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We show that entangled measurements provide an exponential advantage in sample complexity for
Pauli channel estimation, which is both a fundamental problem and a practically important subroutine
for benchmarking near-term quantum devices. The specific task we consider is to simultaneously learn
all the eigenvalues of an n-qubit Pauli channel to ±ε precision. We give an estimation protocol with
an n-qubit ancilla that succeeds with high probability using only O(n/ε2) copies of the Pauli channel,
while prove that any ancilla-free protocol (possibly with adaptive control and channel concatenation)
would need at least Ω(2n/3) rounds of measurement. We further study the advantages provided by a
small number of ancillas. For the case that a k-qubit ancilla (k ≤ n) is available, we obtain a sample
complexity lower bound of Ω(2(n−k)/3) for any non-concatenating protocol, and a stronger lower
bound of Ω(n2n−k) for any non-adaptive, non-concatenating protocol, which is shown to be tight. We
also show how to apply the ancilla-assisted estimation protocol to a practical quantum benchmarking
task in a noise-resilient and sample-efficient manner, given reasonable noise assumptions. Our results
provide a practically-interesting example for quantum advantages in learning and also bring new
insight for quantum benchmarking.

I. INTRODUCTION

One important challenge for the Noisy Intermediate-
Scale Quantum (NISQ) era [1] is to demonstrate quantum
advantages on near-term devices. Recent works have
made groundbreaking progress towards demonstrating
quantum computational advantages [2–5], which means
quantum computers can efficiently solve certain computa-
tional problems outside the reach of the most advanced
classical computers. However, computation is not the only
aspect quantum computers can achieve meaningful advan-
tages. Learning is yet another possibility, where the basic
question is whether quantum computers (with resources
such as quantum memory and entangled measurements)
can help us learn certain properties of a physical system
more efficiently. This kind of quantum advantages have
been explored by several recent works [6–10] with posi-
tive examples including mixedness testing [6], unitarity
testing [7], Pauli expectation values estimation [8], etc.
However, all these quantum advantages proposals so far ei-
ther focus on artificial problems or have no noise-resilient
implementation. It is thus highly desirable to identify a
practically-interesting learning task that can be used to
demonstrate a robust quantum advantage in the NISQ
era.

A particularly interesting type of learning tasks, known
as quantum benchmarking [11], aims at characterizing the
noise on a quantum device. This is yet another challenge
for the NISQ era which is crucial to building better quan-
tum hardware. Pauli noise is one of the most important
quantum noise models: On the one hand, it can describe
a wide range of incoherent noise, including dephasing,
deplorizing, bit-flip, etc. On the other hand, the recently
developed “randomized compiling” technique [12, 13] can
tailor any noise model in a universal gate set into Pauli
noise. Many benchmarking protocols also rely on twirling

the noise into a Pauli channel before extracting any in-
formation [14–17]. Because of the important role played
by Pauli channels, it is of great interest to study the
estimation of these objects in an efficient and practical
way. Despite a long line of research [18–26], the ultimate
sample complexity for Pauli channel estimation has not
yet been fully characterized.

In this work, we demonstrate an exponential quantum
advantage for Pauli channel estimation. We show that,
for the task of estimating the eigenvalues of an n-qubit
Pauli channel (i.e., Pauli eigenvalues) to additive error
ε in l∞ distance, there exists a measurement protocol
assisted with an n-qubit ancilla that succeeds with high
probability using O(n/ε2) samples, while any ancilla-
free protocol (possibly with adaptive control and channel
concatenation) would require at least Ω(2n/3) rounds of
measurements. As a byproduct, this provides a lower
bound for randomized benchmarking (RB) [15, 27] based
Pauli noise estimation protocol, resolving an open problem
raised in [23].
We then study the sample efficiency advantages pro-

vided by a restricted amount of ancilla. While an ancilla
larger than n qubits will not help further improve the
efficiency, given a k-qubit (0 ≤ k ≤ n) ancilla, we obtain
a lower bound of Ω(2(n−k)/3) for any non-concatenating
protocol, and a stronger lower bound of Ω(n2n−k) for non-
adaptive and non-concatenating protocols. The latter is
shown to be tight by an explicitly constructed protocol
(see Algorithm 1).

Finally, we show how to apply the ancilla-assisted es-
timation protocol in the practical task of benchmarking
Pauli gates. Inspired by RB-type methods [15, 23, 27],
we design a protocol that is both robust against state-
preparation-and-measurement (SPAM) errors and ex-
ponentially more sample-efficient than any ancilla-free
scheme, under reasonable noise assumptions. This proto-
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FIG. 1. Different measurement models on N copies of an unknown channel Λ. The gray triangles denote state preparation and
measurement, and the gray boxes denote some known processing channels. (a) Fully entangled measurement: the most general
way to measure a quantum channel where arbitrarily large entanglement and quantum memory is allowed; (b) Ancilla-assisted
non-concatenating measurement: For each sample of Λ, one input some entangled state and conduct an entangled measurement.
The measurement must be completely destructive, which means no quantum memory is allowed; (c) Ancilla-free concatenating
measurement: One is allowed to sequally apply multiple copies of Λ and some processing channels before applying a single round
of measurement, with no ancilla allowed. Here N ′ denotes the number of measurement rounds which is no larger than the
number of samples; (d) Un-entangled measurement: Neither ancilla nor concatenation is allowed. Additionally, measurement
models (b), (c), (d) can be either adaptive or non-adaptive. If the measurement setting at a certain round depends on previous
measurement outcomes, it is an adaptive protocol. Otherwise, it is non-adaptive.

col can be used to experimentally demonstrate a robust
and practical quantum advantage on NISQ devices.

II. PRELIMINARIES

A. Pauli group and Pauli channels

For an n-qubit Hilbert space, define Pn to be the Pauli
group modulo the non-physical phase. Pn is an Abelian
group isomorphic to Z2n

2 , so we can use elements of Z2n
2 to

uniquely label elements of Pn. Specifically, we view every
a ∈ Z2n

2 as a 2n-bit string a = ax,1az,1ax,2az,2 · · · ax,naz,n

corresponding to the Pauli operator

Pa = ⊗n
k=1i

ax,kaz,kXax,kZaz,k

where the phase is chosen to ensure Hermiticity. We also
define a sympletic inner product 〈·, ·〉 within Z2n

2 as

〈a, b〉 =
n∑

k=1
(ax,kbz,k + az,kbx,k) mod 2.

One can verify that PaPb = (−1)〈a,b〉PbPa [28].
An n-qubit Pauli channel Λ is a quantum channel of

the following form

Λ(·) =
∑

a∈Z2n
2

paPa(·)Pa, (1)

where p := {pa}a is called the Pauli error rates. An
important property of Pauli channels is that their eigen-
operators are exactly the 4n Pauli operators. Thus, an
alternative expression for Λ is

Λ(·) = 1
2n

∑
b∈Z2n

2

λb Tr(Pb(·))Pb, (2)

where λ := {λb}b is called the Pauli eigenvalues [23, 25].
These two sets of parameters, p and λ, are related by the
Walsh-Hadamard transform

λb =
∑

a∈Z2n
2

pa(−1)〈a,b〉, pa = 1
4n

∑
b∈Z2n

2

λb(−1)〈a,b〉. (3)

Both p and λ are physically interesting parameters: The
Pauli error rates are directly related to the error thresh-
olds in fault-tolerant quantum computation [29, 30] and
have been the quantities of interest for many quantum
benchmarking protocols [16, 17, 23–25]; The Pauli eigen-
values quantify how well a Pauli observable is preserved
through the noise channel (hence also known as Pauli
fidelities) and have applications in quantum error miti-
gation (see e.g. [31]). In this work, we will focus on the
estimation for λ.

B. Comparison of different measurement models

To study the advantages provided by different kinds of
quantum resources, we categorize measurement strategies
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into ancilla-assisted vs. ancilla-free, concatenating vs.
non-concatenating, and adaptive vs. non-adaptive mea-
surements. See Fig. 1 and explanations in the captions.
We remark that, recent works on quantum advantages
in property learning [7, 8] have been focusing on the dif-
ference between the full-fledged entangled measurement
Fig. 1(a) and the un-entangled measurement Fig. 1(d).
Here, we introduce two intermediate measurement models
Fig. 1(b) and Fig. 1(c) to separately study the role of an-
cilla and concatenation. There are also practical reasons
to care about those intermediate models. As an exam-
ple, the ancilla-free concatenating measurement model
Fig. 1(c) exactly describes most existing RB protocols
(see e.g. [32]), including the RB-type Pauli channel estima-
tion protocol in Ref. [23]. Indeed, we show that it is the
ancilla that provides an exponential advantage in sample
complexity for Pauli channel estimation, while concatena-
tion does not help improve the sample efficiency. These
results further advances our understanding of quantum
advantages in property learning [6–9].

Regarding these measurement models, one further ques-
tion to ask is whether a restricted amount of ancilla can
provide any sample efficiency advantages. In this work,
we will characterize the advantages provided by a k-qubit
ancilla (0 ≤ k ≤ n) for the non-concatenating measure-
ment models. This kind of quantitative trade-off relations
between quantum resources and sample efficiency has not
been explored in previous works [6–9] and may poten-
tially lead to a new resource-theoretical interpretation of
quantum entanglement [33].

III. UPPER BOUNDS

Our goal is to estimate the Pauli eigenvalues λ of an
n-qubit Pauli channel Λ to ε precision in l∞ distance, i.e.,
estimating each λa to ε additive error.

When an n-qubit ancillary system is available, a simple
protocol is as follows: prepare n Bell pairs, input one
qubit from each pair to the Pauli channel, and apply a
Bell measurement on the output. Since the Pauli channel
can be viewed as randomly applying one of the 4n Pauli
operators Pa with probability pa, and each Pa is mapped
to a unique measurement outcome [34], we are effectively
sampling from the probability distribution p. The sample
of p can then be used to construct an estimator for λ
according to the Walsh-Hadamard transform. As shown in
Theorem 1, this protocol has sample complexity O(n); on
the other hand, when no ancilla is allowed, there is no way
to sample from p and simultaneously estimate all elements
of λ from a single measurement setting. Intuitively, this
is what makes the task difficult.

In the following, we give a unified estimation protocol
using k ancilla qubits for 0 ≤ k ≤ n. Roughly speak-
ing, we divide the n qubits of the Pauli channel into two
disjoint subsystems containing k and n − k qubits, re-
spectively, and deal with them separately. For the first
subsystem, we introduce a k-qubit ancilla, input k Bell

pairs to both systems, and apply a Bell measurement; For
the second subsystem, we will use stabilizer states input
and syndrome measurements to be defined later. The
measurement scheme is depicted in Fig. 2.
A rigorous description of the protocol is given in Al-

gorithm 1. Here, |Ψv〉 represents the Bell states on the
2k-qubit subsystem defined as

|Ψv〉 = Pv ⊗ I |Ψ+〉 , |Ψ+〉 = 1
2k

2k−1∑
i=0
|i〉 |i〉 . (4)

A stabilizer group S on the (n− k)-qubit subsystem is a
group of 2n−k commuting Pauli operators. Mathemati-
cally, S can be viewed as an (n− k)-dimensional subspace
of Z2(n−k)

2 . The stabilizer states |φS
e〉 are the simultane-

ous eigenstates of all Pauli operators in S, which can be
expressed as

|φS
e〉〈φS

e | =
1

2n−k

∑
s∈S

(−1)〈s,e〉Ps, (5)

for e ∈ S⊥ := Z2(n−k)
2 /S known as the error syndrome.

Note that {|φS
e〉}e forms an orthonormal basis for the

(n−k)-qubit subsystem. The stabilizer covering O is a set
of stabilizer groups {Si}i such that every Pauli operator
belongs to at least one Si [23].

Algorithm 1 k-qubit-ancilla-assisted Pauli channel
estimation

Input: (1) N copies of an n-qubit Pauli channel Λ. (2) A
stabilizer covering of Pn−k denoted as O.

Output: Estimates λ̂ for the Pauli eigenvalues of Λ.
1: λ̂a := 0, Na := 0 for all a ∈ Z2n

2 .
2: for S ∈ O do
3: for i = 1 to bN/|O|c do
4: Input |Ψ0〉 ⊗ |φS

0〉 to 1⊗ Λ.
5: Measure in basis {|Ψv〉 ⊗ |φS

e〉} with outcomes v, e.
6: for u ∈ Z2k

2 , s ∈ S do
7: λ̂u⊕s += (−1)〈u,v〉+〈s,e〉, Nu⊕s += 1.
8: λ̂a := λ̂a/Na for all a ∈ Z2n

2 .
9: return λ̂ := {λ̂a}a.

(Note: ⊕ stands for string concatenation.)

Theorem 1. Algorithm 1 gives an estimate λ̂ for the
Pauli eigenvalues λ of any n-qubit Pauli channels that
satisfies

|λ̂a − λa| ≤ ε, ∀a ∈ Z2n
2 (6)

with success probability at least 1− δ, given the following
number of samples

N = O(|O| × nε−2 log δ−1). (7)
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FIG. 2. A single round of measurement for the k-qubit-assisted
Pauli channel estimation protocol in Algorithm 1. Here, a
4-qubit ancilla is used to estimate a 7-qubit Pauli channel.

Proof of Theorem 1. The probability distribution of mea-
surement outcomes at Line 5 in Algorithm 1 can be cal-
culated as

p(v, e) = 1
2n+k

∑
u∈Z2k

2

∑
s∈S

λu⊕s(−1)〈u,v〉(−1)〈s,e〉. (8)

See Appendix A for more details. Therefore, p(v, e) and
λu⊕s are related by the Walsh-Hadamard transform. Tak-
ing the inverse transform, we get

λu⊕s =
∑

v∈Z2k
2

∑
e∈S⊥

p(v, e)(−1)〈u,v〉+〈s,e〉. (9)

Thus, (−1)〈u,v〉+〈s,e〉 is an un-biased estimator of λu⊕s.
According to Hoeffding’s bound, N0 = O(ε−2 log δ−1

0 )
samples are enough to estimate a single λu⊕s to additive
precision ε with success probability at least 1− δ0. Since
every λa is covered by some stabilizer group S ∈ O, a total
sample complexity of N = O(|O|×nε−2 log δ−1) is enough
to estimate all λa to additive error ε simultaneously with
success probability at least 1− δ, by setting δ0 := 4−nδ
and applying the union bound.

Corollary 2. There exists a k-qubit-ancilla-assisted non-
adaptive non-concatenating Pauli channel estimation pro-
tocol achieving |λ̂a − λa| ≤ ε for all a ∈ Z2n

2 with proba-
bility 1− δ using N = O(n2n−kε−2 log δ−1) samples.

Proof. This follows from the existence of a stabilizer cov-
ering for Pn−k of size 2n−k + 1 [35], which in turn follows
from the existence of 2n−k + 1 mutually-unbiased bases
for (n− k)-qubit systems [36].

We remark that, the choice of stabilizer covering in Corol-
lary 2 gives the optimal sample complexity for all non-
adaptive and non-concatenating Pauli eigenvalues estima-
tion protocols, as proved in the next section. From a
practical point of view, it involves (n− k)-qubit stabilizer
states that might be difficult to prepare. A more experi-
mental friendly version is to choose the stabilizer covering

generated by all 3n−k possible Pauli measurements, in
which case only Pauli eigenstates preparation and Pauli
measurements are required (on the (n− k)-qubit subsys-
tem), at the expense of a sub-optimal sample complexity
N = O(n3n−kε−2 log δ−1).

IV. LOWER BOUNDS

We have established a sample complexity upper bound
of O(n2n−k) for non-adaptive non-concatenating k-qubit-
ancilla-assisted Pauli eigenvalues estimation protocols,
which implies a O(n) upper bound for the n-qubit an-
cilla case and a O(n2n) upper bound for the ancilla-free
case. In the following Theorem 3, we provide correspond-
ing lower bounds to justify the exponential advantage
provided by ancilla in this task.

Theorem 3. For any estimation protocol that give an
estimate λ̂ for the Pauli eigenvalues λ of an arbitrary
unknwon n-qubit Pauli channel Λ such that

|λ̂a − λa| ≤ 1/2, ∀a ∈ Z2n
2 (10)

holds with high probability, the number of samples of Λ
must satisfies (recall Fig. 1)

(A) N = Ω(n2n−k), for non-adaptive non-concatenating
k-qubit-ancilla measurements.

(B) N = Ω(2(n−k)/3), for adaptive non-concatenating
k-qubit-ancilla measurements.

(C) N ≥ N ′ = Ω(2n/3), for adaptive concatenating
ancilla-free measurements, where N ′ stands for the
number of measurement rounds.

(D) N = Ω(n), for fully entangled measurements.

Indeed, Theorem 3 and Corollary 2 establishes an expo-
nential advantage of ancilla-assisted measurements over
ancilla-free measurements even with channel concatena-
tion (as in the RB-type Pauli channel estimation proto-
cols in Ref. [23]). Furthermore, for the non-concatenating
cases, we see a roughly matching bounds for all ancilla
size 0 ≤ k ≤ n, which can be interpreted as that a small
number of ancilla (k = o(n)) would not help much in
improving the sample efficiency. We also see from (D)
that the sample complexity of Algorithm 1 with n ancilla
qubits is optimal among all entangled strategies, thus we
need not study protocols with more than n ancilla qubits.

Sketch of the proof. Our proof generalizes the techniques
of Huang et al. [8] in proving lower bounds for learning
Pauli expectation values of quantum states. The key is
to construct the following set of Pauli channels{

Λ(a,s)(·) = 1
2n

(I Tr(·) + sPa Tr(Pa(·)))
}

a,s

, (11)

for a ∈ {1, · · · , 4n − 1} and s = ±1. An estimation pro-
tocol satisfying the assumption of Theorem 3 is able to
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identify an arbitrary element of this set using N copies
of the channel. We can then use information-theoretical
arguments to lower bound N for (A); The bounds in (B)
and (C) are proved by reducing the learning problem to a
channel discrimination problem between the completely-
deplorizing channel and the channels in Eq. (11); To
prove the bound in (D), we first use teleportation stretch-
ing [37, 38] to reduce any estimation protocols on N copies
of the Pauli channel into a POVM measurement on N
copies of their Choi states [39, 40], and then apply the
Holevo’s theorem [41]. See Appendix B for a full proof of
Theorem 3.

V. APPLICATIONS IN QUANTUM
BENCHMARKING

In above, we have described an ancilla-assisted Pauli
channel estimation protocol which provides exponential
advantages over any ancilla-free protocols. Several issues
need to be addressed before applying these protocols to a
practical quantum noise characterization setting. Firstly,
in most cases, we do not have a “black-box” access to the
Pauli noise channels of interest. Instead, they are often
attached with some applied quantum gates. We must
consider the effect of such gates in our protocol. Secondly,
the state preparation and measurement (SPAM) process
would inevitably suffer from error. We would like to
minimize the effect of such errors.
A recent progress by Flammia and Wallman [23] pro-

vides a way to address these issues using ideas from ran-
domized benchmarking (see also [14, 42]). Their task is to
benchmark the Pauli error rates of the Pauli gate set. By
concatenating m+ 1 layers of random Pauli gates, they
effectively obtain the mth power of the Pauli twirl for
the noise channel (plus a single Pauli correction gate at
the end), under a gate-independent, time-stationary, and
Markovian (GTM) noise assumption. They then describe
a protocol to estimate the quantity Aaλ

m
a for all a ∈ Z2n

2 ,
where λ := {λa}a is the Pauli eigenvalues of the noise
channel of interest, and Aa is a SPAM related constant
that is independent of m. By repeating this estimation
procedure for different concatenating length m and apply-
ing a single-exponential fitting of Aaλ

m
a for each a ∈ Z2n

2 ,
one obtained an SPAM-robust estimation for λ.
Importantly, the protocol in [23] is ancilla-free, which

means an exponential number of measurements is nec-
essary to approximate λ to small error in l∞ distance,
according to our Theorem 3 (C). In this section, we ex-
plain how the ancilla-assisted Pauli channel estimation
protocol described above can be extended to this Pauli
gates benchmarking setting, which is able to estimate
λ exponentially more sample-efficiently as well as being
SPAM-robust. The new protocol uses gate concatenation
and single-exponential fitting, and can be viewed as a
generalization of the methods in [23].
Let us start by defining the task and specifying our

assumptions. The task is to characterize the noise of the

n-qubit Pauli gate set. We assume the noise satisfies the
GTM condition, which means every noisy implementation
of Pauli gates can be written as

P̃a = PaΛG, a ∈ Z2n
2 , (12)

for an a-independent quantum channel ΛG. The calli-
graphic Pa is the channel representation of the Pauli gate
Pa, i.e., Pa(·) := Pa(·)Pa. Our specific goal is to estimate
the Pauli eigenvalues of the Pauli twirl of ΛG, which is
defined as

Λ := 1
4n

∑
a∈Z2n

2

PaΛGPa. (13)

In addition, we assume there to be an n-qubit ancillary
systems that can be entangled with the main system. The
ancilla will basically be used as a quantum memory, see
Fig. 3. A crucial assumption we need is that, the noise
on the ancilla is negligible except for the entangled state
preparation and measurement procedure. In other word,
the noise channel on the ancilla is independent of the
concatenating length on the main system. In practice,
this requires (1) the crosstalk between the ancilla and the
main system is negligible when applying gates only on the
main system, and (2) the coherence time of the ancilla
is much longer compared to the time of applying gates
on the main system. We expect that these assumptions
can be satisfied by e.g., a near-term ion trap platform
(see [43, 44]). Ion trap system typically has very long
coherence time; Besides, after preparing the entangled
state, one can shuttle the ions to separate the ancilla
and the main system during gate applications and shuttle
them back for the entangled measurement [44]. This step
can minimize the crosstalk, and the errors introduced
there can be viewed as SPAM error (independent of the
concatenating length) so our protocol will be naturally
robust against them. Techniques like dynamical decou-
pling [45, 46] can also make realistic devices better satisfy
these assumptions.

The benchmarking protocol is described in Algorithm 2.
In the following, we will show the correctness and give a
rough analysis on the sample efficiency. A more rigorous
analysis on the sample complexity, optimization of the
concatenating length M and the number of repetitions
R, and other aspects of the protocol are left for future
research. We also remark that, for simplicity, we focus
on the case where k = n ancillary qubits are available.
For a restricted number of ancillary qubits 0 < k < n,
one can also design a similar benchmarking protocol by
hybridizing the k = n protocol here and the k = 0 protocol
in [23]. We omit the details about this hybrid protocol.
Theorem 4. Given the aforementioned two assumptions
about the noise model, the estimator given at Line 6 in
Algorithm 2 satisfies

E
[
F̂ (k)

a (m)
]

= Aaλ
m
a , ∀a ∈ Z2n

2 , (14)

where Aa, defined in Eq. (C1), is a noise-dependent con-
stant that is independent of m.
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Algorithm 2 SPAM-robust ancilla-assisted Pauli gate benchmarking
Input: (1) List of concatenating length M. (2) Number of Repetitions R. (3) Noisy implementation of Pauli gates P̃a = PaΛG.
Output: SPAM-robust estimates λ̂ for the Pauli eigenvalues of Λ as defined in Eq. (13).

1: for m ∈ M do
2: for k = 1 to R do
3: Prepare the (noisy) Bell state |Ψ̃+〉 between the ancillary system and the main system.
4: Sequentially apply m+ 1 random (noisy) n-qubit Pauli gates {P̃at}m

t=0 to the main system.
5: Apply the (noisy) Bell measurement {|Ψ̃v〉}v with outcome v.
6: F̂

(k)
a (m) := (−1)〈a,v〉+

∑m

t=0
〈a,at〉 for all a ∈ Z2n

2 .
7: for a ∈ Z2n

2 do
8: F̂a(m) := 1

R

∑R

k=1 F̂
(k)
a (m).

9: Fit F̂a(m) to the single-exponential decay model Âaλ̂
m
a .

10: return λ̂ := {λ̂a}a.

FIG. 3. A single round of measurement for the n-qubit ancilla-
assisted Pauli gate benchmarking protocol. Here Ψ̃0 and {Ψ̃v}
stands for the (noisy) Bell states/measurements. {P̃at}m

t=0
stands for a sequence of random (noisy) Pauli gates to be
characterized.

The proof is given in Appendix C. Theorem 4 guaran-
tees that, given sufficiently many concatenating length m
and circuit samples R, Algorithm 2 can indeed converge
to the true Pauli eigenvalues λ, in a SPAM-error resilient
manner. Since F̂ (k)

a (m) takes value from {1,−1}, Hoeffd-
ing’s bound says that a constant number of samples is
enough to estimate its expectation to constant additive
error with 1− o(1) success probability, for any specific a
and m. By the union bound, O(n) samples are enough
for this to hold for all a ∈ Z2n

2 simultaneously with high
probability. If we further assume that the noise is weak, so
that both Aa and λa are lower bounded by some constant,
then a constant number of m and the above-achieved
constant additive precision is enough for a small final
estimation error for λ in l∞ distance, which implies a
total sample complexity of O(n). Therefore, Algorithm 2
is indeed exponentially more sample-efficient than any
ancilla-free protocol [23] for this task. A more rigorous
analysis about the sample complexity advantages under
realistic SPAM noise models is left for future study.

VI. SUMMARY AND OUTLOOK

In this work, we show a provable quantum advan-
tage provided by entangled measurements for a learning

task [7, 8] of Pauli channel estimation, which is a prac-
tically useful tool urgently needed to characterize large
quantum systems. For quantum benchmarking, our re-
sults provide fundamental efficiency limits for Pauli noise
estimation, which partly solve an open problem raised
in [23]. We also describe how the ancilla-assisted Pauli
channel estimation protocol can be applied to a practi-
cal quantum benchmarking tasks in a noise-resilient and
sample-efficient manner. Our results provide a promising
tool for both characterizing near-term quantum devices
and demonstrating quantum advantages in those systems

Several interesting questions remain to be explored in
the future, including exploring the quantum advantages in
learning other properties of Pauli channels (e.g., the Pauli
error rates [47]); analyzing the sample complexity for
learning Pauli channels with more specific structures; and
analyzing the experimental performance of our algorithms
in comparison to other ancilla-free protocols [13, 16].
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Appendix A: Details about the proof of Theorem 1

In this section, we provide details in the derivation of Eq. (8), i.e., the distribution of measurement outcomes at
Line 5 in Algorithm 1. For clarity, denote the k-qubit Hilbert space of the ancilla as A, and divide the n-qubit Hilbert
space of the main system into a k-qubit subspace B and an (n−k)-qubit subspace C. The input state to the channel is
|Ψ0〉AB ⊗|φS

0〉C , and the measurement basis is {|Ψv〉AB ⊗|φS
e〉C}v,e. Here, |Ψv〉AB are Bell states and can be expressed

as

|Ψv〉〈Ψv| := (Pv ⊗ I)|Ψ+〉〈Ψ+|(Pv ⊗ I)

= 1
4k

∑
u∈Z2k

2

PvPuPv ⊗ PT
u

= 1
4k

∑
u∈Z2k

2

(−1)〈u,v〉Pu ⊗ PT
u ,

(A1)

And the stabilizer state |φS
e〉C is defined as

|φS
e〉〈φS

e | :=
1

2n−k

∑
s∈S

(−1)〈s,e〉Ps, (A2)

for e ∈ S⊥ := Z2(n−k)
2 /S. We remark that, the stabilizer state is well-defined for all e ∈ Z2(n−k)

2 , but |φS
a〉 and |φS

b〉
represent the same state if a+ b ∈ S (bitwise modulo 2 sum), so we only need to consider the quotient space of Z2(n−k)

2
over S. When calculating the sympletic inner product 〈s, e〉, one should understand e as an arbitrary representative of
the coset it stands for.

Therefore, the measurement outcome distribution can be calculated as

p(v, e) = Tr
(
(|Ψv〉〈Ψv|AB ⊗ |φ

S
e〉〈φS

e |C)1A ⊗ ΛBC(|Ψ0〉〈Ψ0|AB ⊗ |φ
S
0〉〈φS

0|C)
)

= 1
4n+k

Tr

 ∑
u,u′∈Z2k

2

∑
s,s′∈S

λu′⊕s′

(
(−1)〈u,v〉Pu ⊗ PT

u ⊗ (−1)〈s,e〉Ps

)
ABC

(
Pu′ ⊗ PT

u′ ⊗ Ps′
)

ABC


= 1

2n+k

∑
u∈Z2k

2

∑
s∈S

λu⊕s(−1)〈u,v〉(−1)〈s,e〉,

(A3)

which is exactly Eq. (8) in the main text. It is then obvious that p(v, e) and λu⊕s are related by the Walsh-Hadamard
transform (see [23, Lemma 4]).

Appendix B: Proof of the lower bounds

1. A tight lower bound for non-adaptive and non-concatenating strategies

In this section, we prove a matching lower bound of Ω(n2n−k) for all non-adaptive and non-concatenating k-qubit
ancilla-assisted Pauli channel estimation protocols, which include the ancilla-free strategies (k = 0) and n-qubit ancilla
assisted strategies (k = n) as two special cases. Recall that, by a non-adaptive and non-concatenating protocol we
mean that, for each sample of the Pauli channel Λ, we prepare an n+ k qubits state, input it to Λ⊗ 1, and apply a
POVM measurement on the joint output state. The input state and measurement setting for the ith sample is not
allowed to depend on previous measurement outcomes, nor do we allow concatenating multiple samples of Λ in a single
round of measurement (which is used in RB-type Pauli error estimation protocols [23]).

Theorem 5. For any non-adaptive, non-concatenating k-qubit ancilla-assisted protocols that give an estimate λ̂ of the
Pauli eigenvalues λ of an arbitrary unknown n-qubit Pauli channel such that

|λ̂a − λa| <
1
2 , ∀a ∈ Z2n

2 (B1)

holds with high probability, the number of samples of Λ required is at least Ω(n2n−k).
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Our proof techniques generalize the information-theoretical arguments by Huang et al. [8], which in turn stem
from previous work on sample complexity lower bounds for quantum tomography [49–51]. Consider a communication
protocol between Alice and Bob where their share the following “codebook”:

(a, s) ∈ {1, · · · , 4n − 1} × {±1} −→ Λ(a,s)(·) = 1
2n

(I Tr(·) + sPa Tr(Pa(·))) . (B2)

Now, Alice picks at uniform random one out of the 2(4n − 1) possible pairs of (a, s) and then send N copies of
the channel Λ(a,s) to Bob. If there exists a Pauli channel estimation protocol using N samples and satisfying the
assumption of Theorem 5, Bob can use that protocol to uniquely determine Alice’s choice of (a, s) with high probability,
since the Pauli eigenvalues of any Λ(a,s) only take values from {−1, 0,+1}. Suppose Bob’s input state and POVM
outcome for the ith sample is {ρi, Ei}. According to Fano’s inequality, the mutual information between the random
variable pair (a, s) and Bob’s measurement results has the following lower bound

I ((a, s) : {ρ1, E1}, ..., {ρN , EN}) ≥ Ω(log(2(4n − 1))) = Ω(n). (B3)

We also know by assumption that the measurement outcomes {ρi, Ei} are independent from each other, conditioned
on (a, s). The chain rule of mutual information then gives that

N∑
i=1

I ((a, s), {ρi, Ei}) = I((a, s) : {ρ1, E1}, ..., {ρN , EN}) ≥ Ω(n). (B4)

We will show that I ((a, s) : {ρi, Ei}) ≤ O(2k−n) in the following lemma. This would then give us the desired sample
complexity lower bound N ≥ Ω(n2n−k), which completes the proof of Theorem 5.

Lemma 6. I ((a, s) : {ρi, Ei}) ≤
2k

2n − 1 .

Proof. First notice that it suffices to consider pure state input and rank-1 POVM measurements. The latter comes from
the fact that every POVM measurement can be viewed as a coarse-graining of some rank-1 POVM measurement. To
see the former, consider the underlying distribution p((a, s), {ρi, Ei}) = p(a, s)p({Ei, ρi}|a, s). The mutual information
I((a, s) : {ρi, Ei}) is convex about p({Ei, ρi}|a, s) when fixing p(a, s) (see e.g., [52, Theorem 2.7.4]), thus using mixed
state input can never provide a larger mutual information.
Thanks to this observation, we can without loss of generality let the input state be |A〉 and let the POVM

measurement be {wj2n+k|Bj〉〈Bj |}j , where |A〉 , |Bj〉 ∈ C2n×2k are unit vectors, and
∑

j wj = 1 by normalization. We
also abuse notations a little bit to let A and Bj denote the 2n × 2k matrices that satisfy

|A〉 =
2n−1∑
p=0

2k−1∑
q=0
〈p|A|q〉 |p〉 |q〉 , |Bj〉 =

2n−1∑
p=0

2k−1∑
q=0
〈p|Bj |q〉 |p〉 |q〉 , (B5)

where {|p〉} and {|q〉} are computational basis states. The normalization condition of |A〉 and |Bj〉 is equivalent to

Tr(A†A) = Tr(B†jBj) = 1. (B6)

We also define Cj := BjA
† which is a 2n × 2n matrix of rank less or equal to 2k.

The mutual information between (a, s) and a single round of measurement outcome j can be upper bounded as

I((a, s) : j) = H(j)−H(j|a, s)

= −
∑

j

(
E

(a,s)
p(j|a, s)

)
log
(

E
(a,s)

p(j|a, s)
)

+ E
(a,s)

∑
j

p(j|a, s) log p(j|a, s)

≤
∑

j

E(a,s)[p(j|a, s)2]− E(a,s)[p(j|a, s)]2

E(a,s)[p(j|a, s)]
,

(B7)

where the inequality follows from the fact that log(x) ≤ log(y) + x−y
y in which we take x := p(j|a, s) and y :=

E(a,s)[p(j|a, s)].
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The conditional probability p(j|a, s) can be calculated as

p(j|a, s) = wj2n+k 〈Bj |Λ(a,s) ⊗ 1(|A〉〈A|) |Bj〉

= wj

4k∑
b=0

(〈Bj |I ⊗ Pb|Bj〉〈A|I ⊗ Pb|A〉+ s〈Bj |Pa ⊗ Pb|Bj〉〈A|Pa ⊗ Pb|A〉)

= wj

4k∑
b=0

(
Tr(B†jBjP

T
b ) Tr(A†APT

b ) + sTr(B†jPaBjP
T
b ) Tr(A†PaAP

T
b )
)

= wj2k
(

Tr(B†jBjA
†A) + sTr(B†jPaBjA

†PaA)
)

= wj2k
(

Tr(C†jCj) + sTr(PaCjPaC
†
j )
)
,

(B8)

where we expand the identity channel as 1(·) = 2−k
∑4k

b=0 Pb Tr(Pb(·)) in the second line, and use the fact 2−k
∑4k

b=0 Pb⊗
Pb equals to the swap operator in the fourth line.

The average value and second moment of p(j|a, s) according to the distribution of (a, s) are

E
(a,s)

[p(j|a, s)] = wj2k Tr(C†jCj),

E
(a,s)

[p(j|a, s)2] = w2
j 4k

(
Tr2(C†jCj) + 1

4n − 1

4n−1∑
a=1

Tr2(PaCjPaC
†
j )
)
.

(B9)

Hence we have the following bound for the mutual information

I ((a, s) : j) ≤
∑

j

wj2k Tr(C†jCj)
(

1
4n − 1

4n−1∑
a=1

Tr(PaC
†
jPaCj)2

Tr(C†jCj)2

)
. (B10)

Now we further calculate the R.H.S. of the above inequality. Let M = PaC
†
jPaCj . Notice that

rank(M) ≤ rank(Cj) ≤ 2k, (B11)

which means there exists a rank-2k projector Π such that Tr(M) = Tr(MΠ). According to Cauchy-Schwarz inequality,

Tr(M)2 = Tr(MΠ)2

≤ Tr(MM†) Tr(Π†Π)
= Tr(CjC

†
jPaCjC

†
jPa)× 2k

(B12)

Substitute this into Eq. (B10),

I((a, s) : j) ≤
∑

j

wj2k Tr(C†jCj)
(

2k

4n − 1

4n−1∑
a=1

Tr(CjC
†
jPaCjC

†
jPa)

Tr(C†jCj)2

)

=
∑

j

wj2k Tr(C†jCj)
(

2k

4n − 1 ×
∑4n−1

a=0 Tr(CjC
†
jPaCjC

†
jPa)− Tr(CjC

†
jCjC

†
j )

Tr(C†jCj)2

)

=
∑

j

wj2k Tr(C†jCj)
(

2k

4n − 1 ×
2n Tr(C†jCj)2 − Tr(CjC

†
jCjC

†
j )

Tr(C†jCj)2

)

≤
∑

j

wj2k Tr(C†jCj) 2k

2n − 1

= 2k

2n − 1 ,

(B13)
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where the third line uses the following formula of Pauli twirling,

1
4n

4n∑
a=0

PaXPa = 1
2n

Tr(X)I, (B14)

and the last line follows from the fact that∑
j

wj2k Tr(C†jCj) =
∑

j

E
(a,s)

[p(j|a, s)] = 1. (B15)

This completes the proof of Lemma 6.

2. A lower bound for adaptive but non-concatenating strategies

In this section, we prove a (perhaps loose) lower bound of Ω(2(n−k)/3) for all adaptive and non-concatenating k-qubit
ancilla-assisted Pauli channel estimation protocols, as stated in the following theorem.

Theorem 7. For any adaptive, non-concatenating k-qubit ancilla-assisted protocols that give an estimate λ̂ of the
Pauli eigenvalues λ of an arbitrary unknown n-qubit Pauli channel such that

|λ̂a − λa| <
1
2 , ∀a ∈ Z2n

2 (B16)

holds with high probability, the number of samples of Λ required is at least Ω(2(n−k)/3).

Our proof techniques generalize the methods of Huang et al. [8] for proving adaptive sample complexity lower bounds
for Pauli expectation values estimation of unknown quantum states. Consider the following 4n possible Pauli channels

Λdep(·) = 1
2n
I Tr(·),

Λa(·) = 1
2n

(I Tr(·) + Pa Tr(Pa(·))) , ∀a ∈ {1, · · · , 4n − 1}.
(B17)

Here Λdep is known as the completely deplorizing channel. If there exists an Pauli channel estimation protocol satisfying
the requirement of Theorem 7, one can unambiguously identify each one of the 4n possible Pauli channels appearing
above with high probability, given sufficient number of samples of Λ. This in turn implies that one should be able to
distinguish the following two equal-probable hypotheses with high success probability.

1. Given N copies of Λ = Λdep.

2. Given N copies of Λ = Λa for a uniformly-randomly picked a ∈ {1, · · · , 4n − 1}.

For an adaptive but non-concatenating protocol, one has to choose an 2n × 2k dimensional input state and a POVM
measurement for the ith sample of Λ, where the choice may depend on previous measurement outcomes. Denote the
measurement outcome of the ith round as oi. We explicitly write the state and measurement at the ith round as
ρo<i and {Eo<i

j }j to emphasize their dependence on o<i := [o1, ..., oi−1].Denote the measurement outcomes among all
the N samples as o1:N := [o1, · · · , oN ]. The probability distribution of o1:N under the above two hypothesis can be
expressed as 

Hypothesis 1: p1(o1:N ) =
N∏

i=1
Tr
(
Eo<i

oi
Λdep ⊗ 1(ρo<i)

)
,

Hypothesis 2: p2(o1:N ) = E
a6=0

N∏
i=1

Tr
(
Eo<i

oi
Λa ⊗ 1(ρo<i)

)
.

(B18)

The ability to distinguish these two hypotheses is equivalent to the ability to distinguish p1 from p2. The maximal
success probability of distinguishing two probability distributions is given by 1

2 (1 + TV(p1, p2)) where TV stands for
the total variance distance defined as follows

TV(p1, p2) :=
∑

o1:N s.t.
p1(o1:N )≥p2(o1:N )

(p1(o1:N )− p2(o1:N )). (B19)
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We will show in the following Lemma that TV(p1, p2) = O(N2(k−n)/3), which immediately implies that one must
have N = Ω(2(n−k)/3) in order to obtain high success probability in distinguishing p1 from p2. This then completes
the proof of Theorem 7.

Lemma 8. TV(p1, p2) ≤ 2N
(

2k

2n − 1

)1/3

.

Proof. First notice that it suffices to consider pure state input and rank-1 POVM measurement. For the former, the
probability distribution obtained from mixed state input can be viewed as a convex combination of distributions
obtained from pure state input. Thanks to the joint convexity, mixed state input can not yield a larger total variance
distance; For the latter, every POVM measurement can be viewed as a coarse-graining of some rank-1 POVM
measurement. Because of the data-processing property, this coarse-graining would not yield a larger total variance
distance.

In light of this observation, we can without loss of generality let the input state at the ith round be |Ao<i〉 and let
the POVM measurement be {wo<i

oi 2n+k|Bo<i
oi 〉〈B

o<i
oi |}oi , conditioned on previous measurement outcomes o<i, where

|Ao<i〉 , |Bo<i
oi 〉 ∈ C2n×2k are unit vectors, and

∑
oi
wo<i

oi = 1 by normalization. We also introduce the two 2n × 2k

matrices Ao<i , Bo<i
oi defined similarly as in Eq. (B5), and define Co<i

oi
:= Bo<i

oi Ao<i† which is a 2n × 2n matrix of rank
less or equal to 2k. With the above definitions, one can verify that p1 and p2 can be expressed as follows

p1(o1:N ) =
N∏

i=1
wo<i

oi
2n+k 〈Bo<i

oi
|Λdep ⊗ 1 ((|Ao<i〉〈Ao<i |) |Bo<i

oi
〉 ,

=
N∏

i=1
wo<i

oi
2k Tr

(
Co<i†

oi
Co<i

oi

)
p2(o1:N ) = E

a6=0

N∏
i=1

wo<i
oi

2n+k 〈Bo<i
oi
|Λa ⊗ 1 ((|Ao<i〉〈Ao<i |) |Bo<i

oi
〉

= E
a 6=0

N∏
i=1

wo<i
oi

2k
(
Tr
(
Co<i†

oi
Co<i

oi

)
+ Tr

(
Co<i†

oi
PaC

o<i
oi

Pa

))
.

(B20)

The total variance between p1 and p2 can then be bounded as

TV(p1, p2) = E
a6=0

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

(
N∏

i=1
wo<i

oi
2k Tr

(
Co<i†

oi
Co<i

oi

))1−
N∏

i=1

1 +
Tr
(
Co<i†

oi PaC
o<i
oi Pa

)
Tr
(
Co<i†

oi Co<i
oi

)


= E
a6=0

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )

1−
N∏

i=1

1 +
Tr
(
Co<i†

oi PaC
o<i
oi Pa

)
Tr
(
Co<i†

oi Co<i
oi

)
 ,

(B21)

In order to bound the R.H.S., we make use of a technique from Huang et al. [8]. Let C denote an arbitrary 2n × 2n

complex matrix of rank no more than 2k, consider the following subset of n-qubit Pauli operators

G :=
{
a ∈ {1, · · · , 4n − 1} :

∣∣∣∣∣Tr
(
C†PaCPa

)
Tr (C†C)

∣∣∣∣∣ ≤
(

2k

2n − 1

)1/3}
. (B22)

We claim that the size of G satisfies

|G| ≥

(
1−

(
2k

2n − 1

)1/3)
(4n − 1), (B23)

which can be shown by contradiction: Suppose this does not hold, we would have
4n−1∑
a=1

(
Tr
(
C†PaCPa

)
Tr (C†C)

)2

≥
(

2k

2n − 1

)2/3

× (4n − 1− |G|)

>

(
2k

2n − 1

)2/3

×
(

2k

2n − 1

)1/3

(4n − 1)

= 2k(2n + 1).

(B24)
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However, the L.H.S. of the above can be upper bounded as

4n−1∑
a=1

(
Tr
(
C†PaCPa

)
Tr (C†C)

)2

≤
4n−1∑
a=1

2k Tr(CC†PaCC
†Pa)

Tr2 (C†C)

= 2k 2n Tr2 (C†C)− Tr(C†CC†C)
Tr2 (C†C)

≤ 2k2n,

(B25)

where the first inequality follows from Cauchy-Schwarz (see Eq. (B12)), and the first equality evaluates the Pauli
twirling (see Eq. (B13)). This leads to contradition, and hence proves the desired lower bound on |G|.

Now, we define another subset of n-qubit Pauli operators, conditioned on the measurement outcomes o1:N , as follows

G(o1:N ) :=

a ∈ {1, · · · , 4n − 1} :

∣∣∣∣∣∣
Tr
(
Co<i†

oi PaC
o<i
oi Pa

)
Tr
(
Co<i†

oi Co<i
oi

)
∣∣∣∣∣∣ ≤

(
2k

2n − 1

)1/3

, ∀i = 1, · · · , N

 . (B26)

By applying a “union bound” on Eq. (B22), we immediately have the following lower bound on the size of G(o1:N ):

∣∣∣G(o1:N )
∣∣∣ ≥ (1−N

(
2k

2n − 1

)1/3)
(4n − 1). (B27)

We are now ready to upper bound TV(p1, p2) from Eq. (B21). The strategy is to divide the sum over all Pauli
operators into G(o1:N ) and Pn\G(o1:N ). All terms within the former group are small thanks to the definition of G(o1:N );
Terms within the latter group could be large, but the total number of them are small. Combining these two gives a
pretty good upper bound on TV(p1, p2). In math,

TV(p1, p2) = 1
4n − 1

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )

 ∑
a∈G(o1:N )

+
∑

a∈Z2n
2 \G

(o1:N ),
a 6=0


1−

N∏
i=1

1 +
Tr
(
Co<i†

oi PaC
o<i
oi Pa

)
Tr
(
Co<i†

oi Co<i
oi

)


≤ 1
4n − 1

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )

∣∣∣G(o1:N )
∣∣∣×
1−

(
1−

(
2k

2n − 1

)1/3)N
+

(
4n − 1−

∣∣∣G(o1:N )
∣∣∣)


≤
∑

o1:N s.t.
p1(o1:N )≥p2(o1:N )

p1(o1:N )
(
N

(
2k

2n − 1

)1/3

+N

(
2k

2n − 1

)1/3)

≤ 2N
(

2k

2n − 1

)1/3

.

(B28)
The first inequality uses an additional fact that

∣∣Tr(C†PaCPa)
∣∣ / ∣∣Tr(C†C)

∣∣ ≤ 1 to bound the second sum, which
follows from the Cauchy-Schwarz inequality. The second inequality uses the bounds

∣∣G(o1:N )
∣∣ ≤ 4n − 1 for the first

sum and Eq. (B27) for the second sum, as well as the fact that 1 − (1 − x)N ≤ Nx for all 0 ≤ x ≤ 1. (Note that
2k/(2n − 1) ≤ 1 only if k ≤ n− 1, but our targeted upper bound trivially holds for k = n.) This completes the proof of
Lemma 8.

3. A lower bound for the most general ancilla-free strategies

The lower bounds in the previous sections work for non-concatenating strategies, where one is not allowed to
concatenate (or, coherently access) multiple copies of the unknwon channel before doing a single measurement. The
concatenating strategies, as depicted in Fig. 1, are however a natural apparatus for many randomized benchmarking
protocols, where one effectively concatenate a varying number of noise channels in order to measure a series of
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exponentially-decaying values, and then extract the parameters of interest via fitting the decay rate. The original
purpose of such concatenation in these protocols is to eliminate the effect of state-preparation-and-measurement
(SPAM) error. Here, we want to understand whether concatenating strategies also provide a sample complexity
advantage. The short answer is no. We will present a sample complexity lower bound of Ω(2n/3) for the most powerful
(adaptive, concatenating) ancilla-free (k = 0) Pauli channel estimation schemes. This result justifies our claim that
ancillary systems are indeed indispensable to overcome the exponential barrier in sample complexity.

To start with, we give a rigorous definition of the most general ancilla-free strategies that we are going to study

Definition 1. Let Λ be an unknwon n-qubit Pauli channel. An adaptive, concatenating, ancilla-free (k = 0) estimation
protocol is specified by the following parameters. Let N denote the total rounds of measurements. For the ith round, let
ρo<i denote the input state, {Eo<i

oi }oi
denote the POVM measurement, Mo<i denote the length of concatenation, and

{Co<i

k }Mo<i

k=1 denote a set of processing channels. The ith measurement outcome is given by oi with probability

Pr(oi|o<i) = Tr
[
Eo<i

oi
Λ(Co<i

Mo<i−1(· · · Co<i

2 (Λ(Co<i

1 (Λ(ρo<i)))) · · · ))
]
. (B29)

All the superscript o<i := [o1, · · · , oi−1] are used to emphasize the dependence on previous measurement outcomes. The
protocol should produce an estimate of Λ via classical processing on the measurement outcomes o1:N .

The problem we are interested in is still approximating the Pauli eigenvalues λ to small error in l∞ distance.
Note that, the parameter N in the above definition is not exactly the sample complexity but is the total number of
measurements conducted. Since one is allowed to concatenate multiple copies of Λ in a single measurement, N is a
lower bound for the sample complexity of Λ. Our result is summarized in the following theorem.

Theorem 9. For any adaptive, concatenating, ancilla-free (k = 0) protocols that gives an estimate λ̂ of the Pauli
eigenvalues λ of an arbitrary unknown n-qubit Pauli channel Λ such that

|λ̂a − λa| <
1
2 , ∀a ∈ Z2n

2 (B30)

holds with high probability, the rounds of measurements N (and hence the number of samples of Λ) required is at least
Ω(2n/3).

Proof. The proof methods are similar to the proof of Theorem 7. Define the following Pauli channels.
Λdep(·) = 1

2n
I Tr(·),

Λa(·) = 1
2n

(I Tr(·) + Pa Tr(Pa(·))) , ∀a ∈ {1, · · · , 4n − 1}.
(B31)

We consider the problem of distinguishing the following two equal-probable hypotheses

1. Given N copies of Λ = Λdep.

2. Given N copies of Λ = Λa for a uniformly-randomly picked a ∈ {1, · · · , 4n − 1}.

An estimation protocol satisfying our assumptions should be able to distinguish these two hypotheses with high
probability. Let the probability distribution of the measurement outcomes o1:N under these two hypotheses be p1 and
p2, respectively. The total variance distance TV(p1, p2) must be at least Ω(1) for the distinguishing task to succeed
with high probability. We will show in the following that TV(p1, p2) = O(N2−n/3), which then gives the claimed lower
bound of N = Ω(2n/3).

To start with, based on the same argument as in the proof of Lemma 8, it suffices to consider pure state input and rank-
1 POVM measurements, so we replace ρo<i and {Eo<i

oi }oi in Definition 1 with |Ao<i〉〈Ao<i | and {wo<i
oi 2n|Bo<i〉〈Bo<i |}oi

respectively, where |Ao<i〉 , |Bo<i
oi 〉 ∈ C2n are unit vectors, and

∑
oi
wo<i

oi = 1 by normalization.
Next, we calculate the distribution of o1:N under the two different hypotheses. The expression for p1 can be easily

obtained, as Λdep is simply the completely deplorizing channel. We have

p1(o1:N ) =
N∏

i=1
wo<i

oi
2n 〈Bo<i

oi
|Λdep(Co<i

Mo<i−1(· · · Co<i

2 (Λdep(Co<i

1 (Λdep(|Ao<i〉〈Ao<i |)))) · · · )) |Bo<i
oi
〉

=
N∏

i=1
wo<i

oi
.

(B32)
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The expression for p2 is more complicated. We first define the following recursive expression

ξo<i
a [m] :=

{2−n Tr (PaCm−1(I + Paξ
o<i
a [m− 1])) , 2 ≤ m ≤Mo<i ,

〈Ao<i |Pa |Ao<i〉 , m = 1.
(B33)

The expression for p2 can then be calculated as follows

p2(o1:N ) = E
a6=0

N∏
i=1

wo<i
oi

2n 〈Bo<i
oi
|Λa(Co<i

Mo<i−1(· · · Co<i

2 (Λa(Co<i

1 (Λa(|Ao<i〉〈Ao<i |)))) · · · )) |Bo<i
oi
〉

= E
a 6=0

N∏
i=1

wo<i
oi
〈Bo<i

oi
|Λa(Co<i

Mo<i−1(· · · Co<i

2 (Λa(Co<i

1 (I + Paξ
o<i
a [1]))) · · · )) |Bo<i

oi
〉

= E
a 6=0

N∏
i=1

wo<i
oi
〈Bo<i

oi
|Λa(Co<i

Mo<i−1(· · · Co<i

2 (I + 2−nPa Tr(PaCo<i

1 (I + Paξ
o<i
a [1])) · · · )) |Bo<i

oi
〉

= E
a 6=0

N∏
i=1

wo<i
oi
〈Bo<i

oi
|Λa(Co<i

Mo<i−1(· · · Co<i

2 (I + Paξ
o<i
a [2]) · · · )) |Bo<i

oi
〉

= · · ·

= E
a 6=0

N∏
i=1

wo<i
oi
〈Bo<i

oi
| I + Paξ

o<i
a [Mo<i ] |Bo<i

oi
〉

= E
a 6=0

N∏
i=1

wo<i
oi

(1 + ξo<i
a [Mo<i ] 〈Bo<i

oi
|Pa |Bo<i

oi
〉).

(B34)

The third line uses the fact that Co<i

k is trace-preserving. The total variance distance between p1 and p2 is then

TV(p1, p2) = E
a6=0

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

(
N∏

i=1
wo<i

oi

)(
1−

N∏
i=1

(
1 + ξo<i

a [Mo<i ] 〈Bo<i
oi
|Pa |Bo<i

oi
〉
))

= E
a6=0

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )
(

1−
N∏

i=1

(
1 + ξo<i

a [Mo<i ] 〈Bo<i
oi
|Pa |Bo<i

oi
〉
))

.

(B35)

We now need a bound of |ξo<i
a [Mo<i ]| ≤ 1, which can be shown by induction. We see |ξo<i

a [1]| ≤ 1 by definition.
Suppose |ξo<i

a [m− 1]| ≤ 1, we have

|ξo<i
a [m]| =

∣∣∣∣Tr
(
PaCo<i

m−1

(
I + Paξ

o<i
a [m− 1]
2n

))∣∣∣∣
≤ ‖Pa‖∞ Tr

∣∣∣∣Co<i

m−1

(
I + Paξ

o<i
a [m− 1]
2n

)∣∣∣∣
= Tr

(
I + Paξ

o<i
a [m− 1]
2n

)
= 1.

(B36)

The first line is by the defining recursive expression; The second line is by the tracial matrix Hölder inequality; The
third line uses the fact that Co<i

m−1 is a positive map, and that 2−n (I + Paξ
o<i
a [m− 1]) is positive semidefinite thanks

to the induction hypothesis |ξo<i
a [m− 1]| ≤ 1. Thus we can remove the modulus within the trace, and also remove

Co<i

m−1 as it is trace-preserving. By induction, we’ve shown |ξo<i
a [Mo<i ]| ≤ 1.

The remaining part of bounding TV(p1, p2) is basically the same as in the proof of Lemma 8. We repeat it here for
completeness. Let |B〉 be any n-qubit pure state. Consider the following subset of n-qubit Pauli operators

G :=
{
a ∈ {1, · · · , 4n − 1} : |〈B|Pa |B〉| ≤

(
1

2n + 1

)1/3
}
. (B37)
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We claim that the size of G satisfies

|G| ≥

(
1−

(
1

2n + 1

)1/3
)

(4n − 1), (B38)

which can be shown by contradiction: Suppose this does not hold, we would have

4n−1∑
a=1
〈B|Pa |B〉2 ≥

(
1

2n + 1

)2/3
× (4n − 1− |G|)

>

(
1

2n + 1

)2/3
×
(

1
2n + 1

)1/3
(4n − 1)

= 2n − 1.

(B39)

However, the L.H.S. of the above can be calculated as

4n−1∑
a=1
〈B|Pa |B〉2 =

4n−1∑
a=0
〈B|Pa |B〉2 − 1 = 2n − 1. (B40)

This leads to contradition, and hence proves the desired lower bound on |G|.
Now, we define another subset of n-qubit Pauli operators, conditioned on the measurement outcomes o1:N , as follows

G(o1:N ) :=
{
a ∈ {1, · · · , 4n − 1} :

∣∣〈Bo<i
oi
|Pa |Bo<i

oi
〉
∣∣ ≤ ( 1

2n + 1

)1/3
, ∀i = 1, · · · , N

}
. (B41)

By applying a “union bound” on Eq. (B37), we immediately have the following lower bound on the size of G(o1:N ):

∣∣∣G(o1:N )
∣∣∣ ≥ (1−N

(
1

2n + 1

)1/3
)

(4n − 1). (B42)

We are now ready to upper bound TV(p1, p2) from Eq. (B35). The strategy is to divide the sum over all Pauli operators
into G(o1:N ) and Pn\G(o1:N ). All terms within the former group are small thanks to the definition of G(o1:N ); Terms
within the latter group could be large, but the total number of them are small. Combining these two gives a pretty
good upper bound on TV(p1, p2). In math,

TV(p1, p2) = 1
4n − 1

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )

 ∑
a∈G(o1:N )

+
∑

a∈Z2n
2 \G

(o1:N ),
a 6=0


(

1−
N∏

i=1

(
1 + ξo<i

a [Mo<i ] 〈Bo<i
oi
|Pa |Bo<i

oi
〉
))

≤ 1
4n − 1

∑
o1:N s.t.

p1(o1:N )≥p2(o1:N )

p1(o1:N )

∣∣∣G(o1:N )
∣∣∣×
1−

(
1−

(
1

2n + 1

)1/3
)N
+

(
4n − 1−

∣∣∣G(o1:N )
∣∣∣)


≤
∑

o1:N s.t.
p1(o1:N )≥p2(o1:N )

p1(o1:N )
(
N

(
1

2n + 1

)1/3
+N

(
1

2n + 1

)1/3
)

≤ 2N
(

1
2n + 1

)1/3
.

(B43)
The first inequality applies the bound |ξo<i

a [Mo<i ]| ≤ 1. Besides, the first sum uses the bound from the definition
of G(o1:N ), and the second sum is bounded using |〈Bo<i

oi |Pa |Bo<i
oi 〉| ≤ 1. The second inequality uses the bounds∣∣G(o1:N )

∣∣ ≤ 4n − 1 for the first sum and Eq. (B42) for the second sum, as well as the fact that 1− (1− x)N ≤ Nx for
all 0 ≤ x ≤ 1. Now we have obtained the claimed bound TV(p1, p2) = O(N2−n/3), and hence complete the proof of
Theorem 9.
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4. A lower bound for the most general entangled strategies

In this section, we prove a lower bound of Ω(n) for the fully entangled estimation strategies, which is the most
general measurement strategies one can do to learn an unknown channel even with the help of quantum computers,
see Fig. 1 (a). Note that, since we assume there is an unlimited amount of quantum memory, we can without loss
of generality eliminate any intermediate measurements, and only conduct one joint measurement after sequentially
processing all N samples of the channel.

Theorem 10. For any fully entangled measurement protocols that give an estimate λ̂ for the Pauli eigenvalues λ of
an arbitrary unknown n-qubit Pauli channel Λ such that

|λ̂a − λa| <
1
2 , ∀a ∈ Z2n

2 (B44)

holds with high probability, the number of samples of Λ required is at least Ω(n).

Proof. We first show that, by using a technique known as teleportation stretching [37, 38], any fully entangled
measurement protocols for N copies of an arbitrary Pauli channel Λ can be simulated by a joint measurement on N
copies of the Choi state JΛ which is defined as

JΛ := Λ⊗ 1(|Ψ+〉〈Ψ+|)

= 1
4n

∑
a∈Z2n

2

λaPa ⊗ PT
a .

(B45)

This follows from the existence of a quantum channel T such that Λ(ρ) = T (ρ⊗ JΛ) holds for all Pauli channels Λ.
One possible construction of T is shown in Fig. 4 (see Ref. [53]). In word, one first applies a Bell measurement on the
input state ρ and half of the Choi state JΛ. Then, conditioned on the Bell measurement outcome |Ψb〉, one applies a
Pauli correction Pb on the other half of JΛ, which will then be equal to Λ(ρ). Indeed, the post-measurement state
conditioned on Bell measurement outcome b is

ρb ∝ 〈Ψb|AB ρ
A ⊗ JBC

Λ |Ψb〉AB

∝
∑

a∈Z2n
2

λa 〈Ψb| ρ⊗ Pa |Ψb〉 ⊗ PT
a

= 1
2n

∑
a∈Z2n

2

λa(−1)〈a,b〉 Tr(ρPa)Pa.

(B46)

After applying the Pauli correction, the state becomes

PbρbPb = 1
2n

∑
a∈Z2n

2

λa Tr(ρPa)Pa = Λ(ρ), (B47)

which justify the relation Λ(ρ) = T (ρ⊗ JΛ).
With the help of teleportation stretching, one can reduce any measurement protocols for N copies of Λ to a single

POVM measurement on N copies of JΛ, as shown in Fig. 5.

Now, recall the communication task defined in Sec. B 1, where Alice and Bob share the following “codebook”

(a, s) ∈ {1, · · · , 4n − 1} × {±1} −→ Λ(a,s)(·) = 1
2n

(I Tr(·) + sPa Tr(Pa(·))) , (B48)

and Alice randomly picks one possible (a, s) and send N copies of Λ(a,s) to Bob. If there exists a fully entangled
estimation protocol using N samples and satisfying the assumption of Theorem 10, Bob can determine Alice’s choice
of (a, s) with high probability. According to Fano’s inequality, the mutual information between the random variable
pair (a, s) and Bob’s measurement result o has the following lower bound

I((a, s) : o) ≥ Ω(log 2(4n − 1)) = Ω(n). (B49)
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FIG. 4. Construction of the teleportation simulation channel T .

FIG. 5. Teleportation stretching [37, 38]: simulation of an arbitrary entangled measurement on Λ by a single measurement on
JΛ. One just needs to simulate every application of Λ(·) by T ((·)⊗ ρ). The whole measurement protocol then become a joint
POVM measurement on N copies of JΛ with no adaptivity.

One the other hand, since any measurement Bob conducts can be simulated by a measurement on N copies of JΛ(a,s) ,



20

Holevo’s theorem [41, 54] can be apply to I((a, s) : o). We have

I((a, s) : o) ≤ S
(

E
(a,s)

J⊗N
Λ(a,s)

)
− E

(a,s)
S
(
J⊗N

Λ(a,s)

)
= S

(
E

(a,s)
J⊗N

Λ(a,s)

)
−N E

(a,s)
S
(
JΛ(a,s)

)
≤ 2nN − (2n− 1)N
= N.

(B50)

In the third line, the first term is a trivial upper bound for the von Neumann entropy on a 22nN -dimensional Hilbert
space. The second term uses the observation that

JΛ(a,s) = 1
4n

(I ⊗ I + sPa ⊗ PT
a ) (B51)

is a maximally mixed state on a 22n−1-dimensional Hilbert space, thus S(JΛ(a,s)) = 2n − 1. This yields the lower
bound N = Ω(n).

Appendix C: SPAM-robust ancilla-assisted Pauli gate benchmarking protocols

In this section we present the proof of Theorem 4. To start with, we introduce the Pauli-transfer-matrix (PTM)
representation to simplify notations. A linear operator O acting on a 2n-dimensional Hilbert space can be viewed as a
vector in a 4n-dimensional Hilbert space. We denote this vectorization of O as |O〉〉 and the corresponding Hermitian
conjugate as 〈〈O|. The inner product within this space is the Hilbert-Schmidt product defined as 〈〈A|B〉〉 := Tr(A†B).
The normalized Pauli operators {σa := Pa/

√
2n, a ∈ Z2n

2 } forms an orthonormal basis for this space. In the PTM
representation, a superoperator (i.e., quantum channel) becomes an operator acting on the 4n-dimensional Hilbert
space, sometimes called the Pauli transfer operator. Explicitly, we have |Λ(ρ)〉〉 = ΛPTM|ρ〉〉 ≡ Λ|ρ〉〉, where we use the
same notation to denote a channel and its Pauli transfer operator, which should be clear from the context. Specifically,
a general Pauli channel Λ has the follwing Pauli transfer operator

Λ =
∑

a∈Z2n
2

λa|σa〉〉〈〈σa|,

where {λa}a are the Pauli eigenvalues. It is also obvious that the m-th power of Λ is

Λm =
∑

a∈Z2n
2

λm
a |σa〉〉〈〈σa|.

Using the PTM representation, the constant Aa in Theorem 4 is defined as

Aa :=
∑

v∈Z2n
2

(−1)〈a,v〉〈〈Ψ̃v|1⊗ (|σa〉〉〈〈σa|ΛG)|Ψ̃+〉〉, (C1)

where |Ψ̃+〉〉 is just the PTM representation for the density matrix of the (noisy) Bell state Ψ̃+. Same for |Ψ̃b〉〉. One
can verify that Aa = 1 for the noiseless case (where there is no SPAM error and ΛG = 1).

Proof of Theorem 4. The following proof is a generalization of [23, Proposition 5] and we borrow some of their
presentations. Consider the probability that a specific sequence of Pauli gates {Pat

}m
t=0 is sampled (Line 4, Alg. 2)

and the Bell measurement outcome is v (Line 5, Alg. 2),

Pr(a0, · · · , am, v) = 1
4n(m+1) 〈〈Ψ̃v|1⊗ (Pam

ΛG · · · Pa1ΛGPa0ΛG) |Ψ̃+〉〉

= 1
4n(m+1) 〈〈Ψ̃v|1⊗

( 0∏
t=m

Pat
ΛG

)
|Ψ̃+〉〉,

(C2)

Here we use the assumption that the noise on the ancilla is negligible except for the state preparation and measurement
part. We can absorb the noise channel on the ancilla into the SPAM error that is independent of the concatenating
length m. That is why we can have an 1 on the ancillary system.
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The distribution can be rewritten as

Pr(a0, · · · , am, v) = 1
4n(m+1) 〈〈Ψ̃v|1⊗ Pa′

m

( 0∏
t=m−1

Pa′
t
ΛGPa′

t

)
ΛG|Ψ̃+〉〉, (C3)

where we define a′t :=
∑t

k=0 ak (bit-wise modulo 2 sum). Taking this change-of-variables and averaging over
{a0, · · · , am−1}, we get

Pr(a′m, v) = 1
4n
〈〈Ψ̃v|1⊗ Pa′

m

( 0∏
t=m−1

E
a′

t∈Z2n
2

Pa′
t
ΛGPa′

t

)
ΛG|Ψ̃+〉〉

= 1
4n
〈〈Ψ̃v|1⊗ Pa′

m
ΛmΛG|Ψ̃+〉〉

= 1
4n

∑
a∈Z2n

2

λm
a 〈〈Ψ̃v|1⊗ (Pa′

m
|σa〉〉〈〈σa|ΛG)|Ψ̃+〉〉

= 1
4n

∑
a∈Z2n

2

(−1)〈a,a′
m〉λm

a 〈〈Ψ̃v|1⊗ (|σa〉〉〈〈σa|ΛG)|Ψ̃+〉〉.

(C4)

Define z := v + a′m, the marginal distribution of z is

Pr(z) =
∑

v∈Z2n
2

Pr(v + z, v)

= 1
4n

∑
a∈Z2n

2

(−1)〈a,z〉λm
a

∑
v∈Z2n

2

(−1)〈a,v〉〈〈Ψ̃v|1⊗ (|σa〉〉〈〈σa|ΛG)|Ψ̃+〉〉

= 1
4n

∑
a∈Z2n

2

(−1)〈a,z〉λm
a Aa.

(C5)

Apply the inverse Walsh-Hadamard transform, we obtain

Aaλ
m
a =

∑
z∈Z2n

2

(−1)〈a,z〉 Pr(z). (C6)

Therefore, (−1)〈a,z〉 = (−1)〈a,v〉+
∑m

t=0
〈a,at〉 is an unbiased estimator for Aaλ

m
a . In other word,

E
[
F̂ (k)

a (m)
]
≡ E

[
(−1)〈a,z〉

]
= Aaλ

m
a . (C7)

This is exactly the claim of Theorem 4.
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