
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Standard quantum annealing outperforms adiabatic
reverse annealing with decoherence

Gianluca Passarelli, Ka-Wa Yip, Daniel A. Lidar, and Procolo Lucignano
Phys. Rev. A 105, 032431 — Published 18 March 2022

DOI: 10.1103/PhysRevA.105.032431

https://dx.doi.org/10.1103/PhysRevA.105.032431


Standard quantum annealing outperforms adiabatic reverse annealing with decoherence

Gianluca Passarelli,1, a Ka-Wa Yip,2, 3 Daniel A. Lidar,2, 4 and Procolo Lucignano5
1CNR-SPIN, c/o Complesso di Monte S. Angelo, via Cinthia - 80126 - Napoli, Italy

2Center for Quantum Information Science & Technology,
University of Southern California, Los Angeles, CA 90089, USA

3Department of Physics & Astronomy, University of Southern California, Los Angeles, CA 90089, USA
4Departments of Electrical and Computer Engineering, Chemistry,

and Physics, University of Southern California, Los Angeles, CA 90089, USA
5Dipartimento di Fisica âĂĲE. PanciniâĂİ, UniversitÃă di Napoli Federico II

(Dated: February 28, 2022)

We study adiabatic reverse annealing (ARA) in an open system. In the closed system (unitary) setting,
this annealing protocol allows avoidance of first-order quantum phase transitions of selected models, resulting
in an exponential speedup compared with standard quantum annealing, provided that the initial state of the
algorithm is close in Hamming distance to the target one. Here, we show that decoherence can significantly
modify this conclusion: by resorting to the adiabatic master equation approach, we simulate the dynamics of
the ferromagnetic p-spin model with p = 3 under independent and collective dephasing. For both models of
decoherence, we show that the performance of open system ARA is far less sensitive to the choice of the initial
state than its unitary counterpart, and, most significantly, that open system ARA by and large loses its time to
solution advantage compared to standard quantum annealing. These results suggest that as a stand-alone strategy,
ARA is unlikely to experimentally outperform standard “forward” quantum annealing, and that error mitigation
strategies will likely be required in order to realize the benefits of ARA in realistic, noisy settings.

I. INTRODUCTION

Quantum annealing (QA) was proposed more than two
decades ago as a heuristic algorithm for finding ground states of
Ising Hamiltonians H0 [1, 2] and since then applied to a variety
of problems; see, for example, Refs. [3–19] and Refs. [20–22]
for recent reviews. In standard (forward) QA, a qubit system
is initialized in the ground state of a transverse field driver
Hamiltonian VTF (defined below) and evolved in time using
the time-dependent Hamiltonian H(t) = (1 − s)VTF + sH0,
with H0 a classical (Ising-type) Hamiltonian and the anneal-
ing schedule s = s(t) ramping from s = 0 to s = 1. In a
closed system, provided H = H(θ) where θ = t/τ and τ is
the total evolution time, if τ is much longer than the adiabatic
time scale τad = | 〈1| dH/dθ |0〉 |/∆2

min, where ∆min is the min-
imum of the gap∆10(s) between the instantaneous ground state
|0(θ)〉 and first excited state |1(θ)〉, the system will remain in
its instantaneous ground state at all times (for a more precise
statement see, e.g., Refs. [23, 24]). Hence, the final state will
be the ground state of H0, which may encode the solution to
a classical optimization problem. In the open system setting
of QA the evolution takes place in the presence of decoher-
ence, and the associated timescales modify the statement of
the adiabatic theorem [25–28]; in this case adiabatic evolution
corresponds to remaining in the instantaneous steady state of
the generator of the open system dynamics, and if the system
Hamiltonian is swept at a rate that satisfies the adiabatic the-
orem for closed systems, the system will generally not end up
in the ground state of H0 at the end of the evolution [29].

In recent years, many attempts have been made to improve
upon the original QA algorithm [30]. These include explicitly
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making use of diabatic transitions [31–35], exploiting pauses
to improve the success probability of the algorithm in the
presence of decoherence [36–40], diagonal catalysts [41] and
inhomogeneous driving to circumvent the problem of small
spectral gaps around first-order quantum phase transitions
(1QPTs) [42–45] (we do not discuss non-stoquastic approaches
here; see, e.g., Refs. [46–48]). Alternatively, in iterated reverse
annealing (IRA) [49] (originally called “Sombrero adiabatic
quantum computing” [50]), the system starts in a classical state
at s = 1, then s is decreased so as to increase the rate of quan-
tum tunneling up to an inversion point sinv, after which the
annealing resumes as usual towards s = 1. In this variant of
QA, quantum fluctuations are non-monotonic. With notable
exceptions such as the adiabatic Grover algorithm [51, 52], it
is still an open problem whether standard forward annealing
can provide a quantum advantage for optimization problems,
and experiments with quantum annealing hardware have not
been able to settle this beyond speedup results relative to par-
ticular algorithms such as classical simulated annealing [53].
In contrast, weakly-decoherent IRA is presently believed to
be a promising route towards quantum advantage [35] and is
actively being studied both theoretically and experimentally
on D-Wave hardware [17, 54–61]. IRA in the presence of
decoherence was studied numerically in Ref. [56] for the p-
spin model with p = 3 using the weak-coupling limit adiabatic
master equation [62, 63] unraveled using the time-dependent
stochasticMonte Carlo wave function approach [64]. Ref. [56]
showed that weak dephasing is the main driving mechanism
for the enhancement of the ground state probability. These
findings have been confirmed experimentally in the p = 2
case [61], and the role of spin bath polarization [65] beyond
the weak-dephasing regime in IRA was noted as well.

An alternative annealing protocol with non-monotonic
quantum fluctuations is adiabatic reverse annealing (ARA),
where instead of modifying the schedule s = s(t), the system
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Hamiltonian is modified so as to enforce a classical initial con-
dition via an additional term Hinit [49, 66] (we provide more
details below). Systems that are subject to 1QPTs, such as the
ferromagnetic p-spin model with p ≥ 3, have been shown to
benefit from the ARA protocol. In particular, Refs. [49, 66]
provide evidence that ARA allows avoidance of the exponen-
tially closing gap associated with the 1QPT of this model,
thus exponentially speeding up convergence to the ferromag-
netic ground state relative to standard, forward QA. This result
holds in the fully-coherent setting, when in addition the mag-
netization of the initial state is above a critical threshold [41].
These promising theoretical closed system results motivate us
to undertake a critical examination of the effects of decoher-
ence on the dynamics of ARA. Naturally, this aspect must
be carefully addressed in order to understand the potential of
ARA in realistic scenarios where decoherence is expected to
be relevant.

To this end, herewe study the effect of decoherence onARA.
We focus on the p-spin Hamiltonian with p = 3. This model
is a tool that is commonly used to study the performance of
quantum annealing [67] and we focus on it so as to extend the
previous results of Refs. [49, 66] from the closed to the open
system setting. As shown in the next section, the permutational
invariance of the p-spin model allows large instances of this
model subject to collective dephasing to be simulated with a
relativelymild computational effort. Independent dephasing is
computationally more demanding and we aim to obtain some
insights into this case by simulating smaller instances instead.
We discuss these two models of dephasing below, for different
choices of the model parameters, including the number of
qubits N , transverse field strength, and initial magnetization.

As noted in Ref. [35], diabatic transitions to higher excited
states may provide a shortcut towards the final target state.
Therefore, we include in our studies annealing times τ shorter
than the ones set by the adiabatic condition. We also explore
cases with a small transverse field strength and a large Ham-
ming distance between the initial state and the target state,
which result in a very small and sharp gap and thus diabatic
transitions to higher excited states. Therefore, we study the
combined effect of decoherence and diabatic transitions.

The structure of this paper is as follows. In Sec. II, we
introduce the p-spin model and the ARA Hamiltonian. We
additionally discuss the adiabatic master equation and the two
dephasingmodelswe consider. In Sec. III, we present the spec-
tral properties of the p-spin Hamiltonian for several choices of
the transverse field strength, initial magnetization, and number
of qubits. This sets the stage for subsequent calculations. In
Sec. IV, we discuss the dynamical properties of this system
during ARA for several choices of the Hamiltonian parameters
and of the annealing time, in the presence of independent and
collective dephasing. In Sec. V, we adopt the time to solution
metric as a measure for the performance of ARA and compare
unitary and weakly decohered ARA with standard QA. We
present our conclusions in Sec. VI.

II. MODEL

We focus on the ferromagnetic p-spin model. The number
of spins (or qubits) is N .
As opposed to standard QA, where the initial state is the

ground state of the transverse field Hamiltonian (the state
|+〉⊗N , where |+〉 = (|0〉 + |1〉)/

√
2), in ARA the system is

prepared in a classical configuration (a bitstring in the compu-
tational basis {|0〉 ≡ |↑〉 , |1〉 ≡ |↓〉}, the eigenbasis of the σz

Pauli operators with eigenvalues {+1,−1}, respectively). The
Hamiltonian is purely longitudinal (i.e., the intensity of quan-
tum fluctuations is zero) at t = 0 and at t = τ, where as above
τ is the total annealing time. The Hamiltonian depends on two
time-dependent parameters, denoted s and λ in the following,
and reads

H(s, λ) = sH0 + (1 − s)(1 − λ)Hinit + Γ(1 − s)λVTF. (1)

In this equation we set s = θ = t/τ ∈ [0, 1], λ ∈ [0, 1] satisfies
λ(s = 0) = 0 and λ(s = 1) = 1, and the three operators
H0, Hinit and VTF are the target, initial, and transverse field
Hamiltonians, respectively:

H0 = −JN

(
1
N

N∑
i=1

σz
i

)p
2 ≤ p ≤ N, (2a)

Hinit = −

N∑
i=1

εiσ
z
i , (2b)

VTF = −

N∑
i=1

σx
i . (2c)

In these equations, σx,z
i are Pauli operators acting on qubit

i. The unit of energy is [J] = 1 GHz, thus the unit of time
is [J]−1 = 1 ns (we set } = 1 throughout). For every odd
value of p, the target ground state of the p-spin model is the
(non-degenerate) ferromagnetic state with all spins pointing
up, i. e., |ψ(s = 1)〉 = |0, 0, . . . , 0〉. We choose p = 3 as it is
the smallest value of p for which the model undergoes a 1QPT
in the thermodynamic limit when standard quantum annealing,
corresponding to λ = 1, is considered [67].
The Hamiltonian of Eq. (2b) is diagonal in the computa-

tional basis and is used to set the initial state: |ψ(s = 0)〉 =
|(1 − ε1)/2, (1 − ε2)/2, . . . , (1 − εN )/2〉, where εi = ±1 for all
i.

The annealing path in ARA is specified by assigning the
function λ = λ(s) in Eq. (1). We choose λ(s) = sq (q > 0)
so that s is the only free parameter and the evolution in the
parameter space follows the path (s, λ) ≡ (s, sq) from (0, 0) to
(1, 1). Additionally, we fix q = 1; standard QA is recovered
by setting q = 0 (we recognize that q = 1 is a significant
restriction; as shown in Ref. [49, 66] this means that the 1QPT
is avoided only for initial states very close to the target one in
terms of Hamming distance). As was proven in the thermody-
namic limit and using the static approximation, ARA allows
avoiding 1QPTs in the phase diagram of the p-spin model if
the initial state is sufficiently close to the ferromagnetic ground
state [49]. The similarity between the initial and target states
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is expressed by the fraction of spin-up qubits c = N↑/N , which
corresponds to a Hamming distance of dH = N(1 − c) and to
an initial magnetization of m0 = 〈

∑
i σ

z
i 〉0/N = 2c − 1.

In a closed system, unitary setting, the analysis is simplified
by noting that the Hamiltonian of Eq. (1) is permutationally
invariant. Hence, only the number of spin-up qubits (N↑ =
bNcc) and spin-down qubits (N↓ = N − bNcc) is relevant but
not their ordering, where bxc is the largest integer smaller than
x. We can define total spin operators of the two subsystems,
up and down, as in

Sk
1 =

1
2

N↑∑
i=1

σk
i , Sk

2 =
1
2

N∑
i=N↑+1

σk
i , k = x, y, z. (3)

These two subsystems correspond to the two sets of spins
associated with εi = +1 and εi = −1 in Eq. (2b), respectively.
The Hamiltonian in Eq. (1) commutes with the complete set
of commuting operators { S2

1, S
z
1, S

2
2, S

z
2 }, where S2

j =
®Sj · ®Sj =

S2
j,x + S2

j,y + S2
j,z , with j = 1, 2. The three operators in Eq. (1)

are conveniently rewritten as

H0 = −N
[

2
N
(Sz

1 + Sz
2 )

] p
, (4a)

Hinit = −2(Sz
1 − Sz

2 ), (4b)
VTF = −2(Sx

1 + Sx
2 ). (4c)

The dynamics occur entirely in the tensor product of the two
subspaces with maximum eigenvalues of S2

1 and S2
2 , since

these operators commute with the total Hamiltonian and the
initial state lies in this subspace. Therefore, we can restrict
numerical simulations to the subspace given by their tensor
product, having dimension D = (N↑ + 1)(N↓ + 1), quadratic
rather than exponential in N . In the two subspaces, suitable
bases are given by the simultaneous eigenstates of { S2

j , S
z
j },

denoted | j;w〉 and such that Sz
j | j;w〉 = (S

z
j,max − w) | j;w〉,

with Sz
1,max = N↑/2 and Sz

2,max = N↓/2. In this Dicke repre-
sentation [68], the initial state is |ψ(0)〉 = |1; 0〉 ⊗ |2; N↓〉.

The interaction with the environment can change this pic-
ture. We employ the adiabatic master equation to describe
the dynamics of the reduced density matrix ρ(s) [62], and un-
ravel the master equation using the Monte Carlo wave function
method [64]. We use the master equation in the Lindblad form

1
τ
∂sρ(s) = −i [H(s, λ) + HLS(s), ρ(s)] +D

[
ρ(t)

]
, (5)

where HLS is the Lamb shift and D is the dissipator superop-
erator:

HLS(s) =
∑
α,β

∑
a,b,a,b

Sαβ
(
ωba(s)

)
L†
αab
(s)Lβab(s)

+
∑
α,β

∑
a,b

Sαβ(0)L†αaa(s)Lβbb(s) (6)

D
[
ρ(s)

]
=

∑
α,β

∑
a,b,a,b

γαβ
(
ωba(s)

) (
Lβab(s)ρ(s)L

†

αab
(s)

−
1
2
{
L†
αab
(s)Lβab(s), ρ(s)

})∑
α,β

∑
a,b

γαβ(0)
(
Lβaa(s)ρ(s)L

†

αbb
(s)

−
1
2
{
L†αaa(s)Lβbb(s), ρ(s)

})
. (7)

In these equations, ωba(s) = Eb(s) − Ea(s) are instantaneous
Bohr frequencies [where Ea(s) is the instantaneous eigenen-
ergy ofH(s)], Lαab(s) areLindblad operators corresponding to
ωba(s), and γαβ(ω) are relaxation rates [Sαβ(ω) is their Hilbert
transform]. Assuming the system-bath interaction Hamilto-
nian is given by

HSB = g
∑
α

Aα ⊗ Bα, (8)

where g is the coupling energy, Aα are system operators and
Bα are bath operators, then the Lindblad operators are

Lαab(s) = |Ea(s)〉 〈Ea(s)|Aα |Eb(s)〉 〈Eb(s)| . (9)

We consider dephasing baths, and distinguish between two
different kinds of dephasing [69–71]:

1. Collective dephasing: α = 1 and there is only one cou-
pling operator, i. e., A = Sz

1 + Sz
2 =

∑N
i=1 σ

z
i . All qubits

are coupled to the same bath through the single operator
B.

2. Independent dephasing: Aα are single-qubit operators
σz
i , where α = i = 1, . . . , N . Each qubit is coupled to

its own independent bath.

Case 2 breaks the permutation symmetry, while case 1 pre-
serves it, hence allowing us to work in the subspace where the
unitary dynamics occurs.
In general, for long annealing times τ the success probabil-

ities given by simulation with the collective coupling assump-
tion are higher than those given by the independent coupling.
In fact, the steady state solution ρ(s = 1, τ →∞) of the Lind-
blad master equation in the weak coupling limit is the Gibbs
state set by the problem Hamiltonian:

ρ(s = 1, τ →∞) =
e−βHS (1)

Z
=

e−βH0

Z
, (10)

where Z = Tr (exp (−βH0)).
For the collective dephasing model, the steady state is given

by

ρ′(s = 1, τ →∞) =
e−βH

′
0

Z ′
, (11)

where Z ′ = Tr
(
exp

(
−βH ′0

) )
and H ′0 = PH0P. Here P =∑

α |ψα〉 〈ψα | is the projection into the tensor product of the
two subspaces with maximum eigenvalues of S2

1 and S2
2 , and

|ψα〉 = |1;w1〉 ⊗ |2;w2〉 is the basis that has the maximum
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eigenvalues of S2
1 and S2

2 . The simple proof below shows that
for long annealing times the success probability given by the
collective dephasing model is always higher than the one given
by the independent dephasing model.

Proof. Since H ′0 is the projection of H0 into the subspace with
the largest values of S2

1 and S2
2 , Z ′ < Z (Z is a sum over

positive terms, while Z ′ is a sum over a subset of these terms).
The success (ground state) probability 〈E0 |ρ

′(s = 1, τ →
∞)|E0〉 =

e−βE0
Z′ > e−βE0

Z = 〈E0 |ρ(s = 1, τ → ∞)|E0〉, where
E0 is the ground state energy of both H0 and H ′0. �

In the following, we consider an Ohmic bath, where γ(ω)
(the indices α and β can be dropped if all coupling constants
are equal to each other) is given by

γ(ω) = 2πη
ωe−|ω |/ωc

1 − e−βω
, (12)

where η is the dimensionless coupling strength, ωc is a
high-frequency cutoff and β = 1/T is the inverse tempera-
ture (with kB = 1). It satisfies the Kubo-Martin-Schwinger
condition [72, 73]. We fix T = 12 mK = 1.57 GHz and
ωc = 8πGHz. We use K = 5000 Monte Carlo trajectories
in our simulations.

III. SPECTRAL PROPERTIES OF THE ADIABATIC
REVERSE ANNEALING HAMILTONIAN

In this section we explore how the spectrum changes by
tuning certain parameters of Eq. (1). This is important in the
calculations of diabatic transition rates, excitation and relax-
ation rates, and thus the understanding of the open system
behavior of ARA.

Consider, for N = 10, the initial state with N↓ = 2, so that
c = 0.8. We plot the spectrum of the corresponding ARA
Hamiltonian in Fig. 1. The Bohr frequencues are ωi j(s) =
Ei(s) − Ej(s). The corresponding minimum energy gaps are
∆i j = mins ωi j(s).
Similarly to standard QA, in ARA we are interested in the

minimum energy gap ∆min = ∆10 between the ground state
and the first excited state: The value of the gap is affected by
the transverse field strength Γ, the initial fraction c of spin-up
qubits, and the number of qubits. In the following, we address
all these dependencies for the parameters above.

III.1. Dependence of the gap on the transverse field

We plot in Fig. 2 the value of ∆10(s)/J, for Γ/J ∈
{ 1, · · · , 5 }. In the inset, we plot the dependence of ∆min/J on
Γ/J. In general ∆min decreases as Γ decreases. The shape of
the gap is sharper around the minimum for smaller values of
Γ.

0.0 0.2 0.4 0.6 0.8 1.0
s

10

8

6

4

2

E i
/J

FIG. 1. The 16 lowest-lying energies of an instance of the p-spin
model with N = 10 qubits, with Hinit having c = 0.8.
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FIG. 2. ∆(s) for Γ/J ∈ { 1, · · · , 5 } for N = 10 qubits and c = 0.8.
In the inset, we show the minimum gap versus the strength of the
transverse field.

III.2. Dependence of the gap on the fraction c

We wish to investigate how the gap properties change with
different initial states, characterized by different values of c.
We focus here on N = 10 with Γ/J = 1, but the qualitative
features obtained in this section are also found for other values
of Γ.
We summarize our results in Fig. 3, from which we see

that in general ∆min decreases as the Hamming distance dH =
N(1− c) between the initial state and the target state increases.

III.3. Scaling of the gap with the system size

The dependence of the minimum gap on system size N
can be extrapolated to determine the adiabatic timescale for
macroscopic systems. We study this dependence here for sys-
tem sizes of N ≤ 20.
We first focus on the initial state with N↓ = 1 (so that
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FIG. 3. Instantaneous gap ∆10(s) for different values of the initial
fraction c of up-aligned qubits, for N = 10 (Γ/J = 1).
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FIG. 4. Minimum gap ∆min for N ∈ { 3, · · · , 20 }. The initial state
has N↓ = 1. In the inset, we plot the value of smin [Eq. (13)] for each
N .

c = 1 − N↓/N) and Γ/J = 1, and plot ∆min for a range of
N values in Fig. 4. In the inset, we also plot the annealing
parameter value smin where the minimum gap is found, i. e.,

smin = arg min
s
∆10(s). (13)

This is important for the calculation of relaxation rates for
ARA.

Alternatively, one can fix the initial fraction c and study
the scaling of ∆min as a function of N . To this end, it is
more convenient to work in the symmetric sectors so as to
study large systems and infer the behavior of the gap in the
thermodynamic limit. In Fig. 5, we report the scaling of the
minimum gap as a function of N for Γ/J = 1. In standard
quantum annealing, the scaling of ∆min as a function of system
size is exponential for p ≥ 2. In particular, for p = 3, ∆min ∼
exp(−αN)with α = 6.9×10−2. As is clear from the figure, the
scaling is exponential also for ARA when c is below a certain
threshold, e. g., c < 0.9. For c = 0.7, the scaling exponent is
α = 1.1 × 10−1, while for c = 0.8 it is α = 2.2 × 10−2. In

20 40 60 80 100
N

10 5

10 4

10 3

10 2

10 1

100

m
in

/J

QA
c = 0.7
c = 0.8
c = 0.9

FIG. 5. Minimum gap ∆min as a function of the system size N
for different values of c (Γ/J = 1). QA denotes standard forward
annealing.

contrast, for c ≥ 0.9 the gap is nearly constant over the range
of system sizes we have considered (we expect it to decrease
as an inverse polynomial since the system traverses a second
order quantum phase transition) as a function of system size.
These results are in agreement with Ref. [49].

IV. OPEN SYSTEM DYNAMICS

In this section we study the open system, dephasing dynam-
ics of the p-spin model with p = 3. We discuss independent
and collective dephasing and compare ARA with standard
quantum annealing. More specifically, we explore four gen-
eral classes of problems:

1. Adiabatic reverse annealing in an open system
(ARAOpen);

2. Adiabatic reverse annealing in a closed system
(ARAClosed);

3. Standard quantum annealing in an open system
(QAOpen);

4. Standard quantum annealing in a closed system
(QAClosed).

The comparison between ARAClosed and QAClosed was made
in Ref. [49] and it was shown that ARAClosed can outperform
QAClosed. Earlier studies (e. g., Refs. [56, 74–77]) already
showed that decoherence can improve quantum annealing. Our
goal here is to investigate whether and under which condi-
tions such an improvement may be expected for ARAOpen vs
ARAClosed. More specifically, we wish to determine whether
ARAOpen has any computational advantage overQAOpen, which
would support the use of the former protocol in a realistic ex-
perimental setting. We quantify advantage/enhancement in
terms of two success metrics: the success probability pg and
the time to solution (TTS) (for alternative metrics see, e. g.,
Ref. [78]).
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The success probability pg is the probability of the final state
being the target solution state, i. e., in our case:

pg(τ) = 〈1 · · · 1| ρ(τ) |1 · · · 1〉 . (14)

The time to solution (TTS) is defined as

TTS(τ, pd) = τ
log(1 − pd)
log pe(τ)

, (15)

where pe(τ) = 1 − pg(τ) is the error probability (i. e., the
probability of ending up in an excited state at s = 1) and pd
is a threshold probability. The TTS represents the effective
time it takes to solve the given problem at least once with
a probability greater than pd using multiple runs of duration
τ [79]. We fix pd = 0.99.
For closed systems, the TTS has different behaviors depend-

ing on the value of the annealing time τ. Namely, in the quench
limit, i. e., when τ is so short that the final ground state proba-
bility is effectively zero, the TTS is expected to diverge. If τ is
longer but not yet adiabatic, the error probability is described
by the Landau-Zener formula pe(τ) = exp(−πτ/4τad). In this
regime, the TTS has a plateau TTS∗ = −4τad log(1 − pd)/π,
which provides a measure of τad. Finally, in the adiabatic
regime, the final time error is typically a power law of the an-
nealing time, pe ∼ (τ/τad)−2, thus the time to solution scales
as TTS ∼ τ/log τ. We proceed to show that the presence of
dephasing can affect these behaviors.

IV.1. Collective dephasing

We study the dynamics of a system of N = 50 qubits
and fix Jτ = 40. We also fix c = 0.8 so that N↑ =
40. We vary the strength of the transverse field (Γ/J ∈
{1, 2, 4}) and the coupling to the environment (η ∈ {10−4, 5 ×
10−4, 10−3}). The instantaneous ground state probability,
pg(s) = 〈E0(s)| ρ(s) |E0(s)〉, is plotted in Fig. 6, in which
we also report the closed system result (η = 0, or ARAClosed)
for comparison.

The most significant aspect seen in Fig. 6 is that the case
with the strongest system-bath coupling (η = 10−3) results in
the highest success probability at s = 1. The unitary dynamics
η = 0 is quite sensitive to the value of Γ/J and in two cases
(Γ/J = 1, 4) the open system dynamics results in a higher final
success probability than the closed system dynamics.

In more detail, for Γ/J = 1, we see that the environment
favors the ferromagnetic alignment and the ground state prob-
ability at s = 1 increases with respect to ARAClosed, in agree-
ment with known findings concerning decoherence-assisted
quantum annealing [37, 56, 77].

For Γ/J = 2, on the other hand, dephasing reduces the
success probability for the two smaller values of η compared
to the unitary case; this is due to the fact that pg is already
large for ARAClosed.

For Γ/J = 4, we observe that the success probability is
again increased compared to ARAClosed. Incidentally, this is
the only case where the dependency of pg as a function of
η , 0 is non-monotonic.

The behavior of the closed system curves is easily under-
stood in terms of the instantaneous gap. Here, the minimum
gap is nonmonotonic as a function of Γ/J. Among the three
cases, Γ/J = 2 has the largest minimum gap and thus the
largest pg. The coherent oscillations for Γ/J = 4 around s = 0
is explained by noting that the instantaneous gap is slowly vary-
ing in this region, and the frequency of oscillations (≈1.9J)
is close to that of Rabi oscillations between the two assumed
constant lowest-lying energy states (where E1 − E0 ≈ 1.5J).
At t = 0, the gap between the ground and first excited state

is ∆10(t = 0) = 2J and is independent of Γ. We note that the
temperature in open system simulations (T = 12 mK = 1.57J)
is comparable with the gap at t = 0, thus we expect thermal
processes to be relevant already at the beginning of the dy-
namics. As shown in Figs. 2 and 3, the instantaneous gap
decreases as the annealing fraction s increases (with possible
nonmonotonic behaviors for large values of Γ), up to the mini-
mum gap ∆min. The thermal energy scale remains comparable
with the instantaneous gap up to a certain annealing fraction
s∗, which depends on Γ. Then, the gap increases towards the
value ∆p = JN(1 − (1 − 2/N)p) at s = 1, i. e., the gap of the
p-spin model. For large system sizes, ∆p → 2Jp. For p = 3,
the final gap for finite-size systems is smaller than ∆3 = 6J
and the thermal energy scale is comparable with the gap for
the entire evolution. Thus, thermal effects are non-negligible
up to s = 1.

IV.2. Independent dephasing

We now turn our attention to the independent dephasing
case. As mentioned above, this case breaks the spin symmetry,
which limits our simulations to few qubit systems. We set the
coupling to η = 1 × 10−4 and the cutoff frequency to ωc =
8πGHz.

IV.2.1. N = 8, Γ/J = 1, Jτ = 250

The results for closed and open system ARA, starting from
different initial states, are plotted in Fig. 7.
If the initial state is already the target ferromagnetic state

(c = 1), then we see that the ground state probability is close
to one for the entire dynamics both in the unitary and the
open system case. The spectral gap ∆10(s) is always larger
than the temperature energy scale, thus thermal excitations are
unlikely. Moreover, the gap is monotonically increasing with s
(see Fig. 3 for N = 10; the behavior of the gap is qualitatively
similar for N = 8). In addition, for this choice of τ and
∆min the dynamics are adiabatic and the system stays in the
ferromagnetic ground state for all s.
In contrast, for c < 1 the minimum gap becomes smaller

than the thermal energy and thermal processes become im-
portant. In particular, we see that for c = 7/8 the success
probability in the closed system setting is very close to one as
the dynamics are still adiabatic, but it is evidently reduced due
to the effect of independent dephasing. This effect is evenmore
visible for c = 6/8, where dynamics are less adiabatic and the
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FIG. 6. Ground state probability for collective dephasing as a function of s, for Γ/J = 1, 2 and 4 and several values of the coupling strength
(η = 1 × 10−4, 5 × 10−4 and 1 × 10−3). Other parameters are: N = 50, c = 0.8, Jτ = 40.

0.0 0.2 0.4 0.6 0.8 1.0
s

0.85

0.90

0.95

1.00

p g
(s

)

|00000000 , closed
|10000000 , closed
|11000000 , closed

|00000000 , open
|10000000 , open
|11000000 , open

0.76 0.78
0.998
1.000
1.002

FIG. 7. Open system and closed system ARA simulation results.
Parameters are N = 8, Jτ = 250, Γ/J = 1.

solid line (open system) is below the dotted line (closed sys-
tem) along the entire evolution. Therefore, we conclude that
for the specific parameter choices made here, i. e., in the adi-
abatic regime, the environment is detrimental for ARA for all
the initial states we have specified.

IV.2.2. N = 4, Γ/J = 0.3, Jτ = 2500

For this choice of parameters and for every c < 1, the
dynamics are not adiabatic and the gap∆10 is very sharp around
the avoided crossing. Thus, the diabatic transitions occur in
a very narrow region around s = smin. In Fig. 8, we plot the
ground state probability as a function of s for several initial
states with c = 1, 2/4, 1/4 and 0. We stress that cases with
c < 1/2 are very unfavorable as even a random guess of the
correct solution would lead to an initial state having c = 1/2
on average in the large N limit. From Fig. 8, we observe
sudden diabatic transitions, since Γ/J = 0.3 results in very
small gaps for most of the Hinit. Meanwhile, a relatively long
(compared to thermal relaxation rates) annealing time of Jτ =
2500 allows for open system relaxationmechanisms to increase
the instantaneous and final success probability for one of the

0.0 0.2 0.4 0.6 0.8 1.0
s
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0.4

0.6

0.8

1.0

p g
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0.76 0.78
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0.08

FIG. 8. Open system and closed system ARA simulation results.
Parameters are N = 4, Jτ = 2500, Γ/J = 0.3.

initial states. Thus, in the nonadiabatic regime, ARAOpen can
yield a higher success probability than ARAClosed.

V. TIME TO SOLUTION

V.1. Collective dephasing

In this section we compare ARA and QA (in both the closed
and open system settings) in terms of the time to solution.
To this end, we first study a system of N = 45 qubits with
collective dephasing andwork in the symmetry subspaces with
maximal total spin. For annealing times Jτ ∈ [1, 1000], we
compute theTTS for several values of the system-bath coupling
strength η and for several values of c, the initial fraction of
spin-up qubits. The bath is in equilibrium at temperature T =
12 mK. The cutoff frequency is ωc = 8πGHz. In Fig. 9(a),
we report our results for a transverse field strength of Γ/J = 1.
For η , 0, the error bars correspond to standard wave function
Monte Carlo errors (see Refs. [37, 64]) and are smaller than
the point size in many cases. We can distinguish three different
behaviors at short, intermediate, and long annealing times.
For η = 0 (i. e., ARAClosed and QAClosed, top left panel),
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FIG. 9. TTS for the collective dephasing model as a function of the annealing time τ, for several choices of the initial spin-up fraction c and
for N = 45. (a) Γ/J = 1, (b) Γ/J = 2. Top-left: η = 0 (closed system case); top-right: η = 1 × 10−4; bottom-left: η = 5 × 10−4; bottom-right:
η = 1 × 10−3.

the time to solution is a monotonically decreasing function
of τ. For short τ, the success probability of both ARA and
standard QA is small, hence the TTS is very large due to
vanishingly small denominators in Eq. (15). For intermediate
annealing times, the fidelity grows; the TTS first decreases in
the Landau-Zener regime, and eventually saturates to a plateau
as discussed in Sec. IV. Longer annealing times would yield a
τ/log(τ) dependence of the TTS, but this region is beyond the
range of annealing times analyzed in this case. These results
are also thoroughly discussed in Ref. [49].

Conversely, for η , 0 (i. e., ARAOpen and QAOpen) some of
the curves show a non-monotonic behavior, more evident for
larger values of η. At short times (i. e., in the non-adiabatic
regime), the environment is beneficial in all analyzed cases
and the TTS is reduced compared to η = 0, in agreement
with many previous findings reporting the enhancement of the
success probability of (several kinds of) quantum annealing
of the p-spin model with collective dephasing [37, 56, 77].
At intermediate times, the effect of the environment is still
generally beneficial for the TTS. Open system dynamics yield
a TTS that is comparable with the closed system case in all
the instances we analyzed. For c = 0.8 and 0.9 the curves
for larger values of η exhibit a minimum, corresponding to an
optimal working point of open system quantum annealing [75,
80], as a result of a compromise between adiabaticity and
decoherence [81]. The behavior at long times depends on the
value of c. If c . 0.8, the TTS in the open system case is
reduced compared to the closed system case. This is another
indication of a non-adiabatic regime due to the fact that these
values of c do not allow avoiding the critical point of the p-
spin model [49]. Instead, if c = 0.9, the open system TTS is
larger than the closed system one for the same value of c and
for sufficiently large values of Jτ (& 102). When c = 0.9 the
initial state is already close to the target ground state, hence
the TTS is already very short in the closed system case and is

harmed by decoherence. Concerning standard QA, the open
system TTS is always shorter than the closed system TTS in
the time window we have analyzed.
As a general trend, we see that for η > 0 the TTS for standard

QA is shorter than that ofARAboth at short and long annealing
times. In contrast, at intermediate times the TTS at the optimal
working point in ARAOpen for c & 0.8 is shorter than the TTS
of standard QAOpen when η > 1 × 10−4. In addition, we notice
that the striking dependence of ARA’s performance on the
initial state tends to be lost in the open system setting. In
fact, we notice that all curves relative to different values of c
tend to converge as the system-environment coupling strength
η increases. This result seems to suggest that ARA might
not be as effective in realistic settings where the dynamics are
not unitary, since the exponential speedup over standard QA
provided by the avoidance of the 1QPT is mitigated by the
presence of the environment, which tends to flatten the TTS
curves irrespective of the initial state.
In order to further investigate the matter, we repeated our

simulation for a transverse field strength of Γ/J = 2. Our
results are shown in Fig. 9(b), where we report the TTS as
a function of the annealing time τ. For ARAClosed, we know
from Ref. [49] that increasing the transverse field strength
from Γ/J = 1 to Γ/J = 2 causes the appearance of a mini-
mum TTS at intermediate annealing times when the crossover
between the Landau-Zener and the adiabatic regimes occurs.
This feature survives also in the presence of decoherence, with
the minimum being slightly lower as the system-bath coupling
strength increases. For short and intermediate annealing times
(up to Jτ ∼ 50 to 100), we see that decoherence is beneficial
for ARA. On the other hand, for longer annealing times deco-
herence increases the TTS compared to the isolated case. For
Jτ = 1000, the TTS decreases as η increases. Conversely, by
decreasing the coupling strength, the TTS decreases towards
the closed system limit, hence its behavior is non-monotonic.
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FIG. 10. TTS for the independent dephasing model as a function of the annealing time τ, for several choices of the initial spin-up fraction c
and for N = 8. (a) Γ/J = 1, (b) Γ/J = 2. Top-left to bottom-right: increasing values of η as indicated in the legends, starting from η = 0
(closed system case), to η = 1 × 10−1.

In the case of standard QA, decoherence in the presence of
collective dephasing always reduces the TTS compared to the
isolated case. All curves are very similar to the case Γ/J = 1 of
Fig. 9(a). In the closed system case, this was already reported
in Ref. [49]. In the open system case, these similarities are not
surprising as changing the transverse field mostly affects the
position of the avoided crossing, but not the magnitude of the
gap.

The grouping of curves by η clearly shows that ARAClosed
outperformsQAClosed at intermediate and long annealing times,
but decoherence changes this feature. In fact, we see that
QAOpen always seems to outperform ARAOpen at short and
long annealing times. ARAOpen only outperforms QAOpen at
intermediate annealing times, for c & 0.8. This improvement
can even be of one order of magnitude in specific cases, such
as for c = 0.9, η = 1 × 10−4. Nevertheless, also in this case
we observe little dependence of ARAOpen’s performance on
the initial state. The advantage that ARA has in a closed
system setting compared to QA is thus almost entirely lost
in the presence of collective dephasing. The caveat is that
this conclusion is drawn on the basis of a single system size
(N = 45), and moreover it assumes the validity of the weak-
coupling limit, which has been shown to break down for the
p = 2 p-spin model in recent experiments [61].

V.2. Independent dephasing

Finally, we turn our attention to ARAOpen with indepen-
dent dephasing. Since independent dephasing breaks the ro-
tational invariance of the p-spin model and we have to work
in the whole Hilbert space, here we focus on a smaller sys-
tem of N = 8 qubits for numerical convenience. We as-
sume that the qubits are coupled to identical baths with the
same system-environment coupling strength η. The bath
is in equilibrium at temperature T = 12 mK. The cutoff
frequency is ωc = 8πGHz. We consider as initial states
for ARA the states (in the σz eigenbasis) with the first N↑
spins up, followed by N − N↑ spins down. We choose
c ∈ {7/8, 6/8, 5/8, 4/8}. As in the previous section, we com-
pute the TTS for annealing times in the interval Jτ ∈ [1, 1000]
and η ∈ {10−4, 5 × 10−4, 10−3, 10−2, 10−1}.

In Fig. 10(a), we plot the TTS for Γ/J = 1. In the unitary
case η = 0, we immediately notice that the TTS for ARAClosed
is always worse than that of QAClosed in the Landau-Zener
plateau region. Hints about the adiabatic regime can be seen
from the rightmost part of the panel, where TTS curves saturate
to the same τ/log τ behavior. The onset of the adiabatic regime
depends on the adiabatic time scale and thus on the initial spin-
up fraction c, which is why this regime can only be observed
for c = 7/8 in ARA and for standard QA in the window of
annealing times we have considered. In particular, we remark
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that the τ/log τ behavior is observed when τ & 15 τad in all
cases. However, the presence of an environment seems to
shift this onset to shorter annealing times as seen from the
remaining panels. In addition, the scaling law of the TTS is
no longer τ/log τ in this decohered long-time regime.

Despite the fact that we are considering a different dephas-
ingmodel, we observe a strong similarity between these results
and those reported in Fig. 9(a). In particular, we see that by
increasing the decoherence strength the TTS curves relative to
different initial states tend to collapse onto each other for inter-
mediate and long annealing times, whereas for short annealing
times they are separated and standard QA performs better than
ARA.

These general features are also present for other values of
Γ. In Fig. 10(b), we report our results for Γ/J = 2. (We
repeated our simulations also for Γ/J = 4 but the results are
very similar to the ones shown here, hence are not included.)
The same discussion of the case of Γ/J = 1 holds in this
case as well, the only difference being that the TTS curves are
already very close to each other in the unitary limit η = 0. Also
here we see that QA outperforms ARA at short times, but then
eventually all curves saturate to the same thermal behavior. A
simple model that is able to capture this scaling is pe(τ) = 1−
[pT+(pg−pT) exp(−τ/T1)]where pT is the Boltzmann thermal
probability (at t = τ) at an effective temperature β∗, T1 is the
relaxation time and pg = 1−(ατ/τad)−2. If the relaxation time
is infinite, we recover the unitary adiabatic scaling of the error
probability, while for very short relaxation times the system
state at the end of the anneal is thermal. For η = 1 × 10−4,
the curves saturate to this effective model with JT1 = 1300
and β∗ = β/4 (fitting parameters). For η = 5 × 10−4, the
relaxation time is JT1 = 300, while for η = 1 × 10−3, we obtain
JT1 = 150. The onset of this thermal tail depends on Γ and,
for Γ/J = 1, is only observed for η = 1 × 10−2 and 1 × 10−1

in the time window we have analyzed.
In order to compare the performance of ARAOpen with in-

dependent and collective dephasing, we finally turn our at-
tention to a system of N = 10 qubits and Γ/J = 1. The
bath and coupling parameters are T = 12 mK, ωc = 8πGHz
and η = 1 × 10−3. We consider the random initial state with
c = 0.5 and compute the time to solution as a function of
τ. Our results are summarized in Fig. 11. We immediately
see that, in the range of annealing times we have considered,
collective dephasing yields a shorter TTS compared to inde-
pendent decoherence for ARA. In addition, we observe that,
for this choice of parameters, ARAOpen largely outperforms
ARAClosed for both forms of decoherence. Finally, for both
ARAClosed and ARAOpen we observe an optimal TTS. In com-
paring ARA to QA, it is clear that QA overall outperforms
ARA, though for the independent dephasing case ARA and
QA become nearly indistinguishable for sufficiently large (and
suboptimal for ARA) annealing times.

VI. CONCLUSIONS

In ARA, the system is initialized in a state that is diagonal in
the computational basis, as close to the true solution as prior
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FIG. 11. TTS as a function of the annealing time τ for the random
classical initial state (c = 0.5) of N = 10 qubits with Γ/J = 1. We
compare ARAClosed with ARAOpen, QAClosed, and QAOpen, subject
to independent and collective dephasing. The coupling strength is
η = 1 × 10−3.

knowledge allows. This allows circumventing the first-order
quantum phase transition of the ferromagnetic p-spin model
with p ≥ 3, thus exponentially improving the scaling of the
time to solution as a function of the number of qubits, relative
to standard, forward QA [49]. Those findings are valid in
a closed system setting, subject to purely unitary dynamics.
Actual experiments of course take place under open system
conditions, and this motivated us to reexamine the conclusions
regarding the advantage of ARA over standard QA.
To this end, here we applied the weak-coupling adiabatic

master equation technique to study adiabatic reverse anneal-
ing in the context of the p-spin model (with p = 3), subject to
collective and independent dephasing in the energy eigenbasis.
By computing the time to solution and the ground state proba-
bility, we have shown that the advantage of ARA with respect
to standard QA, seen in Ref. [49], disappears in the presence of
weak dephasing, at least for the admittedly restricted range of
parameters we were able to explore in this work. In addition,
we have shown that the performance of ARA in the presence of
decoherence is independent of the initial state in the adiabatic
regime and weakly dependent on the initial state in the non-
adiabatic regime, as opposed to the unitary case in which the
choice of a suitable initial state is clearly responsible for the
success or failure of the ARA protocol compared to standard
QA.
The model of decoherence provided by the adiabatic master

equation is relatively benign in that it allows for successful
QA due to the weak coupling assumption, which implies de-
coherence in the instantaneous energy eigenbasis [63]. How-
ever, very recent experiments that used the D-Wave quantum
annealers to simulate the p = 2 p-spin model [61] have re-
sulted in closer agreement with the polaron-transformed Red-
field equation [82, 83] than the adiabatic master equation.
The polaron-transformed Redfield equation corresponds to
a stronger system-bath interaction that leads to decoherence
in the computational basis, but unlike the singular coupling



11

limit, where decoherence is also between computational basis
states and which prevents any successful form of QA [63],
the polaron-transformed Redfield equation is governed by a
non-flat (and hence non-trivial) spectral density. This leaves
room for open system ARA to still provide an advantage over
standard QA, possibly by exploiting structure in the bath spec-
tral density. However, it may be that stronger coupling is
already sufficient by itself. A hint of this possibility can be
seen by observing the progression of the c = 0.5 curves in
Fig. 10(b). The trend is that as the coupling η is increased, the
c = 0.5 curves approach and eventually become indistinguish-
able from QA for the strongest coupling we have simulated
(η = 10−1). The case of c = 0.5 is naturally the most interest-
ing one for ARA, since it implies an unbiased initial condition,
i.e., no foreknowledge of the solution. This progression as a
function of increased coupling suggests that under a more real-
istic model of decoherence than the adiabatic master equation,
i.e., the polaron-transformed Redfield equation, open system
ARA may eventually overtake standard QA. Since this con-
clusion is currently only supported by our data for Γ/J = 2,
but not for Γ/J = 1 [see Figs. 10(a) and 11], additional ex-
ploration over a wide range of parameters is required before
definitive conclusions can be reached. Meanwhile, upcoming
experiments using the D-Wave annealers, exploiting their h-
gain feature [84] to simulate the ARA protocol, could provide
additional valuable insights.

Finally, we expect that using error suppressionmethods such
as quantum annealing correction [85], in particular methods
that account for the need to embed a fully connected prob-
lem such as the p-spin model using the available connectivity
of quantum hardware [86, 87], will significantly reduce the
effective strength of the system-environment coupling, thus

providing a more coherent alternative to restoring the perfor-
mance of open system ARA to the level of its closed system
counterpart.
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