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We demonstrate an optical receiver that achieves the quantum Chernoff bound for discriminating
coherent states from thermal states in the multi-copy scenario. In contrast, we find that repeated
use of the receiver approaching the Helstrom bound for single-copy measurement is sub-optimal in
this multi-copy case. Furthermore, for a large class of multi-copy discrimination tasks between a
pure and a mixed state, we prove that any Helstrom-bound achieving single-copy receiver is sub-
optimal by a factor of at least two in error-probability exponent compared to the multi-copy quantum
Chernoff bound. This behavior has a classical analog in the performance gap between soft-decision
and hard-decision receivers for detecting a multi-copy signal embedded in white Gaussian noise.

I. INTRODUCTION

Helstrom [1] launched the field of quantum hypothesis
testing by deriving the optimum measurement operator
for minimizing the error probability of single-copy dis-
crimination between optical states. His measurement’s
error probability—known as the Helstrom bound—is the
gold standard to which all other receivers aspire. His
work has led to a wealth of research devoted to quantum-
limited single-copy discrimination of the symbols received
in photon-starved laser communications. Nearly the en-
tirety of these investigations have focused on discriminat-
ing between quantum pure states—typically the coher-
ent states produced by ideal lasers—comprising a sym-
bol constellation. Receivers that approach or achieve the
Helstrom bound have been proposed and demonstrated
for coherent-state constellations of size N = 2 [2–6] and
N > 2 [7–11], including constellations suffering from
phase noise [12]. These quantum measurements all fol-
low a general architecture of coherent-state displacement
followed by photon counting. Interestingly, this same
quantum measurement prescription was proposed in [13]
for achieving optimal discrimination for multi-copy quan-
tum states, proving that such a receiver can achieve the
quantum Chernoff bound’s (QCB’s) error-probability ex-
ponent [14].

Recent investigations have addressed discrimination
tasks involving mixed states [15–19]. Experimental work
has demonstrated techniques for improved discrimination
between single-copy coherent states and thermal states
[20], citing, as motivation, the importance of this prob-
lem in remote sensing and imaging. Other experimen-
tal work for that problem has demonstrated a receiver
that approaches Helstrom-bound performance [21]. Lit-
tle work, however, has been devoted to the quantum lim-
its on multi-copy pure versus mixed-state discrimination.
Such state discrimination can find use in classifying light
sources, e.g., in space-situational awareness applications,

by telling apart laser light from multimode thermal ra-
diation. This problem also appears in designing a re-
ceiver for covert communications and optical steganog-
raphy wherein information is hidden by the means of
embedding coherent laser pulses in a multi-mode ther-
mal environment [22]. Other applications of this prob-
lem have been cited in laser ranging [19], metrology and
microscopy [20].

In this paper we present the first experimental demon-
stration of a multi-copy receiver for discriminating quan-
tum optical states at the QCB. Specifically, over a
broad range of average photon numbers we show that
the Kennedy receiver [5]—originally proposed for binary
phase-shift keyed laser communication—can do multi-
copy discrimination between coherent states and ther-
mal states at the QCB. Moreover, we show experimen-
tally that repeated use of the single-copy receiver that
approaches the Helstrom bound for coherent-state ver-
sus thermal-state discrimination is strictly sub-optimal
for the multi-copy case. We also prove, theoretically,
that this multi-copy sub-optimality of the single-copy
Helstrom-bound achieving measurement holds for all dis-
crimination tasks between pure and mixed states obey-
ing a broadly applicable symmetry condition. Further-
more, we exhibit an architecture that realizes QCB-
achieving multi-copy reception for discriminating be-
tween a squeezed state and a mixed state, and we show
that development of a vacuum-or-not implementation
for arbitrary pure states would enable the same to be
done for the general case of multi-copy pure-state versus
mixed-state reception.

II. DISCRIMINATION TASK

The multi-copy (M -ary) discrimination task we will
address is as follows. Under the coherent-state hypothe-
sis, the density operator for the received light is ρ⊗MR =
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FIG. 1. Schematic of multi-copy quantum discrimination.
Two multi-copy sources are equally likely to illuminate the
receiver. Copy-by-copy quantum measurements are made on
the M arriving states and the measurement results (Ki) are
employed in a maximum likelihood decision rule (MLDR) to
decide which source was present.

ρ⊗Mcoh , where ρcoh = |α〉〈α| is the single-copy coherent-
state density operator with average photon number n̄ =
|α|2. Under the thermal-state hypothesis, the density

operator for the received light is ρ⊗MR = ρ⊗Mth , where

ρth =
∑∞
n=0

n̄n

(n̄+1)n+1 |n〉〈n| is the single-copy thermal-

state density operator with average photon number n̄ and
{|n〉} is the photon-number basis. We take a Bayesian
approach in which the two hypotheses are equally likely
and we quantify receiver performance using the er-

ror probability P
(M)
ε = [P (decide ρ⊗Mcoh |ρ

⊗M
th true) +

P (decide ρ⊗Mth |ρ
⊗M
coh true)]/2.

Our interest in the multi-copy case stems from photon-
starved operation, i.e., n̄ is sufficiently low that the

single-copy error probability, P
(1)
ε is close to 1/2.

The multi-copy error probability for any particular

measurement satisfies the Chernoff bound, P
(M)
ε ≤

exp
(
−MξMeas

)
/2, where ξMeas is that measurement’s

Chernoff exponent [23]. The Chernoff bound is known to

be exponentially tight, i.e., − limM→∞[ln(2P
(M)
ε )/M ] =

ξMeas. It follows that sufficiently large M provides ac-

ceptable performance even when P
(1)
ε is close to 1/2.

More importantly, the quantum Chernoff bound ξQCB ≥
ξMeas upper bounds the Chernoff exponent for all phys-
ically possible measurements by the quantum Chernoff
exponent ξQCB ≡ − ln

[
min0≤s≤1 Tr(ρscohρ

1−s
th )

]
, which is

the ultimate benchmark for this problem [14, 24].

III. RECEIVERS

Fig. 1 shows the multi-copy receiver’s architecture,
viz., a quantum measurement followed by the maxi-
mum likelihood decision rule (MLDR) to decide which
state was received. In general, achieving QCB per-
formance from this architecture requires optimal joint
measurement over all M copies. In practice, finding
and implementing that optimal joint measurement can
be very difficult, cf. [17]. However, joint measurement
is not required to achieve the QCB in our coherent-
state versus thermal-state scenario, because one of those
states is pure. Indeed, in pure-state versus mixed-state

multi-copy discrimination projecting all M copies of the
received state onto the pure state, followed by post-
processing of each copy’s measurement outcome achieves
the QCB [25]. This procedure identifies the pure state
with certainty, providing a sufficient statistic for the hy-
pothesis test that maximizes ξMeas despite its not min-
imizing the single-copy error probability. The resulting
quantum Chernoff exponent for pure-state versus mixed-
state discrimination is ξQCB = − ln

[
F (ρ1, ρ2)

]
, where

F (ρ1, ρ2) ≡ Tr
[√√

ρ1ρ2
√
ρ1

]2
is the quantum fidelity

between the two states’ density operators [25].
Our experiments used the Kennedy receiver [5] and the

generalized Kennedy receiver [2]. Both perform copy-by-
copy coherent-state displacement on their incoming light
followed by copy-by-copy photon-number resolving de-
tection. The M outputs from the photon counter then
undergo multi-copy MLDR processing to decide between
the two hypotheses. The difference between the Kennedy
and generalized Kennedy receivers lies in their displace-
ments: the Kennedy receiver displaces |α〉 to the vac-
uum |0〉, whereas the generalized Kennedy (GK) receiver
displaces |α〉 by a pre-computed amount that minimizes

P
(1)
ε . We compare these against a direct-detection (DD)

receiver, in which copy-by-copy photon-number resolving
detection and an MLDR are performed without coherent-
state displacement.

We previously presented [21] an experimental demon-
stration of the Kennedy, GK, and DD receivers for single-
copy discrimination between coherent-state and thermal-
state light of the same average photon number. The
experiments showed that the GK receiver closely ap-
proaches the Helstrom bound, the Kennedy receiver is
sub-optimal, and both greatly outperform the DD re-
ceiver. For multi-copy discrimination, our work in this
paper shows, both experimentally and analytically, that:
(1) the Kennedy receiver exactly attains the QCB, as
expected [15, 25]: (2) the GK receiver is decidedly not
optimal by a provable factor; and (3) both greatly out-
perform the DD receiver.

IV. EXPERIMENTS

A. Setup

Figure 2 shows our experimental setup. A shot-
noise limited 780 nm laser (Toptica DL100 Pro) generates
continuous-wave light approximating a coherent-state
source for our experiments. Reflecting laser light from
a rotating diffuser and collecting a portion of the result-
ing speckle pattern with a single-mode optical fiber gen-
erates a time-varying single spatiotemporal-polarization
mode with ∼1µs coherence time. We verified that light
from the fiber had the single-mode thermal state’s Bose-
Einstein photon-counting statistics over µ s-duration in-
tervals [21], as well as its g(2)(0) ∼ 2 second-order corre-
lation function at zero lag.
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FIG. 2. Experimental setup for multi-copy discrimination between coherent and thermal states. VOA: variable optical attenu-
ator. HWP: Half-wave plate. D̂(·): displacement operator. qPNR: quasi photon-number resolving detector.

The coherent state and thermal state photon fluxes
were independently adjustable, using variable optical at-
tenuators, to keep their average photon numbers equal to
n̄S as that value was varied. The Kennedy and GK re-
ceivers’ displacement operations were performed by har-
vesting a portion of the initial laser beam and mixing it
with the signal state passing through a highly transmis-
sive (99:1) beam splitter. Following the displacement,
direct detection was performed using the quasi photon-
number resolving (qPNR) detector (described in Ap-
pendix A and Ref. [21]) consisting of a photon-counting
Si avalanche photodiode (Perkin Elmer SPCM-AQR-14)
and an oscilloscope for counting individual photon detec-
tions.

The Kennedy, GK, and DD receivers were imple-
mented by appropriate adjustment of the amplitude
of the displacement operator D̂(·) (Fig. 1), i.e.,

D̂(−α) ≡ exp(−αâ† + α∗â) for the Kennedy receiver,
where â† and â are the mode’s creation and annihi-
lation operators; D̂(−β) for the GK receiver, where

β > 0 is chosen to minimize P
(1)
ε ; and D̂(0) for the

DD receiver. For the six hypothesis-receiver pairs,
single-copy states were detected in 1µs slices over a
1 ms interval thus comprising 1000 state copies in each
case. With {|nD〉} being the photon-number states, the
ρcoh and ρth likelihoods for each receiver can be derived
from their single-copy photon-counting statistics under
the two hypotheses: 〈nD|ρcoh|nD〉 and 〈nD|ρth|nD〉
for the DD receiver; 〈nD|D̂(−α)ρcohD̂

†(−α)|nD〉
and 〈nD|D̂(−α)ρthD̂

†(−α)|nD〉 for the Kennedy

receiver; and 〈nD|D̂(−β)ρcohD̂
†(−β)|nD〉 and

〈nD|D̂(−β)ρthD̂
†(−β)|nD〉 for the GK receiver. Here

the density operators ρcoh and ρth given earlier are taken
to have average photon numbers n̄R = ηn̄S , where n̄S is
the source’s average photon number and η = 0.45 is our
receiver’s overall efficiency (see Appendix B). Receiver
efficiency scaling preserves both coherent states and
thermal states, so we shall compare our experimental
results with the QCB and Helstrom bound evaluated as

functions of n̄R.
The Kennedy and GK receivers make hard deci-

sions [26] based on the photon counts from each of the
M copies, viz., for m = 1, 2, . . .M , they use their single-
copy MLDR to decide ρcoh or ρth received based on the
photon counts produced by the mth illuminating state.
The Kennedy receiver’s single-copy MLDR reduces to de-
cide ρcoh if no counts result from the mth copy and de-
cide ρth otherwise, as does the GK receiver’s single-copy
MLDR in the photon-starved regime of interest, n̄R � 1.
These receivers’ final (multi-copy) decisions are made
with a binomial-distribution MLDR on the total number
ncoh of ρcoh hard decisions using, as that distribution’s
two possible success probabilities, pcoh ≡ P (decide ρcoh |
ρcoh true) and qcoh ≡ P (decide ρcoh | ρth true). The GK
receiver’s multi-copy MLDR reduces to decide ρcoh when
ncoh > n∗ and decide ρth otherwise, where

n∗ = M ln

[
1− pcoh

1− qcoh

]/
ln

[
pcoh(1− qcoh)

qcoh(1− pcoh)

]
. (1)

The Kennedy receiver has pcoh = 1, so its multi-copy
decision is to decide ρcoh if ncoh = M and decide ρth

otherwise. In the ideal case it is easily shown that the
Kennedy receiver saturates the QCB:

ξKen = ξQCB = n̄R/(n̄R + 1) + ln(n̄R + 1). (2)

The DD receiver uses its single-copy likelihoods to realize
the optimum multi-copy MLDR.

Our experimental setup had extraneous counts—a
combination of stray-light and dark counts—measured
to be 4 × 10−4/µ s. Consequently, to make a decision
about which state was received, we first used the photon-
count data for each of the six hypothesis-receiver pairs
to create photon-count histograms that we then em-
ployed, in lieu of those pairs’ theoretical probability dis-
tributions, to generate the single-copy MLDRs for the
Kennedy and GK receivers, and the single-copy likeli-
hoods for the DD receiver. The rest of the experiment
followed the decision procedure described earlier. In par-
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ticular, for each n̄R and each receiver, we randomly se-
lected M measurements from the 1000 measurement re-
sults available, applied the Kennedy and GK receivers’
experimentally-determined single-copy MLDRs to those
M measurements, and then employed those hard deci-
sions in the binomial-distribution MLDRs to obtain their
multi-copy decisions. In contrast, the DD receiver used
its experimentally-determined single-copy likelihoods in
its optimum multi-copy MLDR. For each M value, this
process was repeated up to 100 times to estimate the
conditional error probabilities, P (decide ρ⊗Mcoh |ρ

⊗M
th true)

and P (decide ρ⊗Mth |ρ
⊗M
coh true)], from which we computed

the experimental error probability P
(M)
ε . We then per-

formed a least squares fit of the error probabilities for dif-

ferent values of M to P
(M)
ε = a exp(−Mξ)/2 with a and ξ

being free parameters. As an example, Fig. 3’s inset plots

P
(M)
ε versus M for the Kennedy receiver when n̄R = 0.2

along with the fit. Similarly good exponential fits were
found for all three receivers over the photon-starved n̄R
values shown in Fig. 3. We use the fitted ξ’s as the ex-
perimental error exponents for the three receivers. For

each receiver, data collection and computation of P
(M)
ε

was performed 5 times to obtain an uncertainty for the
reported error exponent.

B. Results

Figure 3 shows the Kennedy, GK, and DD receiver’s
multi-copy experimental error exponents versus n̄R along
with multi-copy theoretical results for the QCB, the
Chernoff exponent (ξHelstrom) for a receiver whose copy-
by-copy decisions saturate the single-copy Helstrom
bound [1], and the Chernoff exponents (ξKen, ξGK, ξDD)
for the Kennedy, GK, and DD receivers. Reference [21]
showed that the GK receiver approaches Helstrom-bound
performance in photon-starved single-copy discrimina-
tion between a coherent state and a thermal state. Fig-
ure 3 shows that in this paper’s multi-copy setting, the
GK receiver fails to approach the QCB. In contrast, the
Kennedy receiver, which does not achieve the single-copy
Helstrom bound [21], is seen in Fig. 3 to have an ex-
perimental error exponent in excellent agreement with
the QCB for the multi-copy case. We also see that at
n̄R = 0.6 the Kennedy receiver enjoys a 100× advantage
in error exponent over the DD receiver. Finally, we note
that ξKen = ξQCB exceeds both ξGK and ξHelstrom by at
least a factor of two.

V. DISCUSSION

To make sense of the hierarchy of multi-copy receiver
performance in Fig. 3, consider multi-copy discrimina-
tion between two arbitrary, equiprobable states ρ⊗M1 and

ρ⊗M2 with a receiver that makes hard-decision measure-
ments on each copy using a fixed, two-element, positive

FIG. 3. Experimentally measured error exponents (dia-
monds) and theoretically calculated Chernoff bounds to the
error exponents (solid curves) versus average received photon
number (n̄R) for multi-copy coherent-state versus thermal-
state discrimination. Blue solid curve: quantum Chernoff
bound (upper bound to ξ) from Eq. (2). Vertical black dashed
line: Kennedy receiver’s 100× Chernoff-exponent advantage
over the DD receiver at n̄R = 0.6. Red dashed curve: multi-
copy Chernoff exponent for a receiver whose copy-by-copy de-
cisions saturate the single-copy Helstrom bound. (Inset) Ex-

perimental P
(M)
ε versus M values (points) for the Kennedy

receiver at n̄R = 0.2 and their experimental fit (curve) to

P
(M)
ε = a exp(−Mξ)/2.

operator-valued measurement. In general, the multi-copy
decision can be obtained using a binomial-distribution
MLDR via a simple threshold test on the M single-copy
results, cf. Eq. (1). In this setting, a sub-optimal single-
copy error probability can be tolerated in the effort to
reduce the multi-copy error, as exemplified by the single-
copy versus multi-copy behavior we have just observed
for the Kennedy and GK receivers.

To probe this behavior further, we parameter-
ize the two conditional error probabilities for single-
copy discrimination with a particular measurement as

P (decide ρ2 | ρ1 true) = (1 + b)P
(1)
ε and P (decide ρ1 |

ρ2 true) = (1 − b)P (1)
ε , where b ∈ [−1, 1] quantifies the

bias of the single-copy decision toward one type of condi-
tional error or the other. For a symmetric measurement,
i.e., with a bias of b = 0, the multi-copy Chernoff ex-
ponent is easily found to be ξMeas = − ln(Qsmin

), where

Qsmin = 2

√
P

(1)
ε (1− P (1)

ε ). By series expansion (see Ap-
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pendix C), we show that in the vicinity of b = 0

Qsmin = 2

√
P

(1)
ε (1− P (1)

ε )−G
(
P (1)
ε

)
b2 +O

(
b4
)
, (3)

where G(x) is strictly positive for x ∈ [0, 1/2]. Equa-
tion (3), which holds even for two mixed states ρ1 and
ρ2, can be used to find the multi-copy Chernoff exponent
as a function of the single-copy error probability for any
copy-by-copy measurement that approaches the unbiased
condition.

We now describe how quantum fidelity can be used
to prove the multi-copy sub-optimality of certain copy-

by-copy measurements. Let P
(1)
ε,min be the single-copy

Helstrom-bound error probability. The lower bound

P
(1)
ε,min ≥

[
1−

√
1− F (ρ1, ρ2)

]
/2 [27] then leads to

ξMeas ≤ −1

2
ln[F (ρ1, ρ2)]

+
G
([

1−
√

1− F (ρ1, ρ2)
]/

2
)

√
F (ρ1, ρ2)

b2 +O
(
b4
)
, (4)

where the bias parameter b can be identified for a given
measurement on a case-by-case basis. Crucially, when
ρ1 = |ψ1〉〈ψ1| and ρ2 is a mixed state—as in our coherent-
state versus thermal-state problem—the quantum Cher-
noff exponent is known to be ξQCB = − ln[F (ρ1, ρ2)] [25],
where the fidelity is given by F (ρ1, ρ2) = 〈ψ1|ρ2|ψ1〉.
Therefore, the inequality in (4) reveals that, for an arbi-
trary pure-state versus mixed-state discrimination task,
any unbiased single-copy measurement will exhibit a
Chernoff exponent that is at most half that of the quan-
tum Chernoff exponent,

ξMeas ≤ ξQCB/2 +O
(
b2
)
. (5)

So, because the Helstrom measurement for coherent-
state versus thermal-state discrimination is unbiased in
the photon-starved n̄R → 0 limit—see Appendix D for
details—the measurement that is quantum-optimal for
single-copy discrimination is strictly sub-optimal in its
multi-copy Chernoff exponent ξHelstrom by at least a fac-
tor of two, as seen in Fig. 3. In Appendix D, we show that
this gap is exactly a factor of four in the photon-starved
limit [15].

The inequality in (4) also reveals the role played by
single-copy bias in the multi-copy Chernoff exponents for
copy-by-copy measurements. Note that the b2 terms in
(4) and (5) will be strictly positive because of the posi-
tivity of the G(x) function. This means that introducing
a small amount of bias in a binary measurement nec-
essarily increases the upper bound on the Chernoff ex-
ponent, allowing the enforced gap with respect to the
quantum Chernoff exponent to possibly decrease to less
than a factor of two. We conclude that, for any pure-
state versus mixed-state discrimination task, bias in the
single-copy conditional error probabilities is necessary for
the Chernoff exponent of any copy-by-copy measurement

to break free from two-fold sub-optimality with respect
to the QCB. For coherent-state versus thermal-state dis-
crimination, a GK measurement that makes copy-by-
copy hard decisions is shown in Appendix D to exhibit
a bias of b = (

√
e − 2)/

√
e ≈ −0.2131 in the photon-

starved limit. Appendix D also shows that the resulting
upper bound on ξGK from (4) has a gap with respect
to the quantum Chernoff exponent of at least a factor of
e/
[
1+(1−

√
e)2
]
≈ 1.9132. The behavior of the GK mea-

surement for coherent-state versus thermal-state discrim-
ination is again confirmed to be nearly equivalent to that
of the Helstrom measurement [21], but its small amount
of bias affords it a small decrease in its sub-optimality
factor. On the other hand, the Kennedy receiver is max-
imally biased with b = 1, and it achieves ξKen = ξQCB

exactly. Indeed, it is easily seen that a maximally-biased
(i.e., |b| = 1) single-copy receiver will achieve the QCB
in multi-copy pure-state versus mixed-state discrimina-
tion. The Chernoff exponents shown in Fig. 3 illustrate
the role of measurement bias as a necessary ingredient
for a receiver to approach the quantum-optimal multi-
copy error decay rate for pure-state versus mixed-state
discrimination.

At this point, it is worthwhile to take a step back and
interpret the behavior of the Kennedy receiver in our
multi-copy coherent-state versus thermal-state problem
by using semiclassical—shot noise plus excess noise—
photodetection theory, as was done in [5] for binary
phase-shift keyed laser communications without back-
ground noise. The Kennedy receiver’s single-use hard de-
cision for discriminating between laser light and chaotic
radiation—the classical analog of discriminating between
coherent and thermal quantum states—is to decide laser-
light if and only if no counts occur. Ordinarily, in
classical communications, a hard-decision receiver gives
sub-optimal performance in the multi-copy case because
hard-decision processing on each copy usually discards in-
formation needed for optimum multi-copy performance.
In other words, hard decisions generally do not contain
all the information needed for optimum multi-copy dis-
crimination’s sufficient statistic. In such cases a soft-
decision single-copy receiver, i.e., one that preserves what
is needed for optimum multi-copy discrimination’s suf-
ficient statistic, will then outperform its hard-decision
counterpart. See Appendix E for a classical example
involving multi-copy discrimination of a signal embed-
ded in additive white Gaussian noise that illustrates the
performance gap between hard-decision and soft-decision
single-copy receivers. In our multi-copy coherent state
versus thermal state problem, however, copy-by-copy
Kennedy reception does preserve the information needed
for optimum multi-copy reception’s sufficient statistic,
viz., whether any of the single-copy decisions were ρth.
Thus the Kennedy receiver is a hard-decision receiver
for multi-copy coherent-state versus thermal-state dis-
crimination whose single-copy decisions are the sufficient
statistic needed for optimum multi-copy performance.

In closing, let us consider how to realize maximally-
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biased single-copy reception for more general pure-state
versus mixed-state scenarios than the coherent-state ver-
sus mixed-state discrimination in which the Kennedy re-
ceiver suffices. Suppose that the pure state |ψ1〉 is a
single-mode Gaussian state. In general, such a state is
a non-zero mean squeezed state. Theoretically, it can be
generated from the vacuum state |0〉 via [28]

|ψ1〉 = Ŝ(z)D̂(α)|0〉, (6)

where D̂(α) is the displacement operator given earlier,
and

Ŝ(z) ≡ exp
[
(z∗â2 − zâ†2)/2

]
, z a complex number,

(7)
is the squeeze operator. In practice, it can be gen-
erated by driving an optical parametric amplifier with
laser light, because D̂(α)|0〉 is the coherent state |α〉,
and parametric amplification can perform the squeez-
ing operation. We know that ξQCB = − ln(〈ψ1|ρ̂2|ψ1〉)
is the Chernoff error exponent for multi-copy discrimi-
nation between |ψ1〉 and ρ̂2. From Eq. (6), it follows

that applying the squeeze operator Ŝ†(z) to the received
light—using a parametric amplifier—transforms the pre-
ceding discrimination problem into the equivalent one of
choosing between |α〉 and Ŝ†(z)ρ̂2Ŝ(z), for which copy-
by-copy Kennedy reception achieves multi-copy quantum
Chernoff exponent.

The preceding analysis is readily extended to the
single-copy pure state being a multi-mode squeezed state.
Such a state can be generated by driving a multi-mode
parametric interaction with multi-mode coherent-state
light. Hence, undoing that multi-mode squeezing opera-
tion reduces the binary state-discrimination task to de-
ciding between a multi-mode coherent state and a multi-
mode mixed state. By appropriate choice of spatio-
temporal-polarization mode, the multi-mode coherent
state in question becomes single mode, hence amenable
to vacuum-or-not measurement by use of a Kennedy re-
ceiver.

We now have a multi-copy QCB-achieving receiver re-
alization for a much broader class of problems than just
the coherent-state versus thermal-state discrimination we
demonstrated experimentally. But is there a way to real-
ize such receivers for arbitrary pure-state versus mixed-
state problems? The answer is perhaps. The key to both
the coherent-state and squeezed-state receivers is their
reducing the discrimination task to a vacuum-or-not mea-
surement by arranging that the pure state is transformed
to the vacuum via a unitary operation, i.e., D̂(−α) for

the coherent-state (Kennedy) receiver and D̂(−α)Ŝ†(z)
for the single-mode squeezed-state (parametric-amplifier-
augmented Kennedy) receiver. Photon detection in
vacuum-or-not reception is then maximally biased, i.e.,
the pure state is detected with probability one. Thus,
if a given pure state can be generated from a unitary Û
via |ψ1〉 = Û |α〉, and we have a nonlinear interaction

that recovers the coherent state |α〉 by realizing Û†|ψ1〉,

then preceding a Kennedy receiver with the Û† real-
ization will yield the desired result. Interestingly, non-
destructive vacuum-or-not reception has already proven
to achieve the Holevo capacity of the bosonic pure-loss
channel [29, 30].
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Appendix A: The quasi photon-number resolving
detector

We did not have a true photon-number resolving detec-
tor for our experiment. Instead, because the photon flux
in our photon-starved operating regime was sufficiently
low, we were able to achieve quasi photon-number resolv-
ing (qPNR) detection by post-processing measurements
made within 1µs time windows using a Perkin-Elmer
Si avalanche photodiode single-photon detector (SPCM-
AQR-14). This detector’s minimum detection time—set
by its dead time—is 50 ns. If the probability that more
than one photon illuminates the detector within a 50 ns
interval is sufficiently low, compared to that for single-
photon illumination, then each detection event can be
regarded as a projection onto the Fock state |1〉. The
number of detection events within the 1µs measurement
window then constitutes qPNR operation.

Appendix B: Impact of sub-unit receiver efficiency
on ξKen

As stated in the main text, our receiver implementa-
tion suffered optical losses attributed to non-idealities in
the optical paths as well as the sub-unit quantum ef-
ficiency of its Si single-photon detector. These effects
resulted in an overall receiver efficiency η = 0.45, which
is why the main text’s comparisons between theory and
experiment were referenced to the average received pho-
ton number n̄R ≡ ηn̄S , where n̄S our source’s average
photon number. Here we quantify the impact of receiver
efficiency on the Kennedy receiver’s error exponent.
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Figure 4 plots the Kennedy receiver’s error exponent,
ξKen, versus n̄S for: ideal reception, η = 1; the η =
0.45 achieved by our equipment; and the η = 0.9 that
could be achieved with a state-of-the-art superconducting
nanowire single-photon detector [31, 32].

FIG. 4. The error exponent achieved by the Kennedy receiver
for three different values of receiver efficiency η. When η =
1 the Kennedy receiver is ideal and achieves the quantum
Chernoff exponent.

Appendix C: Asymptotic Multi-Copy
Sub-Optimality of Optimal Copy-By-Copy

Measurements

Consider multi-copy (M -ary) discrimination between

two arbitrary, equiprobable states ρ⊗M1 and ρ⊗M2 with a
receiver that makes hard-decision measurements on each
copy using a fixed two-element positive operator-valued
measurement (POVM), and then obtains its multi-copy
decision by applying a decision rule to the POVM out-
comes. Here we prove the conditions under which a fun-
damental gap exists between this receiver’s asymptotic
error exponent and that of the optimum multi-copy re-
ceiver, i.e., the quantum Chernoff exponent.

Let the single-copy conditional error probabilities be
p ≡ P (decide ρ2|ρ1 true) and q ≡ P (decide ρ1|ρ2 true),

so that the single-copy error probability is P
(1)
ε = (p +

q)/2. The classical Chernoff exponent for such a mea-
surement is given by ξMeas = − ln(Qsmin

), where Qsmin
=

min0≤s≤1Qs and [23]

Qs = (1− p)sq1−s + ps(1− q)1−s. (C1)

Because Qs is strictly convex [14], it has a unique mini-
mum, which occurs at

smin =
ln
[
(1− q) ln[(1− q)/p]

]
− ln

[
q ln[(1− p)/q]

]
ln
[
(1− p)(1− q)/pq

] .

(C2)
We now parameterize the two single-copy error proba-

bilities by p = (1 + b)P
(1)
ε and q = (1 − b)P (1)

ε , where
b ∈ [−1, 1] quantifies the bias of the single-copy deci-
sion toward one type of conditional error or the other.
Expanding Qsmin

around b = 0, yields the main text’s
Eq. (3) with

G
(
P (1)
ε

)
= exp

(
ln(P̄ε)

2 − ln(P
(1)
ε )2

2
[

ln(P̄ε)− ln(P
(1)
ε )

])( ¯̄P 2
ε + 2 tanh−1( ¯̄Pε)

[( ¯̄Pε + 2(P
(1)
ε )2

)
tanh−1( ¯̄Pε)− ¯̄Pε

]
P̄ 2
ε ln

(
P

(1)
ε /P̄ε

) )
. (C3)

Here, P̄ε ≡ 1 − P
(1)
ε , ¯̄Pε ≡ 1 − 2P

(1)
ε , and G

(
P

(1)
ε

)
is

strictly positive for P
(1)
ε ∈ [0, 1/2].

Next, we write the series of inequalities

Qsmin ≥2

√
P

(1)
ε,min

(
1− P (1)

ε,min

)
−G

(
P

(1)
ε,min

)
b2 +O

(
b4
)

≥
√
F (ρ1, ρ2)−G

([
1−

√
1− F (ρ1, ρ2)

]/
2

)
b2

+O
(
b4
)
. (C4)

The first inequality is the Helstrom bound P
(1)
ε ≥

P
(1)
ε,min =

(
1 − ‖ρ1 − ρ2‖1/2

)
/2 [1], where ‖·‖1 is the op-

erator trace norm, and the second comes from the well-

known result of Fuchs and van de Graaf [27],

1−
√
F (ρ1, ρ2) ≤ ‖ρ1 − ρ2‖1 ≤

√
1− F (ρ1, ρ2), (C5)

with F (ρ1, ρ2) ≡ Tr
[√√

ρ1ρ2
√
ρ1

]2
being the quantum

fidelity between ρ1 and ρ2. Monotonicity is also used in
both inequalities in (C4), as

√
x(1− x) increases mono-

tonically with increasing x ∈ [0, 1/2], and G(x) decreases
monotonically with increasing x ∈ [0.1166, 1/2]. Taylor
expanding the logarithm in ξMeas ≡ − ln(Qsmin

), we get
the main text’s (4). That inequality thus places an up-
per bound on the Chernoff exponent for all multi-copy,
binary quantum-state discrimination tasks that use iden-
tical, hard-decision, copy-by-copy measurements and any
decision rule. We can also lower bound the Chernoff
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exponent for the Helstrom measurement, which always
consists of a two-element POVM and attains the funda-
mental minimum single-copy error probability P

(1)
ε,min [1].

Specifically, using the lower bound from (C5), we find

ξHelstrom ≥− ln
[√

F (ρ1, ρ2)
(

2−
√
F (ρ1, ρ2)

) ]/
2

+O
(
b2
)
. (C6)

We now compare the classical Chernoff exponent for
the Helstrom measurement to the quantum Chernoff ex-
ponent in three general scenarios that span all binary
quantum hypothesis tests. In all three cases, the first in-
equality in (C4) is satisfied with an equality because the
Helstrom measurement always saturates the Helstrom
bound [1]. First, when ρ1 = |ψ1〉〈ψ1| and ρ2 = |ψ2〉〈ψ2|,
the quantum Chernoff exponent is exactly given by [25]

ξQCB = − ln
[
F (ρ1, ρ2)

]
, (C7)

where F (ρ1, ρ2) = |〈ψ1|ψ2〉|2. For this pure-state case,
the Helstrom measurement is comprised of linear projec-
tors onto |v1〉 ≡ (|0〉+ |1〉)/

√
2 and |v2〉 ≡ (|0〉− |1〉)/

√
2,

where |0〉 ≡ (|ψ1〉 + e−iφ|ψ2〉)/
√

2(1 + |〈ψ1|ψ2〉|) and

|1〉 ≡ (|ψ1〉 − e−iφ|ψ2〉)/
√

2(1− |〈ψ1|ψ2〉|), with eiφ ≡
〈ψ1|ψ2〉/|〈ψ1|ψ2〉|, is an orthonormal basis for the Hilbert
space spanned by |ψ1〉 and |ψ2〉. It is then simple to show
that the conditional error probabilities p = |〈v2|ψ1〉|2 and

q = |〈v1|ψ2〉|2 satisfy p = q =
[
1 −

√
1− F (ρ1, ρ2)

]
/2,

hence the pure-state Helstrom measurement is always un-
biased, i.e., it has b = 0. From this observation, along
with the fact that pure states saturate the upper bound
in (C5), the second inequality in (C4) becomes an equal-
ity and all terms but the first on the right hand side
vanish. We are left with ξHelstrom = − ln

[
F (ρ1, ρ2)

]
/2,

confirming that the Helstrom measurement, which is
quantum-optimal for single-copy discrimination, achieves
an asymptotic error exponent that is sub-optimal by ex-
actly a factor of two compared to the asymptotic quan-
tum limit for multi-copy pure-state versus pure-state dis-
crimination [33].

When ρ1 = |ψ1〉〈ψ1| and ρ2 is a mixed state, the quan-
tum Chernoff exponent is again given by Eq. (C7), where
now F (ρ1, ρ2) = |〈ψ1|ρ2|ψ1〉| [25]. The general descrip-
tion of the Helstrom measurement involves the eigenspec-
trum of Λ = ρ1 − ρ2, viz., the POVM elements ΠHelstrom

1

and ΠHelstrom
2 project, respectively, onto the subspaces

associated with Λ’s non-negative and negative eigenval-
ues [1]. In general, the resulting conditional error proba-
bilities, p = Tr[ΠHelstrom

2 ρ1] and q = Tr[ΠHelstrom
1 ρ2], can

be biased (b 6= 0), although we will show that they are ap-
proximately unbiased for the main text’s photon-starved
discrimination task. Still, the second inequality in (C4)
leads to (4) in the main text. From Eq. (C7)—which
holds when at least one state is pure—we then conclude
that any measurement that is unbiased to first order in b
exhibits an asymptotic error exponent that is at least a
factor of two lower than the quantum Chernoff exponent

for pure-state versus mixed-state hypothesis testing, as
in the main text’s (5).

When ρ1 and ρ2 are both mixed states, the main text’s
(4) still holds. Now, the quantum Chernoff exponent
cannot be determined from the fidelity, but it is known
to obey [25]

− ln
[
F (ρ1, ρ2)

]
/2 ≤ ξQCB ≤ − ln

[
F (ρ1, ρ2)

]
. (C8)

To first order in b, the bounded intervals for ξMeas and
ξQCB intersect at exactly the point − ln

[
F (ρ1, ρ2)

]
/2, im-

plying that we cannot show a gap between the quan-
tum and classical Chernoff exponents; rather, we simply
reaffirm that ξMeas ≤ ξQCB, which is the operational
meaning of the quantum Chernoff bound [14, 24]. It
is possible that restricting the states further, e.g., by
considering only Gaussian states [34], or states that are
separated by a vanishingly-small operator perturbation
[35], could lead to a tighter lower bound on the quan-
tum Chernoff exponent and thus reveal a gap between
unbiased measurements and the quantum limit. It is in-
teresting to note that for a specific multi-copy binary
hypothesis test involving two-mode zero-mean Gaussian
states under each hypothesis that emerges in the analy-
sis of a quantum radar for target-detection, the Chernoff
exponent attained by the copy-by-copy Helstrom mea-
surement (followed by a majority-vote decision rule) is
a factor of two lower than the quantum Chernoff expo-
nent [36]. We leave a full investigation of this topic for
future work.

Appendix D: Asymptotic Receiver Performance for
Coherent-State versus Thermal-State Discrimination

In this section we analytically investigate the single-
copy-optimized and multi-copy-optimized asymptotic
error exponents for multi-copy discrimination be-
tween ρ⊗Mcoh and ρ⊗Mth , where ρcoh = |

√
n̄R〉〈

√
n̄R|

is the coherent-state density operator, and ρth =∑∞
n=0

n̄n
R

(n̄R+1)n+1 |n〉〈n|, with {|n〉} being the state space

H’s photon-number basis, is the thermal-state density
operator. As in the main text, we will presume photon-
starved single-copy operation, i.e., n̄R � 1. The single-
copy Kennedy measurement is characterized by POVM
elements ΠKen

th = I − ρcoh and ΠKen
coh = ρcoh, where I

is H’s identity operator. For this measurement we have
that p ≡ P (decide ρcoh | ρth true) = 〈

√
n̄R|ρth|

√
n̄R〉

and q ≡ P (decide ρth | ρcoh true) = 0, implying that
b = 1. Because ρcoh is a pure state, the Chernoff expo-
nent ξKen is guaranteed to equal the quantum Chernoff
exponent ξQCB = − ln

[
F (ρcoh, ρth)

]
[25]. The fidelity

between the two states— easily calculated in the Fock
basis—is F (ρcoh, ρth) = Tr[ρcohρth] = (1 + n̄R)−1 exp

[
−

n̄R/(1 + n̄R)
]
, yielding the main text’s Eq. (2) and its

photon-starved behavior

ξKen = ξQCB = 2n̄R +O
(
n̄2

R

)
. (D1)
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On the other hand, when P
(1)
ε,min > 0.1166, which will

be true when n̄R � 1, we can use the fidelity between
ρcoh and ρth along with (C4) and the first-order expan-
sion ln(1 + x) = x+O(x2) to upper bound the Chernoff
exponent for any copy-by-copy measurement as follows,

ξMeas ≤
[
1 + b2 +O

(
b4
)][
n̄R +O

(
n̄

3/2
R

)]
. (D2)

To analyze the Helstrom measurement in the photon-
starved regime, we approximate ρcoh and ρth as qubit
density operators by truncating them to H’s two-
dimensional subspace spanned by the vacuum and single-
photon Fock states. On this subspace, the Helstrom
measurement projectors ΠHelstrom

coh and ΠHelstrom
th yield

the conditional error probabilities p = 1/2 + O
(
n̄R
)

and q = 1/2 −
√
n̄R + O

(
n̄R
)
. The resulting bias is

b =
√
n̄R +O

(
n̄R
)
, showing that the Helstrom measure-

ment for coherent-state versus thermal-state discrimina-
tion is only weakly biased in the photon-starved regime.
Using (D2), the Chernoff exponent for the Helstrom mea-
surement must obey

ξHelstrom ≤ n̄R +O(n̄
3/2
R ), (D3)

enforcing a sub-optimality of at least a factor of two
compared with the quantum Chernoff exponent. Using
the conditional error probabilities p and q, we find that
Qs = 1 − 2s(1 − s)n̄R + O

(
n̄2
R

)
. So, to first order in

n̄R, we have smin = 1/2, and we find that the Helstrom
measurement’s Chernoff exponent satisfies

ξHelstrom = n̄R/2 +O
(
n̄2

R

)
, (D4)

revealing that its sub-optimality, for photon-starved
coherent-state versus thermal-state discrimination, is ac-
tually a factor of four.

In the photon-starved regime, the GK measurement’s
POVM elements, ΠGK

coh and ΠGK
th , correspond to detect-

ing 0 photons or detecting at least 1 photon, respec-
tively, after the D̂(−β) displacement, where β > 0.
The resulting conditional error probabilities are p ≡
P (decide ρth | ρcoh true) = 1 − exp

[
− (
√
n̄R − β)2

]
and

q ≡ P (decide ρcoh | ρth true) = (1+n̄R)−1 exp
[
−β2/(1+

n̄R)
]

[37]. We found that the displacement that mini-

mizes P
(1)
ε approaches β = 1/

√
2 as n̄R → 0, so we used

this value in our analysis of photon-starved GK recep-
tion. The conditional error probabilities then become

p = 1/
√
e − n̄R/(2

√
e) + O

(
n̄

3/2
R

)
and q = 1 − 1/

√
e −√

2n̄R/e+O
(
n̄

3/2
R

)
, resulting in a nonzero bias given by

b = (
√
e− 2)/

√
e− 2

√
2n̄R/e+O(n̄R). We can use (D2)

to find that the Chernoff exponent of the photon-starved
GK reception is bounded from above by

ξGK ≤
2
[
1 + (1−

√
e)2
]

e
n̄R +O(n̄

3/2
R ). (D5)

Therefore, the error-exponent gap between the optimal
multi-copy measurement and the copy-by-copy GK re-
ceiver must be at least a factor of e/

[
1 + (1 −

√
e)2
]
≈

1.9132 in the photon-starved limit. This gap is almost
identical to the bound we found in (D3) for the Helstrom
measurement, but we find that the bias in the GK mea-
surement allows for the gap to be less than a factor of
two.

Finally, we consider the optimal multi-copy direct-
detection (DD) receiver, i.e., one that uses photon-
number resolving detection of each copy, retaining the
resulting counts for use in the multi-copy maximum-
likelihood decision rule. Directly computing the Cher-
noff exponent [23], we find that Qs = 1 −

(
1 − 2−s +

s/2
)
n̄2
R + O

(
n̄3
R

)
in the photon-starved regime. To low-

est order in n̄R, this expression has its minimum at
smin = log2

[
ln(4)

]
= 0.4712. The resulting Chernoff

exponent is then

ξDD =
1− log2[ln(2e)]

2
n̄2

R +O
(
n̄3

R

)
, (D6)

where the lowest-order term evaluates to 0.0430 n̄2
R. Ta-

ble I summarizes the Chernoff-exponent calculations for
our Kennedy, GK, and DD receivers.

Measurement Chernoff Exponent (ξMeas)

QCB/Kennedy 2n̄R +O(n̄2
R)

Helstrom (upper bound) n̄R +O(n̄
3/2
R )

Helstrom n̄R/2 +O(n̄2
R)

GK (upper bound) 2
[
1 + (1−

√
e)2

]
n̄R/e+O(n̄

3/2
R )

DD (1− log2[ln(2e)])n̄2
R/2 +O

(
n̄3
R

)
TABLE I. Analytical Chernoff exponents and bounds for
photon-starved, M -copy, coherent-state versus thermal-state
discrimination evaluated to lowest nonzero order in the aver-
age photon number n̄R.

Appendix E: Soft-decision versus hard-decision
reception of a multi-copy signal embedded in white

Gaussian noise

To illustrate the performance gap between soft-
decision and hard-decision multi-copy discrimination,
consider the following example from classical communi-
cation. Suppose that a communication receiver collects
the M independent, identically distributed waveforms

rm(t) =

{ √
E/T + w(t), under hypothesis H1,

w(t), under hypothesis H2,
(E1)

for t ∈ Tm,m = 1, 2, . . . ,M . Here: E is the single-
copy transmitted energy under hypothesis H1; Tm is a
collection of non-overlapping duration-T time intervals;
and w(t) is zero-mean white Gaussian noise with spectral
density σ2. Assuming the two hypotheses to be equally
likely, the error probability of optimum multi-copy recep-
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tion is [23] P
(M)
ε = Q(

√
ME/4σ2), where

Q(x) ≡
∫ ∞
x

dy e−y
2/2/
√

2π. (E2)

Using the exponentially-tight upper bound [23], Q(x) ≤
e−x

2/2/2 for x ≥ 0, we see that the multi-copy Chernoff
exponent for this problem, viz., its soft-decision Chernoff
exponent, is

ξsoft = E/8σ2. (E3)

For optimum single-copy reception, we have that the
conditional error probabilities are p ≡ P (decide H2 |
H1 true) = Q(

√
E/4σ2) and q ≡ P (decide H1 |

H2 true) = Q(
√
E/4σ2), showing that this problem is

unbiased, viz., b = 0. The multi-copy error probabil-
ity of copy-by-copy, hard-decision reception therefore has
Chernoff bound

P (M)
ε ≤

[
2

√
P

(1)
ε (1− P (1)

ε )

]M
2

, (E4)

where P
(1)
ε = (p+q)/2 = Q(

√
E/4σ2). In energy-starved

operation, i.e., when E/8σ2 � 1 so that P
(1)
ε is close to

1/2, we have that

Q(
√
E/4σ2)= 1/2−

∫ √E/4σ2

0

dy e−y
2/2/
√

2π

≈ 1/2−
√
E/8πσ2, (E5)

implying that

ξhard= − ln

[
2

√
Q(
√
E/4σ2)[1−Q(

√
E/4σ2)]

]
≈ − ln

(√
1− E/2πσ2

)
≈ E/4πσ2. (E6)

From Eqs. (E3) and (E6) we get

ξsoft/ξhard = π/2, (E7)

for the error-exponent advantage of soft-decision recep-
tion over hard-decision reception.
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