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We consider the implementation of two-qubit gates when the physical systems used to realize the
qubits possess additional quantum states in the accessible energy range. We use optimal control
theory to determine the maximum achievable gate speed for two-qubit gates in the qubit subspace of
the many-level Hilbert space, and we analyze the effect of the additional quantum states on the gate
speed. We identify two competing mechanisms. On one hand, higher energy levels are generally more
strongly coupled to each other. Under suitable conditions, this stronger coupling can be utilized
to make two-qubit gates significantly faster than the reference value based on simple qubits. On
the other hand, a weak anharmonicity constrains the speed at which the system can be adequately
controlled: according to the intuitive picture, faster operations require stronger control fields, which
are more likely to excite higher levels in a weakly anharmonic system, which in turn leads to faster
decoherence and uncontrolled leakage outside the qubit space. In order to account for this constraint,
we modify the pulse optimization algorithm to avoid pulses that lead to appreciable population of
the higher levels. In this case we find that the presence of the higher levels can lead to a significant
reduction in the maximum achievable gate speed. We also compare the optimal-control gate speeds
with those obtained using the cross-resonance/selective-darkening gate protocol. We find that the
latter, with some parameter optimization, can be used to achieve a relatively fast implementation of
the CNOT gate. These results can help the search for optimized gate implementations in realistic
quantum computing architectures, such as those based on superconducting circuits. They also
provide guidelines for desirable conditions on anharmonicity that would allow optimal utilization of
the higher levels to achieve fast quantum gates.

I. INTRODUCTION

Over the past two decades, superconducting qubits
have made remarkable progress towards the goal of con-
structing a large quantum computer [1–3]. As the su-
perconducting qubit technology matures, it becomes in-
creasingly important to optimize the various aspects of
their operation, such as their coherence times and gate
speeds. In particular, the question of speed limits can
be expressed as follows: what is the minimum amount of
time needed to implement a given quantum gate with the
minimum required fidelity, e.g. 99.9%, in a given setup?
There have been several studies on this topic for multi-
qubit systems, considering different scenarios as it relates
for example to the nature of the control parameters and
qubit-qubit interactions [4]. As a general rule, the speed
limit for a given two-qubit gate is determined by the two-
qubit coupling strength, with a linear proportionality re-
lation between coupling strength and gate speed.

Some superconducting qubit designs that have long
coherence times have weak anharmonicities. In other
words, the device used to realize the qubit has several
quantum states with comparable transition frequencies

between them. In the case of particularly weak anhar-
monicity, the lowest few energy levels are almost equally
spaced, and the device behaves almost as a harmonic os-
cillator. Hence, if one applies a drive signal that is tuned
to resonance with the transition between the two lowest
energy levels, which are used to encode the qubit states,
one must consider the possibility that the same drive sig-
nal will induce unwanted near-resonant transitions from
the qubit states to the higher levels. A careful analysis
of the quantum computer operation must therefore in-
clude the higher levels in the modeling of the physical
device. Our goal in this work is to investigate the effect
of these higher levels on the maximum achievable speed
of two-qubit gates.

It is worth mentioning here that weak anharmonicity
is not a new development in the field of superconducting
qubits. The phase qubit [5], which is one of the earli-
est superconducting qubit designs, is also weakly anhar-
monic. Another point to note is that although the higher
energy levels of weakly anharmonic qubits are generally
thought of as being detrimental to the operation of the
qubit, e.g. because of the possibility of unintentionally
driving the device outside the space of qubit states [6],
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the higher levels can be utilized to enable or enhance
certain qubit operations [7–13].

In order to determine the speed limits for two-qubit
gates, we use optimal control theory (OCT), which is a
powerful tool to find optimized pulses that can effect vari-
ous quantum computing tasks [14], such as two-qubit and
multi-level-system control [15–23]. In particular, by vary-
ing the pulse time and observing changes in the achiev-
able gate fidelity, one can use OCT to find the minimum
time needed to implement a given quantum gate, e.g. the
CNOT gate, with a given target fidelity. When dealing
with simple qubits, e.g. physical systems for which two
qubit states can be identified and manipulated with neg-
ligible leakage to other quantum states, OCT algorithms
can be applied directly and produce accurate results for
the speed limits on quantum gates.

Weakly anharmonic qubits have two properties that
complicate the application of standard OCT algorithms.
First, if we focus on performing information processing
in the qubit space, any unitary operator that implements
the desired operation in the qubit space is equally accept-
able, regardless of how the additional quantum states are
transformed. In other words, there are infinitely many
unitary operators that qualify as equally valid choices
for the target quantum gate. Another complication is
that higher levels of weakly anhamonic qubits are com-
monly more prone to decoherence and further leakage to
other quantum states. As a result, even if these states
are present and can be occupied at intermediate times
during the implementation of the quantum gate, it can
be desirable to avoid populating them as much as possi-
ble. The weaker the anharmonicity, the more important
this consideration becomes. In this work we implement a
modified version of an OCT algorithm with adjustments
designed to deal with these two complications.

The remainder of this paper is organized as follows:
In Sec. II we introduce the physical setup of two cou-
pled weakly anharmonic qubits. In Sec. III we describe
the OCT algorithm used in this work. In Sec. IV we
give the parameters used in our numerical calculations.
In Sec. V we present the results of our numerical OCT
calculations. For comparison we present gate time and fi-
delity results for the cross-resonance/selective-darkening
(CR/SD) protocol in Sec. VI. Section VII contains con-
cluding remarks.

II. TWO COUPLED WEAKLY ANHARMONIC
QUBITS

We consider a system composed of two coupled qubits.
With superconducting qubits in mind, we think of each
qubit as being a multi-level quantum system (which can
also be called a qudit) and the lowest two energy levels
are used to encode the qubit states |0〉 and |1〉.

The Hamiltonian of a driven multi-level system whose
lowest two levels are used as a qubit can often be ex-

pressed as:

Ĥ =

N−1∑
j=0

ωjΠ̂j +

N−1∑
j=1

ε(t)λj
(
σ̂+
j + σ̂−j

)
, (1)

where the index j enumerates the N energy eigenstates
of the multi-level system (evaluated in the absence of
driving) that are kept in the theoretical model (with
the ground state labeled by the index j = 0), ωj are
the energies of the different states (and we shall set

ω0 = 0), Π̂j are the projectors for the different states

j (Π̂j = |j〉 〈j|), ε(t) is the time-dependent amplitude
of the driving field, λj are coefficients that set the re-
lation between the driving-induced coupling matrix ele-
ments of the different transitions, σ̂+

j = |j〉 〈j − 1| and

σ̂−j = |j − 1〉 〈j|. It should be noted that the most im-
portant piece of information about λj is the relation be-
tween the different coefficients, i.e. not each coefficient
separately, because they are all multiplied by the com-
mon driving field amplitude ε(t). Throughout this work,
we shall use the same units for energy and frequency,
i.e. we set h̄ = 1.

Although our interest and results will not be limited
to the case of extremely weak anharmonicity, we use a
model of a truncated weakly harmonic oscillator for our
calculations. In particular, we set λj =

√
j as an approx-

imation. This behavior is exact for a harmonic oscillator.
Experimental results show that it remains a good approx-
imation for weakly anharmonic superconducting qubit
devices such as the phase qubit [5] and transmon [24].
With the approximation of near-harmonicity, we also ig-
nore direct coupling between states |j〉 and |j ±m〉 with
m 6= 1. We emphasize that even when the devices de-
viate substantially from the harmonic oscillator approx-
imation, general relations such as the increase of λ with
increasing j tend to remain valid. This property is related
to the fact that the extension of wave functions generally
increases as we go to higher energy levels. With increas-
ing extension of the multi-level system’s wave functions,
the coupling to external fields becomes stronger, which
corresponds to increasing values of λ.

Using the harmonic oscillator relations described
above, we can simplify the notation by defining the op-
erator

â =

N−1∑
j=1

√
jσ̂−j

â† =

N−1∑
j=1

√
jσ̂+

j . (2)

These operators are the harmonic oscillator annihilation
and creation operators truncated to the lowest N energy
levels.

In this work, we shall not make the rotating wave ap-
proximation, which could speed up our calculations but
would also ignore the so-called counter-rotating terms in
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the Hamiltonian. These terms could lead to some non-
negligible effects when dealing with high-bandwidth or
high-power driving fields. We wish our calculations to
capture any such effects if they arise in the dynamics re-
sulting from the optimized pulses that we obtain in the
calculations.

In present-day designs of superconducting qubits, since
the coupling between neighbouring qubits is typically me-
diated by mechanisms similar to those that describe the
coupling to external driving fields, we expect the same
operators to appear in the driving and coupling terms in
the Hamiltonian. As a result, we approximate the two-
qubit coupling term in the Hamiltonian by

ĤC = g
(
â1 + â†1

)
⊗
(
â2 + â†2

)
, (3)

where g is the coupling strength and the subscripts “1”
and “2” label the two qubits. In this work we assume that
g is fixed, which is a common situation in experiment.

To help separate different phenomena that can be at
play in the system under consideration, we shall take
g to be much smaller than the anharmonicity parame-
ters (which are defined as ηj = ωj − jω1), and we take
the anharmonicity parameters to be much smaller than
the single-qubit Larmor frequencies, i.e. the frequency
ω1 for each qubit. The detuning between the two qubits

ω
(1)
1 −ω

(2)
1 is typically designed to be much smaller than

ω
(1)
1 and ω

(2)
1 but much larger than g, because a large

detuning leads to slower two-qubit gates in practical se-
tups, and a small detuning leads to frequency crowding.
Since the Larmor frequencies and coupling strengths are
typically separated by only two orders of magnitude, the
inter-qubit detuning and the anharmonicity will be at
the same scale. This ordering of energy scales does in
fact correspond to commonly used systems of supercon-
ducting qubits [25, 26]. The coupling strength is usually
not much smaller than the anharmonicity. However, we
expect that this fact does not affect our main conclu-
sions. Furthermore, the interpretation of our numerical
results can be straightforwardly applied to more general
situations, such as the case of qubits with strong anhar-
monicity.

Another point worth noting here is that the coupling
term mixes the computational basis states, e.g. |01〉 and
|10〉, causing the energy eigenstates to be superpositions
of these states. One might intuitively think that this
mixing will reduce the fidelity of any operation. However,
in practice all operations are performed in the basis of
energy eigenstates, and the small perturbations in these
states caused by the coupling term are naturally absorbed
into the definition of the computational basis states. As
such, these perturbations do not in themselves constitute
an error in any given protocol. In fact, the mixing in the
energy eigenstates can be seen as the mechanism that
enables certain two-qubit gate protocols [28].

In the absence of higher levels, and assuming that there
are no constraints on the control fields ε(t), there are
several standard methods for implementing various two-

qubit quantum gates, such as the CNOT gate, which is
described by the unitary operator

UCNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4)

in the basis {|00〉 , |01〉 , |10〉 , |11〉}, where the first and
second indices represent the states of the control and tar-
get qubits, respectively. These methods can in general
be applied to weakly anharmonic qubits, although addi-
tional care needs to be taken to deal with the higher en-
ergy levels. One such method is the CR/SD gate [27, 28],
which we shall use for comparison with some of our OCT
results below.

In the absence of higher levels, the minimum time re-
quired to perform the CNOT gate is T0 = π/(4g), as ex-
plained in Ref. [4]. This gate time can be achieved by set-
ting the qubit bias fields ε(t) to large values to implement
a controlled phase gate. With the proper phase value, the
controlled phase gate is equivalent to the CNOT gate, up
to single-qubit rotations. This speed limit can also be ap-
proached when using strong driving with ac-based imple-
mentations such as the CR/SD gate. For definiteness, we
shall focus on the CNOT gate in our analysis below and
compare the minimum gate time for weakly anharmonic
qubits with the π/(4g) time mentioned above.

In experimental realizations of quantum gates, one
usually expects a small amount of error to remain even
after optimization. These errors are typically a result of
imperfections in the experimental implementation. We
note that in OCT calculations with a sufficiently large
number of adjustable parameters, as is the case in our
zero-loss OCT calculations, there exist pulses that lead to
perfect gate implementations in theory. We shall there-
fore not analyze small residual errors in relation to OCT
calculations. Besides, these small errors are unrelated to
the question of the speed limits that is the main topic of
this work.

III. PULSE OPTIMIZATION ALGORITHM

We use numerical OCT techniques to search for con-
trol pulses that effect a given target unitary operator. As
mentioned above, we use the CNOT gate as a representa-
tive target gate in our analysis of two-qubit gates. We ex-
pect that our general conclusions regarding the role of the
higher levels in speeding up or slowing down two-qubit
gates is not specific to our choice of the CNOT gate. An
alternative approach is to leave the target gate unspec-
ified and instead let the optimization algorithm accept
any perfect entangler to maximize the fidelity for a given
set of system parameters, as explained in Ref. [19]. As
our pulse search method we use the gradient ascent pulse
engineering (GRAPE) algorithm [29], which has the ad-
vantage of being fast even for large numbers of control
parameters.
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In OCT algorithms for finding the optimal pulse for
implementing a unitary operator, the goal typically is to
maximize the fidelity

F =

∣∣∣∣∣∣
Tr
{
U†TargetU(T )

}
d

∣∣∣∣∣∣
2

, (5)

where UTarget is the desired target operator, U(T ) is the
candidate operator that is implemented by the numer-
ically calculated pulse (which is updated and improved
by the algorithm), and the factor d in the denominator is
the dimension of the Hilbert space (d = 4 for a two-qubit
system). The fidelity F quantifies the overlap between
U(T ) and UTarget. When these two operators are identi-
cal, Eq. (5) gives F = 1. When dealing with weakly an-
harmonic qubits and expanded Hilbert spaces, we shall
define the operators in such a way that the maximum
value of the fidelity is F = 1 in this case as well.

In the GRAPE algorithm [29], the pulse is assumed to
be piecewise constant with the total pulse time divided
into N time steps. The operator U(T ) is therefore given
by

U(T ) = UNUN−1 · · ·U2U1, (6)

where Uj is the unitary operator that describes the evo-
lution in the jth time step:

Uj = exp

{
−i∆t

(
Ĥ0 +

m∑
k=1

uk(j)Ĥk

)}
(7)

∆t is the duration of the time step, H0 is the fixed part of
the Hamiltonian, m is the number of control parameters,
uk(j) is the value of the kth control parameter in the jth
time step, and Hk is the kth control Hamiltonian. In each
iteration of the optimization procedure, the calculation
proceeds by first calculating the operators

Xj = Uj · · ·U2U1 (8)

and

Pj = U†j+1 · · ·U†N−1U†NUTarget (9)

for all values of j. The pulse update is then determined
by calculating the derivatives of the fidelity with respect
to the different control parameters uk(j) in the different
time steps j

dF

duk(j)
= −1

8
Re
[
i∆tTr

{
P †jHkXj

}
Tr
{
X†jPj

}]
. (10)

With this information at hand, one can update the con-
trol parameters uk(j) by moving along the direction of
the gradient of F to maximize the fidelity improvement
in each iteration. Importantly, it has been shown that
for typical control problems there are no local maxima
in F that could prevent the algorithm from finding the
absolute maximum [30].

We now consider what modifications we need to make
in order to apply the GRAPE algorithm to multi-level
systems that contain the qubit space as well as additional
quantum states outside the computational space. First
we consider the fact that we are looking for a certain
unitary operator in the qubit space, regardless of what
transformation is effected in the remainder of the Hilbert
space. This situation means that the fidelity should be
the same for all the equivalent operators that differ only
in their effect on initial states outside the qubit space.
In other words, there should not be any cost associated
with the part of U(t) that describes the transformation
of states in the irrelevant subspace of the Hilbert space.
This goal can be achieved by using as the target opera-
tor a matrix that has the desired matrix elements in the
relevant subspace and zero matrix elements for the rest
of the matrix. Such a matrix would not be a unitary op-
erator. It just serves the purpose of guiding the search to
the space of acceptable (and equivalent) target operators
without favoring any member of this set over any other.
Note that a special case of this technique was used in
the study of single-qubit optimal control in a three-level
quantum system [31].

The other consideration that we would like to incorpo-
rate into the algorithm is the desire to avoid going too
high in the energy level ladder outside the qubit space,
even at intermediate times during the dynamics. This
condition is motivated by the fact that these higher en-
ergy levels tend to be associated with increased dissipa-
tion and can be prone to further leakage that causes infor-
mation loss. We therefore need to include some penalty
for populating these states during the dynamics. This
goal can be achieved by introducing a loss factor that
shrinks the matrix elements in the dynamical evolution
operator that correspond to the higher levels. Such a
factor can be included by replacing the operator product
in the fidelity (Eq. 5) by

U†TargetLUNLUN−1 · · ·LU2LU1, (11)

where

L = exp {−Γ∆t} , (12)

Γ =


γ1 0 0 · · · 0
0 γ2 0 0
0 0 γ3 0
...

. . .
...

0 0 0 · · · γM

 , (13)

γl are loss rates for the different quantum states. Note
that although we are using this loss factor as a computa-
tional tool to steer the optimization algorithm away from
solutions that involve occupying certain quantum states,
this loss model does in fact have a physical meaning. It
can describe a real dissipative loss of probability from
the physical subspace under study, and it corresponds to
non-hermitian stochastic dynamics [32]. A similar mod-
eling of loss in an OCT problem was used in Ref. [33].
In our optimization algorithm, populating the undesired
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states would lead to a reduction in the corresponding ma-
trix elements in U(T ), which would propagate to other
matrix elements and lead to a reduced fidelity at the final
time. As a result, the search algorithm moves away from
such situations and towards pulses that keep the system
as much as possible in the non-decaying subspace. To im-
plement this change in the GRAPE algorithm, we replace
the definitions in Eqs. (8) and (9) by:

Xj = LUj · · ·LU2LU1

Pj = U†j+1L · · ·U†N−1LU†NLUTarget. (14)

With this modification we can use Eq. (10) to update the
control parameters uk(j) and hence optimize the control
pulses with this additional consideration incorporated
into the algorithm. We note here that this modifica-
tion to the algorithm can be used to suppress occupying
any state, possibly for reasons other than decoherence.
We also note that one could alternatively add to the
algorithm specific decoherence terms, e.g. in Lindblad
form. However, the proper description of decoherence in
an open quantum system would require us to work with
objects that are more general than unitary operators,
e.g. completely positive maps, which would somewhat
complicate the calculations without any benefit for our
purposes, and we do not do so here.

In the scenario that we analyze in this work, the fixed
part of the Hamiltonian is

Ĥ0 =

2∑
k=1

N−1∑
j=1

ω
(k)
j Π̂

(k)
j + g

(
â1 + â†1

)
⊗
(
â2 + â†2

)
, (15)

and there are two control Hamiltonians,

Ĥk = âk + â†k, (16)

with k = 1, 2, and the control parameters uk(j) are the
values of the two drive fields εk(t) in the N time steps.

IV. CALCULATION PARAMETERS

In presenting the results below, we shall use the first

qubit’s Larmor frequency ω
(1)
1 as the reference energy. In

other words, all the energies and frequencies below are
given in dimensionless form and should be understood
as being divided by this energy unit. The time unit is

accordingly 2π/ω
(1)
1 . We shall, however, present most

of the results relative to the minimum CNOT gate time
for two simple qubits, namely T0 = π/(4g). In all the
calculations, we set the second qubit’s Larmor frequency

to ω
(2)
1 = 0.9. The coupling strength is set to g = 0.0025.

The anharmonicities η
(k)
j = ω

(k)
j − jω

(k)
1 are set to

η
(1)
2 = η

(2)
2 = −0.11, η

(1)
3 = η

(2)
3 = −0.19 and η

(1)
4 =

η
(2)
4 = −0.28, unless otherwise stated. We choose nega-

tive values with magnitudes that grow as we go up the
energy level ladder in accordance with the basic behav-
ior of phase qubit and transmon energy level structures.

The anharmonicity of a phase qubit or transmon grows as
ηj = (j2−j)×η2/2 to lowest order, which gives η3 = 3η2
and η4 = 6η2. We do not use this formula, because it

would make η
(k)
j on the order of ω

(k)
1 for j = 4, mean-

ing that the formula cannot be a good approximation for
j ≥ 4. As we shall discuss in Sec. V, there are intuitive
explanations for various aspects of our results, and the
exact functional dependence of ηj on j does not seriously
complicate the interpretation of our results. Note also

that the value |η(k)2 | = 0.11 is close to the detuning be-

tween the two qubits (ω
(1)
1 −ω

(2)
1 = 0.1). By varying the

anharmonicity, we shall see in the next two sections that
this choice does not seem to have a noticeable effect on
the OCT results, but it can drastically affect the CR/SD
protocol.

The relaxation rates of nearly harmonic superconduct-
ing qudits grow approximately as Γj→j−1 = jΓ1→0,
where Γj→j−1 is the relaxation rate from the state |j〉
to the state |j − 1〉. It might therefore seem logical to
set the loss rates γj = jγ1. However, since our focus
is on the question of how higher levels affect speed lim-
its, and we use the loss rates γj as a computational tool
rather than to simulate a real relaxation process, we do
not use the formula for Γj→j−1 to set the values of γj .
Instead, we set γ1 = 0 and use various combinations of
values for the loss rates of the higher levels.

The number of time steps was set to N = 103 for pulse
times up to 50, N = 104 for pulse times between 50
and 400, and N = 2 × 104 for pulse times longer than
400. These parameters were chosen to balance between
the desire to keep the computation time relatively short
and making sure that the results do not change if we
increase the number of time steps. We verified that with
the above parameters the number of time steps is large
enough to make further increases unnecessary. For all of
the simulations, 104 iterations were used.

For the initial guess for the driving fields, we used
randomly generated, and therefore highly noisy, signals
taken from four different distributions. These distribu-
tions are all uniform, i.e. they produce uniformly dis-
tributed random numbers for each one of the parameters
uk(j). The four distributions are defined by two criteria:
the width is either 1 or 10, and the distribution either
is centered or starts at 0. Each calculation with the pa-
rameters described above takes about one day on a single
core of a personal computer.

V. RESULTS

The presence of additional quantum states outside the
qubit space opens new channels for the system dynamics.
This modification to the system brings both positive and
negative aspects. On one hand, the new channels for the
dynamics allow new possibilities that could be useful if
one can find ways to harness them. On the other hand,
they create new channels for leakage of the quantum state
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outside the qubit space, which leads to deviations from
the intended dynamics, unless care is taken to suppress
the leakage. We shall see in this section that the addi-
tional states can speed up or slow down the implementa-
tion of two-qubit gates, depending on the details of the
situation being considered.

First we perform calculations in the case where we do
not assign any penalty to occupying higher levels. In
other words we treat them as harmless additional energy
levels, as long as one makes sure to return to the qubit
space at the end of the controlled operation. Even with
no explicitly assigned penalty for occupying the higher
levels, it is not obvious that refocusing the quantum state
back into the qubit space is a simple task. One might
therefore expect that the mere presence of the additional
quantum states could lead to a reduced gate speed. We
shall see shortly that in general the opposite is true. It
should also be emphasized that we start our analysis
with the implicit assumption that the truncated oscilla-
tor model provides a good approximation for the system.
Our results will soon show that we must remain cautious
about this assumption when dealing with weakly anhar-
monic qubits.

The CNOT gate fidelity as a function of allowed pulse
time for different total numbers of energy levels is shown
in Fig. 1(a). Perhaps counter-intuitively, the presence
of the higher levels allows faster implementations of the
gate. Taking into consideration that the minimum gate
time for the case of simple qubits is T0, the addition of a
third level per qubit reduces the minimum gate time by
a factor of 2. Increasing the number of additional levels
that we include in the simulations leads to faster gates.
This trend slows down and is barely visible when com-
paring the four- and five-level simulations. The speedup
with increasing number of levels can be understood by
noting that the bottleneck for the two-qubit gate speed
is the photon-exchange dynamics induced by the cou-
pling term in the Hamiltonian. Opening extra channels
for the photon exchange can speed up the completion
of the two-qubit gate operation. Importantly, because
the coupling strength increases as we go to higher en-
ergy levels, it is in fact advantageous to let the photon
exchange occur through the higher levels. One mecha-
nism that can stop the increase in gate speed with in-
creasing Hilbert space size is the time needed to excite
the system from the qubit space to the high levels and
bring them back to the qubit space at the end. Studies
on this process have shown that it requires a minimum
pulse time that scales inversely with the anharmonicity,
with a power close to one [34, 35]. With our parame-

ters, i.e. ηkj ∼ 0.1ω
(k)
1 , this mechanism would become a

limiting factor when the number of states per qubit is
around 5, which could partly explain the stagnation in
the speedup seen in Fig. 1.

To illustrate the role of the higher levels in the gate dy-
namics, we take the optimized pulse for one of the data
points in Fig. 1(a) and plot the populations of different
parts of the Hilbert space as functions of time Fig. 1(b).
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FIG. 1. (a) The fidelity F of the CNOT gate implemented
with the optimal numerically obtained pulse as a function of
the allowed time T [measured in units of the minimum CNOT
gate time for simple qubits T0 = π/(4g)] in the absence of
a loss factor in the simulations. The red squares, green cir-
cles, blue triangles and magenta diamonds correspond, respec-
tively, to having a total of 2, 3, 4 or 5 energy levels for each
qubit. The system parameters are described in Sec. IV. (b)
Populations P in the different subspaces as functions of time
for the blue triangle at T/T0 = 0.36 in Panel (a). The pop-
ulations are averaged over the 4 computational basis states,
i.e. {|00〉 , |01〉 , |10〉 , |11〉}, as initial states. The thick red line
shows the probability to be in the qubit space (QS). The
medium-width green line corresponds to having at least one
qubit in the state |2〉 but no qubits in the state |3〉. The thin
blue line corresponds to having at least one qubit in the state
|3〉.

It is clear that the population leaves the qubit space dur-
ing the gate dynamics but returns to the qubit space at
the final time. To avoid crowding the figure, we have
averaged the population results over four initial states
corresponding to the four computational basis states in
the qubit space. For the initial states |00〉 and |01〉 about
50% of the population remains in the qubit space at in-
termediate times, while for the initial states |10〉 and |11〉
the population in the qubit space is below 10% for most
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of the pulse duration. The highest energy level has the
highest average population at intermediate times. We
note here that there is a reason why we chose a data point
whose T value is just below the minimum gate time in
Fig. 1(a). In particular, we avoid longer pulse times, be-
cause long pulse times allow an infinite number of pulses
that all lead to fidelity values above any threshold that
we set. In other words, if we use a long pulse time, we can
take a long and winding path in unitary-operator space
and still reach the target gate at the final time. The
search algorithm does not favor any path over any other,
as long as they reach the target gate at the final time. We
can then expect to obtain more irregular dynamics com-
pared to those shown in Fig. 1(b). In contrast, for pulse
times below the minimum gate time we expect that there
will be a unique optimal pulse that utilizes the available
quantum states in an optimal manner.

We performed similar calculations for the fidelity as a
function of pulse time with the anharmonicities all set
to zero. The results remained unchanged to within the
margin of computational fluctuations. This result might
seem paradoxical; zero anharmonicity suggests that the
qubits become harmonic oscillators, and it should be im-
possible to perform inherently quantum operations, such
as the CNOT gate, on harmonic oscillators with bilinear
coupling. However, the truncation of the Hilbert space
creates an anharmonicity and makes it possible to per-
form quantum operations on the system.

The above results demonstrate the limitations of the
truncated oscillator approximation and the importance
of including a penalty term in the cost function to avoid
pulses that lead to populating higher energy levels. In
the absence of any such term and considering weakly an-
harmonic qubits with a large number of extra quantum
states from which we keep a few levels in the OCT calcu-
lation, the calculation will generally produce the result
that the fastest two-qubit gate implementation involves
exciting the device to the highest levels at intermediate
times. However, if we keep N levels in the theoretical ap-
proximation of a weakly anharmonic qubit and find that
the optimal pulse drives the population up to the high-
est level during the gate dynamics, this result would be
an indication that the approximation (i.e. the truncation
of the energy levels) was not justified. The approxima-
tion is only justified if the populations of the highest lev-
els that are kept in the theoretical model remain small,
meaning that the ignored levels would have even smaller
populations and ideally a negligible effect on the final
results. Instead, if we find that the Nth level is signif-
icantly populated, we have to keep the (N + 1)th level
in the theoretical model as well. These complications
do not arise if the anharmonicity is large enough that
individual control of each qudit’s transitions can be per-
formed significantly faster than the two-qubit gate time.
However, for anharmonicitiy values that are so small that
full single-qudit control cannot be performed significantly
faster than the CNOT gate time T0, our results based on
the truncated model become suspect. One apparent so-

lution to this difficulty is to use a more accurate model
with a large number of energy levels per qudit. However,
with present-day superconducting circuits, one cannot re-
alistically utilize more than a few energy levels without
having serious detrimental effects of dissipation. Even if
future devices have good coherence properties extending
to many excited states, one must still worry about un-
controlled leakage to very high levels if one attempts fast
control with weak anharmonicity. Besides, characteriz-
ing and properly modeling higher levels becomes increas-
ingly difficult for a realistic setup. Instead of dealing with
these complications, an alternative approach is to avoid
pulses that drive the system too high up the energy level
ladder. We achieve this goal by adding a penalty to oc-
cupying higher levels in our calculations. We emphasize
that the role of the penalty term is to make the pulse
search algorithm, i.e. the OCT algorithm, look for pulses
that avoid exciting higher levels. Adding this term to the
OCT calculation does not necessarily reflect a change in
the physical parameters of the system. We also empha-
size that the anharmonicity of superconducting qubits
generally increases as we go up the energy level ladder.
In some cases, the anharmonicity becomes strong after
the first few energy levels, which would naturally elim-
inate the need to worry about uncontrolled leakage to
higher levels. We shall come back to this point at the
end of this section.

We now calculate the fidelity as a function of pulse
time with a loss factor added to the simulations. The
results for a number of loss rate combinations are shown
in Fig. 2(a). We note here that we set γ1 = 0 in all our
simulations, because we are using the loss factor to dis-
courage population of higher energy levels rather than to
accurately model a physical dissipation process. In all
the data sets in Fig. 2(a), the fidelity reaches a maxi-
mum value, after which it either remains flat or starts
to decrease. The main feature that we emphasize in this
figure is that the pulse time at which the maximum is
first reached is comparable for all data sets, all in the
range 4 < T/T0 < 8. In particular, the three data sets
that have γ2 = 0 all seem to become flat starting around
T/T0 = 4. The value T ≈ 4T0 can therefore be identified
as the realistic minimum gate time for this combination
of anharmonicity values. It clearly represents a signifi-
cant slowdown relative to the one that we obtained in
the zero-loss calculations (T ≈ 0.4T0). It is also longer
than the minimum gate time for simple qubits (T0). This
slowdown is what one would intuitively expect based on
the consideration that the desire to avoid leakage imposes
a constraint on the control signals and limits them to the
weak-driving regime. We also note that, especially when
γ2 is not negligibly small, the maximum fidelity is re-
duced as a result of adding the loss factor. The higher
the loss rates, the lower the maximum fidelity. This ef-
fect is at least partly physical, because exciting higher
levels can be minimized but not completely eliminated,
except in the infinite-time limit. After the fidelity reaches
its maximum value, the figure shows a slow decline in fi-
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FIG. 2. (a) Maximum fidelity as a function of pulse time,
as in Fig. 1(a), but including the loss factor L and varying
the loss rates. In all cases, we keep four energy levels per
qubit. The red squares, green circles, blue triangles, magenta
diamonds and cyan pentagons correspond, respectively, to the
loss rate combinations (γ2, γ3) = (0, 10−2), (0, 10−1), (0, 1),
(10−3, 10−1) and (10−2, 10−1). The same values of the loss
rates are used for both qubits. All the data sets reach their
maximum or saturation values around the same value of T .
(b) Populations P in the different subspaces as functions of
time, as in Fig. 1(b), for the green circle at T/T0 = 4 in Panel
(a). The population of the state |3〉 is very low, making the
blue line barely visible.

delity with increasing pulse time. This feature must be a
computational artefact. Such a reduction in fidelity can
occur if the GRAPE time step ∆t is not much shorter

than the qubits’ Larmor periods, i.e. if ω
(1)
1 ∆t is not

much smaller than 1, because piecewise-constant func-
tions cannot approximate resonant driving signals in this
case. However, we do not believe that this effect has a
significant impact on our data. At the largest value of

T in Fig. 2, ω
(1)
1 ∆t = 25. To confirm that this number

is not too small, we performed additional simulations in
which we reduced N in the GRAPE algorithm by a factor
of 2. The fidelity decreased by only about 1% at large

T values, which means that we cannot expect a signifi-
cant increase in fidelity by increasing N . As a result, we
suspect that the decrease in fidelity is caused mainly by
slower convergence for the cases with longer pulse times.
We note again that we set γ1 = 0 in all of our simula-
tions. A finite value of γ1 would describe loss within the
qubit space and would naturally lead to a reduction in
fidelity at long times. However, this effect does not occur
in our simulations.

To illustrate that the loss factor is serving its intended
purpose, we show one example of the gate dynamics in
Fig. 2(b). In contrast to the dynamics in the zero-loss
case [Fig. 1(b)], now we can see that the population re-
mains mostly in the qubit space and the higher-level pop-
ulation is suppressed. The state |3〉, which is the only de-
caying state in this simulation, is almost not populated
at all. Here we note that it was not desirable for the plot
in Fig. 2(b) to take a pulse time that is much shorter
than the minimum gate time. If we take a very short
pulse time, the algorithm might find pulses that popu-
late higher levels even in the presence of the loss factor,
as the penalty from occupying the higher levels might
be offset by the gain in gate speed when utilizing those
higher levels. For this reason and the one described in
relation to Fig. 1(b), choosing a pulse time that is at the
speed limit is ideal for illustrating the different mecha-
nisms at play during the gate dynamics.

In Fig. 3 we plot the Fourier transforms of the driving
fields that correspond to Fig. 2(b). We do not plot the
signals as functions of time, i.e. εk(t), because they look
like noise signals with no discernible features. For the
pulse that produces Fig. 1(b), both the time-domain sig-
nals and their Fourier transforms are almost featureless.
The Fourier transforms of the initial, randomly generated
pulses also look like white-noise signals.

Figure 3 shows peaks (with some internal features) in
the frequency range 0.9-1, i.e. at the scale of the qubit
Larmor frequencies. Such peaks are to be expected for
a system manipulated by resonant driving of its various
transitions. An interesting observation here is that the
peak in |ε̃2(ω)| is about five times higher than the peak in
|ε̃1(ω)|. This result appears to be inconsistent with the
driving conditions needed for the CR/SD gate, in which
the driving amplitude applied to the control qubit is sig-
nificantly larger than that applied to the target qubit.
We shall return to this point in Sec. VI and show that
this relation between the two signals has a possible logi-
cal explanation. If we move slightly away from the peaks,
the Fourier coefficients of the control pulses are partic-
ularly small. Then, if we move farther away from the
peaks, the Fourier coefficients become large again. In
fact, their magnitude far away from the peaks is essen-
tially the same as that in the initial guess pulse. This
pattern indicates that the optimization algorithm is most
effective in shaping the control pulse at relatively low fre-
quencies, especially around the frequencies of the various
transitions in the system. To demonstrate this point fur-
ther, we continue the pulse optimization procedure for a
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FIG. 3. Absolute values of the Fourier coefficients ε̃k(ω) of the
optimized pulses εk(t) for the two qubits (k = 1, 2) as func-
tions of frequency ω for the case shown in Fig. 2(b). We plot
only the positive frequencies, because the Fourier transform is
symmetric with respect to the sign of ω. The red + symbols
are obtained with our standard 104 optimization iterations,
while the green × symbols are obtained after 5 × 104 itera-
tions. The insets show magnified views of the low-frequency
part of the spectrum: in both insets the x-axis range is [0,2],
while the y-axis range is [0,0.3] in (a) and [0,4] in (b).

total of 5×104 iterations. Especially in Fig. 3(a), the low-
frequency non-resonant components are significantly sup-
pressed by the additional optimization, while the higher-
frequency components are barely affected. This behavior
is not too surprising, considering that the high-frequency
components have a small effect on the long-time dynam-
ics, such that they are given a low priority for refinement
by the optimization algorithm. We expect that if we in-
crease the number of iterations the algorithm will eventu-
ally suppress the high-frequency components of the sig-
nal and generate rather smooth control signals. However,
achieving this goal using the GRAPE algorithm can take
a prohibitively long computation time. In this context
it is worth noting that the fidelity after 104 iterations is
98.47%, and it rises only slightly (to 98.73%) after 5×104

iterations, which shows that for the purpose of determin-
ing the speed limit, it is not necessary to obtain smooth
pulses. For practical realizations of quantum gates in
experiment, it is of course necessary to identify easily
implementable pulses. Considering our discussion above
about the minimal effect of high-frequency components,
one can intuitively expect that taking the control sig-
nals in Fig. 3 and filtering out the high-frequency com-
ponents can quickly generate greatly optimized pulses.
We filtered out low- and high-frequency components with
varying cutoff frequency combinations. The fidelity gen-
erally remained high when we filtered out frequency com-

ponents with ω >∼ 1.3 ω
(1)
1 . The fidelity was more sen-

sitive to filtering out low-frequency components. We do
not show any of the resulting time-domain pulses here,
because the pulses that gave high fidelities consistently
looked noisy for our choice of system parameters.
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FIG. 4. Maximum fidelity as a function of pulse time,
as in Fig. 1(a), but including the loss factor and varying
the anharmonicity. In all cases, we keep four energy lev-
els per qubit. The red squares, green circles, blue trian-
gles, magenta diamonds, cyan pentagons and black + sym-
bols correspond, respectively, to anharmonicity combinations
(η3, η4) = (−0.11,−0.19)×η with η = 0, 0.25, 0.5, 0.75, 1 and
2. We use (γ3, γ4) = (0, 10−2) for all data sets. The same val-
ues of loss rate and anharmonicity are used for both qubits.

Next we analyze the dependence of the speed limit on
anharmonicity. In Fig. 4 we plot the fidelity as a function
of pulse time for different sets of anharmonicity values.
For weak anharmonicities below 0.1, the minimum gate
time is roughly inversely proportional to the anharmonic-
ity. This trend is indeed what one might intuitively ex-
pect, because weak anharmonicity makes it more difficult
to address transitions among the lowest levels separately
from transitions to higher levels. This trend is also con-
sistent with past results on performing two-qubit gates
with weakly anharmonic qubits [35, 36]. In the extreme
case of zero anharmonicity, it becomes practically impos-
sible to achieve high-fidelity gates, because any driving
that induces the |0〉 ↔ |1〉 transition of a harmonic os-
cillator will also excite the system to higher levels where
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loss occurs. This dependence on the anharmonicity also
contrasts with the near absence of any dependence on
anharmonicity that we found in the calculations with no
loss factor. The dependence on anharmonicity becomes
weaker as the anharmonicity increases, which is also to
be expected as stronger anharmonicities gradually make
it increasingly easy to isolate the qubit space from the
rest of the Hilbert space.

Before closing this section, we reconsider our results
from a more general circuit design perspective. The
existence of the additional quantum states opens new
channels for the dynamics and enables the possibility of
achieving faster quantum gates. The weak anharmonic-
ity can complicate the targeted control of the different
transitions in the energy level ladder. It is therefore de-
sirable to have qubits that have additional energy levels
in the realistically accessible range, e.g. with transition
frequencies on the scale of a few GHz for superconduct-
ing qubits, but are not weakly anharmonic. For this pur-
pose, qubit designs such as the capacitively shunted flux
qubit [37–39] or the fluxonium [40] can provide an ad-
vantage in terms of the achievable gate speed, because
these qubit designs are more strongly anharmonic than
the phase qubit and transmon designs. As a result, they
can allow a more controlled utilization of any additional
quantum states outside the qubit space, as demonstrated
recently in experiments on qutrit control in a capaci-
tively shunted flux qubit device [41, 42]. As mentioned
above, higher energy levels generally correspond to more
delocalized states when considering the wave functions
in terms of the circuit variables. It can therefore be ex-
pected that higher levels will generally lead to stronger
coupling than the lowest energy levels. With these con-
siderations in mind, the ability to utilize higher levels to
speed up quantum operations can serve as an additional
metric when assessing new qubit designs.

VI. CROSS-RESONANCE/SELECTIVE-
DARKENING GATE

There are a few studies in the literature on the effect
of higher levels on specific implementations of two-qubit
gates [35, 36, 43–47]. These previous studies have gen-
erally considered the effect of leakage to the higher lev-
els and energy level shifts caused by the combination of
driving and higher levels. In fact these energy level shifts
can be highly non-negligible, as was shown in recent ex-
periments on qutrit gates [41]. It can be expected that
the deleterious effects of the higher levels worsen with
increasing driving strength, which is intuitively associ-
ated with faster gates. We shall see below that, although
this trend is obtained for unoptimized pulses, relatively
simple optimization of the parameters can in some cases
lead to a significant improvement in the gate fidelity with
speeds not far below the speed limits.

For comparison with the OCT results presented in
Sec. V, we perform calculations similar to those reported

in Ref. [36] to analyze the performance metrics, including
the gate speed, of the CR/SD gate with the system pa-
rameters used in this work. The picture that one would
expect from this kind of calculation is as follows: as we
increase the driving strength, the gate speed increases
while the fidelity decreases. The increase in gate speed
follows from the increase in the relevant transition ma-
trix element, which is proportional to the driving ampli-
tude. The decrease in fidelity is expected because the
driving protocol is designed with the assumption that
there are only two energy levels per qubit, and there is
no correction mechanism in the driving protocol to deal
with higher levels. The leakage and energy level shifts
caused by the higher energy levels then result in devi-
ations from the desired gate dynamics, which leads to
lower gate fidelities. In such a situation, where faster
gates correlate with lower fidelities, one typically decides
in advance what minimum fidelity is required or desired,
and one chooses the gate speed that corresponds to this
minimum fidelity.

The first set of calculations in this section proceed sim-
ilarly to those of Ref. [36]. We perform simulations of the
driven system dynamics, keeping either three or four en-
ergy levels for each qubit. In the CR/SD protocol, the
system is driven at the frequency of the target qubit,
which we take to be qubit 2. With a properly chosen
combination of pulse amplitude and duration, a CNOT
gate (or an equivalent two-qubit gate) is obtained. We
use the SD implementation of the gate, i.e. the two qubits
are driven simultaneously such that the |00〉 ↔ |01〉 tran-
sition is completely suppressed. We assume a pulse en-
velope shaped as the sine function sin(x) from x = 0 to
x = π. In other words, the driving fields are given by

ε1(t) = εmax sin(πt/T ) cos
(
ω
(2)
1 t
)

and ε2(t) calculated

accordingly, where εmax is the maximum value of the
driving field amplitude on qubit 1 and is used to quan-
tify the driving strength, and T is the pulse duration. For
each value of driving strength, we first estimate the corre-
sponding pulse duration Te based on the matrix element
for the CNOT gate transition. The matrix element is ob-
tained by numerically diagonalizing the 9× 9 or 16× 16
Hamiltonian, depending on whether we keep 3 or 4 energy
levels per qubit. We then simulate the driven dynamics
for 200 values of the pulse duration ranging from zero to
6Te. For each one of these values for the pulse duration,
we evaluate the fidelity of the implemented unitary oper-
ator with the ideal CNOT gate. For the fidelity calcula-
tion, we search the space of single-qubit unitary operators
for operations that can be applied before and/or after
the CNOT gate pulse to maximize the fidelity. With 200
pulse duration values and their corresponding fidelity val-
ues at hand, we inspect the fidelity values starting from
zero pulse duration and moving up. The fidelity exhibits
oscillatory behavior, characterized by a sequence of peaks
and dips, as a function of pulse duration. If we reach a
peak in the fidelity that is above 0.99, we identify the
peak location as the gate time. In some cases, especially
when some undesired resonance occurs, no high-fidelity
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peak is encountered in the range of pulse durations from
zero to 6Te. In these cases, we take the pulse duration
that corresponds to the highest fidelity and use it as the
gate time.
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FIG. 5. Gate speed T0/T and fidelity F as functions of driving

strength εmax (measured relative to ω
(1)
1 ) for the CR/SD gate.

The red squares, green circles and blue triangles correspond,
respectively, to η3 = −0.11, −0.22 and −0.055. The open
symbols correspond to keeping three energy levels per qubit,
while the closed symbols correspond to keeping four levels
per qubit. The ratio T0/T is used as the gate speed quantifier
because it is equal to 1 at the speed limit for simple qubits.

The results for the gate speed and the corresponding
gate fidelity are shown in Fig. 5. It might look surprising
that in the data sets for η3 = −0.055 and η3 = −0.22
the fidelity remains close to 1 and does not decrease
with increasing driving strength. The reason behind
these high fidelities is that in this calculation we have
allowed for numerically optimized single-qubit rotations
to be applied before and after the CR/SD gate pulse,
in addition to varying the pulse duration and choosing
the value that gives the highest fidelity. This procedure
amounts to performing a pulse optimization algorithm,
with a much smaller number of variable parameters com-

pared to GRAPE but with simple pulses that are guar-
anteed to be easily implementable. If we simply follow
the basic theoretical formulae for the CR/SD pulse pa-
rameters when designing the CNOT gate pulse, e.g. as in
Refs. [27, 28], the fidelity would remain low throughout
the plotted range. Even for weak driving, where leak-
age can be avoided, the energy level shifts caused by the
higher levels prevent a straightforward implementation
of the CR/SD gate in its basic form.

The results in the case η3 = −0.11 partly follow the
simple picture described at the beginning of this section,
namely an increase in gate speed accompanied by a de-
crease in fidelity. While the gate speed increases and ap-
proaches the simple-qubit speed limit, the fidelity drops
significantly below 1, making these fast gates of little
value for practical use in a quantum computing device.
The fast deterioration of fidelity in this case can be un-

derstood by noting that the frequency ω
(1)
2 −ω

(1)
1 = 0.89,

which corresponds to a leakage transition that takes the
system outside the computational space, is very close to

the CR/SD driving frequency ω
(2)
1 = 0.9. As a result, the

standard CR/SD protocol fails badly. Somewhat surpris-
ingly, the other two values of anharmonicity used in these
calculations do not suffer a serious deterioration in the
fidelity. This feature could be due to the slow rise and
fall in the gate pulse amplitude, which can lead to an adi-
abatic population and depopulation of the higher levels
over the course of the gate dynamics. There are, how-
ever, localized resonances where the fidelity exhibits dips
at certain values of the driving strength.

Another unexpected feature is seen most clearly for the
three-level simulations with η3 = −0.11. The gate speed
does not vanish when the driving amplitude is reduced to
zero, even though no driving-induced oscillations occur in
this case. The cause of this undriven gate dynamics is
that the higher levels cause qubit-state-dependent energy
level shifts in the qubit space, and these shifts can induce
entangling dynamics even in the absence of driving [36].
As a result, one can obtain a two-qubit transformation
that is equivalent to a CNOT gate in a finite amount
of time even with no external driving. In order to es-
tablish a system for universal quantum computing, one
must be able to suppress this always-on entangling dy-
namics when it is not needed. Otherwise it would be an
especially serious issue for performing quantum informa-
tion protocols using systems with strong coupling. Using
OCT methods, it was shown in Ref. [33] that one can con-
trollably activate and suppress the entangling dynamics
in these systems, such that universal quantum comput-
ing is possible once the pulses needed to implement the
different operations are determined and properly applied.

We can now use Fig. 5 to infer information about the
speed limit for the CR/SD gate. By looking for the
largest value of T0/T that corresponds to a high fidelity,
one can extract a minimum gate time for each set of
system parameters. In spite of the differences between
the different data sets in Fig. 5, the maximum value of
T0/T that is associated with a high fidelity is consistently
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around 0.15-0.25. The minimum gate time in these cases
is therefore ∼ 4-6T0, which is an order of magnitude
longer than the minimum gate times obtained in Sec. V
in the zero-loss case (∼ T0/2).
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FIG. 6. Same as in Fig. 5, but including loss from the higher
levels. Here only four-level simulations are performed, with
decay rates (γ2, γ3) = (0, 0.01). The + symbols plotted for
low values of εmax are obtained by driving the qubits with an
amplitude ratio designed to darken the |11〉 ↔ |21〉 transi-
tion and hence suppress the leakage through that transition.
To make the comparison between the squares and + symbols
clear, there are more of these symbols than circles and tri-
angles at low values of εmax. Some data points seem to be
missing in the gate speed plot. These points lie outside the
plot range, i.e. they have T0/T > 1, and they are ignored
because they correspond to low fidelities.

Another feature that we can see in Fig. 5 is the sub-
stantial difference between the three- and four-level re-
sults, which indicates that the higher levels are signifi-
cantly populated during the dynamics. We confirm this
behavior in the population dynamics (not shown in the
figure). As in Sec. V, we must be cautious when inter-
preting simulation results that involve a significant pop-
ulation in the highest levels, which would indicate that
even higher levels might need to be included in the sim-

ulation. To deal with complications that could arise in
this case, we perform further simulations where we now
include loss from the highest levels, such that any gate
implementation that involves a significant population of
these levels would result in a low fidelity and be disquali-
fied in the search for optimal gate implementations. The
results are shown in Fig. 6. We can see clearly that the
fidelity is high only when the driving is weak. In the
case η3 = −0.11, even the weakest-driving data point in
the figure has a low fidelity. Considering only the high-
fidelity cases (e.g. F > 0.99), we obtain a maximum gate
speed of about T0/T ∼ 0.07-0.12, i.e. a minimum gate
time of T ∼ 8-15 T0, for the three data sets shown in
Fig. 6.

It is worth considering the case η3 = −0.11 a little bit
further. The reason for the great reduction in fidelity in
this case is the leakage from the state |1〉 to the state |2〉
in qubit 1. As explained in Ref. [36], the CR/SD gate
can be performed using any combination of driving am-
plitudes on the two qubits. We therefore perform addi-
tional simulations where we set the amplitudes using the
condition that the |11〉 ↔ |21〉 transition is darkened to
suppress the leakage through this transition. To achieve
complete darkening of the |11〉 ↔ |21〉 transition, the ra-
tio between the driving amplitudes ε2(t)/ε1(t) should be
set to −3.4. This ratio is comparable to that obtained
from the OCT calculations that produced Fig. 3, which
could provide a logical interpretation for the amplitude
ratio in the OCT results. With the ratio −3.4 used for
the CR/SD driving amplitudes, we find that the fidelity
deterioration with increasing driving amplitude is slowed
down, such that we can achieve a gate time comparable
to those obtained for the other anharmonicity values.

As expected, the results obtained in this section when
avoiding higher level excitation give slower gates (∼ 10T0
with parameter dependent variations) compared to those
obtained using OCT (∼ 4T0 with variations). How-
ever, the difference (a factor of 2-3) is not as large as
one might have expected, taking into consideration the
much larger amount of freedom in designing pulses in
OCT. This result means that in general one can to some
extent approach the speed limit using the CR/SD pro-
tocol with a relatively simple pulse optimization proce-
dure. Further improvements with the simple gate imple-
mentation could be obtained by incorporating leakage-
suppression techniques such as DRAG. One clear excep-
tion where we did not obtain high fidelity gates with
simple pulses is when we encountered undesired reso-
nances. The OCT results did not exhibit any resonance
features as in Fig. 5 and possibly Fig. 6, which is to be ex-
pected, because OCT methods naturally recognize pulses
that lead to unintended leakage resonances and move the
search away from such pulses. As a result, even in the
case η3 = −0.11, OCT shows that we can achieve typi-
cal gate speeds with arbitrarily high fidelities when using
optimized pulses.
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VII. CONCLUSION

In conclusion, we have investigated the application of
OCT methods to the problem of implementing two-qubit
gates with weakly anharmonic qubits, in which case the
search for optimal pulses allows the dynamics to involve
the irrelevant part of the Hilbert space at intermediate
times but can also be programmed to discourage the pop-
ulation of specific states. We have found that, depending
on whether higher energy levels can be controlled at high
speeds and with low loss or not, the presence of these
extra levels can either speed up or slow down the imple-
mentation of two-qubit gates. Whether the higher levels
are useful channels for faster gates or harmful leakage
channels depends in part on the magnitude of the anhar-
monicity. More specifically, a moderately strong anhar-
monicity that is typical for some superconducting qubit
designs could allow the controlled utilization of the higher
levels, pointing to a potential advantage of such qubit
designs for achieving fast quantum gates. By comparing
the results of OCT with a relatively simple optimization
procedure for the CR/SD gate, we found that the latter
can give high-fidelity gates with speeds not far below the

speed limit, indicating that one can approach the speed
limit with relatively simple control pulses.

The methods and results presented in this work can
help guide future studies aiming to find optimal ap-
proaches to implement various operations in systems of
weakly anharmonic qubits. They can also be adapted and
utilized for the optimization of qudit operations in weakly
anharmonic qudits [48]. From a broader perspective, the
idea of utilizing states outside the computational space to
speed up quantum operation is based on general physical
principles. It is therefore not limited to superconduct-
ing systems, and it could be applied in other quantum
computing platforms.
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