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Zero noise extrapolation (ZNE) is a widely used technique for gate error mitigation on near term
quantum computers because it can be implemented in software and does not require knowledge of
the quantum computer noise parameters. Traditional ZNE requires a significant resource overhead
in terms of quantum operations. A recent proposal using a targeted (or random) instead of fixed
identity insertion method (RIIM versus FIIM) requires significantly fewer quantum gates for the
same formal precision. We start by showing that RIIM can allow for ZNE to be deployed on deeper
circuits than FIIM, but requires many more measurements to achieve the same level of statistical
uncertainty. We develop two extensions to FIIM and RIIM. The List Identity Insertion Method (LIIM)
allows to mitigate the error from certain CNOT gates, typically those with the largest error. Set
Identity Insertion Method (SIIM) naturally interpolates between the measurement-efficient FiIM and
the gate-efficient RIIM, allowing to trade off fewer CNOT gates for more measurements. Finally, we
investigate a way to boost the number of measurements, namely to run ZNE in parallel, utilizing as
many quantum devices as are available. We explore the performance of RIIM in a parallel setting
where there is a non-trivial spread in noise across sets of qubits within or across quantum computers.

I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) [1] comput-
ers are promising tools for performing certain calculations
more efficiently than can be computed with classical com-
puters. This may allow for the evaluation of currently
intractable calculations. A fundamental challenge fac-
ing NISQ computation is that there is significant noise
in the instruction sets (gates) and state readout. The
ultimate computational performance (towards fault toler-
ance) will be achieved with quantum error correction (see
e.g. Ref. [2]). However, quantum error correction typi-
cally requires a many-to-one physical-to-logical mapping
of quantum bits (qubits) and small enough gate errors.
Current NISQ devices do not allow for the implementation
of fault tolerant algorithms.

A variety of error mitigation strategies have been pro-
posed on current and near-term quantum computers. One
widely used strategy is zero noise extrapolation (ZNE) [3-
11]; additional approaches include estimation circuits [12—
17], quasi-probability methods [6, 7, 18, 19], and others
— see Ref. [20] for a recent review. In the ZNE protocol,
measurements are made of an observable from a given
circuit and a set of equivalent (auxiliary) circuits with
amplified noise but the same zero-noise value. The noise
is amplified in a controlled way so that measurements
with different levels of noise can be used to extrapolate
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to the zero-noise limit. A hardware-agnostic approach to
ZNE can be implemented by replacing a particular gate
U; by U;(UJU;)™ for non-negative integer n; (see Fig. 1).
These n; identity insertions do not change the measured
expectation value of the circuit, but since U; is noisy,
the total error is increased. The standard Fixed Identity
Insertion Method (F1IMm) [5, 6] uses the same n; = n for
every gate so that each gate is replaced by

r=2n+1, (1)

copies of itself. Data are generated with n =0,1,2... and
then the target observable is extrapolated to n = —%, cor-
responding to r = 0. This approach effectively mitigates
gate errors, but at the expense of requiring a large num-
ber of quantum gates. ZNE is typically applied only to
controlled-NOT (CNOT) gates which have a significantly
higher error rate than single qubit gates. For a circuit
with n. CNOT gates, FIIM requires 2n x n. additional gates
for each auxiliary circuit.

A quantum gate efficient alternative ZNE called the
Random Identity Insertion Method (RiIM) was proposed
recently [9]. Instead of using a global n; = n, a non-
uniform number of identity insertions is added for each
gate. In particular, the first order correction is achieved
by considering an input circuit having n. CNOT gates
(and hence n. auxiliary circuits) where each auxiliary
circuit has a different CNOT gate augmented with an
identity insertion. Instead of requiring 2n. gates for the
lowest order correction as in FIIM, RIIM requires only two
additional gates for each auxiliary circuit. In this way,
RIIM requires fewer gates for auxiliary circuits and so has

* Future work can consider the application of this protocol to
different sets of single- and multi-qubit basis gates.
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FIG. 1: An illustration of identity insertion for a generic
controlled unitary operation with two qubits. The U;
represent unitary matrices and the n; are non-negative
integers.

the potential to enable gate error mitigation on deeper
circuits than FIIM. As we will discuss, RIIM not only
needs more circuits, it also necessitates the need for more
measurements per circuit to achieve the same statistical
uncertainty as FIIM.

In this paper we develop methods to improve our abil-
ity to mitigate noise via ZNE. We develop variations of
FIIM and RIIM, and study how one can parallelize the
running of the required RIIM circuits to obtain higher
statistics. In particular, we propose new ZNE techniques
called List and Set Identity Insertion Method (LIIM and
s1iM) which replace only gates from a list (LIIM) or sets of
gates (SIIM) with the same number of identity insertions
instead of single gates (RIIM) or all gates at once (FIIM).
We furthermore study a parallelization strategy for ZNE
across quantum computers to generate a large number of
measurements. In particular, we investigate the perfor-
mance of RIIM applied in parallel across computers with
a non-trivial distribution of errors.

This paper is organized as follows. Section II briefly
reviews FIIM and RIIM, providing an explicit example
where RIIM achieves the same fidelity for a deeper circuit
than F1iM. Then, Sec. IIT introduces extensions of RIIM
and FIIM, including s1iM and LIIM. The parallelization of
ZNE is then studied in Sec. IV for a synthetic distribution
of noise and then in Sec. V for a realistic distribution of
noise. The paper ends with conclusions and outlook in
Sec. VI.

II. FIIM AND RIIM OVERVIEW

The basic idea of ZNE methods is to measure a given ob-
servable at varying levels of noise, and using the measured
dependence on the noise to extrapolate to the expected
noiseless value. The dominant source of instruction-level
noise in current digital quantum computers arises from the
2-qubit entangling CNOT gate, and the dominant noise

channel is the 2-qubit depolarizing channel. In a two-
qubit scenario, the depolarizing channel is given by the
quantum operation acting on the system’s density matrix,

p:
E(p)=(L—p+ 71, 2)

where [ is the 2x2 identity matrix and the noise parameter
€ is of order a percent on current NISQ machines. The
action of a single noisy (depolarizing) CNOT gate on a
general density matrix p can therefore be written as

CNOTy[p] = (1 — e)U(Ckl)pUC

(kD) + iplﬂ @I, (3)
where py; represents the density matrix after tracing over
the k and [ qubits and U¢ is the unitary operator corre-
sponding to the CNOT gate. As the action of two CNOT
gates gives the identity, the application of an odd number
r of CNOT gates to the same kl qubits produces

.
onotyylp] = (1 = re)UcplUc + —p © I+ O(e).
(4)

Given Eq. (4), one can analyze the result of the action
of a given quantum circuit C' containing n¢ CNOT gates
and a universal depolarizing error rate e. This circuit
creates a density matrix, which to first order in € can be
written as [9]

Clol = (L= nepex + €3 pi +0(),  (5)

i=1

where pey is the density matrix that would be obtained
from a noiseless circuit, and p; denotes the density matrix
obtained if the i*® ¢NOT gate in the circuit is replaced by
the depolarizing channel. In other words, p; is constructed
by replacing the 2-qubit system that the i*® cNOT gate
acts on with the completely mixed state /4. Defining a
circuit Cr1,~~7’nc7 which replaces the ith n. oNOT gate by
r; copies of the same CNOT gate, one can write the action
of this circuit as

Given these expressions, one can now derive the expres-
sions for the ZNE versions FIIM and RIIM, as introduced in
Ref. [9]. In FIIM, one constructs from the nominal circuit,
Chom, an auxiliary circuit, Cpy in which each CNOT is
replaced by r; = 3, V i CNOT gates. Given Egs. (5) and
(6), one can show that

3 1

20l = 5C3, 3ol = pea + o). (7)

Crum [l)] = 2

The exact density matrix can therefore be obtained from
a linear superposition of the nominal circuit and the



auxiliary circuit, up to errors that are quadratic in the
depolarizing noise parameter €. In RIIM, one replaces only
a single CNOT gate by three CNOT gates, but then adds
the n. possible density matrices. Symbolically, this can
be expressed as

24+ n. 1
Criu[p] = B) Clp] — ) Z 00{3,1,...,1}[/)]
0ESn,
= pea + O(€%), (8)
where
> Cogsan.ylp]
0ESn,

=C31,.1[p]+Ciza,.alpl+...+Ci . 13lp], (9)

for permutation matrices o € S,,.

The above analysis can be extended to higher orders
in € in fact, by computing the O(€?) correction term one
can show that RIIM has a correction that is a factor of
3 smaller than that of F1iM [9]. In what follows, we will
mostly focus on first-order corrections in e.

While FiIM and RIIM both remove the linear depolar-
izing noise, they use different computational resources
to achieve this goal. FIIM requires a circuit that multi-
plies the total CNOT count by a factor of three, whereas
RIIM adds only two CNOT gates to its auxiliary circuit.
This means that the FIIM auxiliary circuit is significantly
deeper than in RIIM and one can therefore expect RIIM
to outperform FIIM especially when the nominal circuit
contains many CNOT gates. This is illustrated in Fig. 2 for
a simple 2-qubit circuit (Fig. 3) with 2n+1 cNOT gates in
the absence of statistical noise. Note that the simulation
in Fig. 2 includes the effect of amplitude damping, for
which 77 = 50 us, Tenor = 200 ns, and the damping
constant v = 1 — e~ Toor/T1: this is why the data for which
€ = 0 are not unity. In addition to mitigating depolar-
izing noise, ZNE also reduces the impact of amplitude
damping.

On the other hand, RIIM requires many more measure-
ments to obtain the same statistical accuracy as FIIM.
This can be seen from the linear combinations in Egs. (7)
and (8) taken in FIIM and RIIM. Assume we know the
value of C'[p] with statistical accuracy dp;, while we know
the value of each Cy,, .. y[p] with accuracy dps. By
taking the appropriate linear combinations, the standard
deviation across measurements is given by

9 1
o (CFIIM [p]) = \/m

o (CRIIM [p]) = \/W

where the n. multiplying the dps term in Chyy[p] arises
from the fact that Eaesnc Co13,1,..13[p] contains n.
terms. This implies that in order to get the same statisti-
cal precision in the two approaches requires a much more

1
503 +negor,  (10)
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FIG. 2: An illustration of the FIIM and RIIM protocols in
the absence of statistical noise for a two-qubit circuit
with an even number of CNOT gates as specified by the
horizontal axis. The noise model includes depolarizing
noise as specified in the legend and decoherence noise
modeled by amplitude damping with a T} of 50 us and a
CNOT gate time of 200 ns. The two qubits are prepared
in the |1) state. Simulations performed with CIrRQ [21].

precise knowledge of dp; and dps in RIIM compared to
FIIM. In particular, one requires

3 [5p1Jeun 5
[6p1] R = 5[%]:111“ ) [0p2]rma = [pz\/ili:m . (11)

Given that the statistical error scales with the square
of the number of measurements, Eq. (11) shows that for
RIIM to match the FIIM precision, one needs n? more
measurements for the nominal circuit and n. more mea-
surements for each of each of the Cy,, ., j[p] circuits.
Especially for large number of CNOT gates, for which
RIIM is especially expected to outperform FIIM, this is a
potential drawback of RIIM (but it is of course not an in
principle limitation). In the next section we will discuss a
variant of RIIM which allows for improvements over FIIM
while keeping the number of measurements required more
manageable. After that we discuss how one can parallelize
the execution of the required quantum circuits, such that
one can obtain the required number of measurements in
a shorter amount of time.

III. EXTENDING FIIM AND RIIM

In this section, we explore strategies for ZNE that use
fewer quantum resources than FIIM and fewer measure-
ments than RIIM.
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FIG. 3: A simple two-qubit circuit comprising two CNOT
gates followed by a measurement of each qubit.

A. Correcting for individual cNOT noise: The List
Identity Insertion Method (LiiM)

In general, cNOT errors are different for each pair of
qubits, and for systems in which some CNOT errors are
much larger than the rest, one may be able to mitigate
only the dominant CNOT errors with fewer resources than
mitigating all errors. Using a separate depolarizing noise
value (¢;) for each CNOT gate, the leading order expression
Eq. (6) of the depolarizing noise becomes

C{rl,...rnc}[p] =
ne ne
(1 - Z GiTZ') Pex T Z €T Pi + 0(62‘6]‘) .
=1 i=1

(12)

We can define a circuit C'gyan [p] that replaces all cNOTS
of a given list L by 3 ¢NOTs, and the sum of circuits
C{zysum[p] that replace one CNOT from each in this list
by 3 cNOTs. Then, one can construct a FIIM version that
removes the linear terms of the large CNOT errors

3

1
CFIIM,L[p] = ic[p] — 50{3}111 [p]

= pez + O({€er}rgr, {€i€j}ijer) - (13)

The correction remains linear in the € terms that were
not part of the list L, but those that were part of the list
are multiplied by one other value of e¢. Similarly, one can
obtain an analogous version of RIIM:

24+ |L 1
CR.HM,L[P] = %C[ﬂ] - 50{3}?1m [p]

= pex + O({exbrgr, {€icj ijer),  (14)

where |L| denotes the number of elements in the list. An
illustration of the list-based ZNE is presented in Fig. 4.

B. Interpolating between riiM and RiiM: The Set
Identity Insertion Method siim

In the case that all of the CNOT errors are comparable
and need to be mitigated, it is still possible to selectively
replace gates by viewing FIIM and RIIM as special cases of
a more general approach, which we coin the Set Identity
Insertion Method (s11M). In siM one divides the n, CNOT
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FIG. 4: An illustration of the LIIM protocol for the FIIm
and RIIM variants in the absence of statistical noise for a
three-qubit circuit with an even number of CNOT gates
between the first two and second two qubits as specified
by the horizontal axis. The noise model only includes
depolarizing noise. The three qubits are prepared in the
[1) state. Simulations performed with CIrRQ [21].

gates into ng sets’ containing the same number of cNOT
gates m = nc/ns. One is then free to choose some sets in
ng to replace each CNOT gate by e.g. three CNOT, while
keeping the other sets untouched. We denote this by
Ciiy,...(3},...{13 [p]. Adding all different sets results in

Ciaynlpl = Cpay 1y, (3 [0) + Cpay gy 11y, gy ol + s
(15)

which contains a total of ng terms, with m CNOT gates
replaced. Following the same steps as for FIIM and RIIM
one can now define the linear combination
N 2+ ng 1
CSiil 1l = 57 Clol = 5C1ay 6] = pea + O(E)
(16)

Note that FIIM is recovered by using a single set ng =1,
while RIIM is obtained by using as many sets as CNOT
gates ng = ne.

The s1iM keeps much of the advantage of RIIM, while
greatly reducing its main disadvantage. In particular, the
the extra number of gates required in SIIM is 2n./ns, while
the extra number of measurements scales with n? instead

T We are assuming here that n./ns is an integer to simplify the
notation. The general approach still works if this is not true, but
is a little more complicated to explain.
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FIG. 5: An illustration of the siiM approach (with two
sets) in the absence of statistical noise for a three-qubit
circuit with an even number of CNOT gates between the
first two and second two qubits as specified by the
horizontal axis. The noise model only includes
depolarizing noise. The three qubits are prepared in the
[1) state. Simulations performed with CIrRQ [21].

of n? as for RIIM. Figure 5 illustrates how SIIM interpolates
between RIIM and FIIM. For purely depolarizing noise, the
coefficient of the remaining (n.€)? term in SIIM is smaller
by a factor of (2 + n./ns)/3n. compared to FIIM. This is
summarized in the following table.

Approach |# of cNOT error # of measurements
(rel to F1iM)| Nominal |Correction
FIIM 3ne 1 Nnom Ncorr
RIM | e+ 2 : Nuom T2 | Ny,
ne 5 (142n4)2
SIIM ne + 27 TTom Nuom 5| Neorrns

TABLE I: Summary of the three different ZNE
approaches. As discussed in the text, the RIIM approach
requires almost a factor of three fewer CNOT gates to
achieve a uncertainty that is smaller by a factor of 3.
However, it does require many more events to reach the
same statistical precision. The S1IM approach
interpolates between the two methods, allowing to reach
a trade off between the number of CNOT gates and
number of events needed.

IV. PARALLELING ZNE: SYNTHETIC ERROR
MODELS

The results in the previous section focused on the case
of zero statistical noise from a finite number of measure-

ments. This is of course not realistic, and to reduce the
statistical noise one will need to perform a large number
of measurements. One way to rapidly accumulate a large
number of measurements is to parallelize across comput-
ers. This section will explore this idea first by considering
a simple model in which depolarizing errors are normally
distributed across a batch of quantum computers and
then second with a realistic distribution of errors.

A. Analytical Results

Suppose that the depolarizing error is constant within
quantum computer ¢ and that this value across computers
is normally distributed with ¢; ~ N (e, 0?). There is no
unique way to parallelize the ZNE approaches introduced
earlier. One possibility is to run the nominal circuit and
the noise-amplified auxiliary circuits on every computer
and then average the results:

(CznE[p]) = pea + O((€))

= pex + O(® 4 0?), (17)
where we assume that € < 1 and o < € so that higher-
order terms can be neglected. Another strategy would be
to run different parts of the ZNE calculation on different
computers, where in general €; # ¢;. From Egs. (5) and
(6), this would lead to

(Coxglp]) = pea + O{er = €5)) + O((eF))

= Pex T+ 0(62 + ‘72) ) (18)
which is an equivalent expression to Eq. (17). However,
executing the nominal and auxiliary circuits on every
computer—as opposed to spreading the computations
across different computers—has the advantage of a smaller
variance since the difference €¢; — ¢; in Eq. (18) does not
in general cancel.

B. Numerical Results

As shown in the previous section, relaxing the assump-
tion of uniform gate errors introduces an additional error
term to the overall extrapolation error which, in the case
of a normally-distributed set of gate errors, is depen-
dent on the standard deviation of the distribution. In
Fig. 7, the 4-CNOT circuit shown in Fig. 6 with a initial
state |10) was executed across an ensemble of simulated
quantum devices in QISKIT [22]. When interpreting the
output string as a integer, the ideal result in the absence
of noise is 3 for a given measurement The 2-qubit gate
errors in each of these simulated devices are drawn from
a normal distribution with p = 0.1, corresponding to a
mean CNOT error of 10%, while the standard deviation
of the gate error distribution is increased to study the
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FIG. 6: A simple two-qubit test circuit with four cNOT
gates, followed by measurement of each qubit.

scaling of the error incurred by a wider distribution of
errors. These errors are larger than typical uncertainties
on existing machines, but the large mean ensures that the
samples values are positive and to clearly demonstrate
the scaling behavior. The circuit was simulated across
each of these devices, and the observable we use is the
average value of the state, interpreting the bitstring in
binary*. These are averaged across devices. Results from
non-error-mitigated circuits are included, as well as re-
sults from error-mitigating using first and second order
FIIM. The additional error is the excess error induced by
the O(e? + 0?) term over the O(e?) extrapolation error
seen when assuming a single error rate across all devices
and gates. The experiments shown in Fig. 7 indicate that
although there is a slight increase in the additional error
as o is increased, it remains fairly small in magnitude.
Figure 8 provides a visualization of the error distributions
used to generate these simulated ensembles.
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FIG. 7: A demonstration of the scaling of extrapolation
error in the 4-CNOQOT circuit as the standard deviation of
the gate error is increased. Simulations were run using
Qiskit. A total of 10,000 different error rates were
sampled, and each instance of the circuit was run with
10, 000 shots.

 Note that while this observable has been studied in other contexts,
it has the feature that averaging integer values can artificially en-
hance the apparent fidelity when migrations in opposite directions
cancel.
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FIG. 8: Distribution of the error rates used to generate
the data in Fig. 7.

V. PARALLELING ZNE: REALISTIC ERROR
MODELS

We turn now to simulations using two-qubit depolariz-
ing noise parameters, €;, extracted from devices currently
available through IBM Quantum (IBM Q). At the time
of writing, IBM Q “advanced access” offers 14 unique
systems (excluding simulators) with various properties
such as depolarizing error parameters, T1 and T2 re-
laxation time constants, and gate execution times. As
retrieved from IBM Q backend (system) properties, de-
polarizing error parameters, €i,(jk)s where ¢ enumerates
the systems themselves and (jk) refers to the coupling
between qubits j and k, are symmetric about the qubits;
that is, €; (jx) = €;,(kj)- In the following studies, we con-
sider depolarizing error channels in simulations performed
using Qiskit to evaluate the utility of parallelization across
multiple systems.

In the case of RIIM, where the number of required mea-
surements (shots), ngpots, i proportional to the square of
the number of CNOT gates in the circuit, error mitigation
can be computationally time-consuming; this applies to
both simulation and execution on real systems. More-
over, significant latency can be incurred if one desires the
highest fidelity system available to execute their circuits,
as cloud-based systems typically use a first in, first out
queuing mechanism unless the preferred system is other-
wise reserved. Additionally, current IBM cloud quantum
systems have limitations on the number of shots per cir-
cuit — typically 8192 — and the total number of circuits —
ranging from 75 to 900 — a single job submission can con-
tain. Since extensive allocations to the ideal system may
not always be available for a given experiment, spreading
large workloads across multiple (manifestly error-prone)
systems is beneficial in terms of higher throughput and
reliability of measurements.

For our experiment, we consider the same circuit from
the previous section (Fig. 6). One may artificially deepen
the four-CNOT circuit to gain some insight into the per-



formance of a given error mitigation technique by, for
example, replacing each of the four CNOT gates with an
odd integer number of them. The application of RIIM
would result in n. auxiliary circuits which in practice
could be greater than the circuit limit on a cloud-based
quantum system. Furthermore, the required number of
measurements to perform the protocol could far exceed
the per-circuit shot limit of a system. This motivates
the use of multiple systems for parallelizing the error
mitigation method.

Shown in Fig. 9 are simulation results of executing the
previously described circuit at various depths, ranging
between 4-124 total CNOT gates, with only depolarizing
noise applied; thermal relaxation and readout errors are
disabled in the simulations. The observable measured,
made in the standard basis, is the classical bit string value
of the final state. In the top panel are the unmitigated
and RIIM mitigated results using ibmq_guadalupe with
depolarizing error parameter €y; = 0.0104. Each circuit
was executed 8192 times. The bottom panel shows the
unmitigated and RIIM output when executing the sets of
RIIM circuits across multiple, arbitrarily chosen, systems.
The number of systems used in the calculation of each
data point is equal to 2n + 1 ( i.e., the number of cNOT
gates replacing a single CNOT in a circuit) with at most 14
unique systems (the maximum available from IBM Q at
the time of writing) executing in parallel. For cases when
2n+1 > 14, systems were selected — again arbitrarily — to
be recycled and used for executing multiple sets of RIIM
circuits. The mean depolarizing error parameter value
of the 14 systems is €p; = 0.0158 4+ 0.0035, and includes
the device used in the upper panel. The distribution of
machine CNOT error rates are shown in Fig. 10.

The utility of parallelization permits larger numbers of
measurements, executing a given set of circuits multiple
times, and thus greater efficacy when employing RIIM.
While the expected value in the lower panel cannot be
better than the upper panel (the errors of the extra ma-
chines used for the additional data were all larger than
the value of € = 0.0104 used in upper panel of Fig. 9),
a significantly larger number of shots results in a much
more stable result that often closer to the right answer
than on the single best machine. Additionally, the entire
RIIM protocol throughput increases, potentially reducing
the time-to-solution by a factor of 14 (i.e., the number of
available systems) on real hardware.

VI. CONCLUSIONS

Zero noise extrapolation is a critical technique for error
mitigation and is being used for a variety of experimental
demonstrations on near term quantum devices (see e.g.
Ref. [15, 23]). While the core idea of ZNE is simple,
there are many variations that can lead to improvements
in resource usage and fidelity. In this paper, we have
introduced multiple approaches to ZNE. First, we have
developed a partial ZNE that applies to only a subset
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FIG. 9: Simulation results of the 4-CNOT circuit using a
single-device (top) and multiple devices (bottom) with
depolarizing gate noise. The top figure consists of a
single machine executing each circuit 8192 times, and the
bottom an arbitrary set of 4 < nyy < 14 noise models
executing each circuit 8192 nyy; times. The gate noise in
both cases is taken from IBM Q backend properties data.
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FIG. 10: Distribution of CNOT error rates applied in
noisy simulations of the 4-CNOT circuit. Bins are
centered at the error rate. Data obtained from IBM Q
backend properties.

of qubits (List Identity Insertion Method). Second, we
showed that it is possible to generalize the Fixed and
Random Identity Insertion Methods (FIIM and RIIM) by
replacing sets of qubits instead of all or single qubits.
This Set Identity Insertion Method (S11M) can trade-off



the demanding gate resources of FIIM for the demanding
measurement resources of RIIM. Lastly, we studied the
parallelization of RIIM in order to cope with the extensive
measurement resources required to reach precision.

In this paper, we have focused on software and hard-
ware agnostic methods for gate error mitigation. Noise is
amplified by means of identity insertions. All of the meth-
ods introduced here could also be used with pulse-level
gate lengthening for error amplification [24]. Additionally,
the ZNE methods introduced here can be combined with
other gate error mitigation methods as well as readout
error mitigation approaches [25-43] for the ultimate error
mitigation strategy.
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Appendix: IBM Q Data and Code Availability

Tables ITa and IIb contain backend properties for each system used in this work. Note that five of the fourteen
systems have been retired since these studies were performed. As such, we were unable to retrieve backend properties
for the following systems: ibmq_16_melbourne, ibmq_athens, ibmq_manhattan, ibmq_paris and ibmq_rome.

System T1 [us] T2 [us] Frequency [GHz| P(01) P(1|0)

Y (Q0, Q1) (Qo, Q1) (Qo, Q1) (Q0, Q1) (Qo, Q1)
ibmg_belem |1.144[2], 9.928[1]|1.144[2], 9.028[1]| 5.090, 5.246 |2.720[-2], 3.660[-2] |6.400[-3], 8.000[-3]
ibmg_bogota |8.777[1], 8.468[1]|8.777[1], 8.468[1]| 5.000, 4.850 |2.220[-2], 8.040[-2] | 1.000[-2], 2.040[-2]

ibmq_casablanca|1.202[2], 1.029[2]|1.202[2], 1.029[2]| 4.822, 4.760 |1.010[-1], 3.440[-2] | 1.560[-2], 8.600[-3]
ibmq_guadalupe |1.258[2], 1.097[2]|1.258[2], 1.097[2]| 5.113, 5.161 |1.820[-2], 2.140[-2] |5.800[-3], 5.400[-3]
ibmg_lima  |9.090[1], 9.864[1](9.090[1], 9.864[1]| 5.030, 5.128 |3.480[-2], 4.460[-2] |8.400[-3], 8.600]-3]
ibmq_manila |1.847[2], 1.396[2]|1.847[2], 1.396[2]| 4.963, 4.838 [3.160[-2], 3.060[-2] [1.140[-2], 1.400[-2]
ibmg_montreal |1.019[2], 1.017[2]|1.019[2], 1.017[2]| 4.911, 4.835 |1.160[-2], 2.020[-2] |6.800[-3], 8.000[-3]
ibmg_quito |7.571[1], 9.799[1]|7.571[1], 9.799[1]| 5.301, 5.081 [6.300[-2], 3.360[-2] | 1.820[-2], 1.140[-2]
ibmq_santiago |9.181[1], 7.148[1]|9.181[1], 7.148[1]| 4.833, 4.624 [2.940[-2], 1.460[-2] |6.800[-3], 1.020[-2]

(a) Qubit properties

X-Gate Error | X-Gate Length [ns]|CX-Gate Error | CX-Gate Length [ns]
(Qo, Q1) (X = X)) (€0,1) = €,0)) | (CX(0,1) = CX(1,0))
ibmg_belem | 1.975[-4], 2.538[4] 3.556[1] 1.801[-2] 8.1072]
ibmg_bogota [1.947[-4], 2.464[-4] ] 1.334]-2] 2]

ibmg_casablanca|2.672[-4], 2.804[-4] ] 1.885[-2] 2]

ibmq_guadalupe |2.104[-4], 3.436[-4] ] 1.437[-2] 2]

ibmg_lima  |2.508[-4], 1.870[-4] 3.556[1] 1.172[-2] 3.058(2]

i ] ] ] 2]
[ ] ] ] 2]
[ ] ] ] 2]
[ ] ] ] 2]

System

ibmg_manila |1.658[-4], 2.491[-4 2.120[-2
ibmg_montreal |1.835[-4], 1.605[-4 1.473]-2
ibmg_quito  |6.078[-4], 2.839]-4 1.194[-2
ibmq_santiago |4.634[-4], 2.028[-4 1.838[-2

(b) Gate properties

TABLE II: Backend properties of the systems used in the simulations presented in Sec. V. These data correspond to the
calibration data at the time our experiments were executed. Numerals in square brackets represent power of 10. Five
systems—ibmqg_16_melbourne, ibmq_athens, ibmq_manhattan, ibmq_paris and ibmq_rome—have since been retired and
therefore are not included in this table.

The source codes implementing the algorithms described in this paper will be available at:
https://github.com/vrpascuzzi/computationally-efficient-zne.


https://github.com/vrpascuzzi/computationally-efficient-zne
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