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Out-of-time-order correlators (OTOCs) can be used to probe how quickly a quantum system 

scrambles information when the initial conditions of the dynamics are changed. In sufficiently 

large quantum systems, one can extract from the OTOC the quantum analog of the Lyapunov 

coefficient that describes the time scale on which a classical chaotic system becomes scrambled. 

OTOCs have been applied only to a very limited number of toy models, such as the SYK model 

connected with black hole information scrambling, but they could find much wider applicability 

for information scrambling in quantum systems that allow comparison with experiments. The 

vibrations of polyatomic molecules are known to undergo a transition from regular dynamics at 

low energy to facile energy flow at sufficiently high energy. Molecules therefore represent ideal 

quantum systems to study scrambling in many-body systems of moderate size (here 6 to 36 

degrees of freedom). By computing quantum OTOCs and their classical counterparts we quantify 

how information becomes ‘scrambled’ quantum mechanically in molecular systems. Between 

early ‘ballistic’ dynamics, and late ‘saturation’ of the OTOC when the full density of states is 

explored, there is indeed a regime where a quantum Lyapunov coefficient can be defined for all 

molecules in this study. Comparison with experimental rate data shows that slow scrambling as 

measured by the OTOC can reach the time scale of molecular reaction dynamics. Even for the 

smallest molecules we discuss, the Maldacena bound remains satisfied by regularized OTOCs, 

but not by unregularized OTOCs, highlighting that the former are more useful for discussing 

information scrambling in this type of moderate-size quantum system. 

 

I. INTRODUCTION 

     At low excitation energy, molecules are described by good quantum numbers. In contrast, at energies 

sufficient for chemical reactions, it has long been thought that the dynamics of molecules can be treated 

statistically. Already in 1919, on the basis of the old quantum theory [1], Herzfeld argued that the 
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maximum rate of rearranging atoms in a thermalized molecule was 𝑘𝐵𝑇/ℎ. A related bound for the rate 

of scrambling quantum information named after Maldacena [2] has recently emerged from the study of 

black holes [3], string theory [4] and many body localization [5]. 

Determining the rate of quantum information scrambling has been made precise by using out of time 

order correlation functions (OTOCs) [6]. Quantum OTOCs can be constructed as analogs of the classical 

Lyapunov exponents that measure the instability of classical trajectories arising from perturbations in the 

initial conditions. In this paper, we use OTOCs to quantify how rapidly quantum information is 

scrambled in molecules. Molecular vibrations are attractive for building local random matrix models of 

quantum scrambling [7] because of their detailed connection with accurate experiments [8,9], relative to 

more abstract models such as the Sachdev-Ye-Kitaev (SYK) model [10], which currently lack a direct 

connection with experiment. In addition, the dynamics of molecules can be tuned from a regime 

described by well-defined quantum numbers to the statistical regime by varying the energy content or 

the size of the molecules being studied [7,11–16]. The key question then becomes: could slow or 

incomplete scrambling, as measured by OTOCs, be slower than the barrier-crossing or photodissociation 

time, and thus interefere with statistical behavior in an atom-rearranging molecular reaction? There are 

certainly experimental examples where the inability to scramble quantum numbers sufficiently seems to 

limit molecular reaction rates [17–21]. OTOCs then become useful tools to determine when molecules 

can be treated statistically. Here we compute OTOCs for several molecules where quantum scrambling 

occurs through Fermi resonances, higher order anharmonic resonances. or Coriolis coupling  [22–29]. 

We compare the quantum dynamics with the classical limit using Lyapunov stability analysis [30,31], 

make a connection between scrambling rates and experimental bounds on reaction rates of molecules, 

and comment on how the vibrational dynamics of molecules obeys the Maldacena bound depending on 

the type of OTOC being used to assess quantum scrambling. 

 

II. METHODS 

A.  Model Hamiltonian 

Optical excitation of molecules deposits energy into “bright states” with specific quantum numbers. 

The subsequent spreading of the wave function then populates the state space [7,25]. Many of the 𝑓 ≡

3𝑁 − 6 molecular vibrations of a typical N-atom organic molecule are still in the quantum limit at room 

temperature. Owing to the Born-Oppenheimer approximation, the resulting potential surface is smooth, 
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so that these approximately harmonic vibrations are coupled by individually weak nonlinearities whose 

strength decreases with the order m of coupling, scaling approximately as 𝜙𝑚 = (−1)𝑚𝜙3γ𝑚−3 (𝑚 ≥ 3, 

γ ≈ 0.1 to 0.3 ) [24] (see Appendix A for details). The Fermi resonant term m=3 was first noticed in 

carbon dioxide [32]. Usually, the magnitude of 𝜙3  lies in the weak coupling limit (𝜙3≤0.1i). Yet, 

molecular rate theories generally assume that thermalization is very fast because most molecules have 

many modes, such that statistical models can be applied.  

The molecular vibrational Hamiltonian describes the interchange of energy among the f modes of a 

molecule. It can be expressed using a Fock space representation in terms of the occupancy of these modes 

as 𝐻 = 𝐻0 + 𝑉, where  

 𝐻0 = ∑ ϵi(�̂�i)
𝑓
i=1  , 𝑉 = ∑ ∏ ϕ𝒎𝑎𝑖

† 𝑚𝑖
+

𝑎𝑖

𝑚𝑖
−

i𝒎 . (1) 

𝐻0 describes the uncoupled motion of a set of oscillators with mode energies ϵi, while 𝑉 describes the 

anharmonic couplings between them. The unperturbed modes may be allowed to be anharmonic 

themselves through ϵi(�̂�i). i and i
† are the ladder operators for mode i. The index m gives quantum 

number differences 𝑚𝑖
+ and 𝑚𝑖

− between anharmonically coupled states, which add up to the order m of 

the coupling (see Appendix A for details). For one of our molecular models, we also include the effect 

of Coriolis couplings, which could lead to additional scrambling due to vibration-rotation interactions on 

time scales longer than the vibrational scrambling of interest here [33–35]. 

B. OTOCs and Lyapunov coefficients 

We compute the whole quantum Lyapunov spectrum, which reflects the Kolmogorov-Sinai entropy 

of the dynamics [36] and its classical counterpart. From these one can extract the largest exponent at 

early time. Suppose phase space is described by coordinates x and their conjugate momenta p, where 

𝑧𝑖(𝑖 = 1, ⋯ ,2𝑓) denotes x or p in general. In classical mechanics, the sensitivity to initial conditions is 

captured by the Lyapunov spectral matrix 𝐿𝑖𝑗
𝑐𝑙  given by the Poisson bracket matrix 𝑀𝑖𝑗

𝑐𝑙 as 

 𝐿𝑖𝑗
𝑐𝑙 (𝑡) = ((𝑀𝑐𝑙)†(𝑡)𝑀𝑐𝑙(𝑡))

𝑖𝑗
 with 𝑀𝑖𝑗

𝑐𝑙(𝑡) ≡
∂𝑧𝑖(𝑡)

𝜕𝑧𝑗(0)
. (2) 

The quantum analogs can then be defined as an out-of-time order correlation 

 �̂�𝑖𝑗(𝑡) = (�̂�†(𝑡)�̂�(𝑡))
𝑖𝑗

 with �̂�𝑖𝑗(𝑡) ≡ [�̂�𝑖(𝑡), �̂�𝑗(0)], (3) 
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where the classical Poisson brackets have become commutators and a variety of averages can be 

employed. We find that reformulating �̂�𝑖𝑗 in terms of ladder operators associated with 𝑧𝑖 yields the best 

concordance for our systems between the quantum and classical pictures (see Appendix B for details). 

We diagonalize both �̂�𝑖𝑗(𝑡)  and 𝐿𝑖𝑗
𝑐𝑙(𝑡)  to obtain time-dependent Lyapunov eigenvalues 𝑠𝑖(𝑡)(𝑖 =

1, ⋯ ,2𝑓) (or s𝑖
𝑐𝑙(𝑡)). This representation of the OTOC is convenient because the Heisenberg relation 

provides the normalization 𝑠𝑖(0)  =  1, so growth can be monitored relative to the initial condition. For 

𝑠𝑖(𝑡) we consider three time scales: The first time scale,𝜏𝑏, is the “ballistic time” required to initiate 

scrambling classically , or quantum mechanically for the survival probability P(t) to go outside its initial 

quadratic phase 𝑃~1 − 𝑎𝑡2 which arises from the coupling of discrete levels [37]. The second time scale, 

𝜏𝜆 = 𝜆1
−1 , is the inverse of the largest Lyapunov coefficient, the rate at which the initially encoded 

information of the system gets scrambled. The last time scale, 𝜏𝑠, is the ‘scrambling time’, at which the 

largest eigenvalue 𝑠1(𝑡) levels off and the quantum system has reached maximum scrambling. (Three 

time scales are indicated in Figure 1 for a specific model.) The Lyapunov exponents λ𝑖(𝑡) (and by 

analogy 𝜆𝑖
𝑐𝑙(𝑡)) can then be defined as 𝜆𝑖(𝑡) =

1

2
𝜕𝑙𝑛(𝑠𝑖(𝑡))/𝜕𝑡 in the region 𝜏𝑏 < 𝑡 < 𝜏𝑠 , where we 

evaluate the derivative using a smoothing spline fit to 𝑠𝑖(𝑡). 

To compute �̂�𝑖𝑗(𝑡) for a given initial state, we numerically solve the time-dependent Schrödinger 

equation using the shifted-update-rotation (SUR) algorithm [38]. To compute the classical Lyapunov 

spectrum, we use the Bulirsch-Stoer algorithm [39] to integrate Hamilton’s equations of motion. For each 

molecular system, we calculate classical trajectories starting from 100 randomly chosen angles (θ𝑖), but 

with action value (𝐽𝑖) that correspond to the quantum numbers {𝒏} of the initial state used to compute 

the quantum OTOC (see Appendix C for computational details and convergence checks).  

 

III. RESULTS 

A. OTOCs for 4 molecular systems 

We first study the Schofield-Wyatt-Wolynes (SWW)-Hamiltonian [40]. Its f=6 anharmonically 

coupled Morse oscillators stylistically represent the pairwise-coupled local C-C stretches in a benzene 

ring [41,42] (see Appendix D for details). To simplify computation of z(t), here we set the self-

anharmonicity to 0 and work with anharmonically coupled harmonic oscillators. For illustration we 

choose the state with quantum numbers (2,2,3,2,2,2) at 13,000 cm-1 as the initial state and ϕ3 = 7 cm-1
. 
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(We use E/hc units throughout, conventional in vibrational spectroscopy.) While the model is in the weak 

coupling limit, the near-degeneracy of modes facilitates efficient scrambling. Figure 1 compares the 

largest eigenvalues of the L matrices and the corresponding Lyapunov exponents (shown as an inset) for 

the quantum and classical cases. At early times (0.3 ps < t < 1.5 ps) the slopes of 𝑠1
𝑐𝑙(𝑡) and 𝑠1(𝑡) 

correspond closely. Thus, we observe a clear quantum-classical correspondence for this model in the 

weak coupling regime. 

 

Figure 1. Color online. The largest eigenvalue s of 𝐿𝑖𝑗
𝑐𝑙 (𝑡) (red (gray) curve) and �̂�𝑖𝑗(𝑡) (black curve) for the SWW 

model. Initial state: (2,2,3,2,2,2), anharmonic coupling 𝑉 = 7 cm-1. The inverse of the largest classical Lyapunov 

coefficient extracted from the plot is 𝑡0 = 1 ps. We see 𝑠1(𝑡) , s1
𝑐𝑙(𝑡) agree well up to 1.3 t0. Inset: Largest classical 

(red (gray) curve) and largest quantum (black curve) Lyapunov exponent extracted from s1
𝑐𝑙(𝑡) and 𝑠1(𝑡). The classical 

Lyapunov coefficient levels off more slowly than the quantum one. Note that the decay of λ1
𝑐𝑙(𝑡) to a smaller asymptote 

is not due to a finite zi(t=0), but due to exploration of a less chaotic region as time grows. This is also true in Figures 

2a and 3.  The ballistic regime (τ𝑏) merges into the Lyapunov regime (slope λ1 = τ𝜆
−1) at the leftmost vertical dashed 

line. The Lyapunov regime merges into the scrambling regime (τ𝑠) at the rightmost vertical dashed line.  

We next study an f=8 model with strong stretch-bend resonances that describes the CH stretches and 

HCH bending overtones of the molecule cyclopentanone in the 2900 cm-1 region. This model manifests 

a strong resonance with ϕ3 =25 𝑐𝑚−1, and includes up to 4th order couplings (see Appendix D for details). 

Such vibrational resonances play an important role for onset of chaos in the Arnold web [43,44]. We 

study the OTOC for two initial states, (1,1,1,0,0,1,0,0) at ~9500 𝑐𝑚−1  where the system is weakly 

coupled, and (2,2,3,2,2,2,2,2) at ~43700 𝑐𝑚−1where the system is strongly coupled. For the weakly 

chaotic low energy case shown in Figure 2(a), there is good agreement between Lyapunov exponents 

λ1
𝑐𝑙(𝑡) , λ1(𝑡), as was the case for the SWW Hamiltonian. For the second example, s1

cl(t) very quickly 

deviates from 𝑠1(t), even before 𝑠1(t) reaches its plateau: at this higher energy, most invariant tori have 

been destroyed and classical trajectories very quickly enter the chaotic region of phase space, whereas 

the quantum system undergoes quantum localization [11] that prevents growth of 𝑠1(𝑡): as energy 
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spreads throughout the modes, the energy per mode of the high frequency modes is reduced, resulting in 

weaker coupling of the effectively more harmonic modes [13]. A similar instability of classical motion 

compared to its quantum counterpart was discussed in [45]. 

 

Figure 2. Color online. Hamiltonian taken from [22]. (a) Main figure: s1
𝑐𝑙(𝑡) (red (gray) curve) and 𝑠1(𝑡) (black curve) for 

the 8-mode cyclopentanone based model in the weakly chaotic (low energy) region. 𝑇0 ≡  1/ λ =  0.2 ps. Initial state: 

(1,1,1,0,0,1,0,0) . Similar to Fig.1, we see agreement for s0
𝑐𝑙(𝑡) and 𝑠0(𝑡) before quantum OTOC reach its plateau at 𝑡 = 2𝑇0. 

Inset: λ0
𝑐𝑙(𝑡) (red (gray) curve) and λ0(𝑡) (black curve). We see λ0(𝑡) and λ0

𝑐𝑙(𝑡) are in good agreement at 𝑡 < 2𝑇0. (b) 𝑠1
𝑐𝑙(𝑡) 

(red (gray) curve) and s1(t) (black curve) for the cyclopentanone-based model in the strongly chaotic (high energy) region. 

𝑇0 = 0.01 ps. Initial state: (2,2,3,2,2,2,2,2). We see 𝑠1
𝑐𝑙(𝑡) grows rapidly and deviates from 𝑠1(t) before 𝑠1(t) reaches a 

plateau not very different from the lower energy state.  

We also computed the Lyapunov spectrum for two full-dimensional models of vibrating molecules, 

cyclopentene with all of its 33 modes [46] and cyclopentanone with its 36 modes [47] (see Appendix D 

for details). These begin to approach in size SYK model numerical simulations. In an analysis of quantum 

beat experiments, Bigwood et al. [22] have shown that cyclopentene and cyclopentanone display an onset 

of facile energy flow near the energy of the C-H overtone. At our chosen energy of ~17500 cm-1, above 

this overtone energy, we verified that the initial states satisfy the energy flow criterion deduced by Logan 

and Wolynes [7], and that P(t)=|<0|t>|2 rapidly decays to a small inverse participation number or ‘dilution 

factor’ Np
-1=  (see Table 1 in Appendix for this and all other model systems). In their theory, the 

transition to facile energy flow is not determined by the total density of states ρ𝑡𝑜𝑡, but rather by the 

criterion ρ𝑙𝑜𝑐𝑉𝑎𝑛ℎ > 1, where 𝑉𝑎𝑛ℎ  is the local anharmonic coupling strength, and ρ𝑙𝑜𝑐  is the ‘local’ 

density of states that are directly coupled by the 𝑉𝑎𝑛ℎ terms in the Hamiltonian; when the criterion is 
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satisfied, energy flows freely because the spacing of locally coupled energy levels becomes comparable 

to the local anharmonic coupling. 

 

Figure 3.  Color online. (a). Main figure: s1
𝑐𝑙(𝑡) (red (gray) curve) and 𝑠1(𝑡) (black curve) for cyclopentene at 𝐸 =

17569 𝑐𝑚−1. Inset: λ0
𝑐𝑙(𝑡) (red (gray) curve) and λ0(𝑡) black curve). 𝑇0 ≡  1/ λ = 0.05𝑝𝑠 . λ(𝑡) is in unit of 𝑝𝑠−1. 

(b) Main figure: s1
𝑐𝑙(𝑡) (red (gray) curve) and 𝑠1(𝑡) (black curve) for cyclopentanone at 𝐸 = 17357 𝑐𝑚−1. Inset: 

λ0
𝑐𝑙(𝑡) (red (gray) curve) and λ0(𝑡) (black curve). 𝑇0 ≡  1/ λ = 0.05 ps. We see in these two large organic molecules, 

quantum and classical Lyapunov exponents are close to each other until 𝑡 = 𝑇0 . 

Like the SWW model, simulation of scrambling in these organic molecules shows good agreement 

between 𝐿𝑐𝑙(𝑡) and �̂�(𝑡) for 𝜏𝑏 < 𝑡 < 𝜏𝑠 in Fig. 3, but the OTOCs for the quantum systems level off at 

the scrambling time (s ≈ 0.05 ps). 

In near-integrable systems, the KAM theorem dictates that the motion for the majority of initial 

conditions (the ‘regular set’) will be along invariant tori [48–50]. Chaotic islands are rare and lie at 

resonance junctions in phase space. This phenomenon has been observed in simulations of the Arnold 

web for several molecular Hamiltonians [26,44,51–53], and we illustrate this case with the small organic 

molecule SCCl2, whose Arnold web has been studied [43,54]. The f=6 mode Hamiltonian for SCCl2 is 

taken from [35]. In contrast to what was seen for the large molecules cyclopentene and cyclopentanone, 

the classical simulations of SCCl2 are regular in most regions, while the quantum Lyapunov spectrum 

shows early growth. Classical simulations for SCCl2 starting initially with actions (Si/h)=(6, 5, 1, 3, 5, 3), 

along with 100 randomly chosen initial angles, were used to find the average and largest values of 𝑠1
𝑐𝑙(𝑡), 
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which are compared with their quantum counterpart 𝑠1(𝑡) in Figure 4(a) (see Appendix C,E for details). 

The OTOCs �̂�𝑖𝑗(𝑡) and 𝐿𝑖𝑗
𝑐𝑙 (𝑡) for SCCl2 behave quite differently: The growth of the classical stability 

eigenvalue is delayed initially, until the molecule escapes from the regular region, and then the OTOC 

grows very rapidly. The quantum wave packet samples more state space initially, so that �̂�𝑖𝑗(𝑡) rapidly 

inflates at early times but then levels off at long times, when the quantum system exhausts the accessible 

states. 

 

Figure 4. Color online. (a) The Lyapunov eigenvalues s for initial state (6, 5, 1, 3, 5, 3) of thiophosgene, SCCl2. Here 

(s1
𝑐𝑙)𝐿(𝑡) (dashed curve) is the largest 𝑠1

𝑐𝑙(t) among 100 trajectories with different initial angle variables, <s1
𝑐𝑙(𝑡) > 

(dash-dotted curve) is the average of 𝑠1
𝑐𝑙(t) over 100 trajectories with random angle variables. 5 typical 𝑠1

𝑐𝑙(𝑡) used for 

computing the average are shown as gray curves near the dashed and dash-dotted curves. s1(t) (an arrow points at the 

red (gray) solid curve) is the quantum mechanical result. Deviation between quantum and classical OTOCs is due to 

delayed delocalization of classical trajectories. Fig. S2 shows the same calculation with Coriolis coupling (constants 

for SCCl2 are taken from Ref. [35]), which does not play a large role up to room temperature. (b) regularized thermal 

Lyapunov exponents 𝜆(T) for SCCl2 molecule for T in the range  from 50 K to 500 K.   

Fig. 4(b) shows the thermal OTOC for SCCl2, indicating scrambling on times of order 0.5 to 25 ps. 

This range of timescales is comparable to barrier crossing times for thermal chemical reactions at 

temperature ranging from those of reactions in interstellar clouds at 50 K  [55] to typical laboratory 

reactions at 200 °C; specifically for SCCl2, stimulated emission pumping above the predissociation limit 

near 20,000 cm-1 shows that dissociating states have lifetimes > 8 ps  [56], and would be sensitive to the 

incomplete quantum scrambling in Figure 4(b). Even when the quantum scrambling of vibrational modes 

of photochemically excited molecules is very fast (see Fig. 6 in Appendix), it generally remains 

incomplete due to the existence of nearly conserved quantum numbers (so-called polyads)  [28,57–59]. 

We also tested the effect of rotation-vibration coupling on SCCl2 dynamics. Thiophosgene has 

moments of inertia and Coriolis coupling coefficients typical of small- to medium-sized organic 
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molecules  [35]. Up to J=40, which lies above the most probable angular momentum quantum number 

of SCCl2 at room temperature (Jmp≈32), the effect of Coriolis coupling is negligible on the time scale of 

the vibrational anharmonicity. (See Fig. 7 in Appendix.)  

 

Figure 5. (a) Color online. Regularized thermal Lyapunov exponents scaled by the Maldacena bound for the ‘all modes’ 

models of SCCl2 (circles) and 33 mode cyclopentene (squares) at 1 and 500 K. The exponents obey the Maldacena bound 

over the whole temperature range. (b) Similar plot for the unregularized thermal Lyapunov exponents scaled by the Maldacena 

bound. These exponents do not obey the Maldacena bound at low temperature, as discussed in the text. Lyapunov exponents 

𝜆 are scaled by 𝜆M=2𝜋kBT/ℏ, and time is scaled by 1/𝜆M.  

B. Thermal Quantum OTOC and compare with Maldacena bound 

To compare the rate of scrambling in molecules directly with the Maldacena bound 2𝜋𝑘𝐵𝑇/ℏ [2], we 

carried out thermal averaging by using the density matrix-based FEAST algorithm [60], as well as by 

exploiting quantum typicality  [10,61,62] to reduce the thermal average to a simple expectation value 

(see Appendix F for details). Here we compare the thermal Lyapunov spectra derived from the 

unregularized OTOC  �̂�{𝑢𝑛𝑟𝑒𝑔}(𝑡) = 𝑇𝑟 [−[𝑥𝑖(𝑡), 𝑝𝑗]
2

𝑒−β𝐻] to those from the regularized OTOC 
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�̂�{𝑟𝑒𝑔}(𝑡) = 𝑇𝑟[−[𝑥𝑖(𝑡), 𝑝𝑗]𝑒−β𝐻/2[𝑥𝑖(𝑡), 𝑝𝑗]𝑒−β𝐻/2]. Results for ‘all modes’ SCCl2 and cyclopentene 

are shown in Fig. 5.  

The two OTOCs show quite distinct behavior at the low temperature, perhaps due to finite size effects. 

The Lyapunov exponents computed from 𝑠1(𝑡)𝑟𝑒𝑔 obey the Maldacena bound at all temperatures we 

studied, whereas those computed from  𝑠1(𝑡)𝑢𝑛𝑟𝑒𝑔 do not. This point is most clearly manifested when 

one evaluates ⟨𝑔 |−[𝑥𝑖(𝑡), 𝑝𝑗]
2

| 𝑔⟩for the ground state |𝑔⟩. In that case 𝑠1(𝑡)𝑟𝑒𝑔  shows no growth, 

reflecting the quiescence of the dynamics near absolute zero, whereas 𝑠1(𝑡)𝑢𝑛𝑟𝑒𝑔  has unphysical 

exponential growth. 

At higher temperature, where the Logan-Wolynes facile flow criterion ρ𝑙𝑜𝑐𝑉𝑎𝑛ℎ> 1 is satisfied, the 

Lyapunov exponent of the unregularized OTOC approaches those of the regularized one, in harmony 

with what has been seen in the SYK model [10]. This can be seen in Figure 5 for the Lyapunov exponents 

at 500 K and in Figure 8 in Appendix F.  

The question of which thermal Lyapunov spectrum gives a better measure of scrambling has been 

discussed in the literature [63,64], where the regularized OTOC has been argued to be more appropriate 

in field theory because it enforces the appropriate hermiticity properties of the operator and can be 

brought into correspondence with the Boltzmann many-particle transport equation. It appears that for 

molecules, the regularized thermal OTOC at low temperature does agree better with Maldacena’s bound 

and with Herzfeld’s notion, based on old quantum theory, of a maximum rearrangement rate. Several of 

the molecules we examined approach, in the number of degrees of freedom, those used in SYK 

simulations. Thus, molecules can be experimentally testable benchmarks for the applicability of OTOCs 

to many-body quantum systems of moderate size. 

 

IV. CONCLUSION 

        Our numerical explorations reveal both similarities and differences between the classical and 

quantum Lyapunov spectra for molecules in the size range from f=6 to f=36 degrees of freedom. Clearly 

one should exercise caution when assuming scrambling in molecules due to purely vibrational couplings. 

The three time scales manifested in the OTOC give an indication of when scrambling is good enough so 

that reactions may be treated statistically. For reactions faster than the ballistic time, statistical models of 
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reaction rates cannot be employed. Only for sufficiently slow chemical reactions is a statistical treatment 

advised. When reactions occur during the Lyapunov and scrambling regimes, statistical theories that can 

take into account energy flow rates can be employed. [12,21,65,66] 

The quantum OTOC levels off and deviates from its classical counterpart because of quantum 

interference [67], ultimately reducing the number of participating states Np below the value  

corresponding to the full density of states. This type of deviation has been rationalized using the 

semiclassical phase-space formulation [6,68], in which operators are translated into their phase-space 

counterparts using Wigner transforms and the Moyal expansion of the equations of motion [6]. On the 

other hand, both for stronger coupling (Figure 2) or when the molecule’s classical phase space contains 

only small chaotic islands (Figure 4(a)), the classical and quantum OTOCs can differ substantially. The 

quantum system can undergo localization due to the finite value of ℏ even when the classical system is 

chaotic (Figure 2) or conversely, the quantum system can sample chaotic regions early on while classical 

trajectories still remain trapped near invariant tori (Figure 4(a)). These effects are visible in the small 

isolated quantum systems considered here, but are less apparent in macroscopic systems due to rapid 

quantum decoherence [69].  

All these examples highlight that one must be cautious in assuming that ‘classical simulation is good 

enough for molecules with enough degrees of freedom at room temperature.’ Our computational results 

suggest that even at chemical energy and with dozens of vibrational degrees of freedom, many molecules 

scramble information about their initial state slowly. Molecules could also provide a practical pathway 

for testing different implementations of the OTOC experimentally: The measurement of molecular 

OTOCs may be facilitated using entangled photons, [70,71].  The forward-backward control loop 

proposed by Rabitz [72]  along with the quantized Ulam control conjecture [73] then open up the 

possibility for quantum control while the OTOC remains sufficiently small [74]. 
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Appendix A :  Equations of Motion for Quantum and Classical Dynamics 

We adopt the scaling Hamiltonian in  [24] , 𝐻 = 𝐻0 + 𝑉, where 

 𝐻0 = ∑ (𝑛𝑖 + 1/2)ℏω𝑖 = ∑ ϵ𝑖(𝑛𝑖)𝑖
𝑁
i=1  (4) 

and 

 𝑉 = 𝑉0 ∑ ∏ (−1)𝑚𝑖[ 𝛾(𝑓𝑖/𝑓0)1/2]
𝑚𝑖

(𝑎𝑖 + 𝑎𝑖
†)

𝑚𝑖

𝑚𝑖𝒎  (5) 

Here the quantum number vector is defined as 𝒎 = {𝑚1, 𝑚2, ⋯}. 𝐻0 describes the uncoupled motion of 

a set of (harmonic) oscillators with mode energies ϵi , while 𝑉  describes the anharmonic couplings 

between the oscillators. The mode frequencies are 𝑓𝑖 ,with  𝑓0 being median mode frequency in our model. 

γ is the anharmonic scaling factor in our model. In Fock space, the index m gives the quantum number 

differences 𝑚𝑖
+ and 𝑚𝑖

−between anharmonically coupled states (e.g. for two states |73> and |65>, 𝑚1
+=0, 

𝑚1
−=1, 𝑚2

+=2, and 𝑚2
−=0).  The sum of all differences 𝑚𝑖

+ and 𝑚1
− gives the total order of the coupling 

𝑚. 𝑚 ≥ 3 , except when the sum is 1 (corresponds to an 𝑚 = 3 cubic coupling) or 2 (corresponds to 

𝑚 = 4 quartic coupling). The two states |73 > and |65> in the example are coupled by an 𝑚 = 3 cubic 

coupling. 

We can write the above Hamiltonian in terms of (𝐽𝑖, θ𝑖) in classical phase space:  

 𝐻𝑐𝑙 = 𝐻0
𝑐𝑙 + 𝑉𝑐𝑙𝐻0

𝑐𝑙 = ∑ ω𝑖(𝐽𝑖 +  1/2)𝑁
𝑖=1 , (6) 

where 

 𝑉𝑐𝑙 = 𝑉0 ∑ ∏ (−1)𝑚𝑖[𝛾(𝑓𝑖/𝑓0)1/2]
𝑚𝑖

(2√𝐽𝑖/ℏ cos θ𝑖)
𝑚𝑖

𝑚𝑖𝑚 . (7) 

We then simulate the classical equations of motion for 𝐻𝑐𝑙 using the Bulirsch-Stoer algorithm, and the 

time-dependent Schrödinger equation in state space for 𝐻 using the SUR algorithm.  

 

Appendix B : Quantum Lyapunov spectrum 

We compute the Lyapunov spectrum as described in  [36]. For our system, we reformulate the �̂�𝑖𝑗 in 

terms of ladder operators �̂� , �̂�† associated with coordinates and momentum {x,p} using the relation1 : 

                                                           
1  We find that choosing vibrational action-angle coordinate (𝐽𝑖, θ𝑖)  with approximately conserved actions as 

conjugate variables to compute the OTOC is not as enlightening for molecules: the classical OTOCs 𝐿𝑖𝑗
𝑐𝑙  grows as 
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 �̂� = √
ℏ

2mω
(�̂� + �̂�†) (8a) 

 𝑖�̂� = √
𝑚ωℏ

2
(�̂� − �̂�†) (8b) 

Here �̂�𝑖𝑗(𝑡) =
1

𝑖ℏ
[�̂�𝑖(𝑡), �̂�𝑗] ,  𝑧𝑖(𝑖 = 1, ⋯ ,2𝑁)  =  {𝒙, 𝒑}  can be proved equivalent to the following 

expression after an unitary transformation: 

 �̂�(𝑡) = (
[�̂�i(𝑡), �̂�j] … [�̂�i

†(𝑡), �̂�j]
… … …

[�̂�i(𝑡), �̂�j
†] … [�̂�i

†(𝑡), �̂�j
†]

) (9) 

We denote the Lyapunov spectral matrix  �̂�𝑖𝑗  evaluated with state |{ 𝑛 }⟩ as  L̂ij
{n}

(𝑡).We evaluate L̂ij
{n}

(𝑡) 

by inserting a set of states | { 𝑛′ }⟩ between �̂�𝑖𝑗(𝑡):  

 L̂ij
𝑛 (𝑡) = ⟨{𝑛}|∑ �̂� (𝑡)𝑘𝑖

∗ M̂kj(𝑡)𝑘 |{𝑛}⟩ = ∑ (∑  ⟨{𝑛}|�̂� (𝑡)𝑘𝑖
∗ |{𝑛′}⟩ ⟨{𝑛′}|M̂kj(𝑡)|{𝑛}⟩ 𝑘 ){𝑛′} . (10) 

⟨{𝑛′}|�̂�𝑘𝑗(𝑡)|{𝑛}⟩  are computed by solving time-dependent Schrödinger equation for state | { 𝑛 } ⟩ and 

| { 𝑛′ } ⟩  : 

 ⟨{𝑛′}|�̂�𝑘𝑗(𝑡)|{𝑛}⟩ = ⟨{𝑛′}|[�̂�𝑘(𝑡), �̂�𝑗]|{𝑛}⟩ 

 = ( ⟨ {𝑛′} ∣∣ 𝑒𝑖𝐻𝑡 ) �̂�𝑘 ( 𝑒−𝑖𝐻𝑡𝑎�̂� ∣∣ {𝑛}⟩ ) − ( ⟨{𝑛′ } ∣∣ 𝑎�̂�𝑒𝑖𝐻𝑡 )𝑎�̂�( 𝑒−𝑖𝐻𝑡 ∣∣ {𝑛}⟩ )   (11) 

Owing to the local nature of the anharmonic couplings, we can limit this solution to the exploration of 

the Fock space starting from initial states 𝒏 = {𝑛1, 𝑛2, ⋯ , 𝑛𝑁 } to nearby states 𝒏′ = {𝑛1
′ , 𝑛2

′ , ⋯ , 𝑛𝑁
′ } 

where the difference |n – n’| is limited in size. We impose a 1-norm distance cutoff in state space ||n||1 

= ∑ |𝑛𝑖 − 𝑛𝑖
(1)

|𝑁
𝑖=1 ≤ R to construct the computational basis set of states {𝒏(𝟏)} as a local basis set. A 

similar cutoff ||n’||1 = ∑ |𝑛𝑖 − 𝑛𝑖
′|𝑁

𝑖=1 ≤ 𝑅′ (𝑅′ < 𝑅) is imposed for choosing initial states { 𝒏′ } (in eq. 

(10)) which we use to compute the average �̂�𝑖𝑗(𝑡). We find that choosing R’, R  = 4 to 5 is sufficiently 

large to ensure the convergence of the �̂�𝑖𝑗(𝑡).    

                                                           

𝑡2 at early time and exponentially later, but the quantum OTOC �̂�𝑖𝑗(t) only shows 𝑡2 growth before it levels off to 

a small number of participating states Np for moderate-sized molecules at the scrambling time, and no exponential 

growth can be observed. Defining �̂�𝑖𝑗 in terms of the ladder operators does produce rapid growth of the quantum 

operator as well. 
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The time-dependent Schrödinger equation is solved using the shifted-update-rotation (SUR) 

algorithm [38]. The SUR algorithm belongs to the family of symplectic propagators [75] that explicitly 

show the correspondence of classical and quantum time evolution. We also confirmed the accuracy of  

�̂�𝑖𝑗(𝑡) computed in this way by propagating initial states using the Chebyshev propagator [76]. The 

OTOCs computed using these two methods are in excellent agreement with each other.  

 

Appendix C: Classical Lyapunov spectrum 

   To compute the classical Lyapunov spectral matrix  𝐿𝑖𝑗
𝑐𝑙 (𝑡), we use the Bulirsch-Stoer algorithm to 

integrate the classical Hamiltonian equations of motion. For classical simulations, this algorithm for time 

propagation is less prone to phase errors than encountered using symplectic propagators, for which 

numerical errors in propagation can lead to an overestimate of the amount of scrambling. Convergence 

was monitored as a function of integration step size. As mentioned in the main text, for each molecular 

example system, we calculated classical trajectories starting from 100 initial conditions starting with 

random angles (θ𝑖), but with action value (𝐽𝑖) that correspond to the quantum numbers {𝒏} of the initial 

state used to compute the quantum OTOC.  

 

Appendix D: Models 

I. Schofield Wyatt Wolynes (SWW) model 

The SWW Hamiltonian is shown in  [40]. It consists of 6 anharmonic oscillators with similar 

frequencies ~ 1000 cm-1 coupled by a cubic coupling. For the present computation, instead of working 

with explicitly anharmonic oscillators as did SSW, we set the self-anharmonicity to 0 and work with 

anharmonically coupled pure harmonic oscillators. See Table II of  [40] for parameter values. The weakly 

chaotic regime corresponds to a cubic anharmonic coupling strength ϕ(3) = 7. 

 

II. Cyclopentanone-based model 

      The simplified model contains the 8 vibrational modes of molecule cyclopentanone in the 2900 cm-1 

region of CH stretches and HCH bending overtones  [77]:  𝑓 = (2210 ,   2222, 2966,   2945,
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2130,   2126,   2880,   2880 ) 𝑐𝑚−1 . We use the scaling Hamiltonian based on eqs. (4) and (5) in 

ref. [22] . 

 𝑉
𝑖𝑖′

≈ ∏ 𝑅𝑘
𝑛𝑘

𝑘  (12a) 

 𝑅𝑘 ≈
30501/𝑄

270
ω𝑘

1/2
𝑣𝑘

1/2̅̅ ̅̅ ̅̅
 (12b) 

 This Hamiltonian has scaling factors 𝑅𝑘 that scale with vibrational frequency ω𝑘  and mean occupation 

number ν𝑘. A least-squares fit to directly computed sample potential surfaces of the molecules in  [24] 

is in good agreement with the  numerical relation above. For reference, a typical third order coupling 

strength is ϕ3 = 25 𝑐𝑚−1 and scaling factor γ ≈ 0.2. 

 

III. Cyclopentene and cyclopentanone full-dimensional vibrational models 

      All 33 vibrational frequencies with 𝑎1, 𝑎2, 𝑏1, 𝑏2 symmetry for cyclopentene are shown in TABLE II 

in  [46]. The 36 vibrational frequencies with 𝐴, 𝐵 symmetry for cyclopentanone are shown in Table 4(a) 

in  [77].   We use the scaling Hamiltonian which is eq. (4)(5) in  [22] and we include cubic and quartic 

anharmonic couplings. When constructing the anharmonic coupling, we make use of the symmetry of 

the molecules’ vibrational motion. For example, cubic coupling allows symmetry combination (𝑎1, 𝑏1, 𝑏1) 

but (𝑎1, 𝑏1, 𝑏2) is not allowed. For these relatively large organic molecules, we only managed to compute 

the Lyapunov spectrum for low-lying energy states, and we had to restrict the range of the 1-norm 

distance cutoff to 𝑅′ = 1 instead of the value  𝑅′ = 4 used in all other simulations.  

For cyclopentene we focused on the state: (1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 

1 1) with energy 𝐸 = 17569𝑐𝑚−1.  

 For cyclopentanone we focused on the state: (1 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 

0 1 1 1 0 0 0) with energy 𝐸 = 17357𝑐𝑚−1 . 

  

IV. SCCl2 molecule  

We employed the Hamiltonian for SCCl2 that was fitted from the spectroscopy data in ref. [35].  We find 

that most regions (𝐽𝑖 ≤ 5)  show regular dynamics in classical simulation; however, we observed 

exponential growth of the Lyapunov spectrum in our quantum simulation. We singled out state 

(6,5,1,3,5,3) with an energy of 15000 𝑐𝑚−1 to compute the quantum and classical Lyapunov spectra. For 
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the classical Lyapunov spectrum, we used 100 points with random initial angles for the average. The 

points that exhibit the largest classical Lyapunov exponent lie at resonance junctions and can be found 

by using the Lyapunov weighted sampling technique [78,79]. 

 

Appendix E: Lyapunov weighted sampling techniques 

We followed the method described in [78,79]: instead of computing the full Lyapunov spectrum, which 

is expensive, we use the fast Lyapunov indicator (FLI) λ𝐹𝐿𝐼  [29,80] as the indicator for chaos. The 

specific procedure is as follows: we construct an initial ensemble with the same action 𝐽 and different 

angles θ⃗⃗  and compute λ𝐹𝐿𝐼 for each point. Then we performed a biased random walk obeying constraint 

(constant 𝐽 ) using MCMC (Monte Carlo Markov Chain) techniques with  −λ𝐹𝐿𝐼 as the effective energy. 

By choosing the appropriate temperature T and a reasonable step size, at the final time the ensemble will 

converge to a set of energy minima, which corresponds to the maximally chaotic region. 

 

Appendix F: Thermal OTOC 

I.  Exact Diagonalization method - FEAST 

 The thermal OTOC is obtained by first solving for the eigenstates of the molecular Hamiltonian H in 

an energy band using the FEAST algorithm  [60]  implemented in the oneAPI Math Kernel Library. Two 

features of FEAST make it most suitable for computing the thermal OTOC here. First, it is able to solve 

for eigenstates within a given energy range to save computational cost. Second, FEAST allows one to 

distribute tasks across parallel processors and reduce the computational burden per single process.  

The regularized (�̂�{𝑟}(𝑡)) and the unregularized Lyapunov spectrum (�̂�{𝑢}(𝑡)) are computed as follows: 

 �̂�𝑖𝑗
{𝑟}

(𝑡) = Tr [∑ 𝑒−β𝐻/2�̂� (𝑡)𝑘𝑖
∗ 𝑒−β𝐻/2M̂kj(𝑡)𝑘 ]  =  (13) 

∑ ∑ ∑ 𝑒−β(𝐸ϕ+𝐸ψ)/2

ψϕ𝑘

⟨ϕ|�̂� (𝑡)𝑘𝑖
∗ |ψ⟩⟨ψ|M̂kj(𝑡)|ϕ⟩ 

and  

 �̂�𝑖𝑗
{𝑢}

(𝑡) =  Tr ∑ 𝑒−β𝐻�̂� (𝑡)𝑘𝑖
∗ M̂kj(𝑡)𝑘 ]  = (14) 
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∑ ∑ ∑ 𝑒−β𝐸ϕ

ψϕ𝑘

⟨ϕ|�̂� (𝑡)𝑘𝑖
∗ |ψ⟩⟨ψ|M̂kj(𝑡)|ϕ⟩ 

Here |ψ⟩, |ϕ⟩ are eigenstates. 

 

II. Approximating thermal average using Haar random state 

As mentioned in the main text, the thermal average can be approximated  by taking the expectation 

value with respect to Haar-random initial states.  [10] We generate the Haar-random states by drawing 

each (complex) element in |ψ⟩ from a Gaussian distribution. Errors introduced by this approximation 

can be reduced by averaging over many initial Haar states.  Here the final results are obtained by 

averaging over 5 random Haar states. In all of these setups, we can compute the thermal OTOC by solving 

time-dependent Schrödinger equation using the SUR or Chebyshev algorithms. Both algorithms in our 

computation give comparable performance when computing the thermal Lyapunov spectrum. 

   The regularized (�̂�{𝑟}(𝑡)) and the unregularized Lyapunov spectrum (�̂�{𝑢}(𝑡))  are computed as 

follows: 

 �̂�𝑖𝑗
{𝑟}

(𝑡) = 𝑇𝑟[∑ 𝑒−𝛽𝐻/2�̂� (𝑡)𝑘𝑖
∗ 𝑒−𝛽𝐻/2M̂kj(𝑡)𝑘 ] ≈ (15) 

∑⟨𝜓|𝑒−𝛽𝐻/4�̂� (𝑡)𝑘𝑖
∗ 𝑒−𝛽𝐻/4|𝑚⟩⟨𝑚|𝑒−𝛽𝐻/4M̂kj(𝑡)𝑒−𝛽𝐻/4|𝜓⟩

𝑚

 

 �̂�𝑖𝑗
{𝑢}

(𝑡) = Tr[∑ 𝑒−β𝐻�̂� (𝑡)𝑘𝑖
∗ M̂kj(𝑡)𝑘 ] ≈ (16) 

 ∑ ⟨𝜓|𝑒−𝛽𝐻/2�̂� (𝑡)𝑘𝑖
∗ |𝑚⟩⟨𝑚|M̂kj(𝑡)𝑒−𝛽𝐻/2|𝜓⟩𝑚                       

Here  𝑒−β𝐻/4|ψ⟩   is computed by propagating |𝜓⟩ in imaginary time  [81].  

 

Table 1.  Dilution factor σ and the Logan-Wolynes facile flow criterion. The Logan-Wolynes facile flow criterion 

ρ𝑙𝑜𝑐𝑉𝑎𝑛ℎ> 1  can be found in (eq.4.12 (a-c) ) in  ref. [82].  The dilution factor σ = 𝑙𝑖𝑚𝑡→∞𝑃(𝑡) is the long-time limit of 

survival probability:  𝑃(𝑡)  = |⟨ψ(0) | ψ(𝑡) ⟩|2. 

 SWW  

(13000 

𝑐𝑚−1) 

8 mode 

cyclopentanone 
(9500 𝑐𝑚−1) 

8 mode 

cyclopentanone 
(43700 𝑐𝑚−1) 

Cyclopentene 

(17569 

𝑐𝑚−1 ) 

Cyclopentanone 

(17357 𝑐𝑚−1 ) 

 

SCCl2 

(15000 

𝑐𝑚−1 ) 
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𝜎 0.058 0.1 0.03 0.03 0.005 0.004 

ρ𝑙𝑜𝑐𝑉𝑎𝑛ℎ 3.1 2.5 4.2 1.84 10.5 5.5 

 

 

Figure 6. Color online. Microcanonical OTOC for SCCl2. (a) OTOC for SCCl2 molecules for states with energy 𝐸 ∈

[500 , 20000] 𝑐𝑚−1. (b) Lyapunov exponent λ for SCCl2 molecules with OTOC shown in (a). 

   

 

Figure 7. Color online. Effect of Coriolis couplings on scrambling in SCCl2.  Largest Lyapunov eigenvalue s with and 

without Coriolis coupling in SCCl2 is shown. The red (gray) curve + dots corresponds to J=40, M=0, near the maximum 

rotational population at room temperature. The Coriolis Hamiltonian from ref. [35] was used for the calculations. The 

black curve (mainly hidden behind the red (gray) curve) is for J=0 in absence of Coriolis couplings, as shown in the 

main text. The Coriolis effect mixes states on a ~100 times longer time scale than vibrational anharmonicity and does 

not significantly alter the Lyapunov exponent on the time scale considered here. 
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Figure 8.  Color online. SCCl2 thermal OTOC and Lyapunov exponent. (a) Regularized (solid) and unregularized 

(dash-dot) thermal Lyapunov eigenvalues s for the SCCl2 molecule.  s increases from low T (100 K) to high T for both 

regularized and unregularized OTOC. The unregularized thermal s is much larger than its regularized counterpart at 

low T, but approaches its regularized counterpart at high T.  (b) Regularized (black dash-dotted curve and discs) and 

unregularized (red (gray) solid curve and discs) thermal Lyapunov exponent 𝜆(T) for SCCl2 molecules. As mentioned 

in the main text, at low temperature, λ𝑟𝑒𝑔 is much smaller than λ𝑢𝑛𝑟𝑒𝑔. However, as T increases to 500 K, which is 

around mean vibrational frequency 𝜈 of SCCl2 molecule,  λ𝑟𝑒𝑔 and λ𝑢𝑛𝑟𝑒𝑔 become close to each other. 
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