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The quantum features of ultrashort-pulse optical parametric oscillators (OPOs) are theoretically
investigated in the nonlinear regime near and above threshold. Viewing the pulsed OPO as a
multimode open quantum system, we rigorously derive a general input-output model that features
nonlinear coupling among many cavity (i.e., system) signal modes and a broadband single-pass
(i.e., reservoir) pump field. Under appropriate assumptions, our model produces a Lindblad master
equation with multimode nonlinear Lindblad operators describing two-photon dissipation and a
multimode four-wave-mixing Hamiltonian describing a broadband, dispersive optical cascade, which
we show is required to preserve causality. To simplify the multimode complexity of the model, we
employ a supermode decomposition to perform numerical simulations in the regime where the pulsed
supermodes experience strong single-photon nonlinearity. We find that the quantum nonlinear
dynamics induces pump depletion as well as corrections to the below-threshold squeezing spectrum
predicted by linearized models. We also observe the formation of non-Gaussian states with Wigner-
function negativity and show that the multimode interactions with the pump, both dissipative and
dispersive, can act as effective decoherence channels. Finally, we briefly discuss some experimental
considerations for potentially observing such quantum nonlinear phenomena with ultrashort-pulse
OPOs on nonlinear nanophotonic platforms.

I. INTRODUCTION

Ultrashort-pulse OPOs have become established as an
ideal testbed for the generation and manipulation of co-
herent nonlinear interactions among many optical fre-
quency modes at once. In the classical domain, pulsed
OPOs are used to generate frequency combs for appli-
cations in molecular spectroscopy and atomic clocks [1–
4], and the strong temporal confinement of the field fa-
cilitates efficient nonlinear optics [5]. In quantum ex-
periments, they have been synchronously pumped be-
low threshold to generate multimode squeezed light [6–
8]. Because their quantum states intrinsically reside in a
multimode Hilbert space of high dimensionality, they are
also being investigated as a resource for optical quantum
information processing [9–13].

Many of the quantum features of pulsed OPOs are
inherited from their single-mode continuous-wave (cw)
counterparts, including squeezing [14], non-Gaussian
state generation [15], and their applications to quan-
tum information and communication [16, 17]. Quan-
tum input-output theory, which describes open quan-
tum system dynamics using master equations in Lind-
blad form [18–20], has been pivotal in elucidating the
properties of cw OPOs. This framework makes numeri-
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cal simulation tractable by reducing the OPO physics to
the dynamics of a single internal mode interacting with
a white-noise reservoir [21, 22]. As a result, a number
of sophisticated techniques, from quantum measurement
and feedback to quantum coherent control [20, 23], have
been applied to the analysis of cw OPO dynamics and
networks [24, 25].

In this context, it is interesting to ask whether quan-
tum input-output theory can be applied to pulsed OPOs
as well. At first glance, such a theory appears in-
tractable due to the large number of internal cavity
modes (typically 104 to 105). Nevertheless, such a con-
struction was successfully demonstrated by Refs. [26–
28] for synchronously-pumped OPOs (SPOPOs). A
key technique employed in these seminal papers was to
recast the multimode input-output model into a low-
dimensional supermode basis [11, 29] over the signal reso-
nances. This concise description enabled a detailed anal-
ysis [26–28] of the multimode Gaussian states produced
in table-top SPOPOs, which, as experimentally demon-
strated in Ref. [6], manifest as rich, highly entangled op-
tical networks.

On the other hand, non-Gaussian states can arise in
systems with nonlinear dynamics, provided sufficiently
strong single-photon nonlinearities. For instance, cw
OPOs in the deeply quantum regime have been theo-
retically predicted to produce Schrödinger cat states [15],
which can form the basis for schemes in quantum compu-
tation [30, 31] and quantum-enhanced metrology [31, 32].
Though this regime has thus far only been accessible in
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“exotic” quantum systems such as in atom-cavity [33] or
superconducting-circuit [34] quantum electrodynamics,
recent rapid advances in thin-film integrated nanopho-
tonics suggest single-photon nonlinearities may soon also
be accessible with all-optical (i.e., χ(2) or χ(3)) nonlinear-
ities, due to the strong spatial confinement of light into
sub-wavelength nonlinear waveguides [35–37]. Combined
with the promising potential of these platforms to sup-
port advanced dispersion engineering (and hence strong
temporal confinement as well) [38, 39], ultrashort-pulse
SPOPOs exhibiting few-photon nonlinear quantum dy-
namics appear to be within the realm of experimental
possibility.

In this paper, we theoretically study the quantum be-
havior of ultrashort-pulse OPOs in this highly nonlin-
ear regime. Our analysis is based on a rigorous, gen-
eral quantum input-output model of an SPOPO, valid
in both Gaussian and non-Gaussian regimes of opera-
tion. We model the nonlinear three-wave interaction be-
tween non-resonant pump and resonant signal modes us-
ing a nonlinear system-reservoir Hamiltonian and derive
input-output relations from the Heisenberg equations
of motion, while the internal dynamics of the SPOPO
are captured with a time-convolutionless second-order
Born-Markov master equation. In the process, we de-
fine “band-limited” quantum noise operators, which re-
duce to the noise operators in Ref. [27] under appropri-
ate timescale limits. In the process, we thus clarify the
requirements for a quantum input-output model—which
is formulated in continuous time by construction—to be
compatible with the pulsed nature of the system. The
resulting model includes Lindblad operators representing
nonlinear dissipation induced by pump depletion, but no-
tably, it also reveals the somewhat surprising existence
of a nonlinear (quartic) dispersive Hamiltonian, which
we show is necessary to preserve causality and maintain
consistency with classical models in the mean-field limit.

We also show that the supermode technique of
Refs. [26–28] can be applied to our model, in order to
obtain an efficient description of the nonlinear quantum
dynamics. This approach enables us to perform numeri-
cal simulations in the supermode basis and observe a vari-
ety of nonlinear phenomena predicted by the model, such
as pump depletion, corrections to the linearized squeez-
ing spectrum, and the generation of non-Gaussian states.
We provide estimates for the experimental parameters
and regimes needed to observe these exotic quantum ef-
fects and compare them against the state of the art in
nonlinear nanophotonics.

II. MULTIMODE INPUT-OUTPUT THEORY
OF PULSED OPOS

The input-output formalism deals with systems cou-
pled weakly to a reservoir, which we take to be a good
characterization of a high-finesse pulsed OPO (the sys-
tem) coupled to freely propagating optical fields (the

reservoir) [18, 19]. The systems we consider consist of
a broadband set of resonant modes in a “signal” band of
frequencies and are schematically shown in Fig. 1. The
system exhibits linear coupling to a corresponding sig-
nal band S in the free field and nonlinear coupling to a
second-harmonic “pump” band P, also in the free field.
Note we use “pump” to refer to the reservoir with fre-
quencies in the range of the second harmonic of the signal
modes, even when there is no active pumping. Following
the usual procedure for high-finesse optical systems, we
assume the system (quasi)modes can be quantized inde-
pendently of the reservoir, and we derive perturbatively
the system dynamics subject to the effects of the reservoir
in an input-output framework.

Let the cavity resonate a set of signal modes ŝm, with
resonance frequencies ωsm. For the following, we work in
an interaction frame rotating at these frequencies, gen-
erated by a Hamiltonian

∑
m ωsmŝ

†
mŝm. We suppose the

resonant signal modes are described by an electric dis-
placement field operator D̂s(r, t) of the form

D̂s(r, t) = i
∑
m

Dsm(r) ŝme
−iωsmt + H.c., (1)

where
[
ŝm, ŝ

†
n

]
= δmn, and Dsm(r) are appropriately

chosen mode functions, as prescribed by canonical quan-
tization of the macroscopic Maxwell’s equations [40, 41].

In the derivation to follow, we do not necessarily as-
sume uniform cavity mode spacing, which is the example
depicted in Fig. 1(c). This special case of uniform mode
spacing is addressed in more detail in Sec. III. In gen-
eral, however, cavity resonances may not be uniformly
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FIG. 1. Schematics of various systems of pulsed OPOs and
their cavity mode structure. In (a), a single resonator (high-
lighted in yellow) is coupled on the bottom to a propagating
pump field through a dichroic and on top to a propagating
signal field through an outcoupler, resulting in (c) a set of
uniformly spaced resonances. In (b), two coupled resonators
form a single system (highlighted in yellow), resulting in (d) a
nonuniform mode structure. In both cases, only the signal is
resonant in the system, and the cavity medium (i.e., region in

yellow) is taken to contain the χ(2) nonlinearity (with appro-
priate dispersion compensation). The highlights in (c,d) indi-
cate the bands Sm over which we define signal input-output
operators (see main text).
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spaced, either due to intracavity dispersion (especially
in broadband cavities) or because the system may con-
sist of multiple coupled cavities, as depicted in Fig. 1(b),
resulting in the “resonance splitting” in Fig. 1(d). The
following derivation can be applied to these nonuniform
cases as well.

A. Linear dissipation

We begin by treating the linear coupling to the reser-
voir at the signal frequency band. Aside from outcou-
pling, this can also describe linear losses due to scattering
or other intrinsic imperfections; while such effects are by
nature spatially multimode, we take the usual assump-
tion that, for each cavity mode, the various scattering
channels can be combined into a single effective coupling
to the reservoir, following Wigner-Weisskopf [42].

We introduce reservoir modes b̂ω, with [b̂ω, b̂
†
ω′ ] =

2πδ(ω−ω′) in a signal frequency range S of interest, and
posit a minimal-coupling Hamiltonian in the interaction
frame of the form

V̂lin(t) := i
∑
m

∫
S

dω

2π

√
2κm(ω) ŝmb̂

†
ω e
−i(ωsm−ω)t + H.c.

(2)
To further develop this interaction in a way that suits

a multimode cavity, we define a set of “band-limited”
reservoir operators

b̂
(m)
t :=

∫
Sm

dω

2π
b̂ω e

−i(ω−ωsm)t, where (3)

Sm :=
(

1
2 (ωsm + ωsm−1) , 1

2 (ωsm + ωsm+1)
)
, (4)

as illustrated in Fig. 1(c,d). We can compute the evo-
lution of these reservoir modes using their Heisenberg
equations of motion. We parametrize this evolution by
t, which we note is distinct in nature from the index t′

denoting the mode. This produces

d

dt
b̂
(m)
t′ (t) = −i

[
b̂
(m)
t′ (t), V̂lin(t)

]
(5)

=
∑
n

ŝne
iωsmt

′
e−iωsnt

∫
Sm

dω

2π

√
2κn(ω)e+iω(t−t′).

We now assume a Markov condition, in which the band-
widths of both κn(ω) (i.e., the range of ω over which
κn(ω) is sufficiently flat) and Sm (i.e., the quantity
ωsm−ωsm−1) are much larger than the bandwidth of any
system dynamics. Following similar assumptions made
in single-mode quantum optics, this Markov condition
allows us to formulate a multimode Markovian input-
output theory for this interaction, and we will further
develop and utilize this condition throughout this work.
Under this Markov condition, the integral in (5) can ef-

fectively be replaced with
√

2κn(ωm)δ(t − t′), and the
result is simplified to

d

dt
b̂
(m)
t′ (t) =

∑
n

ŝne
i(ωsm−ωsn)t

√
2κn(ωm)δ(t− t′). (6)

From this, we see the reservoir mode only evolves dis-
cretely upon interacting with the system at t′ = t, so
we can isolate these two segments of its evolution as an
input and output part:

b̂
(m)
t,in := lim

t′→−∞
b̂
(m)
t (t′), b̂

(m)
t,out := lim

t′→+∞
b̂
(m)
t (t′). (7)

which are related via the input-output relationship

b̂
(m)
t,out = b̂

(m)
t,in +

∑
n

√
2κn(ωm)ŝn(t)ei(ωsm−ωsn)t

≈ b̂(m)
t,in +

√
2κmŝm(t), (8)

where κm := κm(ωsm) and we have made a rotating wave
approximation in the second line, which holds as long as
the Markov condition is satisfied. In this case, κm is the
field amplitude decay rate for the mth signal mode.

Next, we derive the evolution of the system signal
modes due to the coupling V̂lin, in the form of a Lind-
blad master equation, starting from a second-order time-
convolutionless Born-Markov approximation [43]. Let ρ̂
denote the system state, trS̄ denote a partial trace over
the reservoir, and ρ̂S̄ denote the density matrix of the
reservoir in absence of interaction with the system, which
we take to correspond to the vacuum. The contribution
to dρ̂/dt due to V̂lin is given by

Llinρ̂ = −
∫ ∞

0

dτ trS̄

[
V̂lin(t),

[
V̂lin(t− τ), ρ̂(t)ρ̂S̄

]]
. (9)

In evaluating (9), we neglect Lamb shifts (i.e., assume
they can be absorbed into renormalized energy levels
ωsm), and we make a secular (post-trace rotating-wave)
approximation by dropping any terms in (9) that oscillate
as e−i(ωsn−ωsm)t for m 6= n, which is also justified by the
Markov condition. The result is the standard Lindblad
master equation

Llinρ̂ =
∑
m

D
[
L̂

(m)
lin

]
ρ̂, (10a)

where D[L̂]ρ̂ := L̂ρ̂L̂†− 1
2

{
L̂†L̂, ρ̂

}
[44], and we have iden-

tified a set of linear Lindblad operators

L̂
(m)
lin =

√
2κmŝm (10b)

representing dissipation into each frequency bin.

B. Nonlinear parametric interactions

We now turn to the treatment of the nonlinear χ(2)

interaction between the cavity signal modes and the non-
resonant pump field. We suppose the pump is described
as a spectrally continuous field, with an electric displace-
ment field operator D̂p of the form

D̂p(r, t) = i

∫
P

dω

2π
Dpω(r) âωe

−iωt + H.c. (11)
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in the interaction frame, where the continuum pump

reservoir modes âω obey
[
âω, â

†
ω′

]
= 2πδ(ω − ω′) and

Dpω(r) are appropriately chosen continuum mode pro-
file functions, as prescribed by canonical quantization of
the macroscopic Maxwell’s equations [40, 41]. The fre-
quency range P for this integral (i.e., the pump band)
should be sufficiently confined so as to not overlap with
the signal reservoir band S. Note that in this subsection,
we do not yet consider an active coherent drive on the
pump field (i.e., we do not yet “pump” the OPO), but in
Sec. III we show how such a drive can be easily handled
once we have derived the appropriate interaction with
the pump reservoir.

We take the macroscopic nonlinear χ(2) Hamiltonian
in the interaction frame to be [40, 41]

V̂nl(t) :=

∫
d3r

∑
i,j,k

η
(2)
ijk(r)D̂i

p(r)D̂j
s (r)D̂k

s (r) (12)

= i

∫
P

dω

2π
â†ω
∑
m,n

fmn(ω) ŝmŝne
−i(ωsm+ωsn−ω)t + H.c.,

where η
(2)
ijk(r) is the second-order inverse susceptibility

tensor [40] (assumed to be frequency independent) and
the coupling strength of the three-wave interaction is

fmn(ω) :=

∫
d3r

∑
i,j,k

η
(2)
ijk(r)

(
Di

p

∗
ω
Dj

smD
k
sn

)
(r), (13)

which we can take to be real-valued without loss of gen-
erality when Dpω(r) corresponds to normal modes of
the system. That is, linear loss of these modes have
been phenomenologically treated according to the pre-
vious subsection, as opposed to direct quantization of
lossy/quasinormal modes [45]. In Sec. IV, we consider
some concrete forms for fmn(ω) in SPOPOs based on
phase-matching considerations.

We follow a similar procedure as in the linear dissipa-
tion case in order to define input-output pump operators.
The choice of partitions Pq of the pump frequencies is
somewhat arbitrary; if the pump is a frequency comb,
for example, one natural choice is to use the pump comb
lines. In any case, let us denote such pump frequencies
of interest as ωpq. We now define pump operators

â
(q)
t :=

∫
Pq

dω

2π
âωe
−i(ω−ωpq)t, where (14)

Pq :=
(

1
2 (ωpq + ωpq−1), 1

2 (ωpq + ωpq+1)
)
. (15)

To derive the evolution of these reservoir modes â
(q)
t′ ,

we again calculate

d

dt
â

(q)
t′ (t) = −i

[
â

(q)
t′ (t), V̂nl(t)

]
(16)

=
∑
m,n

ŝmŝne
−i(ωsm+ωsn)teiωpqt

′
∫
Pq

dω

2π
fmn(ω)e+iω(t−t′).

As in the case for linear dissipation, we impose the
Markov condition that the bandwidths of the signal-
pump coupling fmn(ω) as well as the pump bands Pq
are much larger than any system dynamical rate. Un-
der this Markov condition, we can effectively replace the
integral by fmn(ωpq)δ(t− t′), and the result is

d

dt
â

(q)
t′ (t) =

∑
m,n

f (q)
mnŝmŝne

−i(ωsm+ωsn−ωpq)tδ(t−t′), (17)

where we introduce the simplified notation

f (q)
mn := fmn(ωpq). (18)

In contrast to the case of linear dissipation, the Markov
condition on fmn(ω) needs to be treated with some care.
We show in Appendix A, in the context of the Born-
Markov master equation, the bandwidth of fmn(ω) is in-
timately linked to the memory time of the pump reser-
voir, which in turn is related to the roundtrip time of
the signal cavity, consistent with the requirement for the
bandwidths of Pq or Sm to be sufficiently large; we also
provide a brief discussion of these timescale considera-
tions for SPOPOs in Sec. VI.

Again, this delta-function interaction with the system
in (17) produces an input-output relationship

â
(q)
t,out = â

(q)
t,in +

∑
m,n

f (q)
mnŝmŝne

−i(ωsm+ωsn−ωpq)t, (19a)

where

â
(q)
t,in := lim

t′→−∞
â

(q)
t (t′), â

(q)
t,out := lim

t′→+∞
â

(q)
t (t′). (19b)

In the following section, we show that the rotating terms
in (19) can be eliminated for a synchronously pumped
OPO with a natural choice for the pump frequencies ωpq.

In general, however, if ωpq are arbitrarily picked rela-

tive to the signal frequencies ωsm, one may not be able
to apply a rotating wave approximation to simplify this
input-output relation further.

We next turn to deriving the master equation model for
the evolution of the signal modes subject to this nonlinear
interaction with the pump reservoir. We again employ a
second-order time-convolutionless Born-Markov approx-
imation [43]. Let ρ̂ denote the system state, trP̄ denote
a partial trace over the pump reservoir, and ρ̂P̄ denote
the density matrix of the pump reservoir in absence of
interaction with the system, which we take (for now) to

be vacuum. The contribution to dρ̂/dt by V̂nl is

Lnlρ̂ = −
∫ ∞

0

dτ trP̄

[
V̂nl(t),

[
V̂nl(t− τ), ρ̂(t)ρ̂P̄

]]
. (20)

Note that as the signal frequency band and pump
frequency band reservoirs are independent (i.e., non-
overlapping), the Born-Markov approximation allows the
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influence of these reservoirs to be derived independently
of one another. Evaluating the partial trace, we find

Lnlρ̂ =
∑
m′,n′

∑
m,n

ei(ωsm′+ωsn′ )te−i(ωsm+ωsn)t (21)

× ξmnm′n′
[
ŝmŝnρ̂(t), ŝ†m′ ŝ

†
n′

]
+ H.c.,

with an interaction tensor

ξmnm′n′ :=

∫ ∞
0

dτ hmnm′n′(τ), (22)

where

hmnm′n′(τ) :=

∫ ∞
0

dω

2π
fm′n′(ω)fmn(ω) (23)

× ei(ωsm+ωsn−ω)τ

are nonlinear memory functions associated with the sys-
tem’s nonlinear coupling to the pump reservoir, which
correspond to the temporal decay of correlations between
the system and the pum reservoir induced by the non-
linear interaction. For the Born-Markov approximation
to hold in (20), hmnm′n′(τ) must vanish for τ larger
than any system interaction timescale (i.e., the memory
time should be short). Using additional assumptions in
Sec. IV (with details in Appendix A), we explicitly evalu-
ate (23) and show that the memory function indeed satis-
fies this requirement for a broad class of ultrashort-pulse
OPOs.

Using the Sokhotski-Plemelj theorem from complex
analysis, and assuming fmn(ω) to be continuous, the cou-
pling constants can also be written in terms of their real
and imaginary parts such that ξ = γ + iχ, where

γmnm′n′ :=
1

2
fm′n′(ωsm + ωsn)fmn(ωsm + ωsn) (24a)

χmnm′n′ := P

∫ ∞
0

dω

2π

fm′n′(ω)fmn(ω)

ωsm + ωsn − ω
, (24b)

where P denotes the Cauchy principal value. As we
will see later, under assumptions appropriate to syn-
chronously pumped OPOs, γ physically contributes to
dissipative evolution under (20) while χ physically con-
tributes to coherent evolution under (20). However, we
note that, as we show in Sec. IV, it can be easier in prac-
tice to directly compute ξ using (22) and (23), rather
than the integrals in (24).

Without additional assumptions, (21) is the most gen-
eral quantum master equation model for the nonlinear
evolution of the signal modes. In general, it is a time-
dependent master equation with nonlinear, non-Lindblad
dissipative terms (corresponding to γ), as well as an ad-
ditional nonlinear effective Hamiltonian (corresponding
to χ). In Sec. III, we show that a secular approxima-
tion, retaining only terms in the sum where ωsm +ωsn ≈
ωsm′ + ωsn′ , can be made in (21) for the case of a syn-
chronously pumped OPO, in which case we can further
simplify (21) by casting it in Lindblad form. Then, as
we show in Sec. IV, we can explicitly calculate the cou-
pling constants in (24) once given a form for the phase-
matching function fmn(ω).

III. THE QUASI-DEGENERATE
SYNCHRONOUSLY-PUMPED OPO

An experimentally relevant special case of the above
theory applies to the quasi-degenerate synchronously-
pumped OPO (SPOPO) [6, 7, 46], in which

• the system consists of a cavity resonating a uni-
form comb of signal modes with free spectral range
Ω (i.e., any mode dispersion due to the nonlinear
medium is compensated elsewhere in the cavity),
as illustrated in Fig. 1(c);

• the system is pumped by a classical frequency comb
(e.g., as produced by a mode-locked laser), with
comb spacing (i.e., pulse repetition rate) equal to
Ω (synchronous pumping);

• the phase matching is chosen such that maximal
nonlinear coupling strength occurs between the
center signal mode at frequency ω0 and the center
pump line at frequency 2ω0, but there is still suf-
ficient phase matching off-center to facilitate non-
degenerate interactions within the system optical
bandwidth (quasi-degenerate).

For such a system, it is convenient to enumerate the cav-
ity signal modes as ωsm = ω0 + mΩ and the pump fre-
quencies as ωpq = 2ω0 + qΩ. In this case, the size of the

frequency bands Sm and Pq are all given by Ω. Thus,
for SPOPOs, the Markov condition imposes the require-
ment that Ω be larger than all system dynamical rates
(see Sec. VI for addition discussion).

Assuming the Markov condition holds, the uniformity
of the frequency spacings also enable a secular (rotating-
wave) approximation to allow only near-resonant nonlin-
ear interactions, such that the only contributions to the
sum in (19) obey m + n = q, and the only contribu-
tions to the sum in (21) obey m+n = m′+n′. Thus, the
input-output relations (19) for the pump reservoir can be
rewritten for an SPOPO in the further simplified form

â
(q)
t,out = â

(q)
t,in +

∑
m+n=q

f (q)
mnŝmŝn. (25)

In addition, the system dynamics under the Born-Markov
master equation (21) can be simplified to

Lnlρ̂ =
∑
q

∑
m,m′

ξ
(q)
mm′

[
ŝmŝq−mρ̂, ŝ

†
m′ ŝ
†
q−m′

]
+ H.c., (26)

where we have used m + n = m′ + n′ = q in the inner

sum to eliminate n and n′. We have also defined ξ
(q)
mm′ :=

ξm,q−m,m′,q−m′ , so that we can write

ξ
(q)
mm′ = γ

(q)
mm′ + iχ

(q)
mm′ , (27)

where γ
(q)
mm′ and χ

(q)
mm′ are both real and symmetric over
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the m and m′ indices. They are given by

γ
(q)
mm′ :=

1

2
f

(q)
m′,q−m′f

(q)
m,q−m (28a)

χ
(q)
mm′ := P

∫ ∞
0

dω

2π

fm′,q−m′(ω)fm,q−m(ω)

ωpq − ω
(28b)

Using these expressions, we can now explicitly evaluate
the commutators in (26) and obtain the master equation
in Lindblad form,

Lnlρ̂ =
∑
q

D
[
L̂

(q)
nl

]
ρ̂− i

[
Ĥnl, ρ̂

]
, (29a)

where the dissipative part of the evolution is contributed
by γ(q) and consists of a multimode set of two-photon
loss channels

L̂
(q)
nl :=

∑
m

f
(q)
m,q−mŝmŝq−m =

∑
m+n=q

f (q)
mnŝmŝn, (29b)

while the coherent part is contributed by χ(q) and takes
the form of a four-wave-mixing dispersive optical cascade

Ĥnl =
∑
q

∑
m,m′

χ
(q)
mm′ ŝ

†
m′ ŝ
†
q−m′ ŝmŝq−m. (29c)

As we show in Appendix B, the existence of a cascaded
nonlinear term in the system Hamiltonian is generally re-
quired to preserve causality in the presence of nonlinear
dissipation, by virtue of a Kramers-Kronig–like relation-
ship between the real and imaginary parts of the tensor ξ.
While single-mode (cw) OPOs have the option of avoid-
ing this effect by employing perfect phase-matching, the
same is not true in general for SPOPOs, where the large
number of signal modes means that many elements of

χ
(q)
mm′ are nonzero due to dispersion.
Having derived a suitable input-output model for

the interaction between the signal and pump, we also
straightforwardly obtain a rigorous model for the im-
portant special case of an SPOPO with an active pump.
Suppose we drive the SPOPO with coherent pump am-
plitude αq at frequency ωpq. To model this drive,

one simply needs to displace â
(q)
t,in by α(q) (so that〈

â
(q)
t,in

〉
= α(q)), which also adds a new system Hamil-

tonian i
∑
q α

(q)∗L̂
(q)
nl + H.c. However, in this paper, it

is more convenient to keep the input in the vacuum (so

that
〈
â

(q)
t,in

〉
= 0) and instead apply an equivalent formal

procedure [20] where we displace the Lindblad operators

L̂
(q)
nl 7→

∑
m+n=q

f (q)
mnŝmŝn + α(q), (30a)

and add a system Hamiltonian

Ĥpump =
i

2

∑
m,n

α(m+n)∗f (m+n)
mn ŝmŝn + H.c. (30b)

It is worth noting these two conventions for the input-
output fields lead to the same Lindblad master equation
(29) [19]. The pumped Hamiltonian (30b) describes mul-
timode squeezing (i.e., a broadband version of the usual
quadratic Hamiltonian for an OPO below threshold), and
it is in agreement with prior derivations through other
means, such as by assuming a resonant but adiabatically-
eliminated multimode pump [27].

Finally, it is also often useful to analyze the exper-
imentally relevant situation where the SPOPO poss-
eses some slight nonuniformity in its signal resonances,
so that the bare frequencies of the modes are instead
ωsm = ω0+mΩ+δm, where |δm| � Ω for the Markov con-
dition to hold. First, we note that, throughout Sec. II B,
we have performed all our calculations in a frame rotating
at the bare frequencies of each signal mode so the results
of Sec. II B need not change in principle. However, in try-
ing to apply the secular approximation to arrive at (26)
for the SPOPO, we cannot consistently define a unique
set of ωpq such that ωpq = ωsm+ωsn = (m+n)Ω+δm+δn
for all m+ n = q, due to the detunings being potentially
unique for each signal mode. Thus even with a post-
trace rotating-wave approximation, the master equation
cannot be put into Lindblad form, and the system inter-
actions involve the full rank-four tensor ξmnm′n′ , which

contains vastly more elements than the simplified ξ
(q)
mm′ .

To remedy this, we note that the derivation of Sec. II
can instead be done starting from an interaction frame
rotating at the nominal mode frequencies ω0 +mΩ (i.e.,
without the perturbations δm). In doing so, it is neces-
sary to add a new “detuning” system Hamiltonian

Ĥdetuning =
∑
m

δmŝ
†
mŝm. (31)

Under the Markov condition, the effect of this detuning
system Hamiltonian can be neglected while deriving the
system-reservoir interactions in Sec. II B. In this paper,
we only consider the case of δm = 0 for our numerical
simulations (so the bare and nominal mode frequency in-
teraction frames coincide), but we retain the possibility
of such inhomogeneities in our model for the sake of gen-
erality and to facilitate studying the robustness of our
model to experimental imperfections. We reiterate that
if the deviations δm are not small compared to the nom-
inal mode spacing Ω, however, the master equation and
input-output model must be derived in the interaction
frame of the bare frequencies according to Sec. II.

A. Input-output theory and quantum stochastic
differential equations

Because the secular approximation allows us to de-
scribe the dynamics of the SPOPO using a master equa-
tion in standard Lindblad form, we can now formulate a
standard input-output quantum model for the SPOPO,
encompassing the multimode and nonlinear nature of its
system-reservoir interactions.
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Revisiting (8) and (10b) for the linear dissipation and
(25) and (29b) for the nonlinear dissipation, we see that
the input-ouput relations can be written in terms of the
Lindblad operators (10b) and (29b) (and (30a) for active
pumping) as

b̂
(m)
t,out = b̂

(m)
t,in + L̂

(m)
lin (32a)

â
(q)
t,out = â

(q)
t,in + L̂

(q)
nl . (32b)

Since the internal dynamics of the system are also gov-
erned by a master equation in Lindblad form using the
same Lindblad operators, we can summarize all the dy-
namics of the SPOPO via an “input-output model” with
total effective Hamiltonian

Ĥspopo = Ĥdetuning + Ĥnl + Ĥpump (33)

+

(
i
∑
m

b̂
(m)†
t L̂

(m)
lin + i

∑
q

â
(q)†
t L̂

(q)
nl + H.c.

)
.

In this formulation of the model, it is crucial that the
reservoir modes obey a white-noise approximation that[
b̂
(m)
t , b̂

(m′)†
t′

]
≈ δ(t− t′), which is afforded by the Markov

condition. Specifically, this commutator is given by[
b̂
(m)
t , b̂

(m′)†
t′

]
= δmm′

∫ Ω/2

−Ω/2

dω

2π
e−iω(t−t′), (34)

and similarly for the pump reservoir operators â
(m)
t . We

therefore see that as long as the Markov condition holds,
this integral can effectively be approximated by δ(t− t′),
hence justifying an interpretation of these reservoir op-
erators as quantum white-noise operators [18]. This ab-
stracted model of the SPOPO enables us to readily in-
tegrate SPOPOs into physical systems involving other
quantum input-output devices through the use of the
SLH formalism [20]. This system-level approach to quan-
tum optics facilitates the construction of complex quan-
tum networks and provides a powerful framework for
deploying techniques such as dissipation engineering or
quantum control.

Furthermore, the input-output theory for the SPOPO
also allows us to formally derive quantum stochastic
differential equations (QSDEs), or Heisenberg-Langevin
equations, describing system dynamics subject to a quan-
tum white-noise bath. In Itô form, the QSDEs for the
SPOPO are given by

dŝm
dt

=− (κm + iδm)ŝm − 2
∑
q

f
(q)
m,q−mα

(q)ŝ†q−m

− 2
∑
q

∑
n

(
γ(q)
nm + iχ(q)

nm

)
ŝ†q−mŝnŝq−n

−
∑
q

√
2κmb̂

(m)
t,in − 2

∑
q

f
(q)
m,q−mŝ

†
q−mâ

(q)
t,in. (35)

Provided all the approximations leading up to the quan-
tum input-output model (33) hold, these QSDEs con-
cisely summarize all the quantum dynamics that can oc-
cur in an SPOPO. In addition to multimode squeezing in

the linearized regime (as extensively studied in Ref. [27]),
there is also a rich set of multimode nonlinear interac-
tions above threshold as well, with both dissipative and
dispersive contributions to the quantum dynamics.

IV. PHASE MATCHING

It is clear that the coupling functions fmn(ω) play a
crucial role in the physics of our model, as they affect
the nonlinear Lindblad operators, the squeezing Hamil-
tonian under active pumping, and the dispersive nonlin-
ear Hamiltonian. The physical considerations that gov-
ern the structure of fmn(ω) are determined through the
three-wave interaction integral (13), which in turn is dic-
tated by the cavity mode profiles and the phase matching
of the nonlinear interactions.

To get intuition for the typical structure of fmn(ω),
we can consider some physical assumptions for both the
cavity modes and the phase-matching conditions. We
assume the signal modes, pump frequencies, and cavity
dispersion are set consistently with the SPOPO model in-
troduced in Sec. III. The coupling constants of the pump
Hamiltonian can be summarized using a symmetric ma-

trix fmn := f
(m+n)
mn , which plays an important role as it

captures the multimode squeezing and gain of the sys-
tem.

Let us also consider the special case of a one-
dimensional cavity containing a section of nonlinear χ(2)

material with length L, and that the pump and signal
modes propagate along the cavity optical axis z with a
one-dimensional phase front (i.e., they are mostly colli-
mated) in the region where there is material nonlinearity.
Then the mode functions can be written as

Dsm(r) = Dsm(r⊥)eikz(ωsm)z (36a)

Dpω(r) = Dpω(r⊥)eikz(ω)z, (36b)

where kz(ω) is the z-component of the wavevector and
r⊥ is transverse to z. We also take the material non-
linearity to have a one-dimensional modulation due to
quasi-phase-matching with period kqpm [47]:

η
(2)
ijk(r) = η

(2)
ijk(r⊥) sin(kqpmz) (37)

Inserting these relations into (13), the function we are
interested in can be written as [48]

fmn(ω) ≈ g1/2
mn(ω) sinc

(
Φmn(ω)

)
, (38)

assuming kz(2ω0) − kz(ω0) � 1/L, with coupling rates
gmn(ω) and phase mismatch functions Φmn(ω) given by

g1/2
mn(ω) :=

L

2

∫
d2r⊥ η

(2)
ijk(r⊥)

(
Di

p

∗
ω
Dj

smD
k
sn

)
(r⊥) (39)

Φmn(ω) :=
kqpm + kz(ω)− kz(ωsm)− kz(ωsn)

2/L
, (40)
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FIG. 2. Structure of frequency-mode coupling coefficients for an SPOPO with gmn ≈ g0, for various material dispersion
parameters chosen according to the second-order expansion (43). (a–c) Coupling coefficients fmn for the dissipative nonlinear

interaction, given by (41). (d–f) Coupling coefficients χ
(m+n)
mn for the dispersive nonlinear interaction, given by (47). For all

three dispersion parameters shown here, β2s limits the phase-matching bandwidth, and we fix β2s = 10−8, which corresponds
to ∼ 104 phase-matched comb lines for tens-of-femtosecond pulses with GHz repetition rates.

For the remainder of this paper, we make the further
assumption that gmn(ω) is approximately constant across
the optical bandwidth of interest and we denote its value
by g0. Recalling (28a) and (29b), the nonlinear Lind-
blad operators and pump Hamiltonian for the SPOPO
are then fully determined by the coefficients

fmn := f (m+n)
mn = g

1/2
0 sinc (Φmn), (41)

since f
(m+n)
mn = fmn(ωpm+n), and we similarly define

Φmn := Φmn(ωpm+n). (42)

Finally, we also posit a form for the phase mismatch.
By the quasi-degenerate nature of the SPOPO, we have
2kz(ω0)− kz(2ω0) = kqpm, or that Φ00 = 0. Then, if the
dispersion is sufficiently smooth within the optical band-
width of interest, we can Taylor-expand the wavevector
dispersion kz(ω) to second order around the carrier fre-
quencies of the fundamental (ω0) and second harmonic
(2ω0). Thus, the phase mismatch coefficients can be
given the form

Φmn ≈ β1(m+ n) + β2p(m+ n)2 − β2s(m
2 + n2), (43)

where β1 := 1
2Ω(GVM)L, β2p := 1

4Ω2(GDDp), and

β2s := 1
4Ω2(GDDs). Here, the material dispersion param-

eters are GVM, the group velocity mismatch of pump rel-
ative to signal, and GDDp (GDDs), the group delay dis-
persion of pump (signal), evaluated at ω0 for signal and

2ω0 for pump. Under this simple model for the phase-
mismatch, we show in Fig. 2(a–c) some typical forms for
the dissipative nonlinear coefficients fmn.

With this specific model for the phase-matching, we
can also obtain explicit expressions for the coupling rates

χ
(q)
mm′ in the nonlinear Hamiltonian Ĥnl as well. We only

summarize the main arguments and results here, while
the full derivation is provided in Appendix A. As alluded

to in Sec. II B, it is more convenient to calculate χ
(q)
mm′ by

directly calculating ξ
(q)
mm′ via (22) and (23), rather than

via the Cauchy principal-value integral (i.e., (24b), or
(28b)); from (27), we can take the imaginary part of ξ(q)

to obtain χ(q). As a result, the bulk of the calculation is
in evaluating the memory functions, which by (23) have
the form

h
(q)
mm′(τ) := hm,q−m,m′,q−m′(τ) = g0

∫ ∞
0

dω

2π
ei(ωpq−ω)τ

× sinc
(
Φm,q−m(ω)

)
sinc

(
Φm′,q−m′(ω)

)
. (44)

Physically, the interaction among signal modes ωsm,
ωsq−m, ωsm′ , and ωsq−m′ is mediated by the pump reser-
voir, so this integral evaluates the total interaction by
weighing the contributions at each reservoir frequency ω.
In this context, the exponential term produces oscilla-
tions for non-energy-conserving contributions, while the
sinc functions account for momentum (i.e., phase) mis-
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match. In Appendix A, we argue that for the evaluation
of this integral, it suffices to expand the ω-dependence of
the phase mismatch to first order according to

Φm,q−m(ω) ≈ Φm,q−m +
1

2
Tnl(ω − ωpq), (45)

where Tnl characterizes the time required for a pump
photon of frequency ωpq to travel through the nonlin-

ear region. Inserting this expansion into (44), we can

derive explicit expressions for h
(q)
mm′ (see Appendix A for

details), which turn out to vanish for memory times τ
larger than order Tnl. Physically, this corresponds to the
fact that an incident (virtual) pump photon from the
reservoir can interact with the system signal modes for
only for the time ∼ Tnl during which it resides within the
nonlinear region. As Tnl ∼ Rfill/Ω, where Rfill is the ratio
between the length of the nonlinear crystal and the total
cavity length, the memory time is at most Ω−1, verifying
that the memoryless Born-Markov master equation (20)
is indeed self-consistent under the Markov condition for
the SPOPO that Ω be sufficiently large.

Finally, inserting the explicit forms for h
(q)
mm′ into (22)

and taking the imaginary part of ξ
(q)
mm′ ,

χ
(q)
mm′ =

g0

2

(
Φm′,q−m′ − Φm,q−m

)−1
(46)

×
[
cos(Φm′,q−m′) sinc(Φm,q−m)

− cos(Φm,q−m) sinc(Φm′,q−m′)
]
.

A particularly interesting two-dimensional slice of this

three-dimensional tensor is χ
(m+n)
mn , corresponding to

Hamiltonian terms of the form χ
(m+n)
mn ŝ†mŝ

†
nŝmŝn wherein

the pairs of photons being created and destroyed are iden-
tical. In this case, we have the simplified expression

χ(m+n)
mn =

g0

2Φmn
(sinc(2Φmn)− 1) . (47)

Figures 2(d–f) show these specific slices χ
(m+n)
mn for three

different dispersion parameters. We see that the disper-
sive interaction tends to be weak where the dissipative
interactions are strong, and vice versa. This is physi-
cally intuitive as, due to its origin as an optical cascade,
the dispersive interaction tends to be weak where the
three-wave-mixing is phase-matched, which is also ex-
actly where dissipative interactions due to two-photon
loss (i.e., upconversion to pump) are strong.

V. CONSTRUCTION OF SUPERMODES

Given the possibly large number of Lindblad operators
and internal cavity modes, it is natural to ask whether
there is a more efficient basis in which to describe the in-
teractions. In general, one can apply any arbitrary basis
transformation on the continuum pump modes to obtain
new pump “supermode” operators

Â
(k)
t :=

∑
q

Rkqâ
(q)
t , (48)

where Rkq is unitary, such that [Â
(k)
t , Â

†(k)
t′ ] = δkk′δ(t−t′)

in the white-noise limit. Neglecting any pumping terms
for now, such a transformation can be applied to con-
struct new supermode nonlinear Lindblad operators of
the form

L̂
′(k)
nl :=

∑
q

RkqL̂
(q)
nl =

∑
m,n

Rk,m+nfmn︸ ︷︷ ︸
f
′(k)
mn

ŝmŝn. (49)

Whereas L̂
(q)
nl describes the coupling of the system to fre-

quency modes of the reservoir at ωpq, L̂
′(k)
nl describes the

coupling of the system to supermodes of the reservoir.
At the same time, it is also possible to apply any arbi-

trary basis transformation on the signal modes, to define
signal supermode operators

Ŝi :=
∑
m

Timŝm, (50)

where Tim is also unitary, such that [Ŝi, Ŝ
†
j ] = δij . This

can be used to generate a corresponding transformation
of the signal reservoir operators into supermode reservoir
operators

B̂
(i)
t :=

∑
m

Timb̂
(m)
t , (51)

such that [B̂
(i)
t , B̂

†(j)
t′ ] = δijδ(t − t′) in the white-noise

limit. Hence, Tim can also be used to transform the linear
Lindblad operators into supermode ones:

L̂
′(i)
lin :=

∑
m

TimL̂
(m)
lin =

∑
m

Tim
√

2κm ŝm. (52)

After performing these basis transformations, the su-
permode Lindblad operators can be furthermore written
in terms of the signal supermodes as

L̂
′(i)
lin =

√
2
∑
j

(∑
m

√
κm TimT

∗
jm

)︸ ︷︷ ︸√
Kij

Ŝj (53a)

L̂
′(k)
nl =

∑
i,j

(∑
m,n f

′(k)
mn T ∗imT

∗
jn

)
︸ ︷︷ ︸

G
(k)
ij

ŜiŜj . (53b)

Similarly, the Hamiltonians corresponding to the detun-
ing and dispersive nonlinearity can be written as

Ĥdetuning =
∑
i,j

∆ijŜ
†
i Ŝj , where (54a)

∆ij :=
∑
m

δmTimTjm, (54b)

and

Ĥnl =
∑

i′,j′,i,j

Ji′j′ijŜ
†
i′ Ŝ
†
j′ ŜiŜj , where (54c)

Ji′j′ij :=
∑
q

∑
m,m′

χ
(q)
mm′Ti′m′Tj′,q−m′T

∗
imT

∗
j,q−m. (54d)
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The utility of this form is that, for physically realistic
cases where fmn is relatively smooth (i.e., “low-rank”) in
the mode indices—as depicted in Fig. 2, for example—
the physics of the SPOPO is most concisely described us-
ing supermode bases for both pump and signal. In such
cases, we can single out one nonlinear Lindblad opera-
tor to pump, while at the same time identifying a single
signal supermode as the dominant degree of freedom in
the cavity. The consequence is that in this supermode
model, we need only consider a small range for the in-
dices (i, j, k) to accurately describe the physics, allowing

us to truncate the interaction matrix G
(k)
ij , as well as the

dispersive interaction tensor Ji′j′ij .
We remark that in performing these supermode trans-

formations, it is numerically convenient to use the numer-
ical technique described in Ref. [27, Sec. 5.2] for down-
sampling the frequency comb indices (and performing ap-
propriate rescalings of the SPOPO parameters) to take
advantage of the smooth nature of fmn as a function of
its indices. In this paper, we utilize such rescalings in
calculating the supermode-basis coupling coefficients de-
fined above.

To make the above discussion more concrete, consider
the SPOPO with nonlinear coefficients fmn given by
Fig. 2(c). Suppose we would like to pump this SPOPO
using a Gaussian spectrum centered on 2ω0, with Np

comb lines spanning from the center to where the power
falls to 1/e. Then a good choice for pump supermodes
are the Hermite-Gaussian functions:

Rkq =
1(√

πNp2k−1(k − 1)!
)1/2Hk−1

(
q/Np

)
e−

1
2 (q/Np)2 ,

(55)
where Hk is the physicists’ Hermite polynomial of order
k. This set of pump supermodes is illustrated in Fig. 3(a).

Next, we can choose the signal supermodes Tim such

that the matrix G
(1)
ij is diagonal. As shown in Ref. [27]

and below, this choice leads to a very simple form for the
squeezing interaction induced by pumping in the k = 1
supermode. This set of signal supermodes is shown in
Fig. 3(b). Note that Tim is an orthogonal matrix since

f
′(1)
mn is real and symmetric for the interactions we are

considering.
Pumping the SPOPO with amplitude A and a pump

spectrum α(q) = AR1q given by the first pump super-
mode, the supermode version of (30a) gives

L̂
′(1)
nl 7→

∑
i,j

G
(1)
ij ŜiŜj +A =

∑
i

ΛiŜ
2
i +A, (56a)

while all the other Lindblad operators remain invariant.
Furthermore, the squeezing Hamiltonian (30b) becomes

Ĥpump =
iA
2

∑
i

ΛiŜ
2
i + H.c., (56b)

where Λi is the ith eigenvalue ofG
(1)
ij ; in this paper, eigen-

values are ordered in decreasing magnitude. This Hamil-
tonian describes a series of independent squeezing terms

R 1
q

(a)

T 1
m

(b)

R 2
q

T 2
m

R 3
q

T 3
m

R 4
q

T 4
m

8 4 0 4 8
Pump Mode q    ×104

R 5
q

6 4 2 0 2 4 6
Signal Mode m      ×104

T 5
m

FIG. 3. Supermode basis transformations on (a) pump reser-
voir modes and (b) signal system and reservoir modes, based
on an SPOPO with dispersion and coupling parameters shown
in Fig. 2(c,f). In (a), the pump supermode basis Rkq is cho-
sen to be Hermite-Gaussian functions according to (55) with
Np = 1.31× 104, and in (b), the signal supermode basis Tim

diagonalizes G
(1)
ij defined in (53b).

in the supermodes Ŝi, in agreement with the physics ob-
tained by Ref. [27] for an SPOPO below threshold after
a supermode decomposition.

In Fig. 4, we carry out this supermode transforma-
tion and compute nonlinear coupling coefficients in the
supermode basis for the SPOPO depicted in Fig. 2(c,f)
and using the supermodes shown in Fig. 3. As expected
from our construction of the signal supermodes Tim, the

matrix G
(1)
ij shown in Fig. 4(a) is diagonal, with eigen-

values Λi whose magnitudes are shown in Fig. 4(b). The
eigenvalues clearly show a rapid decay with increasing
supermode index; consequently, by pumping the first su-
permode as described in (56), the first supermode domi-
nantly experiences most of the squeezing and gain in the
system. When the SPOPO goes through threshold (i.e.,
experiences nonlinear dynamics), however, the action of

the nonlinear Lindblad operators L̂
(k)
nl , defined respec-

tively by the coefficients G
(k)
ij , and shown for k = 1, 2

in Fig. 4(a), generally populate higher-order supermodes
through multimode nonlinear loss. Nevertheless, because
the nonlinear interactions all tend to decay rapidly at
larger supermode indices, excitations can remain con-
fined to a relatively limited set of supermodes.

As shown in Fig. 4(c), however, multi-supermode in-
teractions can be mediated not only by the nonlinear
loss but also by the coherent nonlinear dispersion due
to Ĥnl. One of the most important slices of the four-
index tensor Ji′j′ij is Ji′j′11, which acts on the state like

Ŝ†i′ Ŝ
†
j′ Ŝ

2
1 , thus moving photons from the dominant super-
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FIG. 4. Structure of coupling coefficients in the supermode
basis for an SPOPO with parameters shown in Fig. 2(c,f),
after performing the supermode-basis transformations shown

in Fig. 3 and diagonalizing the matrix G
(1)
ij as described in the

text. The magnitudes Λ2
i of the first ten eigenvalues from the

diagonalization are shown in (b), and Λ1 is used to normalize

all other coupling coefficients. (a) Coupling coefficients G
(k)
ij

(for k = 1, 2) that describe the nonlinear Lindblad operators

L̂
′(k)
nl . (c) A slice of the coupling coefficients Ji′j′11 that de-

scribe a dynamically relevant part (see discussion in text) of

the nonlinear dispersive Hamiltonian Ĥnl.

mode (index 1) to higher-order ones (indices i′, j′ > 1).
However, as is the case for the dissipative nonlinearity,
Fig. 4(c) shows that the coherent nonlinearity also decays
at higher-order supermodes and furthermore are smaller
in magnitude than the dominant dissipative nonlinear
terms. This suggests it may be possible to tune parame-
ters such as SPOPO dispersion or the pump spectrum in
order to optimize the relative strengths of the dissipative
and coherent nonlinear effects.

Finally, one of the most important features of
ultrashort-pulse SPOPOs that can be seen from Fig. 4
is an effective pulsed enhancement of the base nonlin-
ear rate g0, intuitively due to the temporal confinement
of the field into a short pulse with higher peak power.
Fig. 4(b) shows that all supermode coupling coefficients
can be normalized to the principal eigenvalue Λ1, which
for this example takes on a value Λ2

1/g0 ∼ 104. In the lin-
earized regime where both the nonlinear Lindblad opera-
tors and the nonlinear Hamiltonian can be neglected, the

dynamics cleanly decompose into independent squeezing
on the supermodes Ŝi with squeezing rates enhanced by
Λi/
√
g0, physically corresponding to a reduction in the

pump amplitude needed to reach threshold [27]. In the
nonlinear regime, multi-supermode interactions compli-
cate the dynamics, but we still nevertheless expect the
dynamical timescale for the mode Ŝ1, for example, to be
on the order of 1/Λ2

1. In Sec. VII, we show dynamical
quantum simulations of the supermode model presented
in Fig. 4 that explicitly verify this fact, while in Sec. VIII,
we give some intuition for how this enhancement factor
scales with experimental parameters and implications for
the realization of ultrashort-pulse SPOPOs in regimes of
single-photon quantum nonlinearities.

A. SPOPO equations of motion

After defining the supermodes for signal and pump, we
can also transform the Heisenberg-Langevin equations of
motion (35) for the longitudinal modes into their corre-
sponding supermode form as well. Assuming a coherent
drive of amplitude A(k) on each pump supermode Rkq,

dŜi′

dt
= −

∑
i

(Ki′i + i∆i′i) Ŝi −
∑
k,j′

2A(k)G
(k)
i′j′ Ŝ

†
j′

−
∑
j′,i,j

(∑
kG

(k)
i′j′G

(k)∗
ij + 2iJi′j′ij

)
Ŝ†j′ ŜiŜj

−
√

2
∑
i

√
Ki′iB̂

(i)
in,t −

∑
k,j′

2G
(k)
i′j′ Ŝ

†
j′Â

(k)
in,t, (57)

and the corresponding quantum input-output relations
for the reservoir operators are:

B̂
(i)
out,t = B̂

(i)
in,t +

√
2
∑
j

√
KijŜj (58a)

Â
(k)
out,t = Â

(k)
in,t +A(k) +

∑
i,j

G
(k)
ij ŜiŜj , (58b)

where B̂
(i)
in,t and Â

(k)
in,t (B̂

(i)
out,t and Â

(k)
out,t) are input (out-

put) quantum white-noise operators for the signal and
pump, respectively.

The first term in (57) describes linear decay and cou-
pling of the signal supermodes. In general, linear interac-
tions can actually induce couplings between the different
supermodes; this effect can potentially be useful for, e.g.,
designing couplings in coherent Ising machines [49]. A
useful special case to consider is κm = κ, a constant for
all m, and δm = 0 for all m (evenly spaced signal modes);

then this first term becomes −κŜi.
The second term in (57) is the phase-sensitive OPO

gain (phase-sensitive due to the dagger on Ŝ†j ), which
is responsible for squeezing and thus the generation of
signal excitation from pump driving. In general, this
squeezing is multimode, but as discussed, we can choose
to pump in the first supermode, so that A(1) = A, a
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constant, with all others zero. Then by assuming that
the signal supermode basis Tim was chosen to diagonalize

Ĝ
(1)
ij with eigenvalues Λi, this term becomes −2AΛiŜ

†
i .

The third term in (57) describes the nonlinear inter-
action among different signal supermodes resulting from
nonlinear interactions with the pump reservoir. Formally,
this term (along with its associated noise term) is dis-
carded in a linear treatment of SPOPOs [27]. Physi-
cally, this term provides a nonlinear clamping mecha-
nism to stabilize the system when the gain produced by
the second term exceeds the linear loss induced by the
first term; this can be seen most readily in the single-
supermode case where this term ∝ −(Ŝ†Ŝ)Ŝ, signifying
an intensity-dependent self-interaction. The real part
of this term is a dissipative nonlinear interaction cor-
responding to two-photon loss, while the imaginary part
corresponds to a coherent dispersive nonlinear interac-
tion, or equivalently, an off-resonant cascaded χ(2) in-
teraction mimicking an effective four-wave-mixing χ(3)

interaction. For example, in the single-supermode case,
the imaginary part ∝ −i(Ŝ†Ŝ)Ŝ, corresponding to self-
phase modulation. Notably, such a cascaded term is ab-
sent from a cw, single-frequency-mode OPO under perfect
phase-matching, but it arises in the SPOPO case since
phase-mismatched interactions are inherent to the mul-

timode couplings described by χ
(q)
mm′ . In general, both

the real and imaginary parts of this term are multimode
and nonlinear: the supermode diagonalization procedure
that cleanly simplifies the gain term still has residual
structure which show up here and produces nonlinear
couplings among supermodes.

The fourth and fifth terms in (57) are quantum noise
terms that describe the interaction between the signal
supermodes and the supermodes of the two reservoirs:
The first at the signal frequency band due to linear dis-
sipation (which become independent interactions in the
special case of κm = κ), and the second at the pump fre-
quency band due to nonlinear parametric interactions.
The reservoir modes themselves follow the input-output
relations (58a) and (58b), which also provide some in-
sight into the physics of the SPOPO. In (58b), we see that
the nonlinear interaction with the cavity produces a two-
photon contribution to the outgoing field, which can be
thought of as broadband second-harmonic generation, or,
alternatively, a model for back-conversion of signal light
back into pump light. Furthermore, when the sign of the

back-conversion (i.e., the sign of
∑
ij G

(k)
ij ŜiŜj) becomes

out of phase with the drive amplitude A(k), interference
between the back-converted light and the input pump
light manifests as pump depletion. In a linearized theory
consistent with discarding the nonlinear terms of (57),
the latter term in (58b) is omitted.

VI. THE MARKOV CONDITION FOR SPOPOS

At a high level, our ability to formulate a quantum
input-output theory for SPOPOs relies primarily on what
we call the Markov condition, that both the bandwidth
of the system-reservoir couplings κm(ω) and fmn(ω) as
well as the repetition rate Ω are both much larger than
all other system dynamical rates. In conventional quan-
tum input-output theory for cw (i.e., single-frequency-
mode) cavities with high finesse, we routinely make the
Markov approximation that the system-bath coupling is
constant over a bandwidth larger than the rates of any
system interactions. This facilitates derivation of a mem-
oryless Born-Markov master equation for the system dy-
namics, input-output relationships for the reservoir dy-
namics, and even a quantum white-noise interpretation
of the theory in terms of QSDEs. For example, when
defining the reservoir operators

b̂
(cw)
t :=

∫
B

dω

2π
b̂ωe
−iωt,

[
b̂†ω, b̂ω′

]
= 2πδ(ω − ω′), (59)

the band B is taken to have bandwidth greater than any
system coupling rate (e.g., in the Hamiltonian or the
linewidth). As a result, any excitations in these “time-

bin” modes represented by b̂
(cw)
t are very short compared

to the time scale of the system dynamics, in which case
we think of the interactions of these modes with the sys-
tem to be independent, sequential events. Physically,
the primary limitation to the bandwidth of B in most cw
systems is the free spectral range (FSR) of the cavity:
for an FSR of, say, 100 MHz, numerical simulations pro-
duced by input-output theory are representative of the
true physics down to the 10 ns scale, and it is rarely nec-
essary to consider interactions occurring faster than this
in cw systems.

As we have seen from Sec. II, the situation is more
subtle for the pulsed OPO. To be concrete, let us con-
sider the SPOPO with repetition rate Ω/2π. As in the

cw case, the bandwidth of Sm used to define b̂
(m)
t in (3)

cannot exceed order Ω, or else the partitions Sm will
begin to overlap each other. As long as the system dy-
namical rates (e.g., in the few-photon excitation regime,

|A|2, G
(k)∗
i′j′ G

(k)
ij , Ji′j′ij , Kij , ∆ij) are small compared to

Ω, we have shown that it is possible to formulate a quan-
tum input-output theory encompassing both the linear
and nonlinear couplings of the SPOPO to its environ-
ment. The end result is a multimode generalization of
the cw theory, in which, for example, the reservoir oper-

ators b̂
(m)
t and â

(q)
t are directly analogous to the opera-

tors b̂
(cw)
t , with the only complication being the frequency

multiplexing of the reservoir spectrum into indexed par-
titions Sm and Pq. In this sense, the Markov condition
we have imposed is essentially a multimode version of
the usual conditions needed to formulate quantum input-
output theory in the single-mode case.

At the same time, for a pulsed system, it is arguably
more natural to think about dynamics on a pulse-by-



13

pulse basis, including dynamical effects that occur at sub-
roundtrip timescales. However, such a picture cannot be
faithfully captured by the input-output model we have
presented. For example, we know from physical intuition
that in an SPOPO without scattering losses, the pulse
amplitude should only reduce when the pulse envelope
hits the outcoupler; at single-roundtrip time scales, this is
effectively a discrete phenomenon. But if we instantiate a
coherent state of the first supermode Ŝ1 in the cavity and
zoom into its dynamics on sub-roundtrip-time scales, we
see from the Heisenberg equations of motion (57) that the
expectation value of the field decays continuously in time,
contrary to physical intuition. As this effect is a natural
consequence of formulating an input-output theory for
pulsed OPOs, it is also a prominent feature of the model
described in Refs. [26, 27].

The resolution to this discrepancy is the observation
that if κ � Ω (which is imposed by the Markov condi-
tion), the dynamics of the system at longer time scales of
multiple round trips, e.g., the ringdown envelope of the
pulses, are correctly reproduced. Thus, intuitively, our
model after imposing the Markov condition holds only
when the pulses do not experience dramatic changes over
a single roundtrip or upon passing through a single op-
tical element, a condition analogous to similar approx-
imations made in classical pulsed nonlinear optics [50].
This approximation is a good characterization of pulsed
OPOs with typical material nonlinearities and relatively
low loss [51] such as those found in Refs. [6, 10].

It is worth emphasizing that while this “continuous-
time approximation” intuitively only requires that Ω
dominate all other system dynamical rates, applying the
approximation self-consistently is rather physically in-
volved. As discussed in Sec. II B, the coupling of the
cavity modes to the pump reservoir is not through a
simple beamsplitter transfer function or scattering/loss
spectrum, but rather through a phase-matching function
fmn(ω) describing upconversion to nonresonant pump
photons, which generically can have richer spectral fea-
tures and is more sensitive to experimental design. As
a result, we cannot a priori take the usual assumption
that fmn(ω) is flat as a function of ω, i.e., that the cou-
pling of modes m and n to the reservoir is memoryless.
Rather, Appendix A shows that the nonlinear interac-
tion between signal and pump has an explicit memory
time ∼ 1/Ω (and possibly shorter if Rfill < 1), physi-
cally originating from the transit of a pump photon in
the crystal. Thus the requirement for Ω to be sufficiently
large is indirectly but intrinsically also responsible for en-
suring that fmn(ω) be sufficiently flat. In this sense, the
continuous-time limit in which Ω is sufficiently large is
the fundamental underlying assumption of our quantum
SPOPO model.

In Appendix C, we explicitly relate the continuous-
time dynamics of our model to a more conventional pulse-
by-pulse description for the physics, by comparing their
equations of motion in the classical, high-finesse limit
where Ω is large. We therefore refer interested readers

to Appendix C for details on how this continuous-time
picture can be justified from within a pulse-propagation
perspective.

Finally, as a topic for further research, we note that for
high-gain, high-loss pulsed OPOs [52, 53], it is possible
that quantum input-output theory would need signifi-
cant modifications or even outright replacement in favor
of a free-field formulation [54, 55], possibly involving the
quantization [40, 56, 57] of nonlinear classical field equa-
tions (such the classical coupled-wave equations used in
Appendix C), in order to model quantum pulse propaga-
tion at sub-roundtrip time scales.

VII. NUMERICAL SIMULATIONS

Having established the formalism of the model, we
now turn to numerical simulations in order to explore
the behavior of the nonlinear effects we have found in
the model. In particular, we simulate SPOPOs in a
highly nonlinear regime to study how multimode non-
linear quantum dynamics can affect important aspects of
OPO phenomenology such as squeezing, output spectra,
and non-Gaussian state generation.

To perform numerical simulations, it is helpful to make
various simplifying assumptions as mentioned through-
out this paper. We consider an SPOPO as described
in Sec. III, with nonlinear interactions governed by the
phase-matching assumptions made in Sec. IV; specifi-
cally, we consider the dispersion parameters shown in
Fig. 2(c). Following Sec. V, we recast the physics in
supermode form, by pumping with strength A in the
first Hermite-Gaussian pump supermode R1q in (55). We
also choose the signal supermodes Tim to diagonalize the

interactions G
(1)
ij , with resulting eigenvalues Λi, corre-

sponding to the eigenvectors Tim; these transformations
correspond to those shown in Fig. 4. Finally, we assume
that κm ≈ κ a constant, and all signal cavity modes have
equal spacing Ω such that δm = 0 for all m, to simplify
the linear dynamics as discussed in Sec. V A.

The result of these simplifying assumptions is a super-
mode quantum input-output model for an SPOPO with
system Hamiltonian Ĥpump +Ĥnl and a set of both linear
and nonlinear Lindblad operators, given by

Ĥpump

κ
=

ir

4

∑
i

Λi
Λ1
Ŝ2
i + H.c. (60a)

Ĥnl

κ
= η

∑
i,i′,j,j′

Ji′j′ij
Λ2

1

Ŝ†i′ Ŝ
†
j′ ŜiŜj (60b)

L̂
′(i)
lin√
κ

=
√

2Ŝi (60c)

L̂
′(k)
nl√
κ

=
√
η
∑
i,j

G
(k)
ij

Λ1
ŜiŜj +

r

2
√
η
δk1, (60d)

where Λi = G
(1)
ii after diagonalization and we have intro-
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duced dimensionless parameters

r :=
2AΛ1

κ
and η :=

Λ2
1

κ
. (61)

The parameter r is the pump parameter, representing
the ratio of the pump field amplitude to the pump field
amplitude at the (mean-field) threshold of the first su-
permode. The parameter η is the ratio between the
intensity-dependent and the linear decay rates of the first
supermode in isolation. These dimensionless parameters
incorporate the pump strength A and the scale g0 of the
nonlinear coupling coefficients. Thus in our simulations,
we set 1/κ as the unit of time, and for a given η, we fix
g0 in Fig. 4(b) such that Λ1 =

√
κη, while for a given r,

we fix A = κr/2Λ1.
We perform numerical simulations in Julia using the

QuantumOptics.jl package [58]. We simulate quantum
state evolution using standard numerical techniques,
which we summarize in Appendix D for convenience. We
take advantage of the supermode decomposition to trun-
cate the multimode simulation to a total of five signal
modes (i.e., 1 ≤ i ≤ 5) and to the first twenty non-
linear Lindblad operators (i.e., 1 ≤ k ≤ 20). We used
a Fock dimension of nine for the most dominant super-
modes and a dimension of three for the remaining higher-
order supermodes. To check that our choices for numer-
ical truncation are appropriate, we repeat calculations
with increasing thresholds for truncation until we arrive
at results that do not qualitatively change upon increase.

We first simulate the steady-state squeezing spectrum
of the SPOPO in the first supermode in the highly nonlin-
ear regime of η = 1. In this strongly quantum limit, our
quantum model for the SPOPO exhibits important non-
linear deviations from conventional squeezing near and
above threshold, arising from both the dissipative and co-
herent nonlinearities. In fact, the nonlinearity imparted
by Ĥnl rotates the internal state of the SPOPO in phase
space (see also Fig. 8), so we compute the squeezing not
along a fixed quadrature, but instead along the angle of
optimal squeezing, defined here as

θopt := arg min
θ

〈(
Ŝ1e
−iθ + Ŝ†1e

iθ
)2〉

, (62)

which produces the minimal variance in the resulting ho-
modyne measurement. Fig. 5(a) shows how θopt changes
with the pump parameter r, indicating that the disper-
sive nonlinearity can have a direct effect on the squeezing
properties of an SPOPO.

At this optimal angle, Fig. 5(b) shows, for the first sig-

nal supermode Ŝ1, the steady-state squeezing spectrum
Shom(ω) given by (D4) (see Appendix D for additional
details). For comparison, we also show in Fig. 5(c) the
analytic squeezing spectrum

S
(lin)
hom (ω) :=

ω2 + κ2(1− r)2

ω2 + κ2(1 + r)2
, (63)

obtained by linearizing the equations of motion (57) as
done in Ref. [27] (corresponding to η → 0). As we can
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FIG. 5. Squeezing generated by the first supermode Ŝ1 of
an SPOPO (60) operating in the quantum regime of η = 1,
at varying pump parameter r. (a) Optimal squeezing angle
θopt relative to the in-phase quadrature (62), induced by co-
herent nonlinear phase shifts in the model. (b) Steady-state
squeezing spectrum Shom(ω) (D4), measured at θopt. (c) An
analytic linearized approximation to the squeezing spectrum
according to (63), neglecting both nonlinear loss and phase
shifts. In (b) and (c), the vacuum level is normalized to 1.
The dispersion parameters and choice of pump/signal super-
modes follow Fig. 4.

see, the nonlinear model allows us to calculate squeez-
ing beyond the threshold point of r = 1 where the lin-
earized model breaks down. In addition, the spectra
are markedly different in appearance: in this regime of
high nonlinearity, both the bandwidth and the amount
of squeezing are reduced, which is in accordance with
the results of Ref. [59]. These results also suggest that,
at η ∼ 1, threshold as a mean-field concept is no longer
sharply defined, as the mean photon number in the vac-
uum squeezed state “below threshold” (r < 1) is com-
parable to the mean photon number in the bright state
“above threshold” (r > 1).

Another feature of the nonlinear quantum model is
that the input-output behavior of the pump can be non-
trivial. In Fig. 6, we show the steady-state optical out-
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FIG. 6. Steady-state input-output pump spectrum (i.e.,
photon-flux spectral density) of an SPOPO (60) operating
in the quantum regime of η = 1. Dashed line corresponds to
the input spectrum set by external pumping of the first pump
supermode and is given by |α(q)|2/(κr2) = R2

1q/(4η); see also
(55). Each solid line shows an output spectrum, given by〈
L̂
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nl L̂

(q)
nl

〉
/κ. To better compare spectra at different pump

parameters, we additionally normalize all curves by r2.

put spectrum of the pump, also in the highly nonlin-
ear regime of η = 1. Here, the spectrum is defined as〈
L̂

(q)†
nl L̂

(q)
nl

〉
as a function q, i.e., the mean photon flux

coming out of the SPOPO at frequency ωpq; this consti-

tutes what one might measure, for example, on an op-
tical spectrum analyzer. First, we find the output flux
at nonzero r (solid lines) is significantly lower than the
input flux (dashed line; note the different vertical scales),
indicating the presence of pump depletion. In fact, due
to the strong nonlinearity associated with η = 1 and
the ambiguity of classical threshold in this regime, pump
depletion occurs even ”below threshold” (r < 1), mak-
ing undepleted-pump approximations generally invalid
for quantum SPOPOs. Furthermore, as the pump pa-
rameter is increased, the output pump spectrum nonlin-
early distorts, since nonlinear interactions in the SPOPO
increasingly excite higher-order signal supermodes with
increasing r. These signal excitations back-convert into
the pump reservoir through the action of the Lindblad

operators L̂
′(k)
nl .

To better understand the effects of the multimode non-
linearities in and of themselves, we also study the system
in the absence of linear loss. This model can be obtained
by a reparametrization of (60): we resubstitute η and r
and cancel out κ in favor of parameterizing time in 1/Λ2

1.
More specifically, we use the model

Ĥpump

Λ2
1

=
ip

4

∑
i

Λi
Λ1
Ŝ2
i + H.c. (64a)

Ĥnl

Λ2
1

=
∑

i,j,i′,j′

Ji′j′ij
Λ2

1

Ŝ†i′ Ŝ
†
j′ ŜiŜj (64b)

L̂
′(k)
nl

Λ1
=
∑
i,j

G
(k)
ij

Λ1
ŜiŜj +

p

2
δk1, (64c)

where we define a new pump parameter p := 2A/Λ1.

We are especially interested in comparing this mul-
timode model to its corresponding single-mode (or cw)
version, which we define by restricting the indices ap-
pearing in (64) to i = j = k = 1 (i.e., neglecting all
higher-order pump and signal supermodes), as well as
neglecting the self-phase modulation Kerr nonlinearity

term J1111Ŝ
2†
1 Ŝ2

1 , which vanishes for single-mode degen-
erate OPOs with perfect phase-matching. The dynamics
of such cw OPOs are well studied and relevant for ap-
plications of OPOs to quantum information processing;
as shown in Ref. [15], the steady state in the absence of
linear loss is the pure cat state |i√p〉 + |−i

√
p〉 (i.e., a

superposition of coherent states).

Figure 7 shows quantum trajectories from solving the
stochastic Schrödinger equation for both an SPOPO and
its corresponding single-mode cw OPO, at a pump pa-
rameter p = 2. As the only relevant Lindblad operators
are the nonlinear ones, our choice of unraveling corre-
sponds to in-phase homodyne monitoring of the pump
channels. The resulting trajectories provide direct evi-
dence that multimode dynamics occur in the SPOPO, as
the signal photon numbers in higher-order supermodes
(i > 1) grow with time, while nonzero homodyne signals
are observed in higher-order pump supermodes (k > 1).
In the initial transient period (t < 2/Λ2

1), the trajecto-
ries for the multimode SPOPO show qualitatively simi-
lar stochastic variations to those for the single-mode cw
OPO. This is true both in the mean and variance of their
respective ensembles, but also within a single instanti-
ation of quantum noise, as is evident from the bolded
trajectories. After the transient period, however, the
cw OPO quickly approaches steady state; specifically, it
forms a pure single-mode cat state, which is dark to the
nonlinear loss. On the other hand, the SPOPO continues
to evolve stochastically due to still-increasing excitation
in higher-order supermodes. These stochastic fluctua-
tions about the ensemble mean decrease the purity of the
ensemble, which indicates that the SPOPO experiences
pump-induced decoherence even when the single-mode
OPO has reached a pure state.

Similar conclusions can be reached by examining the
quantum states generated in these trajectories, which we
show in Fig. 8 by plotting the Wigner functions of the
first supermode at various points in time, both along
the bolded trajectories of Fig. 7 and for the ensemble-
averaged dynamics (calculated from the unconditional
master equation). As in Fig. 7, we observe that the
Wigner functions of the pulsed and cw OPO are qual-
itatively similar during the initial transient period (i.e.,
t = 0.5/Λ1

1, 1.0/Λ
2
1). After this initial transient, the cw

OPO quickly converges to its steady-state Wigner func-
tion, and the single trajectory looks similar to the en-
semble average. On the other hand, for the SPOPO,
the Wigner functions of the single trajectory differ from
that of the ensemble average (e.g., exhibits more nega-
tivity), indicating the presence of stochastic variations at
later times. We furthermore observe that at later times
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for the pump parameter in (64). To facilitate direct comparison between the multimode and single-mode dynamics, bolded
trajectories indicate corresponding simulations that use the same seed in the random number generator.
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FIG. 8. Wigner functions representing the state of the first signal supermode at various points in time (indexed with lower-case
roman numerals); here (a,b) correspond to the multimode SPOPO, while (c,d) correspond to its single-mode counterpart. In
(a) and (c), we show the Wigner functions for the bolded stochastic trajectories in Fig. 7(a) and (c), respectively. In (b)
and (d), we show the Wigner functions of the ensemble average over all trajectories for each model, here computed via the
unconditional master equation. Higher-order supermode components in the state of the SPOPO are partial-traced out.
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in the single trajectory of the SPOPO—for example, in
Fig. 8(a)(iv)—the reduced state of the first supermode
is also impure (we estimate from simulations a purity of
0.6), even though the system state is pure under con-
ditional evolution. This indicates that the multimode
interactions in the SPOPO also entangle the various sig-
nal supermodes when conditioning on pump homodyne.
Finally, it is also worth noting that the Winger func-
tions of the pulsed OPO are rotated compared to its cw
counterpart: This is due to self-phase modulation of the
first supermode, which is a consequence of the dispersive
nonlinearity Ĥnl, unique to the pulsed case.

VIII. PROSPECTS FOR EXPERIMENTS

In this section, we briefly discuss how our work relates
to the experimental design of ultrashort-pulse SPOPOs,
focusing in particular on prospects for observing the
single-photon-regime nonlinear quantum behavior ex-
plored in Sec. VII. As discussed in Sec. VI, the approx-
imations we have made in our quantum model produce
continuous-time dynamics, while in conventional mod-
els for experimental SPOPOs, outcoupling or losses are
modeled using discrete beamsplitter operations and the
evolution of the pulse through the nonlinear crystal is
treated by directly integrating a set of coupled-wave
equations. In Appendix C, we connect our model to
the latter framework and derive an explicit mapping (in
the mean-field limit) between the two models via a high-
finesse, continuous-time approximation.

Throughout this work, we have used a phenomenolog-
ical frequency-independent coupling rate g0 to charac-
terize the χ(2) nonlinearity (although a more ab initio
approach can start from (12) instead). This corresponds
to assuming an instantaneous nonlinear coupling param-
eter ε in the coupled-wave equations of Appendix C; un-
der such conditions, a figure of merit used in many ex-
periments is the “second-harmonic conversion slope effi-
ciency”, here defined as η0 := (2~ω0)−1ε2. This results
in the correspondence

g0 =
~ω0

2

(
L

T

)2

η0, (65)

where T is the roundtrip time of the cavity and L is the
propagation length through the nonlinear medium within
the cavity. From a design perspective for nanophotonic
cavities, it is often more natural to scale L and T to-
gether. In this case, we can re-express L/T = Rfillv,
where Rfill is the ratio between L and the length of the
cavity, and v is the (average) group velocity of the signal
pulse. Under this condition, the only dependence of g0

on absolute lengths or the repetition rate arises via Rfill,
which would ideally be a weak function thereof.

The decay rate κ in our quantum theory can also be
similarly related to experimentally relevant parameters.

Following the derivation in Appendix C, we have

κ =
`2

2T
, (66)

where `2 here denotes the fraction of power lost over
one roundtrip due to linear mechanisms such as intrin-
sic losses, outcoupling, etc. When this attenuation is
dominated by scattering in a waveguide (rather than the
outcoupler), `2 also naturally scales with T , so we can
express `2/T = αlossv, where αloss is the propagation
power loss constant in units of Np/[length] (where Np
stands for the neper). In this case, κ does not scale with
the absolute cavity length.

In Appendix C we also establish similar correspon-
dences for the phase-mismatch coefficients Φmn and the
pump amplitudes α(q). We note again that these cor-
respondences are only meaningful when the resulting
dynamical rates in the supermode basis are sufficiently
small compared to the repetition rate Ω (see Sec. VI).
That is, the resulting dynamics of the experimental
SPOPO in question should have high finesse, and it
should be valid to approximate its dynamics in continu-
ous time over many roundtrips.

From an experimental and technological standpoint,
one of the most important results from quantum studies
of ultrafast SPOPOs such as this paper and Ref. [27] is
the rigorous identification of a pulsed enhancement of the
nonlinear rate g0, which intuitively arises due to the tem-
poral confinement of the field to a short pulse. As first
pointed out in Ref. [27] and discussed in Sec. V, decom-
posing the multimode quantum model into a supermode
basis allows us to express the quantum model in terms
of a small set of excited spectral-temporal supermodes.
However, as we have shown in Sec. VII, nonlinear dy-
namics due to the two-photon loss and the dispersive op-
tical cascade create interactions among the supermodes.
This means that if we want to experimentally observe
single-supermode behavior in the SPOPO while enjoying
the pulsed enhancement due to temporal confinement, we
must be careful to operate the SPOPO in a quasi-single-
mode regime. Identifying such a regime requires careful
choice of the parameters of the system (especially for the
dispersion), combined with a rigorous, concise model for
its dynamics.

As discussed in Sec. V and borne out by quantum-
dynamical simulations in Sec. VII, the first supermode
Ŝ1 primarily experiences dynamics (e.g., squeezing rate,
two-photon loss, etc.) on timescales set by Λ1, where Λi
is the ith eigenvalue of the matrix G

(1)
ij and is determined

not only by the value of the underlying g0 but also by the
dispersion parameters of the system. Thus, a reasonable
choice for quantifying the “pulsed enhancement factor” is
the value of Λ2

1/g0, assuming we can operate the SPOPO
in a quasi-single-mode regime.

A detailed study systematically identifying such quasi-
single-mode operating regimes, especially with all quan-
tum effects taken into account, is beyond the scope of
this paper and requires further research. However, for
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the purposes of establishing intuition for the experimen-
tal numbers relevant to the physics we explore in this
paper, we can make some heuristic arguments as fol-
lows. For an SPOPO pumped in the first pump super-
mode as was done throughout Sec. VII, excitations are
initially generated by the squeezing Hamiltonian Ĥpump,
which populates the signal supermodes via independent
squeezing. As discussed in Sec. V, these excitations then
facilitate the action of both the nonlinear dissipation
and the nonlinear dispersion, which generically mixes
the supermodes together in complicated ways. As a re-
sult, it is reasonable to heuristically consider the ratio
Λ2

1/
(∑

i Λ2
i

)
∼ 1 as a necessary (but generically not suf-

ficient) condition for quasi-single-mode operation. In the
following discussion, we use this “single-modedness” ra-
tio as a heuristic metric for quasi-single-mode operation.

In Figs. 9(a) and Figs. 9(b), we show some representa-
tive plots for how the pulsed enhancement factor and the
single-modedness, respectively, change with some of the
parameters used in our second-order dispersion model
(43). For simplicity, we focus here on the case where
the GVM β1 = 0; intuitively, we can expect quasi-single-
mode operation to be difficult to achieve with large GVM.
In this case, the GDD of the signal sets a character-
istic scale for the number of cavity modes comprising
the first supermode, allowing us to normalize by

√
β2s

throughout. Furthermore, at each dispersion parame-
ter, we have also chosen a particular pump bandwidth,
defined by Np in (55), in order to maximize the single-
modedness; this chosen value of Np is shown in Fig. 9(c)
for reference. For most parameters in the region where
the single-modedness is high, Np ∼ 1/

√
β2s, indicating

that the optimum width τp of the pump pulse is set ap-
proximately by the signal GDD, i.e., τpΩ ∼ 1/

√
β2s. In-

terestingly, we also see that slightly larger enhancements
can be achieved by setting the pump GDD to be equal
to the signal GDD, which is near the peak of Fig. 9(a).

Towards the goal of reaching the quantum limit of
SPOPOs, we are especially interested in the results of
Fig. 9(a), which indicates that Λ2

1/g0 ∼ 1/
√
β2s, as-

suming β1 is negligible. We also recall that β2s =
1
4Ω2L(GVDs) where GVDs := k′′z (ω0). Combining these
results and assuming quasi-single-mode operation, we get
that the pulsed enhancement can be estimated as

Λ2
1

g0
∼ Rfill

π

√
L

v2(GVDs)
(67a)

≈ 6710×
√

L

GVDs
× 1 fs2 mm−1

1 cm
, (67b)

where we have used L/T = Rfillv in the first line, and as-
sumed Rfill ≈ 1 and v ≈ c/2 in the second. In a nanopho-
tonic platform, g0 and (for a small outcoupler) κ do not
directly scale with L as argued above, while v and GVDs

are clearly independent of L. This expression provides
an explicit expression for the pulsed enhancement we can
expect in an ultrashort-pulse SPOPO, assuming it is op-
erating in a quasi-single-mode regime in the limit of high
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FIG. 9. Heuristic SPOPO figures of merit under the second-
order dispersion model (43): (a) Pulsed nonlinear enhance-

ment factor (normalized by β
−1/2
2s ) and (b) single-modedness

ratio. These values are calculated using a number of
pump comb lines Np (see (55)) chosen to maximize single-

modedness, as shown in (c) (normalized by β
−1/2
2s ).

finesse (and is GDD and scattering-loss dominated, etc.)
Finally, Table I evaluates this expression for some repre-
sentative numbers which have recently appeared in the
literature on thin-film lithium niobate devices, to provide
a sense of scale for the path forward to on-chip quantum
SPOPOs.

IX. CONCLUSIONS

In this paper, we have investigated the nonlinear, mul-
timode quantum effects in ultrashort-pulse OPOs, as re-
vealed by a first-principles application of quantum input-
output theory. We have rigorously derived a quantum
input-output model for the SPOPO that features, under
appropriate timescale conditions, a Born-Markov mas-
ter equation in Lindblad form which includes the nonlin-
ear interactions between the signal modes and the pump
reservoir. The resulting model generically exhibits both
dissipative nonlinearity, in the form of two-photon loss
and modeled with nonlinear Lindblad operators, as well
as a dispersive nonlinearity, in the form of an optical cas-
cade and modeled with a four-wave-mixing Hamiltonian.
By extending the supermode technique of Refs. [26, 27],
we have obtained an efficient description for these multi-
mode interactions. Numerical simulations using this su-
permode model show nonlinear phenomena such as pump
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λ0 (nm) η0 (% W−1 cm−2) g0/2π (kHz) g0/(κ = 52 MHz) g0/κ× 6710 Notes
2000 1000 0.018 2.2× 10−6 0.015 Dispersion-engineered, Ref. [38]
1550 2600 0.060 7.2× 10−6 0.048 CW only, ultra-low-loss, Refs. [36, 60]
913 33 000 1.3 1.6× 10−4 1.0 CW only, Ref. [37]
775 120 000 5.5 6.6× 10−4 4.5 Theoretical, Ref. [39]

TABLE I. Regimes of operation for high-finesse SPOPOs at various levels of nonlinearity, as measured by the SHG conversion
efficiency η0. For the loss rate, we use κ = 52 MHz based on a reference value of αloss = 3 dB/m [60]; for more realistic values
of αloss ∼ 30 dB/m, multiply κ by 10. The factor of 6710 is based on a reference waveguide resonator with length L = 1 cm

and dispersion limited by signal GVD at 1 fs2 mm−1 (see (67b)); more generally, this enhancement scales as
√
L/GVDs. We

assume a cavity fill factor Rfill = 1 and average group velocity v ≈ c/2.

depletion and back-conversion from signal to pump, as
well as nonlinear corrections to the squeezing spectrum.
In the regime of strong single-photon nonlinearities, we
have found that, as expected, non-Gaussian physics in
this regime can produce exotic intracavity states with
Wigner-function negativity, but at the same time, the
nonlinear multimode interactions, both dissipative and
dispersive, play a significant and complicated role in the
structure and dynamics of such states.

By inserting current as well as speculative experimen-
tal parameters into our model, we have seen that state-
of-the-art devices in thin-film, dispersion-engineered non-
linear nanophotonics are now closer than ever before to
reaching, in an all-optical platform, the quantum regime
of few-photon operation. Such a breakthrough would
make the on-chip, short-pulse SPOPO a promising device
for finally realizing the many quantum and coherent in-
formation processing applications proposed over decades
of research into quantum OPOs, other quantum nonlin-
ear oscillators, and networks thereof. At the same time,
this paper also shows that despite this potential, a signifi-
cant amount of work is still needed to model, control, and
harness the multimode quantum effects that inherently
arise from working with broadband devices like SPOPOs.
For instance, the use of pump spectral shaping and/or
advanced dispersion engineering may be needed to facili-
tate high-fidelity quantum operations and programmable
quantum state generation. To enable such efforts in de-
vice and experimental design, further theoretical work
will be needed to develop and apply more sophisticated
model reduction techniques that can concisely and accu-
rately capture the multimode quantum dynamics in the
system.
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Appendix A: Evaluating nonlinear interaction tensor

In this section, we give details underlying the calcu-

lation of the coefficients χ
(q)
mm′ that make up the nonlin-

ear dispersive Hamiltonian, via direct evaluation of the
memory function (44) associated with the signal-pump
interaction. We also provide some physical justification
for the approximation (45) used in performing these cal-
culations.

Starting with (44), we first apply the linearization (45)
and then also assume we can extend the lower limit
of the integral to −∞, which is warranted as the inte-
grand of (44) is localized around ω = ωpq. Under these

assumptions, the memory functions can be expressed
in terms of dimensionless quantities τ̃ := 2τ/Tnl and

δ̃ := 1
2Tnl(ωpq − ω) as

h
(q)
mm′(τ̃) =

g0

πTnl

∫ ∞
−∞

dδ̃ Yqm(δ̃)Yqm′(δ̃)e
iδ̃τ̃ , (A1)

where Yqm(δ̃) and its (inverse) Fourier transform

yqm(τ̃) := 1
2π

∫∞
−∞ dδ̃ yqm(δ̃)eiδ̃τ̃ are given by

Yqm(δ̃) = sinc
(

Φ(q)
m − δ̃

)
, (A2)

yqm(τ̃) =
1

2
exp

(
iΦ(q)
m τ̃

)
Π (τ̃) , (A3)

where Π(x) takes the value 1 for −1 < x < 1 and is zero
otherwise. For notational convenience, we have also in-

troduced the notation Φ
(q)
m := Φm,q−m. The convolution

theorem then gives

h
(q)
mm′(τ̃) =

2g0

Tnl

∫ ∞
−∞

dτ̃ ′ yqm(τ̃ ′)yqm′(τ̃ − τ̃ ′) (A4)

=
g0

2Tnl
eiΦ

(q)

m′ τ̃

∫ ∞
−∞

dτ̃ ′ ei(Φ(q)
m −Φ

(q)

m′ )τ̃
′
Π (τ̃ ′) Π (τ̃ − τ̃ ′) .

The last line shows that the memory function is given
by a convolution between two temporal windows. For
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large τ̃ , the windows no longer overlap and the integrand
vanishes for all τ̃ ′. Consequently,

h
(q)
mm′(τ > Tnl) = h

(q)
mm′(τ̃ > 2) = 0. (A5)

For τ < Tnl where the two windows overlap, the integral
evaluates to

h
(q)
mm′(τ < Tnl) =

g0

2Tnl

i

Φ
(q)
m′ − Φ

(q)
m

(A6)

×
(
ei(Φ(q)

m −Φ
(q)

m′ )eiΦ
(q)

m′ τ̃ − ei(Φ
(q)

m′−Φ(q)
m )eiΦ(q)

m τ̃
)
.

Having derived an expression for the memory functions

h
(q)
mm′(τ), we can now use (22) to find the nonlinear cou-

pling coefficients by integrating over τ̃ . The result is

ξ
(q)
mm′ =

g0

2
sinc Φ(q)

m sinc Φ
(q)
m′ + i

g0

2

(
Φ(q)
m − Φ

(q)
m′

)−1

×
(

cos Φ
(q)
m′ sinc Φ(q)

m − cos Φ(q)
m sinc Φ

(q)
m′

)
. (A7)

We see that the real part of (A7) is consistent with the
expression derived in the main text (28a) for the dissi-

pative nonlinear couplings γ
(q)
mm′ . But more importantly,

the imaginary part of (A7) now provides us an expres-

sion for χ
(q)
mm′ , which specifies the coherent nonlinear cou-

plings in Ĥnl.
As an aside, since the nonlinear memory functions

vanish for times τ � Tnl, and Tnl ∼ Rfill/Ω, we note
that for small crystals relative to the cavity length where
Rfill � 1, it is possible to formulate a Markovian input-
output master equation model along the lines of Sec. II B
which requires only the weaker condition that the rate
of the system dynamics need only be less than Ω/Rfill,
although this would require a larger binning of the input-
output channels than we have chosen, in order to accom-
modate the larger interaction bandwidth. In this case,
the requirement that the cavity remain high-finesse still
stands, however.

1. Validity of first-order expansion in δ

The function Φm,q−m(ω) describing the phase mis-
match between two signal modes at ωsm and ωsq−m with
a pump photon at ω can be expanded more generally up
to second order in the detuning δ = ωpq − ω via

Φm,q−m(ω) ≈ Φ(q)
m +

1

2
Tnlδ +

β2p

Ω2
δ2, (A8)

where Tnl = k′z(ωpq)L is the time the pump photon

spends in the nonlinear crystal, while β2p/Ω
2 = k′′z (ωpq)L

under our second-order dispersion model (43). The
second-order term only becomes comparable to the first-
order term when |δ/Ω| & ΩTnl/(2β2p) ∼ Rfill/β2p, where
Rfill is the ratio of the nonlinear crystal length L to the
cavity length. For nanophotonic cavities, Rfill ≈ 1, while

for free-space SPOPOs, Rfill is usually no smaller than

10−4. On the other hand 1/β
1/2
2p

represents the num-

ber of signal frequency modes within a characteristic fre-
quency bandwidth set by the pump GDD; consequently,
β2p is very small for an ultrafast SPOPO (in this pa-
per, we consider β2p on the order of 10−8). As a result,
the second-order contribution is only significant for |δ| on
the scale of many Ω (in this paper, ∼ 108 × Ω). Physi-
cally, we do not expect the pump reservoir at these large
detunings away from ωpq to mediate nonlinear interac-

tions between signal frequencies at ωsm and ωsq−m, and
a first-order expansion in δ should suffice intuitively.

To develop the argument further, we see that in eval-
uating the memory functions (44), the most dominant
contributions to the integral occur when (1) the complex
exponential is not too oscillatory (i.e., ω ≈ ωpq) and (2)

the phase matching is within the main lobe of the sinc
functions (i.e., |Φm,q−m(ω)| . π). Physically, the nonlin-
ear dispersive interaction between signal frequencies ωsm

and ωsq−m are primarily mediated by the pump reser-
voir at frequencies ω that are both (1) nearly resonant
(i.e., energy conserving), and (2) nearly phase matched
(i.e., momentum conserving). Thus, in principle, a linear
approximation to Φm,q−m(ω) suffices if the effective inte-
gration bandwidth of δ imposed by these two conditions
is smaller than the value of δ where the second-order
contribution in (A8) becomes important.

As we can see in (A7), analytic evaluation of the
integral (44) presupposing an expansion of Φm,q−m(ω)
to first order in δ suggests that the coupling constants

are only nonzero when Φ
(q)
m and Φ

(q)
m′ are also nearly

phase-matched, i.e., within the main lobe of the sinc
function. Combining this fact with the need for phase-
matching over δ in the integral (i.e., condition (2) above),
we can see (via (A2), for example) that we need δ .

2Φ
(q)
m /Tnl ∼ 2Φ

(q)
m′/Tnl ∼ T−1

nl . Thus, this argument sug-
gests that the effective limits of the integral (44) scale
as |δ/Ω| . 1/Rfill. Finally, comparing this to the de-
tuning at which the second-order term of (A8) becomes
important, i.e., |δ/Ω| ∼ Rfill/β2p, we see that so long

as Rfill &
√
β2p (which is generically the case in most

experiments, both on chip and in free space), then the
first-order expansion in δ is consistent.

Appendix B: Kramers-Kronig–like relationship
between dissipative and dispersive part of nonlinear

coupling constants

In this section we show how the real (giving rise to dis-
sipation) and imaginary (giving rise to coherent cascade
dynamics) parts of the coupling constants ξnmn′m′ are
related by means of a Kramers-Kronig–like relationship,
as a consequence of causality.

First, we start with the contribution to the nonlinear
part of the master equation. Instead of the form (20),
we instead begin with a master equation which only ap-
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plies the Born approximation (separability of system and
reservoir density matrices under the integral in (20)), but
not the Markov approximation that corresponds to the
replacement ρ̂(t−τ)→ ρ̂(t). This master equation, some-
times called the Nakajima-Zwanzig master equation, can
be derived via projector operator techniques [43], and is
given by

Lnlρ̂ = −
∫ ∞

0

dτ trP̄

[
V̂nl(t),

[
V̂nl(t− τ), ρ̂(t− τ)ρ̂P̄

]]
.

(B1)
Since both this equation and the time-convolutionless
Born-Markov master equation in (20) can be derived us-
ing second-order perturbation theory, the error associ-
ated with both equations can be expected to have the
same scaling with the system-bath coupling [43]. As
such, while the Born-Markov form in (20) is much more
suitable for calculations, the Born form in (B1) shows
explicitly that the master equation theory has a causal
structure, in that the evolution of the density matrix at
time t only depends on the state of the system at times
t′ < t. Following similar steps to the derivation in Sec. II,
we can write (B1) in the form

Lnlρ̂ =
∑
m′,n′

∑
m,n

∫ ∞
−∞

dτh′mnm′n′(τ)Lmnm′n′(t)ρ̂(t− τ)

+ H.c. (B2)

where h′mnm′n′(τ) = hmnm′n′(τ)θ(τ), where θ(τ) is the
Heaviside step function, and we have defined the super-
operator

Lmnm′n′(t)ρ̂ = ei(ωsm′+ωsn′−ωsm−ωsn)t
[
ŝmŝnρ̂, ŝ

†
m′ ŝ
†
n′

]
.

(B3)
In this form, it is clear that the evolution of the density
matrix of the system depends on a set of bath memory
functions h′mnmn′(τ) which vanish explicitly for τ < 0—
a manifestation of causality, as the density operator at
time t can not depend on the state of the density matrix
at time t′ > t.

We can then define a (frequency-shifted) Fourier trans-
form of this function

ξmnm′n′(ω) :=

∫ ∞
−∞

dτh′mnm′n′(τ)ei(ω−ωsm−ωsn)τ . (B4)

If we assume fmn(ω) to be a continuous and real function
of ω, we can apply the Sokhotski-Plemelj theorem for
integrals over the real axis to find

Re{ξmnm′n′(ω)} =

{
1
2fm′n′(ω)fmn(ω) ω > 0

0 ω < 0
(B5a)

Im{ξmnm′n′(ω)} = −P

∫ ∞
0

dω′

2π

fm′n′(ω
′)fmn(ω′)

ω′ − ω .

(B5b)

Since ξmnm′n′(ω) is a (shifted) Fourier transform of a
function h′mnm′n′(τ) which vanishes for τ < 0, by Titch-
marsh’s theorem [61], it is an analytic function of com-
plex ω in the upper half plane. As such, we can use the

residue theorem ∫
C

dω′
ξmnm′n′(ω

′)

ω′ − ω = 0, (B6)

for any contour C which is entirely located in the upper
half plane. To derive the Kramers-Kronig–like relation-
ship, we can choose a counter-clockwise contour which
approaches from the interior of the contour a path con-
sisting of a part along the real axis and a semicircle with
radius R → ∞; for well-behaved phase matching func-
tions fnm(ω), the contribution along this semicircle van-
ishes due to the exponential factor in (B4). We then
evaluate (B6) by using again the Sokhostki-Plemej theo-
rem, finding the Kramer-Kronig-like relations:

Re{ξmnm′n′(ω)} =
1

π
P

∫ ∞
−∞

dω′
Im{ξmnm′n′(ω′)}

ω′ − ω
(B7a)

Im{ξmnm′n′(ω)} = − 1

π
P

∫ ∞
−∞

dω′
Re{ξmnm′n′(ω′)}

ω′ − ω .

(B7b)

We observe that the nonlinear coupling constants from
Sec. II are related to these functions by ξmnm′n′(ωsm +
ωsn) = ξmnm′n′ , and thus for the SPOPO model

ξm,q−m,m′,q−m′(ωpq) = ξ
(q)
mm′ . As such, we can conclude

that the dissipative part of the nonlinear interaction—
which gives rise to incoherent and non-unitary evolution
of the system signal modes, and arises from real two-
photon transitions—and the dispersive cascade part—
which gives rise to coherent and unitary evolution of the
system signal modes, and arises from virtual two-photon
transitions—are not independent of each other, and in-
deed the existence of one implies the existence of the
other. The result of this is that a theory of SPOPOs
which includes nonlinear two-photon loss must also gen-
erally include the four-wave-mixing cascaded nonlinear
Hamiltonian in order to preserve the causal structure of
the interaction of the system signal modes with the pump
reservoir.

Appendix C: Correspondence with classical
pulse-propagation theory of SPOPOs

In this section, we connect the mean-field limit of our
quantum input-output theory for the SPOPO with a
pulse-propagation model more commonly used in classi-
cal nonlinear optics. In the low-gain (i.e., short-crystal)
limit, we show that the propagation of a classical pulse
through a nonlinear χ(2) crystal can be approximated
as an input-output map; iterating this map over multi-
ple round trips of the cavity in the low-loss limit yields
continuous-time classical dynamics which correspond to
the mean-field dynamics of the quantum theory. Notably,
this derivation produces a mapping between classical fig-
ures of merit, such as the second-harmonic conversion ef-
ficiency, and the parameters used in the quantum model,
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thus conceptually bridging the theoretical results of this
paper with more familiar models widely used in nanopho-
tonic engineering. These results also provide an intuitive
interpretation of the approximations made in the the-
ory, connecting them to continuous-time approximations
commonly employed in the classical domain to treat low-
gain, high-finesse SPOPOs.

We begin by considering the mean-field dynamics gen-
erated by the quantum model given in Sec. III. Start-
ing from the quantum stochastic differential equations
(QSDE) for the SPOPO (35), we take their expectation
value and factor the resulting products using the mean-
field approximation:

d 〈ŝm〉
dt

=− (κm + iδm) 〈ŝm〉 − 2
∑
q

fm,q−mα
(q) 〈ŝq−m〉∗

− 2
∑
q

∑
n

ξ(q)
nm 〈ŝq−m〉∗ 〈ŝn〉 〈ŝq−n〉 (C1a)

Here a mean-field approximation was used to factor〈
ŝ†q−mŝnŝq−n

〉
into 〈ŝq−m〉∗ 〈ŝn〉 〈ŝq−n〉. This approxi-

mation is justified if the internal state of the SPOPO is
a multi-mode coherent state, e.g., in the classical regime
where loss is much larger than nonlinearity.

In addition, the input-output relationships for the sig-
nal and pump channels reduce to〈

b̂
(m)
out

〉
=
√

2κm 〈ŝm〉 (C1b)〈
â

(q)
out

〉
= α(q) +

∑
m

fm,q−m 〈ŝm〉 〈ŝq−m〉 , (C1c)

since
〈
b̂
(m)
in

〉
=
〈
â

(q)
in

〉
= 0. Thus, we see that the quan-

tum theory consists of only the parameters: κm, describ-
ing the linear loss rates; α(q), describing the pump flux

amplitudes; and fmn and ξ
(q)
mn, representing the nonlinear

interactions in the system.
We now introduce a simple but typical description of

classical SPOPOs, which uses a set of coupled-wave equa-
tions to model pulse propagation of pump and signal
through the crystal and an iterative loop to model the
recycling of the signal within the cavity. In the mostly-
collimated, one-dimensional cavity situation considered
in Sec. IV, the classical electric fields of the signal and
pump can be written as

Es(t; r) = Es(r⊥)eik(ω0)ze−iω0tαs(t; z) + c.c. (C2a)

Ep(t; r) = Ep(r⊥)eik(2ω0)ze−2iω0tαp(t; z) + c.c., (C2b)

where Es and Ep are some suitable mode functions, k(ω)
is the wavevector component as a function of frequency
along the propagation direction z, and ω0 is the signal
carrier frequency chosen such that αs(t) and αp(t) are
envelope functions for the signal and pump fields satis-
fying the slowly-varying envelope approximation. The
signal envelope can be related to the Fourier mode am-
plitudes of a cavity with roundtrip time T = 2π/Ω via

αs(t; z) =
1√
T

∑
m

αsm(z)e−imΩt. (C3a)

Although the spectrum of the pump envelope αp(t) can
technically be continuous, if we assume that the frequen-
cies 2ω0 + qΩ defined by the time window T are suffi-
ciently fine to approximate that spectrum (or indeed, if
the system is pumped with a mode-locked laser), then we
can also similarly write

αp(t; z) =
1√
T

∑
q

αpq(z)e
−iqΩt. (C3b)

The coupled-wave equations which describe the evolution
of the envelope functions within the crystal are

∂zαs(t; z) = iks(i∂t)αs(t; z) + ε(αpα
∗
s )(t; z) (C4a)

∂zαp(t; z) = ikp(i∂t)αp(t; z)− 1

2
εα2

s (t; z), (C4b)

where we have introduced kp(ω̄) = k(2ω0 + ω̄) − k(2ω0)
and ks(ω̄) = k(ω0 + ω̄) − k(ω0), allowing us to write
the dispersion operators as formal power series—e.g.,

ks(i∂t) =
∑
d(1/d!)k

(d)
s (0)(i∂t)

d, where k
(d)
s denotes the

dth derivative of ks. PDEs of this form can be readily
solved numerically, e.g., via Fourier split-step methods.

To bring the classical dynamics closer to the quantum
formalism, we turn this pair of PDEs into a discrete set
of ODEs by moving to the Fourier domain using (C3).
We also move into an “interaction frame” via

α̃sm(z) = e−iks(mΩ)zαsm(z) (C5a)

α̃pq(z) = e−ikp(qΩ)zαpq(z). (C5b)

With both of these transformations, the coupled-wave
equations simplify to (suppressing z arguments)

dα̃sm

dz
=

ε√
T

∑
q

α̃pqα̃s
∗
q−me

+i∆km,q−mz (C6a)

dα̃pq

dz
= −1

2

ε√
T

∑
m

α̃smα̃sq−me
−i∆km,q−mz, (C6b)

where we have defined the momentum mismatch to be

∆kmn = kp (mΩ + nΩ)− ks (mΩ)− ks (nΩ) . (C7)

Our task is now to integrate these equations of motion
through a crystal of length L. For simplicity, we specify
the input facet of the crystal to be at z = −L/2, with
the output facet at z = L/2.

For both signal and pump, we also henceforth denote
α̃ = α̃(z = −L/2) and α̃′ = α̃(z = +L/2) to suppress the
arguments at the facets, and we reserve α̃(z) to denote
the field only in the interior (i.e., when −L/2 < z < L/2).

In a limit where the single-pass gain is sufficiently
weak, we can approximately solve these equations of mo-
tion via a Picard iteration. Let the Picard iterates for
signal and pump be α̃

(i)
s (z) and α̃

(i)
p (z). To determine

the number of iterations we should perform, we intro-
duce a parameter δ such that

εL√
T
∼ αp ∼ δ1/2, (C8)
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and we perform the Picard iteration until further itera-
tions no longer give any corrections of order O(δ)—that
is, we want to derive the dynamics via Picard iteration
up to first order in δ, assuming αs is zeroth order in δ.

As usual, the zeroth iteration is simply given by α̃
(0)
s =

αs and α̃
(0)
p (z) = αp. The first iteration is then

α̃s
(1)
m (z) = α̃sm +

εL√
T

∑
q

α̃pqα̃s
∗
q−mImq(z) (C9a)

α̃p
(1)
q (z) = α̃pq −

1

2

εL√
T

∑
m

α̃smα̃sq−mI
∗
mq(z), (C9b)

where we have introduced

Imq(z) :=

∫ z

−L/2
exp (i∆km,q−mz

′)
dz′

L
(C10)

Inspecting the second terms of (C9), we see that they are
∼ δ and ∼ δ1/2 for signal and pump, respectively. The
next Picard iteration gives

α̃s
(2)
m (z) = α̃s

(1)
m (z)− ε2L2

4T

∑
q,n

α̃s
∗
q−mα̃snα̃sq−nHmnq(z)

+O
(
ε2L2

T α̃∗p ∼ δ3/2
)

+O
(
ε2L2

T |α̃p|2 ∼ δ2
)

α̃p
(2)
q (z) = α̃p

(1)
q (z) +O

(
ε2L2

T α̃p ∼ δ3/2
)

(C11)

+O
(
ε3L3

T 3/2 α̃
2
p ∼ δ5/2

)
,

where we have introduced

Hmnq(z) = 2

∫ z

−L/2
exp (i∆km,q−mz

′) I∗nq(z
′)

dz′

L
.

(C12)
Note that for the pump, we get no new terms at order
O(δ). It can also be seen that further Picard iterations
do not yield any further corrections to either fields at
O(δ). Thus, we conclude that for small δ, the crystal
propagation implements a map α̃sm 7→ α̃s

′
m according to

α̃s
′
m = α̃sm +

εL√
T

∑
q

α̃pqα̃s
∗
q−mImq(L/2) (C13a)

− ε2L2

4T

∑
q,n

α̃s
∗
q−mα̃snα̃sq−nHmnq(L/2)

α̃p
′
q = α̃pq −

1

2

εL√
T

∑
m

α̃smα̃sq−mI
∗
mq(L/2), (C13b)

where the next-order correction to these equations are
order O(δ3/2).

Having completed the propagation through the crys-
tal, we need to take care of the remaining cavity ele-
ments, which act only on the signal field. According to
Sec. III, this consists of applying two additional elements:
a dispersion-compensating element to cancel the linear
dispersion of the crystal, and an output coupler (or scat-
tering loss) which attenuates the signal field.

First, in the short-crystal limit we are considering,
the dispersion-compensation element can be modelled
as a simple discrete transformation α̃sm 7→ αsm, i.e.,
physically undoing the interaction frame transformation
we performed in (C5). More precisely, the lab-frame
coupled-wave equations (C4) involve dispersion and non-
linearity both acting simultaneously, and these differen-
tial operators do not commute in general. However, in
the short-crystal limit, we can approximate the action
of these two terms via a Suzuki-Trotter expansion as is
done, for example, in the derivation of Fourier split-step
methods for numerical pulse propagation. At leading
order in δ, then, we can factor out the linear disper-
sion as occurring after the nonlinearity, which is imme-
diately cancelled by a separate dispersion-compensating
element placed in series with the crystal. The effective
roundtrip dynamics of these two elements then become
well-described by (C6), but with α̃sm 7→ αsm and so on.

Finally, the linear loss can be modelled as a beamsplit-
ter with small field-outcoupling ratio `m ∼ δ1/2 for each
signal Fourier mode αsm:

αsm 7→
√

1− `2mαsm ≈
(

1− 1

2
`2m

)
αsm (C14a)

α
(m)
s,out = `mαsm, (C14b)

where α
(m)
s,out is the outcoupled Fourier mode. Again,

consistent with the low-gain, low-loss limit, we assume
`m � 1 and only consider the effect of the beamsplitter
only up to order O(`2m ∼ δ).

Putting all three of these effects together, the
roundtrip recurrence relationship for the internal signal
Fourier modes can be written, up to order O(δ), as

α′sm ≈
(

1− `2m
2

)
αsm +

εL√
T

∑
q

α̃pqαs
∗
q−mImq

(
L
2

)
− ε2L2

4T

∑
q,n

αs
∗
q−mαsnαsq−nHmnq

(
L
2

)
. (C15)

Again, α′s and αs denote the signal field immediately be-
fore and immediately after completing one roundtrip. If

we also define α
(q)
p,out to be the post-crystal pump field

α̃pq(z = L/2) after linear dispersion compensation, then

α
(q)
p,out ≈ αp −

1

2

εL√
T

∑
m

αsmαsq−mI
∗
mq

(
L
2

)
. (C16)

Inspecting the equations above, we see that we can
get a form very similar to (C1) if we simply consider the
finite-difference ratio (α′s − αs)/T , which is given by

α′sm − αsm

T
= − `

2
m

2T
αsm +

εL

T 3/2

∑
q

αpqαs
∗
q−mImq

(
L
2

)
− ε2L2

4T 2

∑
q,n

αs
∗
q−mαsnαsq−nHmnq

(
L
2

)
. (C17)
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Comparing this against (C1), we see that we want to
the correspondence 〈ŝm〉 ↔ αsm and assume (α′sm −
αsm)/T → d 〈ŝm〉 /dt in the limit T → 0, then we can
make the correspondences

κm ↔
`2m
2T

(C18a)

2α(q)f
(q)
m,q−m ↔

εL

T 3/2
αpqImq

(
L
2

)
(C18b)

2ξ(q)
nm ↔

(
εL

2T

)2

Hmnq

(
L
2

)
. (C18c)

To process these correspondences further, it is easy to
show that

Imq
(
L
2

)
= sinc

(
1
2∆km,q−mL

)
, (C19)

whereas, e.g., via integration by parts, we have

Hmnq

(
L
2

)
= sinc

(
1
2∆km,q−mL

)
sinc

(
1
2∆kn,q−nL

)
+ 2i (∆km,q−m −∆kn,q−n)

−1
L−1 (C20)

×
[
cos
(

1
2∆kn,q−nL

)
sinc

(
1
2∆km,q−mL

)
− cos

(
1
2∆km,q−mL

)
sinc

(
1
2∆kn,q−nL

)]
Thus, this nonlinear interaction tensor in the classical

theory is similar in form to its counterpart ξ
(q)
mn in the

quantum theory, as shown in (A7). Putting everything
together, we have that the mean field of the quantum
theory and the classical theory are equivalent if we also
impose the correspondences:

g0 ↔
(
εL

2T

)2

(C21a)

Φmn ↔
1

2
∆kmnL (C21b)

α(q) ↔ 1√
T
αpq. (C21c)

Appendix D: Simulation method

Here, we briefly review the key results from input-
output theory we utilize in the numerical simulations of
Sec. VII. Most of the formulas in this section follow the
presentation in Ref. [19].

We obtain the unconditional evolution of the system
density matrix ρ(t) using the master equation in Lindblad

form:

dρ̂

dt
= −i

[
Ĥsys, ρ̂

]
+
∑
i

L̂iρ̂L̂
†
i −

1

2

∑
i

{
L̂†i L̂i, ρ̂

}
, (D1)

where Ĥsys is the system Hamiltonian and L̂i enumerate
all the Lindblad operators of the system.

To compute the steady-state density matrix ρ̂ss satis-
fying dρ̂ss/dt = 0, we simulate (D1) to a sufficiently large
time T such that ρ̂(t > T ) ≈ ρ̂(T ).

To obtain the steady-state squeezing spectrum that
results from performing homodyne detection on a port
represented by a particular Lindblad operator L̂, we first
compute the steady-state homodyne correlation function

Fhom(τ) = tr
[(
L̂+ L̂†

)
Â(τ)

]
+ δ(τ), (D2)

where A(τ) is the solution to the differential equation

dÂ

dτ
= −i

[
Ĥsys, Â

]
+
∑
i

L̂iÂL̂
†
i −

1

2

∑
i

{
L̂†i L̂i, Â

}
(D3)

with initial condition Â(0) = L̂ρ̂ss+ρ̂ssL̂
†. The squeezing

spectrum is then the Fourier transform of the correlation
function:

Shom(ω) := 2Re

(∫ ∞
0

e−iωτFhom(τ) dτ

)
. (D4)

As described in Sec.VII, the squeezing spectrum is com-
puted at the optimal squeezing angle. Thus, the Lind-
blad operator that we use in these simulations are given

by L̂ =
√

2κ
(
Ŝ1e
−iθopt + Ŝ†1e

iθopt
)

.

To obtain conditional evolution, we simulate the
stochastic Schrödinger equation (SSE), by solving the un-
normalized SSE numerically and normalizing the state at
every timestep. The unnormalized SSE is

d|ψ〉 =
(
f̂ dt+

∑
i

ĝi dWi

)
|ψ〉, (D5)

where dWi are differentials of independent standard
Weiner processes, and the deterministic and stochastic
components of the stochastic differential equation are,
respectively,

f̂ := −iĤsys +
∑
i

(
−1

2
L̂†i L̂i +

〈
L̂i + L̂†i

〉
L̂i

)
(D6a)

ĝi := L̂i. (D6b)
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Optica 5, 1438 (2018).

[37] T. Park, H. S. Stokowski, V. Ansari, T. P. McKenna,
A. Y. Hwang, M. Fejer, and A. H. Safavi-Naeini, “High
efficiency second harmonic generation of blue light on
thin film lithium niobate,” (2021), arXiv:2108.06398
[Optics].

[38] M. Jankowski, C. Langrock, B. Desiatov, A. Marandi,
C. Wang, M. Zhang, C. R. Phillips, M. Lončar, and
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