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Currently, existing quantum annealers have proven themselves as viable technology for the first
practical applications in the NISQ era. However, to fully exploit their capabilities, a comprehensive
characterization of their finite-time excitations is instrumental. To this end, we develop a phase
diagram for driven Ising chains, from which the scaling behavior of the excess work can be read off
as a function of process duration and system size. “Fast” processes are well-described by the Kibble-
Zurek mechanism, “slow”process are governed by effective Landau-Zener dynamics, and “very slow”
processes can be approximated with adiabatic perturbation theory.

I. INTRODUCTION

It has been four decades since Feynman first proposed
to harness genuine quantum properties to build better,
more powerful computers [1, 2]. However, only now we
finally appear to be standing at the beginning of the
quantum information age [3], which is evidenced by na-
tional as well as international quantum initiatives [4–7]
and the first demonstrations of verifiable quantum advan-
tage [8, 9]. Yet, it may take a little while longer before the
first practically useful and fault-tolerant quantum com-
puters will become widely available [10]. In the mean-
while, so-called noisy intermediate scale quantum (NISQ)
may already be useful for special applications [11].

For instance, it was shown only very recently that al-
ready current generations of the D-Wave machine can
handle complex, realistic problems in quantum simula-
tion [12–14] and in classical optimization [15], such as
conflict managements in existing railway networks [16],
although quantum advantage has not been reached yet in
this context. As a quantum annealer, solving problems
with the D-Wave machine relies on adiabatic quantum
computing [17], at least in an ideal situation. However,
like all real systems, the D-Wave machine is subject to
noise [18, 19]. And if this system is ever going to be im-
plemented as a computer for real-life applications, com-
plete characterization is instrumental. To this end, the
scaling properties of the nonadiabatic excitations have
been thoroughly investigated [20, 21]. Despite significant
deviations from the expected behavior (due to environ-
mental noise), the D-Wave chip seems to, indeed, imple-
ment a quantum Ising model in the transverse field [21].

However, even the ideal case of an isolated, driven
quantum Ising model is far from trivial to fully ana-
lyze. Typically, the dynamics has to be solved numer-
ically [22], and approximate, less computationally inten-
sive approaches appear highly desirable. It has been well-
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established that for “fast”, but not too fast processes the
dynamics is well-described by the Kibble-Zurek mecha-
nism [22–24], whereas for “slow”, but not too slow driving
the Landau-Zener formula becomes applicable [25].

In the present work, we give a comprehensive charac-
terization of the dynamical properties of the driven quan-
tum Ising chain in the transverse field. To this end, we
show that for “very slow” processes the Landau-Zener
formula becomes inapplicable, and rather adiabatic per-
turbation theory (APT) [26] properly describes the dy-
namics. Moreover, we make the distinction between fast,
slow, and very slow rigorous by determining the crossover
points between the three different regimes. As a main re-
sult, we obtain a dynamic phase diagram (in contrast to
usual equilibrium phase diagrams) for the predicted dy-
namical properties as a function of the number of Ising
spins and the duration of the driving.

The present analysis seeks to be as self-contained as
possible. Thus, we briefly outline adiabatic perturbation
theory in Sec. II, before we work through a pedagogical
example, namely the Landau-Zener model in Sec. III. A
complete analysis of the time-dependent quantum Ising
model is discussed in Sec. IV, whose experimental con-
sequences for the D-Wave machine are elaborated on in
Sec. V. The analysis is concluded in Sec. VI.

II. PRELIMINARIES

We start by establishing notions and notations, with a
brief review of adiabatic perturbation theory.

Quantum excess work In the present analysis, we fo-
cus on ideal quantum annealing, and thus consider only
isolated quantum systems. We write the Hamiltonian
as H(λ) =

∑
nE(λ)|n(λ)〉〈n(λ)|, where λ is a time-

dependent, external control parameter λ = λ(t), which
is varied for a duration τ = tf − ti such that λ(ti) = λi
to λ(tf ) = λf .

As usual in quantum annealing, we assume that ini-
tially the system is prepared in its ground state |ψ(ti)〉 =
|g(λi)〉, and the dynamics is given by the Schrödinger
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equation i|ψ̇(t)〉 = H(λ)|ψ(t)〉, where we set ~ = 1 and
the dot denotes the derivative with respect to time.

For such scenarios [27, 28], the excess work is defined as
total variation of the average energy minus the difference
in initial and final ground state energies. Hence we can
write,

Wex =
∑
n 6=g

pn [En(λf )− Eg(λf )] . (1)

where pn is the unitary transition probability, pn =
|〈n(λf )|ψg(tf )〉|2. Further, |ψg(tf )〉 is the initial
ground state, |g(λi)〉, evolved under the time-dependent
Schrödinger equation.

In the following, we will be analyzing the scaling prop-
erties of the excess work, Wex for systems that cross a
quantum critical point (QCP). For such scenarios it has
been demonstrated that Wex fully characterizes the phase
transition [29–32], and that it even exhibits Kibble-Zurek
scaling [22]. However, for general systems, fully analyz-
ing the dynamical properties is a computationally hard
problem, which is why often sudden quenches are consid-
ered [29–32]. In contrast, here we develop approximate
methods that allow us to determine Wex for any duration
of the process τ (relevant to quantum annealing), namely
fast, slow, and very slow.

Adiabatic Perturbation Theory To complement exist-
ing, approximate methods, we employ adiabatic pertur-
bation theory [26, 33, 34]. This approach provides correc-
tions to the adiabatic solution in powers of 1/τ . Hence,
APT is a perturbation theory for very slow processes.

For our purposes, that is for systems initially prepared
in the ground state, we can write

|ψg(t)〉 = exp[iφg(t)]

∞∑
p=0

|ψ(p)
g (t)〉, (2)

where

|ψ(p)
g (t)〉 =

∑
m

C(p)
m (t) |m(λ)〉, (3)

is the pth order correction written in the basis of instan-
taneous eigenstates of H(λ). As always,

φn(t) = −
∫ t

ti

En(λ(t′))dt′ + i

∫ t

ti

〈n(λ(t′))|ṅ(λ(t′))〉dt′ .

(4)
From Eqs. (2)–(4) the transition probability pn can be
computed to arbitrary order.

The coefficients C
(p)
m (t), for p > 0, can be systemati-

cally calculated. For example, the expression for p = 1
and m 6= g reads

C(1)
m (t) = i

(
Mmg(t)

Emg(λ)
− Mmg(ti)

Emg(λi)
exp[iφmg(t)]

)
, (5)

where Emn(λ) = Em(λ)−En(λ), φmn(t) = φm(t)−φn(t)
and Mmn(t) is given by

Mmn(t) = 〈m(λ)|ṅ(λ)〉 = −λ̇(t)
〈m(λ)|∂λH(λ)|n(λ)〉

Emn(λ)
,

(6)

where the second equality is only valid for m 6= n.
In the following, we will only consider driving proto-

cols with fixed initial and final values of λ, λi and λf ,

respectively. Therefore, λ̇ ∝ τ−1, which determines the

magnitude of C
(1)
m (t) in Eq. (5). Similarly, C

(2)
m (t) con-

tains λ̈ and λ̇2, both of which are proportional to τ−2,
and analogously for higher orders. Hence, for τ →∞, all
terms but the first in Eq. (2) vanish, and we recover the
adiabatic limit.

The range of validity of APT is governed by [33]

Mmn(t)

Emn(λ)
� 1 , (7)

which is not met when Emn(λ) is small in comparison to

λ̇(t) at any point of the process. Thus, we would expect
a break-down of the approximation for processes that
rapidly cross a QCP.

III. GENERALIZED LANDAU-ZENER MODEL

To demonstrate the utility of APT, and where it fits
in comparison to other approximate techniques, we treat
a simple, pedagogical example, first – the Landau-Zener
(LZ) model [35–38] for arbitrary driving. Namely,

HLZ(λ) = ∆λσz + Jσx, (8)

where ∆ and J are positive constants and σz and σx

are Pauli matrices. Note that the avoided crossing is
the simplest representation of a QCP, and the LZ-model
even exhibits a scaling reminiscent of the Kibble-Zurek
mechanism [39].

Defining the eigenstates of σz as σz| ↓z〉 = −| ↓z〉 and
σz| ↑z〉 = | ↑z〉, the energy eigenstates become

| − (λ)〉 = cos θ(λ)| ↓z〉 − sin θ(λ)| ↑z〉,
|+ (λ)〉 = sin θ(λ)| ↓z〉+ cos θ(λ)| ↑z〉, (9)

where

θ(λ) =
1

2
arctan (J/∆λ) (10)

and the eigenvalues are

E±(λ) = ±E(λ) = ±
√

∆2λ2 + J2. (11)

Note that g = −1 corresponds to the ground state.
The gap 2E(λ) between eigenstates has a minimum for

λ = 0, where it is equal to 2J . Fig. 1 depicts the avoided
crossing of the energy levels for λf = 1/2 = −λi and for
∆ � J . The dashed red lines represent the eigenvalues
of the operator ∆λσz. Observe that, at the endpoints
of the process, the eigenstates of σz and H(λ) coincide
approximately (apart from irrelevant change of signs).
However, there is a switch halfway through the process:
at the beginning, we have | ↓z〉 ≈ | + (λi)〉, while at the
end, | ↓z〉 ≈ | − (λf )〉.
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FIG. 1. Eigenenergies (blue, solid line) of the Landau-Zener
model (11) for ∆ � J together with eigenvalues (red, dashed
line) of ∆λσz.

The solution of Schrödinger’s equation can be ex-
pressed as a linear combination of the eigenstates of σz,

|ψ(t)〉 = u(t)| ↑z〉+ v(t)| ↓z〉, (12)

and we obtain

i u̇(t) = ∆λ(t)u(t) + Jv(t),

i v̇(t) = Ju(t)−∆λ(t)v(t).
(13)

It is interesting to point out that, in the original treat-
ment of the LZ-model [35–38], only linear protocols of
infinite duration were considered,

λ(t) = t, −∞ < t <∞. (14)

In this case, Eqs. (13) can be solved analytically [36,
40]. However, the exact solution is written as sums
of Parabolic Cylinder functions with complex parame-
ters and arguments, which make extracting their behav-
ior computationally intensive. Moreover, in the present
work, we are interested in processes of finite duration τ
and that keep the initial and final values of λ fixed, no
matter the value of τ .

In any case, Wex (1) can be expressed as

Wex(τ) = 2E(λf )p+(τ), (15)

where the transition probability from the initial ground
state to |+ (λf )〉 now reads p+ = |〈+(λf )|ψ−(tf )〉|2.

For the sake of simplicity, we will continue the analysis
with a linear protocol

λ(t) =
t

τ
, −τ

2
≤ t ≤ τ

2
. (16)

It is worth emphasizing that, in contrast to the original
LZ-model [35–38], our protocol (16) obeys λ̇(t) → 0 as

τ → ∞, whereas in the original treatment the rate λ̇(t)
was held constant.

Thus, there is no immediate reason to believe that the
Landau-Zener formula (LZF) is applicable. Expressed in
our notation the LZF reads

pLZ
+ (τ) = exp

(
−π J2τ/∆

)
. (17)

Notwithstanding, we will see that for specific values of
J , ∆ and τ , Eq. (17) approximates the exact dynamics
remarkably well.

On the other hand, the transition probability can also
be computed from APT. We have, from Eqs. (3) and (5)
and the definition of p+,

pAPT
+ (τ) =

1

16

(
∆

J2τ

)2 ∣∣∣∣ J3

E3(λf )
− J3 exp[−2iφ(τ)]

E3(λi)

∣∣∣∣2 .
(18)

As before, φ is the dynamic phase, which we can write

as φ(τ) = −τ
∫ λf

λi
E(λ)dλ. Note that the dynamic phase

governs the overall oscillatory behavior, which we will
“average out” in the following analysis. Finally, APT
is expected to apply if condition (7) is met throughout
the entire process. In the present case, this translates to
J2τ/∆� 1.

In Figs. 2 we compare the LZF (17), with the result
of APT (18), and the numerically exact solution (from
standard fourth order Runge-Kutta). On the x-axis, we
have J2τ/∆, which allows to unambiguously identify the
range of validity of the approximate methods. For ease
of representation, the prediction from APT is “phase av-
eraged” to remove the dynamical oscillations alluded to
above. Note, that this fact is depicted in Fig. 2b for a
small interval in τ .

For J2τ/∆ < 1, we observe striking agreement between
the LZF formula (17) and the exact solution. This fact
was elucidated in Ref. [40]. In this work, the authors
consider finite-time driving of the LZ Hamiltonian (8),
such that the initial and final eigenvalues diverge in the
limit τ → ∞. Our present situation can be mapped
exactly to the dynamics considered in Ref. [40], provided

J2τ

∆
+

(
∆

2J

)2
J2τ

∆
� 1 . (19)

Equation (19) consists of two, independently positive
terms. Hence, only one of the terms needs to be large
for Eq. (19) to hold. In our case, we have J2τ/∆ � 1
for APT to apply. In the opposite limit, i.e, if J2τ/∆ is
small, Eq. (19) is governed by ∆/J � 1. In this limit,
Ref. [40] demonstrated that (at least in leading order)
the LZF is, in fact, a good approximation of the exact
solution. Further analysis of the validity of the LZF in
finite time, including a non-analytic APT approach, is
given in Ref. [41].

We can conclude that, for slow enough processes, the
range of validity of the LZF formula (17) crosses over to
APT (18). The crossover point τc is determined by

pLZ
+ (τc) = pAPT

+ (τc), (20)
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(a) (b) (c)

FIG. 2. Excess work (15) as a function of process duration for ∆/J = 10. Black dots represent the numerical solution, the
red and dashed line is computed from the LZF (17) and the blue, dashed and dotted line is computed from APT (18). (a) The
LZF-APT crossover, where the line corresponding to APT is “phase-averaged”. (b) Zoom in on a τ range where APT is valid,
oscillations included. (c) Zoom in on a τ range where LZF fails, as per Eq. (19).

with a τ -independent phase φ. The exact solution of
Eq. (20) can be written as a function of Lambert’s func-
tion W−1 [42]. For ∆/J � 1, the asymptotic expression
for τc becomes

J2

∆
τc =

2

π

{
log

[
4

π

(
∆

2J

)3
]

+ log log

[
4

π

(
∆

2J

)3
]}

+O

{[
log

(
∆

2J

)]−1
}
. (21)

Thus, we find that the crossover time diverges logarithmi-
cally with ∆/J and, in the limit ∆/J →∞, the crossover
never occurs. Indeed, the limit ∆/J →∞ (which essen-
tially makes the smallest gap E(0) → 0) takes us to the
original LZ model [35–38] and it implies the validity of
the LZF for any value of τ . For any finite value ∆/J ,
we can expect a transition to power-law decay for large
enough τ .

IV. TRANSVERSE FIELD ISING CHAIN

Having demonstrated the application of APT to the
simplest model, we now turn to the Transverse field Ising
(TI) chain [43], a one-dimensional chain of N spins. This
system possesses a QCP in the thermodynamic limit
N → ∞, where the gap between the ground and the
first excited state vanishes. Its Hamiltonian is

HTI(λ) = −1

2

J N∑
j=1

σzjσ
z
j+1 + Γ(λ)

N∑
j=1

σxj

 , (22)

where the first sum represents the spin-spin interaction
with coupling strength J and the second sum represents
the interaction of each spin to the external magnetic field
Γ(λ), rewritten for later convenience as

Γ(λ) = J + ∆λ. (23)

We assume periodic boundary conditions on the spins,
σzN+1 = σz1 .

The Hamiltonian (22) can be diagonalized exactly [25].
For N even, and exploiting a Jordan-Wigner, Fourier and
finally a Bogoliubov transform, we have [25]

HTI(λ) =
∑
k

εk(λ)
[
γ†k(λ)γk(λ)− 1/2

]
, (24)

where γ†k(λ) and γk(λ) are creation and annihilation op-
erators of fermions with dispersion

εk(λ) =

√
[Γ(λ)− J cos(ka)]

2
+ J2 sin2(ka). (25)

The allowed values of k are given by

kn =
(2n+ 1) π

Na
, (26)

where n is an integer between −N/2 and N/2−1. In the
thermodynamic limit, k is a continuous variable ranging
from −π/a to π/a and sums can be replaced by integrals,∑
k → N/2π

∫ π
−π d(ka).

Equation (24) describes free fermions with momentum
k and energy εk(λ). Since the system is translation-
ally invariant, total momentum must be conserved and
fermions can only be created or destroyed in pairs of op-
posite momenta k and −k. Therefore, if we start with the
ground state (with no fermions) we restrict ourselves to
only half of the momentum values. In the limit, N →∞,
the lowest momentum k0 = π/Na → 0 and its energy
vanishes when Γ = J (or λ = 0), which signifies the
QCP.

The ground state of the Ising chain can be expressed
as

|g(λ)〉 =
∏
k>0

[
cos θk(λ)− sin θk(λ)c†kc

†
−k

]
|vac〉, (27)

where ck ≡ cos θkγk − sin θkγ
†
−k, ck|vac〉 ≡ 0 and

θk(λ) =
1

2
arctan

(
J sin(ka)

Γ(λ)− J cos(ka)

)
. (28)
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FIG. 3. Eigenenergies of the Ising chain in the transverse
field (25) as a function of λ for N = 50, where the lowest
sublevel is given by k0 = π/Na, and the highest by kN/2−1.
Observe that avoided crossing around the critical point λ = 0
for the lowest energy sublevels.

Moreover, in complete analogy to the LZ model, a solu-
tion

|ψ(t)〉 =
∏
k>0

[
uk(t)− vk(t)c†kc

†
−k

]
|vac〉, (29)

of the time-dependent Schrödinger equation can be de-
termined from [25]

i u̇k(t) = − [Γ(λ)− J cos(ka)]uk(t)− J sin(ka)vk(t),

i v̇k(t) = −J sin(ka)uk(t) + [Γ(λ)− J cos(ka)] vk(t).

(30)

Comparing Eqs. (13) and (30), we notice that the dy-
namics of the LZ and the TI model are formally identical
if we identify

J ⇒ Jk = J sin(ka),

λ⇒ λk = λ+
J

∆
[1− cos(ka)]

(31)

Therefore, the transverse field Ising chain can be under-
stood as N/2 generalized LZ-models, where each two-
level system corresponds to a (positive) value of k. Con-
sequently, when crossing the QCP, the sublevels that
have ∆/Jk � 1 go through an avoided crossing, as il-
lustrated in Fig. 3.

As before, we now compute the excess work (1). We
have

Wex(τ) =
∑
k>0

2εk(λf )pk(τ), (32)

where

pk(τ) =
∣∣∣ sin θk(λf )uk(tf )− cos θk(λf )vk(tf )

∣∣∣2 (33)

is the probability of creating a pair of fermions with op-
posite momenta k and −k during the evolution. Again,
for simplicity, we consider the linear protocol,

λ(t) =
t

τ
, −τ

2
≤ t ≤ τ

2
. (34)

The corresponding LZF (17) becomes

pLZ
k (τ) = exp

(
−πJ2 sin2(ka)τ/∆

)
, (35)

where we exploited Eq. (31). Note that this is only valid
for the lowest energy sub-levels, which exhibit avoided
crossings. For these levels and in the limit J2τ/∆ �
1, we can employ small argument approximations in
Eqs. (25) and (35). Thus, for N � 1 the excess work (32)
becomes

Wex(τ) =
N

π

∫ ∞
0

√
(Γf − J)

2
+ JΓf (ka)2

× exp
(
−πJ2(ka)2τ/∆

)
d(ka),

(36)

where Γf = Γ(λf ) is the final value of the external field.
Equation (36) can be solved exactly in terms of Hyper-
geometric functions.

In the limit J2τ/∆ � 1 an approximate expression
reads

WKZM
ex (τ) =

N∆|λf |
2π

√
∆

J2τ
. (37)

The superscript KZM denotes Kibble-Zurek Mechanism
[23, 25, 44]. It has been shown that when crossing the
QCP, arguments from the KZM [22, 45] allow express-
ing the excess work in terms of the average number of
excitations nex,

WKZM
ex (τ) = 2∆|λf |nex. (38)

Equation (37) is valid if Eq. (35) holds for the lowest
sublevels and for J2τ/∆ � 1. However, as τ increases,

we reach a point J2τ
∆

(
π
N

)2 ∼ 1 where pk (35) is so highly
peaked at k0 that no other sublevel contributes to the
sum in Eq. (32). In other words, Eq. (35) only holds
for k0 and pk = 0 for any other sublevel. In this case,
Eq. (32) becomes

WLZF
ex (τ) = 2∆|λf | exp

[
−π
( π
N

)2 J2

∆
τ

]
. (39)

Thus, we expect a crossover from the power law decay of
Eq. (37) to the exponential decay of Eq. (39).

Finally, for even larger process duration τ we enter the

range of validity of APT, namely when J2τ
∆

(
π
N

)2 � 1,
APT must hold. In this case, mirroring Eq. (18),

pAPT
k (τ) =

1

16

(
∆

J2
kτ

)2 ∣∣∣∣ J3
k

ε3k(λf )
− J3

k exp[−2iφk(τ)]

ε3k(λi)

∣∣∣∣2 ,
(40)

where again φk(τ) = −τ
∫ λf

λi
εk(λ)dλ.



6

(a) (b) (c)

FIG. 4. Excess work (32) as a function of process duration for N = 100 and ∆/J = 1. Black dots represent the numerics,
the green line represents Eq. (37), the red and dashed line represents Eq. (39) and the blue, dashed and dotted line represents
Eqs. (42) and (41). (a) The two crossovers, KZM-LZF and LZF-APT. (b) Zoom in on a τ range where APT is valid, oscillations
included. (c) Zoom in on a τ range where KZM fails.

In this limit, the excess work (36) reads

WAPT
ex (τ) =

∑
k>0

2εk(λf )pAPT
k (τ). (41)

As for the LZ-model, the dynamical phase φk(τ) leads
to a rapidly oscillating quantity. However, for long spin
chains, N � 1, these oscillations “average out”, and we
can write

WAPT
ex (τ) =

NJ

16π

(
∆

J2τ

)2

f

(
∆

J

)
, (42)

where

f

(
∆

J

)
= J5

∫ π

0

sin2(ka)

(
1

ε5k(λf )
+
εk(λf )

ε6k(λi)

)
d(ka)

(43)
is a unitless function that depends only on ∆/J and that
can be written as sums of elliptic integrals.

In Figs. 4 we compare Eqs. (37), (39) and (42), with the
numerically exact solution for N = 100 and ∆/J = 1. As
for the LZ-model we notice a distinct crossover from the
LZF (39) to APT (42). In complete analogy to the LZ-
model, we also find the dynamical oscillations, depicted
in Fig. 4b.

On the x-axis, we have chosen π2

N2
J2

∆ τ , as this makes
it easy to identify the adiabatic regime. For long chains,
N � 1, the pre-factor multiplying τ becomes very small
and, hence, APT is applicable only for very slow pro-
cesses.

The main difference between the LZ model and the TI
chain comes from the size of the systems: the TI chain

presents a power law decay for Wex for π2

N2
J2

∆ τ < 1, pre-

dicted by the KZM for J2τ/∆� 1. For even smaller val-
ues of τ , it is known that this τ−1/2 scale breaks down,
because LZF ceases to be valid. This can be seen in
Fig. 4c. Note, however, that the value of τ where this
breakdown happens decreases with increasing N . This
is because a larger N makes the avoided crossing more

pronounced and, as N → ∞, the LZF is valid for any
value τ , as commented in the last paragraph of section
III.

The condition J2τ/∆ � 1 for the validity of Eq. (37)
is sometimes understood as a condition of adiabaticity,
since it requires large enough τ . We emphasize, how-
ever, that neither KZM (37) or LZF (39) are adiabatic
in the strict sense. Rather, the excess work exhibits two
crossovers, see Fig. 4a: from KZM (Wex ∼ τ−1/2) to LZF
(Wex ∼ exp (−ατ)); and from LZF to APT (Wex ∼ τ−2).
These crossovers have been identified and discussed many
times before for the TI chain [20, 25, 34] and other sys-
tems [46–52].

The main contribution of our detailed analysis is the
quantification of the crossover points. The KZM-LZF
crossover time (τ1) and LZF-APT crossover time (τ2) can
be estimated in complete analogy to above. For KZM-
LZF, we equate Eqs. (37) and (39). Solving for τ1 results
in a complex value, since the two curves never intersect,
cf. Fig. 4a. For the real part, we obtain

π2

N2

J2

∆
τ1 = − 1

2π
Re
{
W−1

(
−π

8

)}
≈ 0.152, (44)

where W−1 is again Lambert’s function [42]. Conse-
quently, the location of the KZM-LZF crossover is in-
dependent of N in Fig. 4.

For LZF-APT, we equate Eqs. (39) and (42). We ob-
tain for τ2 in the limit of N � 1,

π2

N2

J2

∆
τ2 =

2

π

{
log

(
4

π

[
J

4∆
f

(
∆

J

)]−1/2 [
N

π

]3/2
)

+ log log

(
4

π

[
J

4∆
f

(
∆

J

)]−1/2 [
N

π

]3/2
)}

+O
[
(logN)

−1
]
,

(45)

Equation (44) is similar in form to Eq. (21). For N →∞,
the crossover time diverges, which is the same as saying
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FIG. 5. Excess work (32) as a function of process duration
for N = 100 and ∆/J = 1. Black dots represent the numerics
and the dark yellow line represents the result from LRT (49).

that the crossover never happens. This is consistent with
the fact that, when the gap vanishes, no evolution can be
adiabatic and, therefore, APT always fails. However, for
any finite N , adiabaticity and power law scaling τ−2 can
always be attained for large enough τ .

Linear Response Theory We conclude this section by
highlighting that the τ−2 scaling, derived from APT, can
also be obtained using a Linear Response Theory (LRT)
approach [53]. In this framework, the excess work is ex-
pressed as (see Appendix B for more details)

WLRT
ex (τ) = ∆2

∫ tf

ti

∫ t

ti

Ψ0(t− t′)λ̇(t)λ̇(t′)dtdt′, (46)

where the relaxation function Ψ0(t) is obtained from the
response function Φ0(t),

Φ0(t) = −i〈[∂ΓH(0), ∂ΓH(t)]〉 (47)

using the relation Φ0(t) = −dΨ0(t)/dt [53] (the symbol
[·, ·] denotes the commutator). We remark that the time
evolution in Eq. (47) is obtained from the solutions of
Heisenberg’s equations with the initial Hamiltonian.

Using the transformations of Ref. [25] mentioned in
Sec. IV, one can show that [54]

Ψ0(t) =
∑
k>0

J2

ε3k(λi)
sin2 (ka) cos [2εk(λi)t], (48)

Therefore the excess work is

WLRT
ex (τ) =

J2

τ2

(
∆

2

)2∑
k>0

1− cos [2εk(λi)τ ]

ε5k(λi)
sin (ka),

(49)
which scales like τ−2 for large switching times. Figure 5
compares the numerical results with those of LRT, where
we have again suppressed the dynamical oscillations for
ease for presentation. We notice that LRT provides the

correct scale, although with a small shift from the ex-
act values, which speaks to the validity of LRT for the
specific values of ∆ and J used [54]. Despite the reason-
able performance of LRT for large τ , APT is better fitted
to calculate the crossover time from LZF and it is eas-
ier to generalize in the case of non-linear, two-parameter
protocols, which are frequently encountered in realistic
settings (see next section).

V. QUANTUM ANNEALING

In the previous section, we discussed how to determine
the crossover times in the TI chain. While these can
be dismissed for large systems, recent developments in
the manipulation of small quantum systems make the
crossovers achievable. For instance, the D-Wave 2000Q
(and later) quantum annealers [20] realize the following
time-dependent transverse-field Ising Hamiltonian:

H(t)/(2π~) = −A(t)H0 −B(t)HIsing, t ∈ [0, T ], (50)

where its classical part (HIsing) is defined, on a particular
graph G = (V, E) specified by its edges and vertices [cf.
Fig. 6(a) where the Chimera graph C2 is shown], as

HIsing :=
∑
〈i,j〉∈E

Jijσ
z
i σ

z
j +

∑
i∈V

hiσ
z
i , (51)

whereas the “free” part reads

H0 =
∑
i∈V

σxi . (52)

The programmable annealing time, T , varies from mi-
croseconds (∼ 2µs) to milliseconds (∼ 2000µs) depend-
ing on the specific schedule, which can also vary between
devices [20]. A typical annealing schedule is shown on
Fig. 6(b). During the experiment, A(t) changes from
A(0) � 0 (i.e., all spins point in the x-direction) to
A(T ) ≈ 0, whereas B(t) is varied from B(0) ≈ 0 to
B(T ) � 0 (i.e., H(T ) ∼ HIsing). Defining a 1D path
on the graph G, putting hi = 0, and Jij = 0 for all spins
not in that path, one can realize the TI model with two
time-dependent parameters.

Therefore, the D-Wave setup supports a considerable
range of number of spins N (up to |V| ∼ 5000 with
|E| ∼ 40000 for the Pegasus topology [55]), and process
durations τ to test the crossover times of Eqs. (44)–(45).
The excess work of the annealing protocol is then calcu-
lated from the final energy, which can be read directly
from the D-Wave solver.

Fig. 7 is a corresponding “phase” diagram of the TI
chain. If the pair (N, τ) lies in the green region, the
excess work behaves as τ−1/2; If it lies in the red region,
the excess work decays exponentially with τ ; And if it
lies in the blue region, the excess work scales like τ−2.

Thus, our theoretical prediction can be experimentally
verified on the D-Wave machine. Equations (44) and (45)
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FIG. 6. D-Wave annealing processor specification. (a)
Sparse Chimera graph (denoted as C2), consisting of a 2 × 2
grid of clusters (i.e., unit cells) of 8 qubits each. The max-
imum number of qubits for this topology is N = 2048
(C16) whereas the number of all connections between them
is 6000 � N2. (b) A typical annealing schedule, where T
denotes the time to complete one annealing cycle.

can be generalized for the case of two time-dependent pa-
rameters. The number of spins would have to be kept low
to have feasible times greater than τ1 of Eq. (44) and τ2 of
Eq. (45), but not so low to the point where the lowest en-
ergy sub-level does not go through an avoided crossing.
Once N is decided, diagrams like that of Fig. 7 would
then provide the τ range to explore on D-Wave. For ex-
ample, with 500 spins the KZM-LZF crossover would be
around 10µs, and the LZF-APT crossover around 103 µs.

Finally, we remark that, while we offered here an anal-
ysis of the implications to D-Wave, the discussed phe-
nomena should be verifiable in any quantum simulator
that can implement the TI chain, as long as it can emu-
late the adiabatic process itself (see Ref. [56] for an ex-
ception). It also should be noted that in any realistic
quantum annealer one will have to contend with effects
of environmental noise. For instance, Ref. [14] reported
for similar sized chains and in the weak coupling regime
a coherence time of 10−1 µs, after which excitations from
the environment are significant and the dynamics can no
longer be considered unitary. Thus, the coherence time is
much shorter than the driving times at which we predict
to see the crossovers. However, powerful quantum error
correcting schemes exist [57–62], even if some of them are
still out of reach for currently available hardware. For an
experimental exploration of the here predicted crossover
behavior the implementation of viable error correction
schemes may be necessary to be able to cleanly distin-
guish between diabatic excitations and thermal noise.

VI. CONCLUDING REMARKS

It has been argued [10] that all viable architectures
for quantum computing will necessitate the implementa-
tion of quantum error correcting codes [17]. For quan-
tum annealers this poses special challenges, as they

FIG. 7. “Phase” diagram of scaling behaviors when crossing
the QCP of the TI chain with realistic D-Wave parameters,
as demonstrated in Fig. 6(b). The values of τ and N can be
tuned in a given realization of the process. The solid curves
represent the crossover points between KZM, LZF and APT.

experience two fundamentally different sources of er-
ror [63, 64]: environmental noise and non-adiabatic exci-
tations. Whereas to mitigate the effects of environmen-
tal noise effective algorithms already exist [57–59, 65],
circumventing the consequences of finite-time driving is
a much harder task. In principle, so-called shortcuts to
adiabaticity [66–72] may hold the solution, but typically
the required control fields are highly complex and non-
local.

Thus, a comprehensive characterization of the finite-
time excitations is instrumental if the “outcome” of a
computation on a quantum annealer is to be trusted.
For the one-dimensional Ising chain in the transverse
field, this is exactly what we have achieved in Fig. 7.
We verified and quantified earlier findings that indicated
crossovers from a regime of the Kibble-Zurek mechanism,
to effective Landau-Zener dynamics, to a third regime
fully described by adiabatic perturbation theory. This
allowed us to unambiguously determine the crossover
points, that is the driving times τ , for which the scal-
ing properties of the excess work fundamentally changes.
Thus, we expect our results to be directly and immedi-
ately applicable in the characterization of all present and
future quantum annealers.
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Appendix A: Stopping at the QCP

In the above analysis, we focused on driving protocols
that are symmetric with respect to the quantum critical
point. In this appendix, we briefly outline the ramifi-
cations of stopping right at the QCP. To this end, we
consider the protocol

λ(t) =
t

τ
, −τ ≤ t ≤ 0 . (A1)

Landau-Zener model As before, we first analyze the
LZ-model with Hamiltonian (8). Curiously, these situa-
tions are more involved, as there is no simple formula for
the transition probability. Rather, we have a “half” LZ-
formula (HLZ), which is given by a rather complicated
expression [73]

pHLZ
+ (τ) = 1−

sinh
(
π J2τ/2∆

)
π J2τ/∆

exp
(
−π J2τ/4∆

)
×

∣∣∣∣∣Γ
(

1 +
i

4

J2τ

∆

)
+
eiπ/4

2

√
J2τ

∆
Γ

(
1

2
+
i

4

J2τ

∆

)∣∣∣∣∣
2

,

(A2)

Here, Γ represents the Gamma function.
Equation (A2) holds for an infinite-time protocol with

non-zero derivative [73], and thus it also applies to our

protocol (A1) for ∆/J � 1 and
(

∆
2J

)2 J2τ
∆ � 1. However,

in contrast to the symmetric case, the HLZ includes the
APT limit, obeying p+ ∼ τ−2 for J2τ/∆� 1.

From the point of view of APT, the calculations for
the excess work (1) are the same as the case of crossing
the λ = 0 point. The transition probability is still given
by Eq. (18), but with different λi and λf . In Figs. 8 we
compare Wex (15) with p+ calculated in three ways: with
HLZ, with APT and with numerical evolution. Fig. 8a
demonstrates very good agreement of HLZ with the nu-
merics for the entire range of the plot, while also showing
that it agrees with APT for large enough τ . The oscilla-
tions present in APT still exist, but they are more tame
and, in this specific example, invisible. In Fig. 8b we
highlight that HLZ does indeed fail for small enough τ .
Finally, since HLZ and APT agree, there is no crossover.

Ising chain in the transverse field Now, we turn our
attention to the TI chain (24), using the same proto-
col (A1). We begin with the prediction from KZM. To
this end, we employ Eq. (32) with λf = 0 and pk(τ)
given by Eq. (A2) with the substitutions of Eq. (31).
This is only valid for the lowest energy sublevels, which
obey ∆/Jk � 1. Again, approximating sums by inte-
grals, applying small argument approximations in the
trigonometric functions, extending the upper integral

limit to infinity, and defining a new variable of integra-
tion x =

√
J2τ/∆ ka, Eq. (32) becomes

WKZM
ex (τ) =

KNJ

π

∆

J2τ
, (A3)

where

K ≡
∫ ∞

0

x

[
1− exp

(
−π

4
x2
) sinh

(
π
2x

2
)

πx2

×
∣∣∣∣Γ(1 +

i

4
x2

)
+

exp (iπ/4)

2
xΓ

(
1

2
+
i

4
x2

)∣∣∣∣2
]
dx

(A4)

is an integral that can be computed numerically.
Note that, when stopping at the QCP, KZM dictates

Wex ∼ τ−1, which is different from the KZM result when
crossing the QCP [22, 45]. In particular, WKZM

ex (τ) (A3)
is not proportional to the average number of excitations
nex, which scales like τ−1/2 for the present τ range.

On the other hand, the calculations from APT once
again follow the expressions of crossing the QCP. The
excitation probability is given by Eq. (40), with λi = −1
and λf = 0, in accordance with Eq. (A1). Note, however,
that the first term inside the absolute value diverges for
k = 0. This means that for N � 1 the excess work is
dominated by the lowest energy sublevel, and we have

WAPT
ex (τ) =

NJ

8π

(
N

π

)2(
∆

J2τ

)2

. (A5)

In Figs. 9 we show the resulting Wex from KZM (A3)
and from APT (A5), together with the numerically exact
results. Observe in Fig. 9a, that for N = 100, the situ-
ation is similar to what we have discussed above: APT
matches the numerical findings for π2

N2
J2τ
∆ � 1, while

KZM gives the correct behavior for π2

N2
J2τ
∆ � 1. The

agreement between Eq. (A3) and numerics becomes even
more convincing for larger systems, as demonstrated in
Fig. 9b

In conclusion, we find a KZM-APT crossover when
stopping at the QCP. The crossover time τc can be esti-
mated from Eqs. (A3) and (A5), and we obtain

π2

N2

J2

∆
τc =

1

8K
≈ 1.049 , (A6)

which is again independent of N

Appendix B: Excess work from LRT

Finally, we briefly outline how to obtain the excess
work (1) from linear response theory. To this end, con-
sider a quantum system that is in contact with a heat
bath of temperature β ≡ (kBT )−1, where kB is the Boltz-
mann’s constant. As before, during a switching time τ ,
the external parameter is changed from λi to λi + δλ.
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(a) (b)

FIG. 8. Excess work (15) as a function of process duration for ∆/J = 10 and for Eq. (A1). Black dots represent the
numerics, the red and dashed line represents the excess work calculated with the HLZ (A2), and the blue, dashed and dotted
line represents the excess work calculated from APT (18). (a) The agreement between HLZ and APT for large enough τ . (b)
Zoom in on a τ range where HLZ fails.

(a) (b)

FIG. 9. Excess work(32) as a function of process duration for ∆/J = 1 and for Eq. (A1). Black dots represent the numerics,
the green line represents Eq. (A3)), and the blue, dashed and dotted line represents the excess work calculated from APT (A5).
(a) The crossover from KZM to APT for N = 100. (b) The KZM prediction compared to numerics for N = 1000.

The average work performed on the system during this
process is [74]

W ≡
∫ tf

ti

∂λH(t)λ̇(t)dt . (B1)

The generalized force ∂λH is calculated from the trace

∂λH(t) = tr {ρ(t)∂λH} , (B2)

where ρ(t) is a non-equilibrium density matrix evolved
under the von-Neumann-Liouville equation. The exter-
nal parameter can be expressed as

λ(t) = λ0 + h(t)δλ, (B3)

where the protocol h(t) must satisfy the following bound-
ary conditions

h(ti) = 0, h(tf ) = 1. (B4)

Linear response theory aims to express average quan-
tities to first order in the perturbation parameter, δλ/λ0

considering how this perturbation affects the observable
to be averaged and the non-equilibrium state ρ(t). In our
case, we assume that the parameter does not change con-
siderably during the process, i.e., |h(t)δλ/λ0| � 1, for all
t ∈ [ti, tf ]. Thus, the generalized force can be expressed
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as [53]

∂λH(t) = 〈∂λH〉0 + δλ〈∂2
λH〉0h(t)

− δλ
∫ t

ti

Φ0(t− t′)h(t′)dt′,
(B5)

where 〈·〉0 is the average over the initial canonical en-
semble. The quantity Φ0(t) is the so-called response
function [53], which can be conveniently expressed as the
derivative of the relaxation function Ψ0(t)

Φ0(t) = −Ψ̇0(t). (B6)

The generalized force, written in terms of the relax-
ation function, reads

∂λH(t) = 〈∂λH〉0 − δλΨ̃0h(t)

+ δλ

∫ t

ti

Ψ0(t− t′)ḣ(t′)dt′,
(B7)

where Ψ̃0 ≡ Ψ0(0) − 〈∂2
λλH〉0. Finally, combining

Eqs. (B1) and (B7), the average work becomes

WLRT = δλ〈∂λH〉0 −
δλ2

2
Ψ̃0

+ δλ2

∫ tf

ti

∫ t

ti

Ψ0(t− t′)ḣ(t′)ḣ(t)dt′dt.

(B8)

It can be shown that the first two terms of Eq. (B8)
(those independent of the protocol h(t)) give exactly the
quasistatic work, i.e., the work performed if the process
were quasistatic, when δλ/λ0 � 1 [75]. Thus, we define

WLRT
ex = δλ2

∫ tf

ti

∫ t

ti

Ψ0(t− t′)ḣ(t′)ḣ(t)dt′dt, (B9)

as the LRT expression for the excess work. This is the
expression used in Eq. (49).
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tum annealing for industry applications: Introduction
and review, arXiv preprint arXiv:2112.07491 (2021).

[16] K. Domino, M. Koniorczyk, K. Krawiec, K. Ja lowiecki,
S. Deffner, and B. Gardas, Quantum annealing in the
nisq era: railway conflict management, arXiv preprint
arXiv:2112.03674 (2021).

[17] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, Cambridge, UK, 2010).

[18] B. Gardas and S. Deffner, Quantum fluctuation theorem
for error diagnostics in quantum annealers, Sci. Rep. 8,
17191 (2018).

[19] A. Wieckowski, S. Deffner, and B. Gardas, Disorder-
assisted graph coloring on quantum annealers, Phys. Rev.
A 100, 062304 (2019).

[20] B. Gardas, J. Dziarmaga, W. H. Zurek, and M. Zwolak,
Defects in quantum computers, Scientific Reports 8, 4539
(2018).

https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://arxiv.org/abs/2106.10522
https://arxiv.org/abs/2106.10522
https://doi.org/10.1017/CBO9780511762789
https://doi.org/10.1017/CBO9780511762789
https://doi.org/10.1088/2058-9565/ab042d
https://doi.org/10.1088/2058-9565/ab042d
https://doi.org/10.1088/2058-9565/ab0077
https://doi.org/10.1088/2058-9565/ab0077
https://doi.org/10.1088/2058-9565/ab029d
https://doi.org/10.1088/2058-9565/ab029d
https://doi.org/10.1088/2058-9565/ab02b4
https://doi.org/10.1088/2058-9565/ab02b4
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.1088/978-0-7503-1536-4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1126/science.aat2025
http://arxiv.org/abs/2202.05847v1
http://arxiv.org/abs/2202.05847v1
https://arxiv.org/abs/2112.07491
https://arxiv.org/abs/2112.03674
https://arxiv.org/abs/2112.03674
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1038/s41598-018-35264-z
https://doi.org/10.1038/s41598-018-35264-z
https://doi.org/10.1103/PhysRevA.100.062304
https://doi.org/10.1103/PhysRevA.100.062304
https://doi.org/10.1038/s41598-018-22763-2
https://doi.org/10.1038/s41598-018-22763-2


12

[21] Y. Bando, Y. Susa, H. Oshiyama, N. Shibata, M. Ohzeki,
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