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We present a classically tractable model that leads to optimized low-depth quantum circuits
leveraging separable pair approximations. The obtained circuits are well suited as a baseline circuit
for emerging quantum hardware and can, in the long term, provide significantly improved initial
states for quantum algorithms. The associated wavefunctions can be represented with linear memory
requirement which allows classical optimization of the circuits and naturally defines a minimum
benchmark for quantum algorithms. In this work, we employ directly determined pair-natural
orbitals within a basis-set-free approach. This leads to accurate representation of the one- and
many-body parts for weakly correlated systems and we explicitly illustrate how the model can be
integrated into other quantum algorithms for stronger correlated systems.

The electronic structure problem of quantum chem-
istry is one of the main anticipated applications for
future quantum computers. [1, 2] The core problem
is to extract, primarily low-lying, eigenenergies from
electronic Hamiltonians as well as preparing the cor-
responding eigenstates. Algorithms, like the quantum
phase estimation [3] or imaginary time evolution [4, 5]
are promising candidates for application on future
quantum computers. Since the first proposals, some of
those algorithms have been improved significantly with
regards to their resource requirements and estimated
runtimes [6–8], but their expected applicability remains
out of reach for near and medium term devices. Varia-
tional algorithms have been originally proposed [9, 10]
as an applicable class of algorithms for those devices
and as a potential bridging technology until scalable
fault-tolerant hardware becomes available. As the
success probability (runtime) of phase estimation
(imaginary time evolution) based algorithms depends
on the overlap of the initial state with the targeted
eigenstate, variational algorithms might also play a role
in the long term by providing improved initial states.
Variational algorithms, usually aim to prepare wave-
functions directly by a parametrized quantum circuit
and measure the associated energies as expectation
values. The parameters of the quantum circuit (e.g.
the angles of Eq. (1)) are then optimized successively
by a classical optimizer via the variational principle.
In its original form, which is most common in quantum
chemical applications, the objective of the optimization
is the plain expectation value of the electronic Hamil-
tonian. Detailed introductions to variational quantum
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algorithms can be found in recent reviews [11, 12],
original articles [10] or in recent works on unitary
coupled-cluster with hands-on code examples [13, 14].
The reviews [1, 15, 16] provide a general overview over
quantum algorithms for quantum chemistry.
The construction of suitable parametrized circuits for
variational algorithms is a vibrant research topic, where
physically inspired models like unitary coupled-cluster
where part of the initial proposals [10] and remain a
source of inspiration for current approaches. Standard
unitary coupled-cluster approaches such as UCCSD
suffer from high gate and parameter counts that both
scale with quartic cost in the number of orbitals. In
addition, the corresponding quantum circuits show,
once compiled into primitive one- and two-qubit gates,
high gate counts and depths even for small systems
with a relatively small number of variational parame-
ters. The standard approach defines the whole unitary
operation through a single exponential generated by
a sum over primitive electronic excitation operators
(as defined in Eq. (2)). This unitary operation is
then decomposed into primitive excitation unitaries
(such as Eq. (1)) employing for example the Trotter
decomposition. Most modern approaches abandoned
this formulation over a single exponential and instead
follow a factorized [17] approach where the quantum
circuit is constructed as a product of primitive exci-
tations by various strategies such as adaptive circuit
construction [13, 18, 19] as well as Lie-algebraic [20]
and empirical [21] techniques. Although significantly
reduced, the associated gate counts are still unfeasible
on current day hardware platforms. This leads to the
situation that many-body wavefunctions of chemical
systems, which are considered “easy” to describe within
the classical algorithmic framework (e.g. using MP2
or CCSD), already require non-local and high-depth
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quantum circuits. Ideally there should be a way to
prepare these wavefunctions with low-depth and local
quantum circuits where the circuit parameters can be
determined robustly in a black-box fashion.
In this work, we will describe such an low-depth and
local approach realized by physical principles and clas-
sical pre-computation resulting in optimized circuits
through a separable pair approximation (SPA). In a
way this can be seen as a hardware-efficient ansatz [22]
based on physical principles, therefore combining the
advantages of hardware-efficient and physically inspired
approaches.

As an explicit embodiment, we will combine this ansatz
with the directly determined pair-natural orbitals rep-
resentation of [23] resulting in reduced gate counts and
depths by several orders of magnitude - e.g. the BeH2
system from a circuit with 192 controlled-not gates [23]
to a depth-5 circuit with 15 local controlled-not opera-
tions shown in Fig. 2. Apart from low gate counts and
depths, such wavefunctions prepared by the quantum
circuits can be represented efficiently on a classical com-
puter, which allows classical simulation and parameter
optimization of the corresponding circuits. The clas-
sically optimized quantum circuits could then be used
to prepare initial states for more advanced quantum al-
gorithms like the quantum phase estimation [3] as well
as for variational algorithms that use this ansatz as a
baseline for building more electron correlation. We will
give explicit examples for both situations and identify
good benchmark systems with small qubit sizes suit-
able for future improved schemes. Our approach is in-
tegrated into the basis-set-free framework of Ref. [23]
where we further improved the underlying surrogate
model. We provide a full-stack open-source implemen-
tation in tequila [14].

I. METHODOLOGY

Unitary coupled-cluster quantum circuits are formed
from elementary n-electron excitation gates

Upq (θ) = e−i
θ
2Gpq (1)

which describe excitations between spin orbitals p =
{p0, p1, . . . , pn} and q = {q0, q1, . . . , qn} with pk 6=
ql ∀(k, l) through the fermionic excitation generator

Gpq = i

(∏
k

a†pkaqk − h.c.

)
. (2)

The gate acts like a rotation on a subspace spanned by
all configurations with spin-orbitals p occupied and q
unoccupied and vice versa, while acting trivially (as the

Optimization level
2 1 0

Method Nparam Depth Ncnot Depth Ncnot Depth Ncnot

SPA 3 3 9 23 42 73 144
UpCCD 9 31 33 89 126 287 432
UpCCSD 27 548 465 606 558 804 864
UpCCGASD 45 122 177 219 330 564 840
2-UpCCGASD 90 340 507 437 660 1124 1680
UpCCGSD 45 669 617 766 770 1111 1280
2-UpCCGSD 90 1434 1387 1531 1540 2217 2560

Table I. Details about the circuits used in Fig. 7 for the
N2(6,12) and BH3(6,12) systems with different levels of opti-
mization: None (0), gate decompositions similar to Ref. [27]
(1), including initialization in the HCB subspace according
to Eq. (11) using SPA as initial part of the circuit (2) . Up-
CCGASD and similar circuits employ approximate singles
(similar to “A” gates in [28]) where σz terms in the genera-
tors are neglected.

identity) on all other configurations

Upq (θ) = cos

(
θ

2

)
− i sin

(
θ

2

)
Gpq

+

(
1− cos

(
θ

2

))
P 0
pq. (3)

Here, P 0
pq is the nullspace projector [13] of the generator

Gpq

P 0
pq = 1−

∏
a†pkapkaqka

†
qk
−
∏

a†qkaqkapka
†
pk

(4)

and the generators Gpq, P 0
pq can be mapped to qubits

via various transformations.
One of the most established qubit encodings, the
Jordan-Wigner transformation, maps the creation and
annihilation operators directly to qubit raising and low-
ering operators σ± = 1

2 (σx + iσy) and σz operators
that ensure the correct anti-commutation properties

a†p
Jordan−−−−−→
Wigner

σ+
p

∏
k<p

σz
k. (5)

Within the Jordan-Wigner encoding, each spin-orbital
is mapped directly to a qubit. In terms of spatial or-
bitals this means we need twice as many qubits as spa-
tial orbitals Nq = 2No. In this work, we will use the
Jordan-Wigner representation due to its intuitive sim-
plicity. In future applications, we could imagine lo-
cal encodings [24–26] to be advantageous. In order to
employ them within the methodology developed here,
solely the bridging unitary (see Eq. (9)) that maps
from the hard-code Boson representation to the Jordan-
Wigner representation needs to be adapted.
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A. Paired Coupled-Cluster and the Hard-Core
Boson Model

In this section, we will describe and unify ideas from
Refs. [29, 30] that investigated paired unitary models
with general unitary coupled-cluster approaches, in
particular with the k-UpCCGSD [31] hierarchy. The
combination of those approaches alone already leads
to significantly reduced gate counts and depths which
is further reduced by optimized gate decompositions
from Refs. [27] (and similar in Ref. [32]) and [28]. In
the next section we will construct the separated pair
ansatz and integrate it in the optimized k-UpCCGSD
hierarchy. This will define a local, low-depth and
classically simulable class of quantum circuits.

Paired unitary coupled-cluster models build their wave-
functions from single excitations and double excitations
restricted to paired electrons in the same spatial orbitals
p and q. The corresponding generator for a primitive
unitary excitation operator is

Gp↑p↓q↑q↓ ≡ G̃pq = i
(
a†p↑

aq↑a
†
p↓
aq↓ − h.c

)
. (6)

In the Jordan-Wigner encoding, all σz operations in
these restricted double excitations cancel out, yielding
a qubit excitation generator

G̃pq
Jordan-−−−−−→
Wigner

G̃JW
pq = i

(
σ+
p↑
σ−q↑σ

+
p↓
σ−q↓ − h.c.

)
(7)

that can be compiled into a unitary circuit with depth
22 and 13 CNOT gates [27] (see Ref. [32] for an
alternative construction). If we restrict the ansatz
to only paired doubles, e.g. UpCCD, and start from
a restricted reference wavefunction, the resulting
wavefunction will consist solely of doubly occupied
configurations. Instead of representing the spin-up and
spin-down part of a spatial orbital individually with
two qubits, we can now encode the doubly occupied or
non-occupied spatial orbitals by a single qubit. This
restriction is commonly referred to as a hard-core Bo-
son (HCB) model of the original fermionic system and
has been employed for variational quantum algorithms
in reduced qubit representations [29, 30].1 Associated
classical algorithms are paired coupled-cluster (pCCD)
or doubly-occupied configuration interaction (DOCI).

If the wavefunction is restricted to paired excitations,
the whole wavefunction can be represented in the

1 Instead of hard-core Boson, the model is often also labelled
as seniority-zero or simply as a doubly-occupied or paired
model.The term seniority-zero results from the seniority quan-
tum number of the associated wavefunction which is a quanti-
fier for unpaired electrons in the system.

hard-core Boson representation by encoding the pair-
excitation generators of Eq. (6) as

G̃pq
hard-core−−−−−−→

Boson
G̃HCB

pq = i
(
σ+
p σ
−
q − h.c.

)
(8)

where qubits p, q represent electron pairs in spatial or-
bitals p, q. Thus No spatial orbitals are mapped to No
qubits. This is conceptually the same as in Ref. [29]
and the HCB-Hamiltonian can be mapped to qubits us-
ing the same principles. Here, we aim to prepare good
initial states of the original Hamiltonian, so we need
to transfer the hard-core Boson wavefunction into a
regular Jordan-Wigner represented qubit wavefunction.
This can be achieved throughout a series of controlled-
not operations

UJW
HCB =

No∏
p=1

CNOT (p↑, p↓) (9)

that transfer the occupation information of the hard-
core Boson wavefunction to a second register of qubits.
The original qubit register p↑, that represented electron
pairs in the hard-core Boson representation, will then
represent spin-up electrons in the Jordan-Wigner rep-
resentation and the additional register p↓ will represent
the corresponding spin-down electrons. An optimized
UpCCGSD circuit is then constructed as

UpCCGSD
(
θS, θD) = US

(
θS)UJW

HCBU
HCB
D

(
θD)UHCB

HF ,

UHCB
D (θ) =

∏
p<q

e−i
θpq
2 G̃HCB

pq ,

US (θ) =
∏
p<q

e
− θpq2

(
GJW
p↑q↑

+GJW
p↓q↓

)
, (10)

representing the pair-double excitations in the hard-
core Boson representation and the singles excitations
in the standard Jordan-Wigner representation. The
Hartree-Fock reference for an Ne electron system is ini-
tialized as UHCB

HF =
∏

p≤Ne/2
σx
p .

Note, that this particular construction of UpCCGSD
circuits partially fixes the order of the primitive circuits
as it requires the singles block to be separated from the
doubles block. This high-level ordering is however often
empirically preferred [21].
Further integration into the k-UpCCGSD [31] hierarchy
can be obtained by adding further layers of excitations

U
(k)
pCCGSD =

k∏
l=2

(
US

(
θS
l

)
UD

(
θD
l

))
UpCCGSD

(
θS
1 ,θ

D
1

)
(11)

with UD constructed similar to UHCB
D by using G̃JW

pq .
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Molecule(Ne,Nq) Nparam Ncnot Depth

H2(2,4) 1 3 3
LiH(2,10) 4 15 18
BeH2(4,8) 2 6 3
BeH2(6,14) 4 15 7
BH3(6,12) 3 9 3
N2(6,12) 3 9 3
C2H4(12,24) 6 18 3
H2O2(14,28) 7 21 3
C2H6(14,28) 7 21 3
C2H6(2,12) 5 19 23
C2H6(14,84) 35 133 23

Table II. Resource requirements for SPA circuits according
to Eq. (17) used in this work. We show minimal configu-
rations (Nq = 2 · Ne with two spatial orbital for each elec-
tron pair) with low-depth circuits as well as active space
configurations with more spatial orbitals for individual elec-
tron pairs. E.g. LiH(2,10) and C2H6(2,12) with 5 and 6
spatial orbitals for a single electron pair and C2H6(14,84)
with 6 spatial orbitals for each active electron pair. The
BeH2(6,14) circuit with two spatial orbitals for both active
electron pairs and a single spatial orbital for the core orbital
is shown explicitly in Fig. 2

Figure 1. Template SPA circuit (left) and required qubit
connectivity (right) for a single electron pair represented by
3 spatial orbitals in ladder arrangement. The first NOT
operation on the lower left prepares the two-electron ref-
erence state in the hard-core Boson representation (UHCB

HF
in Eq. (17)). The CNOT layer on the right transfers the
doubly-occupied wavefunction in the hard-core Boson rep-
resentation to the Jordan-Wigner representation (UJW

HCB in
Eq. (17)).

B. Separable Pair Ansatz (SPA)

In the following, we will describe a separable pair
approximation in a general framework and combine
it with the circuit compilation strategies of the last
section to construct a classically tractable circuit class
with significantly reduced gate count.

Assume we have an Ne electron system and we want to
create a wavefunction of Ne

2 electron pairs. This sepa-

rable pair (SP) wavefunction can be written as

|ΨSP〉 =

Ne/2⊗
k=1

|ψk〉 (12)

where |ψk〉 are electron pair functions, that can them-
selves be represented by a linear combination of tensor-
products of |Sk| one-electron functions (spin-orbitals)

|ψk〉 =
∑
mn

ckmn

∣∣φkm〉⊗ ∣∣φkn〉 . (13)

Each pair-function |ψk〉 is represented by an individual
set of orbitals Sk =

{∣∣φkl 〉 , l = 0, . . . , |Sk| − 1
}
and we

will furthermore require all orbitals to be orthonormal〈
φkl

∣∣∣φk′

l′

〉
= δkk′δll′ . (14)

In order to generate the wavefunction |ΨSP〉 in a qubit
representation we only require the unitaries Uk that cre-
ate the pair-functions |ψk〉. One strategy to realize Uk

is through one- and two-electron excitation gates as in
Eq. (1) acting on a closed-shell initial state

|ΨSP〉 =

Ne/2∏
k

Uk (θk)UHF |00 . . . 0〉 . (15)

Note that the PNO-UpCCGSD circuits of Ref. [23] have
exactly this product structure and the resulting wave-
functions can be fully simulated classically without fac-
ing an exponential memory bottleneck. It is only re-
quired to store Ne

2 individual pair functions that can
each be fully described with O

(
|Sk|2

)
coefficients. The

classical optimization results directly in optimized pa-
rameters of a low-depth quantum circuit that is ready to
be used within an extended quantum algorithm. Fur-
thermore, such classically simulable circuits naturally
define a minimum benchmark that variational quantum
algorithms need to match in order to be considered for
a potential advantage.
Note, that the associated variational algorithm will
minimize the expectation value of the parametrized
product of pair-functions over the full electronic Hamil-
tonian

E = min
θ
〈ΨSP (θ)|H|ΨSP (θ)〉 . (16)

In other words, while the wavefunction has a product
structure, the individual pair-functions are not inde-
pendent but coupled through the Hamiltonian. The
latter basically defines a mean-field model for pairs,
similar to generalized valence bond models (GVB) with
strong orthogonality condition [33].

The individual pair-functions can again be restricted to
be occupied by hard-core Bosons only (i.e. each spatial



5

Figure 2. Example: Directly compiled low-depth SPA ladder arrangement for the BeH2 molecule initializing a wavefunction
as in Eq. (12). Controlled Ry rotations can be compiled into two controlled-not operations and three single qubit rotations,
leading to an overall CNOT count of 15 and a circuit depth of 7. The circuit corresponds to the BeH2(6,14) circuit in Tab. II.

Pink gates represent individually parametrized Pauli-Y rotations Ry(θk) = e−i
θk
2
σy and + labels represent (controlled)-not

operations.

orbital can only be occuied by spin-paired electrons).
This allows the same reduction in qubits as described
in the previous section where each orbital is now repre-
sented by a qubit. Circuits can now be constructed by
arranging double excitations (as in UHCB

D in Eq. (10))
in the hard-core Boson representation in order to con-
struct the individual pair function unitaries

USPA = UJW
HCB

Ne/2∏
k

∏
l∈Sk

e−i
θkl
2 G̃HCB

l,l+1

UHCB
HF . (17)

At this point, the memory requirements to represent the
associated wavefunction are further reduced to O (|Sk|)
for each pair. In Eq (17) we chose a ladder arrangement
of double excitations within each pair that requires only
local connectivity of the associated qubits. Since the
unitaries that prepare the individual pair-functions act
on an initial product state prepared by UHCB

HF , they
can be efficiently compiled into controlled-not and con-
trolled rotation gates as

e−i
θkl
2 G̃HCB

l,l+1 → CRy(θkl , S
l
k, S

l+1
k ) · CNOT(Sl+1

k , Sl
k)
(18)

where the control on the CRy can be dropped for the
very first instance. This circuit construction procedure

is schematically depicted in Fig. 1. Alternatively the
doubles can be arranged canonically by exciting from
the “reference orbital” S1

k to all other orbitals in Sk like
in an UpCCD ansatz for the individual pair.
Both approaches have the same expressibility but differ
in their locality and in their behaviour under optimiza-
tion where the more local ladder arrangement usually
requires more iterations in gradient based optimizations
starting from an initial point with all angles in zero.
An intuitive explanation is, that within the first m it-
erations, all gradients except for the θkl with l ≤ m
iterations of each pair are naturally zero since the cor-
responding qubits are not occupied yet in the wavefunc-
tion as the occupation of the qubits gradually needs to
be distributed from the first orbital to the last. Within
the canonical arrangement all qubits can be occupied
after the first iteration. A more natural starting point
for the ladder approximation would be a finite value for
all angles. In the specific embodiment of this work, the
orbitals that represent the individual pairs are ordered
through the classical surrogate model that determines
them (see next section). From this property we can
already assume that the initial values for the angles θkl
should decrease in magnitude with growing l. The exact
behaviour and sophisticated initialization of the correct
signs of the angles could be an interesting testing case
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for currently emerging initialization protocols. [34, 35]

C. Orbital Determination

In the previous section we constructed optimized quan-
tum circuits that prepare products of electron pairs with
each of the pairs represented by independent orbital sets
S. In order to determine these orbitals we will resort
to a modified approach of Ref. [23] that takes a classi-
cal, basis-set-independent surrogate model [37]. Alter-
natively the orbitals can be (further) optimized through
standard orbital optimization techniques. In the follow-
ing we will briefly describe the two techniques.
a. Arbitrary Orbital Source: In cases where the as-
signment of the given orbitals to the sets Sk is unclear,
we propose to employ standard orbital optimization:
1. Take a set of orthogonal orbitals. 2. Distribute
them into the orbital sets Sk. 3. Construct the SPA
circuits according to Fig. 1. 4. Optimize the SPA
angles. 5. Optimize the orbitals for the current SPA
wavefunction. Repeat steps 3-5 until overall conver-
gence. Standard approaches to optimize the orbitals
are through the first order expanded expectation
value of the orbital-rotated Hamiltonian w.r.t the
given wavefunction. In Fig. 3 we demonstrated this
on a small example using the implementation [36]
of [38] where we provide more details in the appendix.
For an introduction on orbital-optimization in the
context of variational quantum algorithms we refer to
Refs. [39–41].

b. MRA-PNOs In the implementation of Ref. [37]
the pair-natural orbitals (PNOs) for the MP2 model
are determined directly on an adaptive grid via a mul-
tiresolution analysis (MRA). The algorithm determines
the occupied Hartree-Fock orbitals φk (k ≤ Ne

2 ) and
pair-natural orbitals φrkl (k ≤ l ≤ Ne

2 , r ≤ maxrank).
We will briefly refer to both types of orbitals as
MRA-PNOs. In the previous work [23] MRA-PNOs
were employed to construct system-adapted qubit
Hamiltonians and initial attempts of designing unitary
coupled-cluster circuits that exploit the structure of the
orbitals were formulated. The here proposed separable
pair approximation generalizes these attempts.
We adapted the implementation of Ref. [37] in order
to compute only the “diagonal” MP2-PNOs φrkk.
After determining the Hartree-Fock orbitals φk ≡ φ0k
and the associated PNOs φrkk ≡ φrk we perform a
global symmetric orthogonalization (diagonalization
of the overlap matrix) on all PNOs and assign them
to the pair sets Sk =

{
φ0k, φ̃

1
k, . . . φ̃

maxrank
k

}
where

φ̃rk denote the orthonormalized PNOs. The runtime
of the original MRA-PNO implementation scales as
O
(
NpairsNemaxrank2

)
where the factor Ne comes

from the exchange operator in the MP2-PNO equa-
tions. As we only compute “diagonal” pairs here,
we have Npairs = Ne

2 leading to an overall quadratic
dependence O

(
N2

e
)

on system size for the orbital
determination via MRA-PNOs. Not that the param-
eter maxrank does not depend on the system size
as it was shown in [37]. It was shown before, that
this cost can be mitigated to near-linear behaviour
by efficiently exploiting locality in the multiresolution
representation. [42] In the current implementation this
is however not included yet.

In Fig. 3 we compare SPA with MRA-PNOs and opti-
mized Gaussian basis sets on an explicit example illus-
trating the advantages of MRA-PNOs in accuracy and
runtime. Here we note, that initial PNOs could also
be computed in Gaussian basis sets (see in this con-
text Refs. [43, 44]) and adapted for qubit Hamiltonians
similar as in Ref. [23]. We expect that this would de-
crease the runtimes of Fig. 3 but not the accuracy that
is expected to further converge towards the SPA/MRA-
PNO(4,8) result with increasing basis size.

II. APPLICATIONS

In the following, we will demonstrate explicit use-cases
of the SPA and illustrate how it can potentially be
used as initial state for other quantum algorithms.
As in [23] we denote molecular representations as
“Molecule-Name(Ne,Nq)” with number of electrons Ne
and number of qubits Nq = 2No necessary in a direct
mapping of the spin orbitals. In Fig. 5 we compute
single bond stretches of the LiH and C2H6 molecules,
similar to Ref. [23]. As expected, the separable pair
ansatz performs well at not too far stretched bond dis-
tances. The shortcoming can be overcome by including
orbital rotations in the form of a generalized singles
layer in the circuit. This performance can be expected
to be equivalent to an orbital-optimized form of SPA
as it was used in Fig. 3 for standard basis sets. We
also included a calculation with a larger active space
C2H6(14,28) to confirm that the performance of the
separable pair ansatz stays consistent. Here we observe
a consistent energy difference to the FCI energies (non-
parallelity error of 3 millihartree) resulting from the
missing correlation between the pairs. Although this
does not represent a rigorous benchmark, we anticipate
that the separable pair ansatz will be an appropriate
model for single bond reactions and organic equilibrium
structures, especially in an orbital optimized extension
similar to related classical methods like pCCD [45],
its orbital-optimized variants [46–48], and low-order
matrix-product states respectively generalized valence
bond models [33].
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Figure 4. Example Reactions: Performance of the SPA model in a system adapted orbital basis determined by MRA-
PNOs, for chemical reaction energies (Eproducts − Eeducts) compared to standard basis sets. Results are labeled as
method/basis/(Ne,Nq). Reactions are CH3OH + H2 → CH4 + H2O (a) H2O2 + H2 → 2· H2O (b) C2H4 + H2 →
C2H6 (c)

In Fig. 7 we computed double and triple bond dis-
sociation of more challenging systems and compared
classical methods with SPA and extensions in the
k-UpCCGSD hierarchy. With BeH2(4,8) and N2(6,12)
we included 8 and 12 qubit test systems which show
variational breakdowns of standard methods (MP2,
CCSD and CCSD(T)) from classical quantum chem-
istry. All quantum models naturally don’t show
variational breakdowns. Furthermore we assume that
the oscillating behaviour of CCSD is due to convergence
problems. The SPA behaves fairly consistent over all
three molecules, but, as for the single bond stretches,
it shows large energy deviations for far stretched struc-
tures. In this case, including orbital rotations does
improve, but not fully resolve, these differences. The
N2(6,12) molecule remains the most challenging one;
here, not even 2-UpCCGSD can reach FCI accuracy

in all points. It was however shown before, that more
layers of the ansatz systematically converge towards
the FCI energy. [31]. We note the small basis deficiency
of the MRA-PNOs at the stretched instances of N2

which is inherited from the MP2 surrogate [23].

An intuitive explanation for the behaviour of the SPA
on the so far discussed examples is that chemical bonds
are modelled as individual electron pairs - usually de-
picted as single lines in the graph representation of a
molecule. The SPA wavefunction follows that chemical
intuition. One interpretation is, that the SPA wave-
function provides an accurate description for instances
of molecules where the graphical representation of the
molecule is a good description. The chemical interpre-
tation of the challenges arising with N2 is here, that
a triple bond is more than three single bonds. Conse-
quently the quantum circuit to describe the 6-electron
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Figure 5. Simple Model Systems: Single bond dissociation of LiH(2,12) (a) and C2H6(2,12) (b). SPA circuits are constructed
as in Eq. (17) and a single layer of generalized orbital rotations is added. The performance of SPA+GS is in this case
equivalent to orbital optimized SPA with orbital optimization similar to Refs. [39–41]. In addition we show C2H6(14,28)
with all active electron pairs represented by two spatial orbitals (same representation as in Fig. 4). The associated non-
parallelity errors (difference between largest and smallest absolute error) with FCI/MRA(14,28) as reference are: 3 for
SPA/MRA(14,28), 18 for FCI/MRA(2,12) and 25 for SPA/MRA(2,12) millihartree.

Figure 6. Variances ‖ 〈H〉2U −
〈
H2

〉
U
‖ of HF (best classical mean-field solution) and SPA models for BeH2(4,8) (a) and

N2(6,12) (c) as a quantifier for closeness to eigenstates. Shown at the center (b) are the fidelities ‖ 〈ΨU |Ψexact〉 ‖2 with
respect to all eigenstates of the BeH22(4,8) with both Be-H bond distances at 5.0 Ångstrom, providing more details on the
eigenstates that overlap with the trial wavefunction.

system that forms this triple bond needs to go beyond
separable pairs.

In Fig. 6 we performed a small numerical study where
we assume to have access to a fault tolerant architec-
ture, that is capable of performing a molecular quantum
phase estimation [3]. In this proposed algorithm the
physical measurement process of the full electronic
Hamiltonian is implemented, and for simplicity we
will assume a numerically exact implementation. If
a trial state |Ψ〉 =

∑
k ck |Ek〉 is prepared, where Ek

denotes the eigenstates and energies of the molecular
Hamiltonian, the algorithm results in measurement
of Ek (as well as the preparation of |Ek〉) with
probability |ck|2. So, the success of the procedure
will depend on the overlap ck of the trial function
with the targeted state. In Fig. 6 we show absolute

values of the variances Var(U) = |
〈
H2
〉
U
− 〈H〉2U |

with U ∈ {UHF, USPA} as a quantifier for closeness to
an eigenstate for BeH2(4,8) and N2(6,12). For both
systems, SPA gives a significantly improved trial state
and requires only depth 3 circuits with 6, respectively
9, controlled-not gates in total (see Tab. II). Note
that for stretched geometries of BeH2, the variances
of both initialization methods become almost identical
as both methods are comparably close to electronic
eigenstates. Hartree–Fock initialization would however
not result in a clear preference for the ground state,
as the trial wavefunction has similar overlap with an
excited state (shown in the central plot of Fig. 6).
If the expected energy range of the ground state is
known, this deficiency could for example be overcome
with the Philter algorithm [49]. The associated costs
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are however significantly larger than simply switching
to an improved trial state in the form of USPA. Other
improved strategies on quantum phase estimation like
in Ref. [50] could be employed with a SPA trial state
boosting the overall success probability.

In this work we use the basis-set-free approach of
Ref. [23] in order to determine the spatial orbitals
that form the qubit Hamiltonian in a system-adapted
bottom-up approach. Our approach is therefore inde-
pendent of static basis sets and a first assessment of
its numerical performance compared to those basis sets
would be interesting. In Ref. [23] first comparisons were
already performed where the basis-set-free approach al-
lowed significant improvements in numerical accuracy.
In Fig. 4 we provide three further examples in the form
of small chemical reactions, that are significantly larger
systems than in Ref. [23] and further confirm improved
accuracy with a directly determined MRA-PNO basis.

In all calculations we observed fast convergence of the
optimizations of the SPA circuits that usually took 4-10
BFGS iterations for canonical arrangement of primitive
excitations. In all cases, a single BFGS iteration,
required a single energy and gradient evaluation. It
was furthermore possible to initialize all angles to
zero (i.e. using Hartree–Fock as a starting point)
without reaching local minima or plateaus [51] in the
process. This indicates that the optimization of SPA
circuits can be achieved routinely and cheap with
gradient based methods. UpCCGSD and 2-UpCCGSD
behaved similar at points where it resulted in similar
energies as with the SPA but became more difficult
for stretched geometries. Here we needed to run
several (5-10) optimizations with different starting
points in order to achieve good convergence. With this
strategy the optimization also took substantially more
BFGS iterations (up to 100) which is however still a
comparably small number [32, 34, 52].

III. IMPLEMENTATION

All our circuit construction schemes are implemented
in the tequila [14] library that also contains a conve-
nient interface to madness [53] where the orbitals are
computed according to Ref. [54, 55] (Hartree–Fock) and
Ref. [37] (MRA-PNO-MP2) with the standared (non-
regularized) nuclear and electronic potentials. A spe-
cific point of the LiH(4,16) molecule of Fig. 5 can for
example be computed as

1 import tequila as tq
2

3 geometry="Li 0.0 0.0 0.0\n
4 H 0.0 0.0 1.5"

5 mol = tq.Molecule(geometry ,n_qubits =16)
6 H = mol.make_hamiltonian ()
7 U = mol.make_ansatz(name="SPA")
8 U += mol.make_ansatz(name="GS",

↪→ include_reference=False)
9 E = tq.ExpectationValue(H=H, U=U)

10

11 result = tq.minimize(E, method="bfgs")

where make_ansatz automatically compiles circuits ac-
cording to Eq. (17) and adds the remaining unitary ex-
citations. It accepts and interprets all keywords assem-
bled from name="{HCB}-{SPA}-UpCC{G}{A}{S}{D}"
where HCB will result in the circuit being compiled en-
tirely in the HCB representation (meaning that UJW

HCB
in Eq. (17) will be removed), SPA will restrict all excita-
tions to the surrogates excitation pattern (i.e. excita-
tions are restricted within the Sk orbital sets), D and S
will include doubles and singles, A will result in approx-
imated singles as qubit excitations and G will result in
generalized singles and doubles. The additional key-
word direct_compiling="ladder" will result in the
laddered arrangement of the SPA (see Figs. 1 and 2).
Invalid combinations, like the combination of HCB and
S will result in exceptions. Note, that the UpCC part is
not necessary in the name, but can be included to en-
hance readability in the code. The standard method
is SPA which corresponds to Eq. (17) and is equiva-
lent to SPA-UpCCD. In this sense, SPA-UpCCGD would
result in the SPA circuit complemented with all un-
accounted generalized double excitations within the Sk

orbital sets. The frozen-core approximation, i.e., no
correlation of the Nc (5Nc) lowest orbitals of molecules
with Nc second (third) row atoms, is enabled by de-
fault as well as active-spaces that include only pairs
represented by more than one (the Hartree–Fock) or-
bital. The SPA energies for N2(6,12) in Fig. 7 can for
example be computed as

1 import tequila as tq
2 mol = tq.Molecule("n2.xyz",n_qubits =12)
3 H = mol.make_hardcore_boson_hamiltonian ()
4 U = mol.make_ansatz("HCB -SPA -UpCCD")
5 E = tq.ExpectationValue(H=H, U=U)
6 result tq.minimize(E)

where the active space is automatically constructed.
Here, we exploited the fact, that PNO occupation num-
bers in the surrogate model are largest for the three
orbitals that correspond to the triple bond, so that
with n_pno=3 three PNOs from those pairs are selected
automatically. More complicated active-spaces can be
specified over the active_orbitals keyword where in-
formation about all orbitals from the surrogate can be
obtained over print(mol). In the last code snipped
we also illustrated how to optimize the separable pair
ansatz directly in the hard-core Boson representation
that allows simulations with Nq = No qubits. In
this work, we used qulacs [56] as quantum simulation
backend, scipy [57] as optimization backend, and the
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Figure 7. Challenging Model Systems: Comparison of standard classical methods (left - (a),(c),(e)) and pair-restricted
quantum circuits (right - (b), (d), (f)) for the bonding electron pairs in BeH2(4,8) (a)-(b), BH3(6,12) (c)-(d) and N2(6,12)
(e)-(f). See Tab. I for the required resources.
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Jordan-Wigner implementation of openfermion [58].
Gradient compilation for the BFGS optimization is per-
formed by the automatically differentiable framework
of Ref. [13] where gradients for the controlled-Ry op-
erations of the optimized circuits follow the same prin-
ciple. All of those options correspond to the defaults
which do not need to be explicitly specified and we re-
fer to Ref. [14] and [13] for more details on how to use
tequila e.g. for the manual construction of circuits
that can be combined with the U objects constructed
above.
Energies from classical quantum chemistry meth-
ods can be computed through tequila interfaces
to psi4 [59] and pyscf [60] for example via
mol.compute_energy("ccsd").

IV. CONCLUSION & OUTLOOK

We formulated a physically motivated recipe to con-
struct low-depth and local quantum circuits that are
able to approximate large parts of the electronic cor-
relation in electronic structure problems. Integrated
in a, now classically simulable, variational quantum
eigensolver we observed fast and robust convergence
for all test systems. If applied to a closed shell refer-
ence state, the resulting circuits prepare wavefunctions
equivalent to the PNO-UpCCD circuits introduced in
Ref. [23] with significantly reduced depth and overal
gate counts from several hundred to low one to two
digit figures. Due to their naturally separated form,
the associated wavefunctions can be represented with
linear memory requirement with respect to the system
size which allows to optimize the parameters of the low-
depth circuit in a classical pre-computation step. This
bypasses challenges in variational quantum eigensolvers
like finite-shot sensitive gradients and high measure-
ment cost. Due to the physically inspired construction
we furthermore expect this model to be well behaved
with gradient based optimization. Within this work we
observed fast convergence in a few epochs of the BFGS
optimizer throughout all numerical computations with-
out getting trapped in local minima or plateaus. All
these properties qualify this model to be a potential
minimum benchmark that quantum algorithms have to
outperform in order to claim any advantage over clas-
sical methods. In this regard, BeH2(4,8) and N2(6,12)
could be well suited test systems. Furthermore the SPA
framework offers a robust and efficient way to generate
physically reasonable approximations to ground states
that can be employed in the development of other meth-
ods. This was for example done in the context of ex-
plicitly correlated corrections [61] and bounds on true
eigenvalues [62].
Within quantum algorithms for electronic structure, we
see the separable pair ansatz as initial part of larger

approaches which we illustrated within two scenarios.
The first employs the optimized SPA circuits as initial
parts of a larger variational algorithm, here illustrated
within the k-UpCCGSD hierarchy. The second uses the
SPA as significantly improved initial state for phase es-
timation.
In this work, we integrated our methodologies into the
basis-set-free framework of Ref. [23], which is not a ne-
cessity to compile the low-depth circuits, but allows to
compute basis-set-independent energies with high nu-
merical accuracy. For weakly correlated reactions, this
provides a good balance between the one- and many-
body aspects of the electronic wavefunctions which we
illustrated on small organic reactions. Our current im-
plementation does not exploit the properties of the SPA
wavefunction completely but rather takes advantage of
high-performance simulators like qulacs [56] within
the tequila [14] framework. It is however well suited
for systems treated in this work. In the future, special-
ized high-performance implementations would be desir-
able and the combination with basis-set-free approaches
could be interesting as a classical algorithm for weakly
correlated molecular structures as they for example oc-
cur in a wide range of organic reactions. Within this
context, to further enhance the overall performance of
the model, we expect improvements on the surrogate
model that determines the orbital basis. Additionally,
one can include orbital optimization, which allows op-
timized linear-combination within said orbital basis. In
the cases of C2H6 and LiH we demonstrated that with
optimized orbitals, the SPA is able to describe the singe
bond reliably through all bond distances. We expect
this behaviour to remain consistent within other single
bonds. As the SPA model is classically simulable it sets
a new benchmark for variational quantum algorithms.
In the future it would be interesting to see how far this
concept can be extended and if low-depth and local ap-
proaches that go beyond the classically tractable regime
can be constructed on-top of an SPA initial state.
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APPENDIX

The following snipped of code reproduces results from Fig. 3 for BeH2(4,8) with MRA-PNOs.
The necessary dependencies are: tequila ≥v1.6 (github.com/tequilahub/tequila), madness (fork from
github.com/kottmanj/madness, branch:tequila, revision: 827b714aa8cd737e33a7cac6de0ad403dcbb5b0b), and
pyscf ≥v1.7.6 (needed for convenient FCI computation only).

1 import tequila as tq
2 import numpy , time
3

4 geometry ="Be 0.0 0.0 0.0\nH 0.0 0.0 1.5\nH 0.0 0.0 -1.5"
5

6 start = time.time()
7 mol = tq.Molecule(geometry=geometry , n_qubits =8)
8 U = mol.make_ansatz ("SPA")
9 print(U)

10 H = mol.make_hamiltonian ()
11 E = tq.ExpectationValue(H=H, U=U)
12 result=tq.minimize(E)
13 stop = time.time()
14

15 print ("{:25}:{:+2.5f}". format ("SPA/MRA -PNO(4,8)", result.energy))
16 print ("{:25}:{:+2.5f}". format ("FCI/MRA -PNO(4,8)", mol.compute_energy ("fci")))

In the same manner, the next snipped reproduces BeH2(4,8) with Gaussian basis sets. Fig. 3 of Ref. [36] gives more
details about the underlying pyscf submodule embodied in tequilas optimize_orbitals function. Necessary
dependencies are: tequila ≥v1.6.4 (github.com/tequilahub/tequila) and pyscf ≥v1.7.6.

1 import tequila as tq
2 import numpy , time
3

4 # pair 1
5 U = tq.gates.X(target =(0,))
6 U += tq.gates.Ry(target =(4,), angle ="a")
7 U += tq.gates.X(target =(0,), control =(4,))
8

9 # pair 2
10 U += tq.gates.X(target =(2,))
11 U += tq.gates.Ry(target =(6,), angle ="a")
12 U += tq.gates.X(target =(2,), control =(6,))
13

14 # HCB to JW
15 U += tq.gates.X(target =(1,), control =(0,))
16 U += tq.gates.X(target =(3,), control =(2,))
17 U += tq.gates.X(target =(5,), control =(4,))
18 U += tq.gates.X(target =(7,), control =(6,))
19

20 geometry ="be 0.0 0.0 0.0\nh 0.0 0.0 1.5\nh 0.0 0.0 -1.5"
21

22 # better guess than starting from canonicals
23 x=1.0/ numpy.sqrt (2)
24 mo_coeff=numpy.asarray ([[x,x],[-x,x]])
25

26 for basis_set in ["STO -3G", "6-31G", "cc-pVDZ "]:
27

28 start = time.time()
29

30 mol = tq.Molecule(geometry=geometry , basis_set=basis_set)
31 # freeze core orbital
32 a,b,c=mol.get_integrals ()
33 mol = tq.Molecule(geometry=geometry , one_body_integrals=b, two_body_integrals=c,

↪→ nuclear_repulsion=a, active_orbitals=list(range(1,mol.n_orbitals)))
34

35 guess = numpy.eye(mol.n_orbitals)
36 guess [0: mo_coeff.shape [0], 0: mo_coeff.shape [1]] = mo_coeff
37

38 # optimize orbitals (pyscf module in the background)
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39 result1 = tq.chemistry.optimize_orbitals(molecule=mol , circuit=U, silent=True , initial_guess=
↪→ guess)

40

41 stop = time.time()
42

43 # compute FCI(2,4) in the two optimized SPA orbitals
44 a,b,c=result1.molecule.get_integrals ()
45 opt_mol = tq.Molecule(geometry=geometry , one_body_integrals=b, two_body_integrals=c,

↪→ nuclear_repulsion=a, active_orbitals =[0,1,2,3])
46 fci = numpy.linalg.eigvalsh(opt_mol.make_hamiltonian ().to_matrix ())[0]
47

48 # use old result as starting guess for new basis_set (faster)
49 mo_coeff = result1.mo_coeff
50

51 print ("{:25}:{:+2.5f}". format ("SPA /{}(4 ,8)". format(basis_set), result1.energy))
52 print ("{:25}:{:+2.5f}". format ("FCI /{}(4 ,8)". format(basis_set), fci))
53 print (" walltime: {}s". format(stop -start))

All wall times in Fig. 3 were measured on a Xeon(R) W-2135 CPU, 3.70GHz with 12 cores using qulacs as circuit
simulation backend.
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