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The process of single-photon subtraction (SPS) is known to dramatically alter the properties of
certain quantum optical states. Somewhat surprisingly, subtracting zero photons can also modify
quantum states and has practical applications in quantum communication. Here we experimentally
investigate zero-photon subtraction (ZPS) using a wide variety of input states and conditional
measurements based on actively detecting zero photons in one output port of a variable beamsplitter.
We find that SPS and ZPS can exhibit complementary behavior depending on the photon statistics
of the input states, and highlight deeper connections with Mandel’s Q-parameter for classifying
quantum states.

I. INTRODUCTION

In experimental quantum optics, the bosonic annihi-
lation operator â can be realized through the process of
“single-photon subtraction” (SPS) [1, 2]. When the in-
put state contains a definite number of photons |n〉, this
operation transforms the state as â |n〉 →

√
n |n− 1〉 in

the usual way, corresponding to the simple removal of
one photon from the state. However, when the input is a
superposition of different number states, the SPS process
can lead to counterintuitive results [3, 4]. For example,
consider the input state |ψ〉in = 1√

2
(|1〉+ |5〉), which has

a mean number of photons 〈n̂〉 = 3 (where the number
operator n̂ ≡ â†â). Applying â to this state leads to

|ψ〉out = 1√
6

(
|0〉+

√
5 |4〉

)
, which has 〈n̂〉 = 3.3̄. In this

sense, subtracting a single photon from the state has ac-
tually increased the mean number of photons [5, 6].

In a similarly counterintuitive way, subtracting zero
photons from a state can actually decrease the mean
number of photons. Figure 1 shows an implementation
of this “zero-photon subtraction” (ZPS) process using
a beamsplitter with reflectance R, and conditional mea-
surements. A pulsed input state |ψ〉in passes through the
beamsplitter, and the transmitted output |ψ〉out is her-
alded by the successful detection of zero photons in the
reflected mode. Despite no photons being physically re-
moved from the system, ZPS results in 〈n̂〉out < 〈n̂〉in for
all but pure Fock states [8]. Importantly, the ZPS pro-
cess in Fig. 1 can be used to implement a probabilistic
noiseless attenuation protocol that is useful for quantum
communications [9–11].

As highlighted by the structure of Fig. 1, the key differ-
ence between SPS and ZPS is a heralding signal based on
the detection of one vs. zero photons, respectively. While
SPS has been experimentally studied extensively [12],
ZPS has only been briefly observed for super-Poissonian
(i.e., thermal) states, and with fixed values of beamsplit-
ter reflectance R [13–19]. In this paper, we systemati-
cally study ZPS for examples of super-Poissonian, sub-
Poissonian, and coherent state inputs, all as a function
of beamsplitter reflectance ranging from R = 0 → 1.
The observed trends in attenuation demonstrate some
complementary aspects of ZPS and SPS that depend on
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FIG. 1. An implementation of “zero-photon subtraction”
(ZPS) via conditional measurements on a beamsplitter. A
superposition state |ψ〉in with expected photon number 〈n̂〉in
is prepared in the input mode of a beamsplitter with re-
flectance R. In contrast to single-photon subtraction (SPS),
ZPS requires heralding on the detection of zero photons in
the reflected mode [7]. Heralding on zero photons yields the
attenuated state |ψ〉out with reduced mean photon number
〈n̂〉out < 〈n̂〉in. The degree of attenuation depends on both
R and the photon number statistics of the input state.

the photon number distributions, and highlight the role
of losses and detector efficiency when heralding on zero
photons in ZPS.

The remainder of the paper is structured as follows: in
Section II we provide a detailed theoretical background
for ZPS, and introduce an experimentally accessible pa-
rameter K that can be used to quantify the degree of
attenuation. In Section III we describe our experimental
system, which uses (1) a conventional pulsed parametric
down-conversion (PDC) source to produce the desired in-
put states [20], (2) a variable evanescent-mode fiber cou-
pler to continuously vary R [21], and (3) the ability to
actively herald on zero photons using commercial single-
photon detectors [7]. In Section IV we analyze and dis-
cuss the experimental results, and briefly describe clas-
sical analogues that provide some additional insight into
the observed attenuation effects. Finally, we summarize
our study and conclude in Section V.
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II. ZERO-PHOTON SUBTRACTION

The process of zero-photon subtraction (ZPS) illus-
trated in Figure 1 was first proposed as a method of
noiseless attenuation by Mičuda et al. [9]. This trans-
formation can be defined by its action on Fock states
|n〉 → tn |n〉 with beamsplitter transmittance T = |t|2.
For an arbitrary input state ρ̂ =

∑∞
m,n=0 ρmn |m〉 〈n|,

noiseless attenuation yields the following expected pho-
ton number in the output [8]:

〈n̂〉out =

∑
n nρnnT

n∑
n ρnnT

n
(1)

When T = 1, we regain the expected photon number of
the original state with no attenuation, 〈n̂〉in =

∑
n nρnn.

Remarkably, when T < 1 it can be seen that 〈n̂〉out <
〈n̂〉in for all but pure Fock states by differentiating Eq. 1
with respect to T :

d〈n̂〉out
dT

=
1

T

[∑
n(n− 〈n̂〉out)2ρnnTn∑

n ρnnT
n

]
≡ 〈(∆n)2〉out

T
≥ 0,

(2)
and seeing that 〈n̂〉out increases monotonically on the in-
terval T ∈ (0, 1]. Here 〈(∆n)2〉out is the photon number
variance of the transformed state.

Equation 2 is analogous to the result derived by Ueda
et al. for stationary fields [3], and it suggests that the
degree of attenuation is closely related to the photon
number statistics of the input state. Experimentally, it
is convenient to quantify the degree of attenuation as a
function of reflectance R with the following ratio:

K(R) ≡ 〈n̂〉out
(1−R)〈n̂〉in

(3)

The denominator (1−R)〈n̂〉in simply corresponds to ordi-
nary attenuation by a beamsplitter, in which a fraction
T = 1 − R of the photons are transmitted on average.
Thus, K(R) compares the mean photon number of the
heralded ZPS state 〈n̂〉out to that of the “ordinary” out-
put state with no conditional measurements.

The relative attenuation function K(R) contains in-
formation about the photon number distribution and
higher-order correlations. Most importantly, one can de-
rive from Eqns. 1 to 3 that:

dK

dR

∣∣∣
R=0

= 1− 〈(∆n)2〉in
〈n̂〉in

≡ −Qin (4)

where Qin is Mandel’s Q-parameter for the input
state [22].

The above result highlights an important connection
between ZPS and typical SPS. In the limit of low beam-
splitter reflectance R, SPS is equivalent to the annihi-
lation operator â [23], and increases the mean photon
number of some states as demonstrated in Sec. I. More
precisely, this so-called “photon excess” is given exactly
by the Q-parameter, such that Qin = 〈n̂〉out − 〈n̂〉in [4].

Thus, the mean photon number of super-Poissonian
states (Q > 0) counterintuitively increases after perform-
ing SPS with a weakly reflecting beamsplitter. Equa-
tion 4 links this property of SPS to the behavior of ZPS
in the same regime of R� 1. For ZPS, the Q-parameter
determines the initial slope dK/dR, and thus deviations
from K = 1 as R increases from zero. We can there-
fore say super-Poissonian states exhibit a complementary
“photon deficit” (K < 1) after ZPS in this regime, such
that the mean photon number is reduced below that of
ordinary attenuation.

In the same way that SPS has unique consequences
for sub-, super- and Poissonian states [6], it is also natu-
ral to investigate these three classes of states for ZPS.
Our experiment will examine the following cases: (1)
coherent states |α〉, which possess Poissonian statistics;
(2) the single-mode squeezed vacuum state (SMSV) |ξ〉,
which is super-Poissonian; and (3) a single-photon Fock
state |1〉, which is sub-Poissonian. As detailed in Sec-
tion III, the experimentally prepared single-photon state
is actually a mixture that includes the vacuum term,
ρ̂1 = (1 − β) |0〉 〈0| + β |1〉 〈1|. We can calculate the ex-
pected relative attenuation for each of the three input
states:

K(α)(R) = 1 (5)

K(ξ)(R) ≈ 1−R (6)

K(ρ̂1)(R) =
1

1− βR
(7)

where the approximation for the SMSV |ξ〉 in Eq. 6 holds
for weak squeezing.

III. EXPERIMENT

The full ZPS experiment is shown in Figure 2. As
summarized in the first panel, one of each type of input
state (sub-, super- and Poissonian) is prepared with a
combination of standard techniques in quantum optics.

In the case of Poissonian statistics, coherent states |α〉
are prepared with a mode-locked fiber laser (Menlo Sys-
tems C-Fiber 780), which generates a train of ultrashort
pulses with a repetition rate of 100 MHz and a center
wavelength of 780 nm. These pulses are coupled into a
single-mode fiber and attenuated for use as ZPS input
states.

Super-Poissonian SMSV states |ξ〉 are prepared with
parametric down-conversion (PDC) and a Hong-Ou-
Mandel (HOM) interferometer [24]. The 780 nm pulse
train is first frequency doubled and used as a pump for
Type-I PDC using a β-barium borate (BBO) crystal.
The resulting photon pairs are coupled into single-mode
fibers, and then combined in a 50-50 fiber coupler serving
as the HOM interferometer. The relative time delay ∆t
between photons is controlled with a pair of translating
glass wedges before one of the fibers. When ∆t = 0, inter-
ference ideally produces two disentangled SMSV states in
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FIG. 2. Zero-photon subtraction (ZPS) experiment, in four stages. (1) Input State Preparation– One of three input states is
generated, |α〉, |ξ〉 or ρ̂1. Coherent states |α〉 are produced directly by an ultrafast pulsed laser (100 MHz, 780 nm). These pulses
also undergo second harmonic generation (SHG) to serve as 390 nm pump pulses for Type-I parametric down-conversion (PDC)
using a β-barium borate (BBO) crystal. The resulting photon pairs are coupled into a Hong-Ou-Mandel (HOM) interferometer
to produce either |ξ〉 or ρ̂1 as described in the text. (2) Attenuation– The input state enters a fiber-based variable beamsplitter
(VBS) with reflectance R. (3) Measurement– Each VBS output is measured by single-photon detectors D1 and D2, with
overall channel efficiencies η1 and η2. The heralding detector D1 can be translated across the mode of interest by displacement
∆x. Detection events and the Dref reference signal are recorded by time-to-digital converters (TDCs). (4) Post-selection–
Time tags from all detections are used to measure D2 counting rates with and without post-selecting on “no-click” events at
D1. Abbreviations: DM– dichroic mirror used to isolate UV pump pulses; L– various lenses; ∆t– glass wedge time delay; IF–
narrowband interference filters centered near 780 nm.

the HOM outputs [25]. With our low pump power, the
PDC photon pair production rate of ∼ 10−4 per pulse
ensures we are in the weak squeezing limit where Eq. 6
holds.

Using the same setup with noncollinear PDC and
the HOM interferometer, we can also generate heralded
single-photon states with sub-Poissonian statistics. First,
a large time delay, greater than the coherence time of the
photons, is introduced in one input of the interferometer,
eliminating HOM interference. Next, a single-photon de-
tector D0 without photon-number resolution (non-PNR)
is coupled to one output. When D0 detects exactly one
photon with a “click,” the twin photon is heralded in the
other mode (offset by the delay ±∆t). Alternatively, a
“click” could result from two photons hitting D0, herald-
ing zero photons in the output. The ideal result is a
mixture ρ̂1 = (1− β) |0〉 〈0|+ β |1〉 〈1|, with β = 2/3.

ZPS is performed at a variable beamsplitter (VBS),
implemented with a tunable fiber coupler [21]. The in-
put state |ψ〉in (i.e., |α〉, |ξ〉 or ρ̂1) enters one input of the
VBS, and the two outputs are routed to detection chan-
nels. Each channel includes a free-space U-bench with
25-nm-bandwidth rectangular bandpass filters centered
near 780 nm, then coupled into multimode fibers and di-
rected to single-photon counting modules (SPCMs) D1

and D2 (silicon avalanche photodiodes, Excelitas SPCM-
AQ4C). The auxiliary heralding detector D0 has a sim-
ilar channel not shown in Figure 2, with a more nar-
row 10-nm-bandwidth filter to increase heralding effi-
ciency [26, 27]. To serve as a universal clock for all “click”
and “no-click” events, all detection signals are recorded
alongside a 100 MHz mode-locking reference signal from
an additional detector Dref , using time-to-digital con-
verters (TDCs) with 81 ps timebin resolution (IDQuan-

tique, model ID801). All detection events are stored as
time tags and processed using the techniques described
in Ref. [7].

The counting statistics of ZPS states are observed by
post-selecting on “no-click” events, in which Dref regis-
ters a pulse but the heralding detector D1 measures zero
photons. Dark counts at D1 reduce the probability of
success for these events but otherwise have no effect on
the results [7]. After a 20-second exposure, the mean
counting rate at D2 is calculated with and without this
post-selection. Then the D2 dark count rate (∼80 Hz, af-
ter filtering [28]) is subtracted from each of these values,
and their ratio is taken to obtain K. This is repeated
for multiple values of VBS reflectance R, revealing the
behavior of K(R) for each state.

Each stage of the experiment introduces losses which
must be taken into account for our analysis. Returning to
Figure 1, we can group all losses into three distinct chan-
nels: the input mode of the main beamsplitter (VBS);
the reflected auxiliary mode, containing heralding detec-
tor D1; and the transmitted output mode, containing the
photon-counting detector D2. Input losses are primarily
due to coupling free-space photon pairs from the PDC
source into single-mode fibers, as well as fiber connec-
tor losses at the VBS. The fiber-coupling efficiency and
connector transmission are denoted κPDC and κf , respec-
tively. Additional losses after the VBS are contained in
the effective detector efficiencies η1 and η2, illustrated in
the third panel of Fig. 2.

As defined in Eq. 3, K(R) is unaffected by losses in
the output mode with detector D2. This can differ for
non-PNR detectors as shown in the Appendix, but these
effects are negligible in our experiment. However, losses
in the heralding mode introduce unwanted noise that al-
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ters our counting statistics [7]. Similarly, input losses
introduce noise that alter the photon statistics of the ini-
tial states. Even so, the resulting mixed states can be
analyzed with the same measurement of K, which only
depends on diagonal terms ρnn in a full description of
the state. Consequently, we can modify our equations of
K(R) to include all losses (see Appendix for details):

K(α)
exp(R) = 1 (8)

K(ξ)
exp(R) ≈ 1− κPDCκfRη1 (9)

K(ρ̂1)
exp (R) =

1

1− βκfRη1
(10)

Results for the coherent state |α〉 remain unchanged
from Eq. 5 to Eq. 8. In the case of the SMSV (Eq. 9),
the probability of multipair emission is negligible, and so
the HOM interferometer output is dominated by zero-
and two-photon terms. Loss before (κPDC) and after
the interferometer (κf ) introduce a significant single-
photon component, but the altered statistics remain
super-Poissonian. For the state ρ̂1, the existing single-
photon term is similarly reduced by κf but remains sub-
Poissonian. The initial single-photon probability β is also
degraded by dark counts at D0 and interferometer losses,
lowering it from the ideal value of 2/3. In all cases, fi-
nite heralding efficiency η1 has the same effect on the
measured value of K as the overall input losses.

To experimentally determine coupling values and de-
tector efficiencies in our system, and to align the appara-
tus for input state preparation, we first perform a series of
standard HOM tests [24] and channel loss measurements.
We bypass D0 and the VBS in Figure 2 and perform a co-
incidence measurement with theD1 andD2 channels con-
nected directly to the HOM interferometer outputs. We
observe a HOM dip with 98% visibility with this arrange-
ment. Approximate Klyshko efficiencies [29], apart from
the interferometer coupling efficiency of κPDC ≈ 0.50, are
found to be η1 ≈ 0.32 and η2 ≈ 0.28. This is consistent
with nominal SPCM detector efficiencies of ∼ 50% at 780
nm and U-bench transmission of ∼ 65% and ∼ 60%. The
values of κf ≈ 0.86 and β ≈ 0.38 are determined in the
analysis of the main experiment.

IV. RESULTS AND DISCUSSION

Our main results are shown in Figure 3. The relative
attenuation K induced by ZPS is shown as a function
of reflectance R for all three input states. Each state ex-
hibits very distinct behavior in agreement with equations
8-10. For the coherent state shown in Fig. 3(a), K = 1
for all R, indicating that ZPS counting rates are identi-
cal to those of ordinary attenuation. This case provides
a benchmark for our experiment, and can be understood
by the well-known fact that a coherent state entering a
beamsplitter produces two uncorrelated coherent states
in the outputs [6, 20, 25]. Consequently, conditional mea-
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FIG. 3. Experimental measurements of relative attenuation
K(R) for the three cases of (a) a coherent state |α〉, (b) a
SMSV state |ξ〉, and (c) a heralded single photon state ρ̂1.
The measured data points (red circles) in plots (a)-(c) show
distinct trends that depend on the photon number statistics
of the given state: the benchmark case |α〉 shows K = 1 for
all reflectance R, while |ξ〉 and ρ̂1 have a negative and positive
slope, respectively. In panel (b), a fit to the data using Eq. 9
(black dashed curve) gives the value (κPDC)(κf )(η1) = 0.14,
corresponding to an overall loss of 86%. In panel (c), a similar
fit to the data using Eq. 10 corresponds to an overall loss
of 73% with single-photon probability β ≈ 0.38. In both
panels (b) and (c), the blue (dot-dashed) and green (dotted)
theoretical curves show more pronounced effects of ZPS that
would be observed for 50% and 0% overall loss, respectively.
For comparison, panel (d) shows theoretical attenuation of an
ideal Fock state |n〉 calculated for the same overall loss values
as in panel (c).

surements like those in ZPS have no effect on the output
state in this case.

In Fig. 3(b), measurements of K for the SMSV state
|ξ〉 are shown. The data trend exhibits a negative initial
slope in accordance with Eq. 4 (Q > 0). This “photon
deficit” K < 1 increases linearly with reflectance R. This
attenuation, however, is limited by heralding efficiency
and losses. A fit to the data using Eq. 9 shows that as

R → 1, K
(ξ)
min = 0.861 ± 0.003. This is consistent with

the product of efficiencies (κPDC)(κf )(η1) ≈ 0.14 (i.e.,
overall loss of 86%). For comparison, the two theoretical
curves in Fig. 3(b) show the stronger attenuation that
would be achieved with overall losses of only 50% and
0%.

The heralded single photon case ρ̂1 in Fig. 3(c) dis-
plays essentially opposite behavior. The sub-Poissonian
statistics (Q < 0) determine a positive initial slope such
that K > 1, and this trend continues for all values of R.
Note that by our definition of relative attenuation, this
does not indicate 〈n̂〉out > 〈n̂〉in, and is much different
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FIG. 4. Relative attenuation K for the states |ξ〉 and ρ̂1 at
R ≈ 0.5, measured as the heralding detection channel D1 is
moved out of the mode of interest by a distance ∆x, which
modulates heralding efficiency η1. As η1 decreases down to
zero (right axis), the relative attenuation values (left axis)
converge to K = 1 as ZPS becomes increasingly ineffective.
Here, heralding efficiency is normalized to its maximum value
of η1 ≈ 0.32.

from the “photon excess” observed for super-Poissonian
states after SPS. The state is still attenuated relative to
the input, and this can be seen by comparing the ob-
served K to the theoretically predicted values for ideal
Fock states in Fig. 3(d), for which 〈n̂〉out = 〈n̂〉in. In
contrast to the states |α〉 and |ξ〉, however, K > 1 in-
dicates that the degree of heralded attenuation by ZPS
is weaker than that of ordinary attenuation. With pre-
viously determined values of κf ≈ 0.86 and η1 ≈ 0.32,
which combine to give an overall loss of 73%, a fit of the
data in panel (c) to Eq. 10 indicates a single photon prob-
ability of β ≈ 0.38 for our initial state. Two theoretical
curves with β = 0.38 and improved overall losses of 50%
and 0% show more extreme deviations from K = 1.

Interestingly, the theoretical curves in Figure 3(b)-(d)
show as detector inefficiency and losses increase, the ZPS
statistics for both sub- and super-Poissonian states con-
verge toward the Poissonian case K = 1. Losses before or
after the VBS play an identical role in reshaping K(R) in
Eqs. 8-10, and so we can explain this in two ways. First,
the photon number distributions of |ξ〉 and ρ̂1 tend to-
ward Poissonian statistics after ordinary attenuation, i.e.,
loss [30]. As losses before the beamsplitter increase, the
observed K(R) values should therefore tend to unity and
resemble those of the coherent state. Alternatively, losses
before the heralding detector D1 reduce our ability to dis-
tinguish “true” vacuum in the reflected mode from one or
more photons [7]. As effective efficiency decreases, “no-
click” events herald a mixture of the desired ZPS state
with unwanted noise, becoming identical to ordinary at-
tenuation in the zero-efficiency limit.

Figure 4 demonstrates this effect by studying K(R)
as detector efficiency η1 decreases. Here, the multi-

mode fiber launcher coupled to heralding detector D1

is scanned a distance ∆x out of the mode of interest
within the U-bench (see inset and Fig. 2). The blue curve
shows the degree of spatial mode overlap as the fiber is
moved, measured separately as the fraction of power cou-
pled from an auxiliary source. As detector mode overlap
decreases, it can be seen that the relative attenuations
K(ξ) and K(ρ̂1) (measured at R ≈ 0.5) converge to the
Poissonian value of K = 1. Although we continue to her-
ald on zero photons in D1, these measurements carry less
information about the system and ZPS becomes increas-
ingly ineffective.

The results presented in Figs. 3 and 4 show a strong
connection between the effects of ZPS and the photon
number distributions of initial states. Importantly, how-
ever, measuring K(R) yields no information about phase
or coherence between number states. Consequently, as
has been argued for the “photon excess” after SPS [5, 6],
the effects of ZPS observed here can also be replicated
using counting statistics of classical particles and proba-
bilistic subtraction. For ZPS, probability of success drops
exponentially with higher numbers of photons, thus shift-
ing the mean of the number distribution downward. Ad-
ditionally, the “photon excess” or “photon deficit” exhib-
ited by thermal light undergoing SPS or ZPS can also be
understood as intensity fluctuations of the classical elec-
tromagnetic field (i.e., correlated intensities at detectors
D1 and D2).

In this sense, the “photon deficit” observed in ZPS,
much like the “photon excess” of SPS, is not a purely
quantum mechanical effect. Nonetheless, it is impor-
tant to note that the degree of attenuation measured
after ZPS can reveal existing nonclassicality of the in-
put states. For example, our observations confirmed the
nonclassical [20] sub-Poissonian statistics of the heralded
single photon ρ̂1. Furthermore, quantum state tomogra-
phy or some other phase-dependent measurement would
reveal that ZPS not only attenuates quantum states, but
does so noiselessly (i.e., preserves their coherence) [31].
This property is exactly what makes ZPS promising for
applications in quantum communication [9–11].

V. CONCLUSIONS

In summary, we have experimentally demonstrated
that the zero-photon subtraction (ZPS) process of Fig-
ure 1 can reduce the mean photon number of quantum
optical states, despite no photons being removed from
the system. Our experiment tested the effects of ZPS
on three unique classes of input states (sub-, super- and
Poissonian) using a beamsplitter with variable reflectance
R. By studying the relative attenuation ratio K as a
function of R, the observed trends reveal a connection
to Mandel’s Q-parameter in the regime of R � 1. More
precisely, the initial slope of K(R) near R = 0 is equal
to −Qin, resulting in distinct behavior for each input
state. Consequently, (sub-) super-Poissonian states will
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be attenuated (less) more by ZPS than by ordinary at-
tenuation with a weakly reflecting beamsplitter. These
ZPS effects are complementary to the effects of typi-
cal single-photon subtraction (SPS) in the same regime
R � 1. Most notably, super-Poissonian states that ex-
hibit a “photon excess” after SPS will also exhibit a
unique “photon deficit” after ZPS.

These observations were made possible by actively
heralding on the detection of zero photons with a single-
photon detector [7]. We further confirmed the need
for high efficiency in the heralding mode by measuring
the convergence of non-Poissonian attenuation K to the
benchmark Poissonian case as losses increased.

Although not revealed by the photon counting mea-
surements reported here, ZPS can preserve the coherence
of quantum states [31], making it useful for quantum
communications as a noiseless attenuator [9–11]. Our
results provide further insight into the nature of this
transformation and its relationship to other techniques in
quantum state engineering by conditional measurements.
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Appendix

This Appendix provides further calculations regarding
ZPS with realistic single-photon detectors.

To account for imperfect heralding on zero with finite
efficiency η1, we can derive an alternate version of Eq. 1:

〈n̂〉out =
tr
{
B̂ρ̂B̂†Π̂

(NC)
1 n̂2

}
tr
{
B̂ρ̂B̂†Π̂

(NC)
1

} (A.1)

=
1−R

1−Rη1

∑
n nρnn(1−Rη1)n∑
n ρnn(1−Rη1)n

where the subscripts 1 and 2 indicate detection channels
D1 and D2, B̂ is the unitary beam-splitter operator [20],
and we have used the standard POVMs for non-PNR
detectors for “click” (C) and “no-click” (NC) events [32]:

Π̂
(C)
i = 1−Π

(NC)
i

Π̂
(NC)
i =

∑
n

(1− ηi)n |n〉 〈n| (A.2)

for i = 1, 2. Substitution into the definition of K (Eq. 3)
yields the same expression, but with the replacement
R→ Rη1.

To account for losses before the attenuator, we in-
troduce a preceding beamsplitter with transmittance κ,
where the reflected mode is lost to the environment.
Tracing over the outputs of both beamsplitters as in A.1,
we once again find an expression where losses are included
with a simple replacement:

Kexp(R) = Kideal(κRη1) (A.3)

The above relationship gives us Eqs. 8-10. Mathemati-
cally, this means the experimental K and the ideal loss-
less case have the same general behavior as a function of
R, except the effective domain is limited from R ∈ [0, 1)
to Rexp ∈ [0, κη1).

Finally, we can also account for the lack of PNR capa-
bility in the output detector by replacing n̂2 in Eq. A.1

with Π̂
(C)
2 . The effective relative attenuation becomes:

Kclick(R) =

∑
n ρnn [(1− κRη1)n − (1− κRη1 − Tη2)n]

[
∑
n ρnn(1− κRη1)n] [1−

∑
n ρnn(1− Tη2)n]

(A.4)
By taking the low-efficiency limit η2 → 0 and applying
L’Hopital’s rule once, we find that Kclick(R) converges
to K(R). For low mean photon numbers, this converges
quickly enough to make the approximation Kclick ≈ K,
and the difference is negligible for our experimental con-
ditions.
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