpλ = 0. The form of pλ that accomplishes
this includes the comoving energy density vµTµνvν and
subtracts it off. Lastly, Tµν is directly related to T αβ
projected to live only on spatial slices nµT

µν = 0, again
as imposed by the underlying non-relativistic theory.

In effective, relativistic, analog systems, there is a pre-
ferred (lab) frame that is captured by the Newton-Cartan
geometry (in particular nµ specifies the lab frame’s
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“clock”). This preference is hidden in the high fre-
quency dispersion of the type-I modes and, as we have
shown here, results in non-trivial momentum currents
and stress-tensors.

As a particular example, a Hawking flux against the
flow in an analog system should result in a real energy
and momentum current away from the analog black hole.
Far from the horizon (considering the effective 1+1D
problem where the other two spatial dimensions are triv-
ial) we obtain

Tµν =

(
TH −TH

−TH TH

)
, (84)

for a constant TH [56] (for the radiation flowing to +∞).
If we apply this to the above, and assume that at +∞
we have no velocity so that vµ = (v0,0) and a flat hij =

δij/h
1/3
0 , we have

T xx = 1

mh
2/3
0

TH,

ελ = v0

m TH

[
(v0)2

C2 , h
−1/3
0 , 0, 0

]
,

pλ = v0

mC2 TH[0, 1, 0, 0].

(85)

Importantly, we see that there is a finite energy current ε1

and momentum p1 away from the horizon; there is no p0

component due to the constraint pµv
µ = 0. While related

to what is computed relativistically, these quantities are
not exactly the same.

VI. DISCUSSION AND CONCLUSIONS

The primary result of this paper is establishing the con-
nection between the different types of Goldstone modes
and different types of analog spacetimes, as summarized
in Table I. This is done by revisiting the proof of the non-
relativistic Goldstone theorem and allowing for the possi-
bility of an inhomogeneous mean-field solution. We then
find that the conventional Type-I Goldstone modes come
equipped with an Einstein-Hilbert metric as appears in
general relativity while Type-II Goldstone modes couple
to a Newton-Cartan geometry. The geometry itself is
determined by the spacetime dependence of symmetry-
breaking mean-field—inhomogeneous symmetry break-
ing ultimately produces the non-trivial spacetime met-
ric. In this work we have restricted ourselves to the
case where only the overall U(1) symmetry is inhomo-
geneously broken. This corresponds to an overall con-
densate flow.

Another key result of this paper is establishing the con-
nection between quantum phase transitions and changes
in the nature of the spacetime. To elucidate this, we
present a simple model where the analog geometry can
be tuned by a single parameter. This drives a quan-
tum phase transition which accompanies the transition
between the Einstein-Lorentz geometry and Newton-
Cartan geometry. As the phase transition is approached,

the Hawking radiation produced by an event horizon
changes, as encapsulated in Fig. 2. One key result is
that the Newton-Cartan geometry exhibits no Hawking
radiation, even though all fluid flows are supersonic (the
group velocity of Goldstone modes vanishes at long wave-
lengths).

While Sec. III is a minimal theoretical model, the ex-
perimental system that most readily realizes these ge-
ometries are spin-1 condensates. In this case, for the
scattering lengths a0 and a2 (for s-wave collisions into
the spin-0 and spin-2 channels respectively), there are
two phases that break the spin SU(2) symmetry: a0 > a2

gives a ferromagnetic phase with one Type-II magnon
and a0 < a2 gives a polar phase (antiferromagnetic inter-
actions) with two Type-I magnons. Upon flow, these two
phases naturally realize the two different spacetimes de-
scribed here. In fact, 7Li, 41K, and 87Rb realize the ferro-
magnetic phase [25] with 87Rb specifically already being
used for Hawking-like experiments with the phonon mode
[14]. Additionally, 23Na realizes the polar phase and crit-
ical spin superflow has been studied [57] (necessary for
Hawking-like experiments). The magnon excitations in
these systems can be probed by observing correlations in
the spin-density, and the most basic proposal would be
to establish the vanishing Hawking radiation in the ferro-
magnetic phase. Though we assume that the spin state
is initially homogeneous, while the condensate is flow-
ing, this is a reasonable assumption provided that the
condensate can be initially prepared into the homoge-
neous spin-polarized ground state. Once this is achieved,
accelerating the condensate flow will not produce spin
currents and we will obtain the setup we envision in this
work [40, 41]. The progress in current spinor conden-
sate experiments highlights that these more exotic analog
spacetimes may already be in reach.

On a more abstract level, our work points to the deep
connection between the emergent geometry, codified by
the objects of the Newton-Cartan geometry, and the su-
perfluid state, characterized by the superfluid density
and current. Indeed, it seems that even in the pres-
ence of an enlarged internal symmetry group, such as the
SU(2)×U(1) symmetry of the system we consider here,
the spatial variations in the U(1) condensate phase play
a special role. Whereas non-trivial space-time textures
of the spin-components can generate extremely interest-
ing non-Abelian synthetic gauge fields (see App. A 1),
only the overall condensate phase can produces a non-
trivial analogue spacetime. In particular, it would be
interesting to study how the identification of the Newton-
Cartan velocity field vµ with the superfluid velocity vs
possibly leads to novel constraints or techniques for the
calculation of transport phenomena in superfluids, essen-
tially expanding upon the framework we have laid out in
Sec. V.

Finally, by considering the response of the Goldstone
modes to variations in the analog geometries, we relate
the analog stress-energy-momentum tensor in relativistic
geometries directly to their non-relativistic counterpart.
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This is summarized by the equations below, which shows
how the metric tensor in both analog spacetimes may be
constructed from the underlying geometric objects of the
Newton-Cartan geometry along with an additional field
C = C(x):

gµν = nµnν + hµν , Non-relativistic,

Gµν ∝ C2nµnν − hµν , Relativistic.
(86)

We also provide a direct connection between the energy
and momentum currents of an analog relativistic sys-
tem and the more fundamental Newton-Cartan geometry
which describes the lab-frame.

Within spinor Bose-Einstein condensates, there are
other phenomena to include such as inhomogeneous bro-
ken non-Abelian symmetry (including textures like spi-
ral magnetization, Bloch domain walls, and skyrmions)
and synthetic gauge fields. The construction presented
here also considers just the quadratic excitations, but
these Goldstone modes realize more complicated nonlin-
ear sigma models for which there is extra intrinsic ge-
ometry at play and would need to be incorporated into
a full theory of these excitations. This new analog also
raises questions of the so-called back-reaction effects of
quantum fields on the corresponding analog spacetime.
This has been studied in the relativistic case [8, 58], and
the non-relativistic case leaves us with the tantalizing
prospect of a system with a dynamical Newtonian grav-
ity. Finally, while in this work we exclusive focused on
the context of flowing spinor Bose-Einstein condensates,
the phenomenon should be more general. An interesting
future direction to pursue would be to try and extend
these results to include more diverse platforms including
electrons in solid-state systems, liquid Helium, supercon-
ductors, magnetic systems. The wide variety of systems
which exhibit symmetry-breaking means there is a wide
variety of systems which might exhibit this analog space-
time and its consequences.
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Appendix A: Calculating the fluctuation Lagrangian

In this section, we put all of the algebra and La-
grangian manipulation that we left out of Section II.

Our starting point is Eq. (1) upon substituting Ψ =
Ψ0 + δΨ where Ψ0 solves the Euler-Lagrange equations
Eq. (3) and δΨ can be written in terms of broken gener-
ators and massive fields Eq. (7).

Most of the simplifying algebra comes from g(σΨ, ξ) =
0 and integration-by-parts. To facilitate the integration
by parts, all equalities are be understood to be up to a full
derivative. Furthermore, by construction the linear terms
cancel, so we keep second-order terms only, indicated by
fluc
= .

To deal with the term linear in derivatives, we use the
object

f
←→
∂t g ≡ f(∂tg)− (∂tf)g, (A1)

and for simplicity we sometimes replace ∂tf with ḟ for
time derivatives. We further take advantage of the Ein-
stein summation convention (sum over indices is im-
plied). The first term we investigate is

i
2Ψ†
←→
∂t Ψ

fluc
= − i

2Ψ†0(σ
←→
∂t σ)Ψ0

+ i(−Ψ†0σξ̇ + ξ†σ̇Ψ0 + ξ†σΨ̇0)

− i
2Ψ†0σ

2Ψ̇0 + i
2 Ψ̇†0σ

2Ψ0. (A2)

Performing integration-by-parts on the Ψ†0σξ̇ term, we
get

i
2Ψ†
←→
∂t Ψ

fluc
= − i

2Ψ†0(σ
←→
∂t σ)Ψ0 + i(Ψ†0σ̇ξ + ξ†σ̇Ψ0)

+ iΨ̇†0( 1
2σ

2Ψ0 + σξ)− i( 1
2Ψ†0σ

2 − ξ†σ)Ψ̇0+ i
2ξ
†←→∂t ξ.

(A3)

The kinetic energy term takes the form

∂jΨ
†∂jΨ

fluc
= − 1

2∂jΨ
†
0σ

2∂jΨ0 − ∂jΨ†0σ∂jσΨ0 − ∂jΨ†0σ∂jξ − 1
2∂jΨ

†
0σ

2∂jΨ0 −Ψ†0(∂jσ)σ∂jΨ0 + ∂jξ
†σ∂jΨ0

−Ψ†0∂jσ∂jσΨ0 + ∂jξ
†∂jξ −Ψ†0∂jσ∂jξ + ∂jξ

†∂jσΨ0. (A4)
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We perform integration by parts on the two instances of − 1
2∂jΨ

†
0σ

2∂jΨ0 above in opposite ways to obtain

∂jΨ
†∂jΨ

fluc
= 1

2∇
2Ψ†0σ

2Ψ0− 1
2∂jΨ

†
0σ∂jσΨ0 + 1

2∂jΨ
†
0(∂jσ)σΨ0 + 1

2Ψ†0σ
2∇2Ψ0− 1

2Ψ†0(∂jσ)σ∂jΨ0 + 1
2Ψ†0σ(∂jσ)∂jΨ0

− ∂jΨ†0σ∂jξ + ∂jξ
†σ∂jΨ0 −Ψ†0∂jσ∂jσΨ0 + ∂jξ

†∂jξ −Ψ†0∂jσ∂jξ + ∂jξ
†∂jσΨ0. (A5)

If we further use integration by parts on −∂jΨ†0σ∂jξ and ∂jξ
†σ∂jΨ0, we obtain (after some reordering)

∂jΨ
†∂jΨ

fluc
= −Ψ†0∂jσ∂jσΨ0 − 1

2∂jΨ
†
0σ∂jσΨ0 + 1

2∂jΨ
†
0(∂jσ)σΨ0 − 1

2Ψ†0(∂jσ)σ∂jΨ0 + 1
2Ψ†0σ(∂jσ)∂jΨ0

+ ∂jξ
†∂jξ + ∂jΨ

†
0∂jσξ − ξ†∂jσ∂jΨ0 −Ψ†0∂jσ∂jξ + ∂jξ

†∂jσΨ0

+∇2Ψ†0( 1
2σ

2Ψ0 + σξ) + ( 1
2Ψ†0σ

2 − σξ)∇2Ψ0. (A6)

We observe that, along with Eq. (11), the equation of motion cancels the last lines in Eqs. (A3) and (A6) with the
first line of Eq. (11).

All together, we can combine these equations to get the full fluctuation Lagrangian

L fluc
= − i

2Ψ†0(σ
←→
∂t σ)Ψ0 + i(Ψ†0σ̇ξ + ξ†σ̇Ψ0)+ i

2ξ
†←→∂t ξ − 1

2m [− 1
2∂jΨ

†
0σ∂jσΨ0 + 1

2∂jΨ
†
0(∂jσ)σΨ0 − 1

2Ψ†0(∂jσ)σ∂jΨ0

+ 1
2Ψ†0σ(∂jσ)∂jΨ0 + ∂jξ

†∂jξ + ∂jΨ
†
0∂jσξ − ξ†∂jσ∂jΨ0 −Ψ†0∂jσ∂jξ + ∂jξ

†∂jσΨ0 −Ψ†0∂jσ∂jσΨ0]

− 1

2
ξ∗a

∂2V

∂Ψ†a∂Ψ†b

∣∣∣∣∣
0

ξ∗b − ξ∗a
∂2V

∂Ψ†a∂Ψb

∣∣∣∣
0

ξb −
1

2
ξa

∂2V

∂Ψa∂Ψb

∣∣∣∣
0

ξb. (A7)

We can now expand our fluctuations in terms of their fields σΨ0 = θnσnΨ0 and ξ = βnξn, and we obtain

L fluc
= − i

2Ψ†0[σm, σn]Ψ0θm∂tθn + 1
4mθm∂jθn(∂jΨ

†
0[σm, σn]Ψ0 −Ψ†0[σm, σn]∂jΨ0)

+ iβn∂tθn(Ψ†0σmξn + ξ†nσmΨ0) + 1
2mβm∂jθn(ξ†mσn∂jΨ0 − ∂jΨ†0σnξm + Ψ†0σn∂jξm − ∂jξ†mσnΨ0)

+ 1
2mΨ†0σnσmΨ0∂jθn∂jθm

+ i
2βm∂tβn(ξ†mξm − ξ†nξm) + i

2βnβm(ξ†m∂tξn − ∂tξ†mξn) + βm∂jβn(ξ†n∂jξm + ∂jξ
†
mξn)

− 1
2mξ

†
nξm∂jβm∂jβn − 1

2βnβm

[
ξ†n

∂2V

∂Ψ†∂Ψ†

∣∣∣∣
0

ξ∗m + ξTn
∂2V

∂Ψ∂Ψ

∣∣∣∣
0

ξm + 2ξ†m
∂2V

∂Ψ†∂Ψ

∣∣∣∣
0

ξn

]
. (A8)

The first three lines of Eq. (A8) lead to the Lagrangian presented in the text Eq. (12) while the last two lines represent
the massive modes neglected in the main text.

One can then easily check that once the full Lagrangian
in Eq. (34) is derived that the massive modes conjugate
to Goldstone modes no longer have the term that goes as
βm∂µβn, only keeping the kinetic term and mass matrix
(which we diagonalize to find the type-I basis states).

1. Spin textures

To incorporate spin textures into this theory, we need
to make a looser assumption on our mean-field state. In
this situation, we allow for the broken generators to de-
pend on space and this can be easily accomplished with
the introduction of a new field Aµ(x) ∈ g(x)/(u(1)×h(x))
such that the mean field satisfies

Ψ0(x) =
√
ρ(x)eiϑ(x)χ(x), χ(x)†χ(x) = 1,

∂µχ(x) = Aµ(x)χ(x), (A9)

and in terms of the (spatially-dependent) broken gen-
erators Aµ(x) = θj(x)σj(x). As a concrete exam-
ple, consider a simple spin-wave in two-dimensions such
that χ(x, y) = eiSxxeiSyyχ0, then Ax(x, y) = iSx and
Ay(x, y) = cos(x)iSy − sin(x)iSz. Aµ(x) represents in-
finitesimal spin-rotations in the dxµ direction. The re-
moval of the U(1) subgroup from G/H corresponds to
the generator iI which is accounted for with the phase
ϑ(x). We separate out phase and density since this gen-
erator is always broken for a nonzero mean-field, and its
explicit relation to fluid flow leads to implications for
Galilean boosts; in particular, the gradient of ϑ(x) is ex-
actly related to fluid velocity.

The field Aµ(x) helps us to determine the spatial de-
pendence of the broken generators. To understand this,
the definition of an unbroken generator is that it must
annihilate the mean-field

τa(x)χ(x) = 0, (A10)
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and by taking a derivative, one can show that τa(x) (and
hence σb(x)) obey the unitarity-preserving differential
equations

∂µτa(x) = [Aµ(x), τa(x)],

∂µσb(x) = [Aµ(x), σb(x)].
(A11)

We further need to define the (spatially-independent)
structure constants, for which we have

[τa(x), τb(x)] = hcabτc(x),

[σa(x), τb(x)] = g̃cabτc(x) + gcabσc(x),

[σa(x), σb(x)] = f̃ cabτc(x) + f cabσc(x).

(A12)

To define a covariant derivative for the Goldstone
modes, we write Aµ(x) = Anµ(x)σn(x) and σ = iθ0(x) +
θn(x)σn(x) (sum over n, from 1 to the number of broken
generators) and evaluate

(∂µσ)Ψ0 = (i∂jθ0 + [∇jθ]nσn)Ψ0 (A13)

where we have defined the covariant derivative

[∇µ]mn ≡ δmn ∂µ +Abµ(x)fmbn, (A14)

and we use the shorthand [∇µθ]m ≡ [∇µ]nmθn.

This gives us enough to deal with the first term in
Eq. (A7)

− i
2Ψ†0(σ

←→
∂t σ)Ψ0 = − i

2ρχ
†[σm, σn]χ θm[∇tθ]n. (A15)

Just as before, the matrix Λmn ≡ − i
2χ
†[σm, σn]χ is play-

ing a central role, but the existence of the non-abelian
covariant derivative makes it impossible to use it to label
the fields θn as type-I or type-II without further struc-
ture (we return to this below). Furthermore, Λmn = f0

mn

is spatially independent.
Moving on, we can evaluate the following terms in the

Lagrangian Eq. (A7)

− 1
2∂jΨ

†
0σ∂jσΨ0 + 1

2∂jΨ
†
0(∂jσ)σΨ0 + c.c. =

2iρ∂jϑθn[∇jθ]mχ†[σn, σm]χ− 2ρθn[∇jθ]m(νbf
b
nmA

b
j)

+ ρθnθqA
b
j f̃
m
bqA

c
jg
n
cmνn (A16)

where we have defined νn > 0 via ψ†0{σn, σm}ψ0 =
−2νnδnm [this is just the inner product we defined in
Eq. (B3)]. While the distinction between mode types is

less clear, we can still use ψ†0[σn, σm]ψ0 to break up gener-
ators into Type-I and Type-II just as we did in Sec. II B.
For Type-I generators νn = µn and for Type-II νn = λn
[see Eq. (29)]. Next, we note that

−Ψ†0∂jσ∂jσΨ0 = ρ∂jθ0∂jθ0 + ρ[∇jθ]n[∇jθ]nχ†σnσnχ.
(A17)

Lastly, we need to take into account the terms that couple
massive modes with Goldstone modes. In this situation,
it is useful to begin to separate Type-I generators from
Type-II

− ξ†∂jσ∂jΨ0 + ∂jΨ
†
0∂jσξ + ∂jξ

†∂jσΨ0 −Ψ†0∂jσ∂jξ = −4ρ∂jϑβ0∂jθ0 + 2ρβn∂jθ0(χ†Ajσ
I
nχ+ χ†σI

nAjχ)

+ 2ρβ0[∇jθ]n(χ†Ajσnχ+ χ†σnAjχ)− 2ρ∂jϑβn[∇jθ]m(χ†σI
nσmχ+ χ†σmσ

I
nχ) + iρ[∇jβ]n[∇jθ]mχ†[σn, σm]χ

− iρβn[∇jθ]m(χ†Ajσ
I
nσmχ+ χ†σmσ

I
nAjχ+ χ†Ajσmσ

I
nχ+ χ†σI

nσmAjχ). (A18)

We can add all of these terms together and use − i
2χ
†[σn, σm]χ = λnδmn̄ = Λnm to obtain our effective Lagrangian

for Goldstone modes

Leff = ρ
1

2
θnΛnm[Dtθ]m −

1

2m
ρ[∇jθ]n[∇jθ]n −

1

2m
ρ[∇jβ]n[∇jβ]n − ρM2

mnβnβm − ρF2
nmθnθm + 2ρβ0Dtθ0

− 1

2m
ρ∇jθ0∇jθ0 + 2ρµnβn[Dtθ]n −

1

2m
ρθn[∇jθ]mΩj,nm +

2

m
ρβ0A

n
j [∇jθ]nνn + 2

mρβnA
n
j ∂jθ0µn

− ρ

2m
βn[∇jθ]mXj,nm −

1

m
ρfqbnβqA

b
jΛnm[∇jθ]m, (A19)

where Ωj,nm = −2νbf
b
nmA

b
j ,

Xj
nm = −i(χ†AjσI

nσmχ+ χ†σmσ
I
nAjχ+ χ†Ajσmσ

I
nχ+ χ†σI

nσmAjχ),

and F2
nm = Abj f̃

m
bqA

c
jg
n
cmνn +Abj f̃

m
bnA

c
jg
q
cmνn, with no sum over n on the right. We can now introduce Newton-Cartan

geometry as we did before, and by absorbing factors of the density into terms appropriately, the Lagrangian takes the
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form

Leff = n0

√
h(2β0v

µ∂µθ0 −
hµν

2m
(∂µθ0∂νθ0 + ∂µβ0∂νβ0)

+ 2ρµnβnv
µ[∇µθ]n + θnΛnmv

µ[∇µθ]m −
1

2m
hµν{[∇µθ]n[∇νθ]m + [∇µβ]n[∇νβ]m)} − M̃2

mnβnβm

− F̃2
mnθnθm −

hµν

2m
θnΩµ,nm[∇νθ]m +

2hµν

m
β0A

n
µ[∇νθ]nνn −

hµν

2m
βnXµ,nm[∇νθ]m −

hµν

m
fqbnβqA

b
µΛnm[∇νθ]m).

(A20)

There are now new fields that encode the effect of the spin texture. The major structural difference though is the
introduction of a covariant derivative ∇j with a non-Abelian, artificial gauge field. This is the usual artificial gauge
field discussed in the cold atomic context [59] and represents the natural generalization of that concept to analog
curved spaces: all derivatives become covariant in the natural way. We speculate that the extra terms (new fields)
might be able to be folded back into a new geometry, especially if we place restrictions on the allowable spin-texture,
but we leave that exploration to future work.

Importantly, this shows that the Newton-Cartan formalism can accommodate spin-textures with a defined covariant
derivative but at the cost of added fields and masses.

Appendix B: Bogoliubov Theory for Hawking
Emission

As per Eq. (60), the magnon field (written in terms of
the complexified spinor Φ3(x) = (ζ, ζ∗)T ) obeys the BdG
equation[
iτ3D̂t +

1

2mρ
∇ · ρ∇− g3ρ (τ0 + τ1)

]
Φ3(x) = 0, (B1)

written in terms of the co-moving frame material deriva-
tive D̂t = ∂t + vs · ∇.

Before proceeding, there are two properties of this
equation that prove useful. First is the charge conju-
gation symmetry: if Υ solves Eq. (B1), then so does

Υ ≡ τ1Υ∗. (B2)

In particular, this is important since the Nambu spinor
should obey the self-conjugate property that Φ3 =
(ζ, ζ∗)T = Φ3. Thus, it is important that this is respected
by the equations of motion, which we see it is.

Furthermore, provided the density ρ(x) is time inde-
pendent, we can define the conserved pseudo-scalar prod-
uct on the solution space

(Υ1,Υ2) ≡
∫
ddr ρ(r)Υ†1(r)τ3Υ2(r). (B3)

This scalar product has a number of useful features in-
cluding that the charge conjugation operation changes
the sign, so that

(Υ1,Υ2) = −(Υ2,Υ1). (B4)

We use this pseudo-inner product to define a notion of
norm for solutions. Because of the τ3, this is not the usual
L2(Rd) norm, and in fact is not a norm at all since it is
not positive semi-definite. There are non-trivial negative
norm states which we loosely refer to as “hole-like” states,

in contrast to the “particle-like” solutions with positive
norm. As remarked earlier, hole-like solutions can be
related to particle-like solutions by charge conjugation
since if Υ has negative norm we find

(Υ,Υ) < 0⇒ (Υ,Υ) > 0.

To proceed further, we utilize the (assumed) time-
independence of the kernel to further separate the so-
lution Υ(x) = Υ(r, t) into energy eigenmodes

Υ(x) =

∫
dω

2π
Wω(r)e−iωt, (B5)

where Wω(r) = [Uω(r), Vω(r)]T is a two-component
spinor which obeys the eigenvalue problem[
ω + ivs · ∇+

1

2mρ
∇ · ρ∇τ3 − g3ρ (τ3 + iτ2)

]
Wω(r) = 0.

(B6)
We refer to [9, 49] for more details of solving this system.
What is important for our discussion are the details of
the dispersion relation, which are used to analyze the
asymptotic scattering states at spatial infinity.

We now focus on the case of a one-dimensional homo-
geneous flow. In this case both the momentum k and
lab-frame frequency ω are good quantum numbers and
obey the standard Bogoliubov dispersion relation (using
that mc2 = g3ρ) of

ω = vsk ±

√
c2k2 +

(
k2

2m

)2

≡ ω±(k), (B7)

where the last equality is used to define the lab frequency
ω±(k). At a particular frequency ω > 0, we may deter-
mine which scattering states are available by finding the
real momenta k which obey ω = ω±(k).

Considering a step-like variation in the flow, the flow
profile is as given in Eq. (62). For x < 0 and x > 0 the so-
lutions to the BdG equations are still plane-waves which
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obey the Bogoliubov dispersion relation, albeit with dif-
ferent parameters ρ and v. These two dispersion relations
are shown Figs. 3 and 4 for fixed values of the condensate
velocities |vl| > |vr| and densities ρl, ρr.

Instead of the lab frame, we may measure frequency
with respect to the frame co-moving with the fluid flow.
This is implemented by Doppler shifting to the (positive)
comoving frequency

Ω(k) ≡
√
c2k2 + k4

4m2 , (B8)

so that ω±(k) = vk ± Ω(k) (vk amounts to a Galilean
boost).

For |v| < c (right dispersion in Fig. 3), there are only
two real-momenta at any positive frequency, which cor-
respond to a right- and left-moving quasiparticle. For
|v| > c (left dispersion in Fig. 3) a new scattering chan-
nel opens whereby a wavepacket with negative free-fall
frequency [ω−(k)] may have positive lab-frame frequency
ω.

We find the eigenfunctions for the step potential by
employing matching equations at the step. These impose
the continuity requirements

[Wω(x)]
x=0+

x=0− = 0

[ρ∂xWω(x)]
x=0+

x=0− = 0.
(B9)

Additionally, we choose them to satisfy (Wω,Wω) = 0
and can be normalized such that (Wω,Wω) > 0 if ω =
ω+(k) (positive comoving frequency) and (Wω,Wω) < 0
if ω = ω−(k) (negative comoving frequency).

Combining all of this, we can express the full solution
in terms of positive-frequency components only via

Φ3(x, t) =

∫ ∞
0

dω

2π

∑
α

[
A(Wωα)Wωα(x)e−iωt

+A∗(Wωα)Wωαe
+iωt

]
, (B10)

where the A(Wω,α) are the Fourier coefficients of the ex-
pansion and α is a set of quantum numbers which are

used to label the different degenerate modes at each en-
ergy ω > 0. At this point, we can second quantize the
system and promote Υ to an operator. In such a case,
the operator equation looks like

Υ̂(x, t) =

∫ ∞
0

dω

2π

∑
α

[
a(Wωα)Wωα(x)e−iωt

+ a†(Wωα)Wωαe
+iωt

]
, (B11)

where now a(Wωα) are operators satisfying

[a(Wωα), a†(Wω′α′)] = (Wωα,Wω′,α′). (B12)

All Wωα are orthogonal with respect to this inner prod-
uct, and so a(Wωα) is either a creation or annihilation
operator based on the sign of the norm.

The system may be exactly solved when the flow is
homogeneous, in which case the momentum k is also a
good quantum number. Assuming a solution of the form

Wω(x) = wke
ikx

produces the momentum space eigenvalue problem[
ω − vk − 1

2m
k2τ3 − g3ρ (τ3 + iτ2)

]
wk = 0. (B13)

In principle, the momentum k depends in the energy ω,
but we usually suppress this dependence for brevity.

To evaluate (Wωα,Wω′α′), we establish a couple of
facts. If we let wk = [uk, vk]T , then we have

mc2vk =

(
±Ω(k)− k2

2m
−mc2

)
uk, (B14)

and hence

m2c4|vk|2 =

{
m2c4 ∓ 2Ω(k)

[
mc2 +

k2

2m
∓ Ω(k)

]}
|uk|2,

(B15)
this relation between |uk|2 and |vk|2 allows us to evaluate

(Wωα,Wω′α′) = ±Ω(k)
2ρ

m2c4

[
mc2 +

k2

2m
∓ Ω(k)

]
|uk|2δαα′δ[kα(ω)− kα′(ω′)]

= ±Ω(k)
2ρ|vg|
m2c4

[
mc2 +

k2

2m
∓ Ω(k)

]
|uk|2δαα′δ(ω − ω′).

(B16)

The term in brackets mc2 + k2

2m − Ω(k) > 0, so the sign
of the normalization depends exclusively on whether we
have positive (+Ω(k)) or negative (−Ω(k)) comoving fre-
quency. The terms with negative comoving frequency
(or negative norm) are represented by the blue curves in

Figs. 3 and 4.

We can now perform the Hawking calculation to deter-
mine the Bogoliubov transformation giving rise to exci-
tation production. This is presented first in Fig. 3, where
we consider a wavepacket moving away from the horizon
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to +∞ and frequency ω, this is the Hawking mode. If
we trace it back in time, it was related to a scattering
process at the horizon itself, so in terms of three other
positive frequency modes

WH = αRWR,1 + αLWL,2 + βLWL,1, (B17)

where WH includes the far propagating right-moving
mode along with the evanescent near horizon solution,
WR,1 is the left-moving mode on the right, and WL,(1,2)

are the right-moving modes on the left (counted left-to-
right in Fig. 3). This immediately gives us how to re-
late the creation operators of the out-vacuum to the in-
vacuum

a(WH) = αRa(WR,1)+αLa(WL,2)+βLa
†(WL,1). (B18)

This implies that for WH at a particular frequency ω,
we can find the number of Hawking modes leaving the
horizon by considering the expectation value

〈0in|a(WH)†a(WH)|0in〉 = |βL|2(WL,1,WL,1). (B19)

With the proper normalization and putting back in the
dependence on frequency, the number of particles leaving

the horizon at frequency ω is

N(ω) = |βL(ω)|2 (WL,1(ω),WL,1(ω))

(WH(ω),WH(ω))
. (B20)

This same analysis can be done for the supersonic-to-
supersonic case presented in Fig. 4. For lack of a better
term, we call the region where there are multiple positive
and negative norm channels the “super-Hawking” region.
In this case, we have two modes in the Hawking process
that need to be backwards scattered: one positive norm
and the other negative norm. The result of the scattering
process is

WH = βRWR,1 + αRWR,2 + βLWL,1 + αLWL,2,

WH′ = α′RWR,1 + β′RWR,2 + α′LWL,1 + β′LWL,2.

(B21)

These equations can be similarly related to a Bogoliubov
transformation, and we can find the number of Hawking
particles leaving the horizon at frequency ω by consider-
ing

N(ω) = |βL(ω)|2 (WL,1(ω),WL,1(ω))
(WH(ω),WH(ω)) + |βR(ω)|2 (WR,1(ω),WR,1(ω))

(WH(ω),WH(ω)) + |β′L(ω)|2 (WL,2(ω),WL,2(ω))
(WH′ (ω),WH′ (ω)) + |β′R(ω)|2 (WR,2(ω),WR,2(ω))

(WH′ (ω),WH′ (ω)) .

(B22)
Despite there being more terms, there is generally less of a Hawking flux due to a decoupling of the negative and
positive norm channels as we can see in Fig. 2.
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[13] Seok-Yeong Chä and Uwe R. Fischer, “Probing the Scale
Invariance of the Inflationary Power Spectrum in Ex-
panding Quasi-Two-Dimensional Dipolar Condensates,”
Phys. Rev. Lett. 118, 130404 (2017).

[14] Jeff Steinhauer, “Observation of self-amplifying Hawking



23

radiation in an analogue black-hole laser,” Nat. Phys. 10,
864–869 (2014); “Observation of quantum Hawking ra-
diation and its entanglement in an analogue black hole,”
12, 959–965 (2016).

[15] U. Leonhardt and P. Piwnicki, “Relativistic Effects of
Light in Moving Media with Extremely Low Group Ve-
locity,” Phys. Rev. Lett. 84, 822–825 (2000).
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