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Many quantum mechanical experiments can be viewed as multi-round interactive protocols be-
tween known quantum circuits and an unknown quantum process. Fully quantum “coherent” access
to the unknown process is known to provide an advantage in many discrimination tasks compared
to when only incoherent access is permitted, but it is unclear if this advantage persists when the
process is noisy. Here, we show that a quantum advantage can be maintained when distinguishing
between two noisy single-qubit rotation channels. Numerical and analytical calculations reveal a
distinct transition between the performance of fully coherent and fully incoherent protocols as a
function of noise strength. Moreover, the size of the region of coherent quantum advantage shrinks
inverse polynomially in the number of channel uses, and in an intermediate regime an improved
strategy is a hybrid of fully-coherent and fully-incoherent subroutines. The fully coherent protocol
is based on quantum signal processing, suggesting a generalizable algorithmic framework for the
study of quantum advantage in the presence of realistic noise.

I. INTRODUCTION

Experimental progress over the past twenty years has
increasingly enabled the coherent manipulation of com-
plex quantum mechanical systems, bolstering the ongo-
ing search for settings where quantum protocols permit
advantage over their classical counterparts. Often it is
assumed that multiple unitary operations can be coher-
ently applied serially to an initial quantum state, and
indeed numerous results support the intuition that quan-
tum advantage often relies on the ability to perform deep
quantum circuits.

Multiple recently developed frameworks have consid-
ered quantum advantage through the lens of ‘quantum’
versus ‘classical’ access models [1, 2]. In particular, for
certain inference problems, it has been shown that quan-
tum advantage is recoverable for models in which an or-
aclized quantum process can be applied coherently, as
compared to models without such coherent access. This
approach, first fixing a problem and then comparing al-
gorithmic performance across differing access models, has
permitted novel complexity-theoretic insights into the
sources of quantum advantage.

A missing piece in the work on access model depen-
dent quantum advantage is an explicit and constructive
study of the effect of noise. In [1], the exponential query
complexity advantage studied does not survive the in-
troduction of noise, while relatedly the quantum advan-
tage studied in [2] is proven for finite noise, but only
information-theoretically. In the era of noisy quantum
devices, it is vital to understand the gap between these
two approaches: namely, constructive investigations of
(1) the effect of noise for realistic inference tasks, and
(2) problems which permit a difference in performance
among access models to survive the introduction of non-
zero noise.

This work aims to understand the gaps demarcated by
[1] and [2] by investigating an instance of quantum advan-
tage which (1) is amenable to constructive methods, (2)
incorporates noise, and (3) introduces concrete parame-
ters to enable visualization of where this advantage ex-
ists. Specifically, while [2] demonstrates an information-
theoretic no-go theorem for quantum advantage in aver-
age case regression tasks for machine learning, we choose
a classification problem, to which their results are not
directly applicable. Moreover, while [1] considers com-
parisons between noiseless settings and unparameterized
noise, we incorporate noise which is parameterized by
a single, continuous real value. Considering this binary
classification task and simply parameterized noise, we
are able to identify, and compellingly depict, regions of
quantum advantage with respect to simple parameters
representing signal and noise.

The specific problem we consider is discrimination
among two noisy single qubit rotation channels, where
the noise is defined by classical distributions over the ro-
tation angle. Given consistent access to one among two
possible quantum channels, where sampling rotates the
querent’s qubit by said noisy angle, the querent is chal-
lenged to determine which distribution underlies their
sampling power. The normally distributed noise we con-
sider is parameterized solely by its mean and standard
deviation. Consequently, plotting the the performance
of coherent and incoherent access protocols against these
two parameters reveals thresholds between regions in the
defining parameter space for which each access model ex-
hibits relative advantage.

This problem is perhaps the simplest instance of a more
general class of quantum channel discrimination prob-
lems. This class contains instances which are known to
be difficult and rely on sophisticated use of quantum re-
sources, e.g., entanglement and auxiliary space.
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We find that, up to a certain noise threshold, a coher-
ent access protocol can always outperform its incoherent
access counterpart for our hypothesis testing problem,
but that the reverse is true above this noise threshold.
Moreover, below the threshold, we show that there ex-
ist a family of even better performing hybrid protocols,
which are alternately coherent and incoherent. For such
protocols we find that one should compute coherently for
a certain time, measure, and repeat, and we compute the
optimal query complexity, or coherence length, for the co-
herent subroutines of these protocols.

The problem proposed in this work is one for which
the recently developed algorithmic primitive of quantum
signal processing (QSP) [3–6] is natural. Indeed, much
of our analysis relies on the application of known prop-
erties and guarantees of QSP, though we here extend
these methods to a new, noisy context. Even simple
noise within QSP protocols has not been evaluated be-
yond questions of simple error propagation, and thus this
work presents one avenue toward lifting QSP into more
exotic noise settings.

This work is structured as follows: in Section II we dis-
cuss a noiseless instance of the hypothesis testing prob-
lem introduced in Definition I.1, for which optimal quan-
tum protocols are known, and generalize these results to
the case of noise in Section III, where various limits per-
mit closed form analysis of the behavior of these discrim-
ination protocols. Finally, we examine hybrid protocols
in Section IV and discuss their significance.

A. Problem statement

Consider an instance of symmetric hypothesis testing
among quantum channels. Let two distinct distributions
be Θ0,Θ1, over the reals. These distributions have well-
behaved probability density functions denoted Θb(θ) for
b ∈ {0, 1}. We involve these distributions in an “RDG”
game involving quantum channels, as given in Definition
I.1.

Definition I.1. Rotation discrimination game (RDG).
A party with a single qubit is afforded multiple-shot query
access to a single-qubit quantum channel taking the fol-
lowing form: when queried, some θ unknown to the party
is drawn from Θb (either 0 or 1, with b fixed for all
queries), and the unitary channel

Eb ≡ exp (iθσx) (1)

is applied to the party’s qubit, where σx is the Pauli X
operator with determinant 1.

The distributions Θb are taken to be normal, defined
by two parameters

Θb(θ) =
1√

2πσ2
e−

(θb−µb)
2

2σ2 , (2)

where µb and σ are the mean and the standard deviation
respectively. The challenge is to, in as few queries as pos-

sible, determine which classical distribution parameter-
izes the quantum channel; i.e., to determine b with high
confidence and low query complexity. The total query
complexity is denoted N . We use a shorthand for the
separation of the means, δ = |µ0 − µ1|.

Finally, the party is assumed to only apply serial, non-
adaptive protocols, i.e., they have access to only one
qubit, and their strategy must be independent of inter-
mediate measurement results. The resources otherwise
afforded to an algorithm playing an RDG, specifically co-
herent access or incoherent access, are defined below.

This problem is simple to describe, yet sufficiently rich
to exhibit a distinct transition between optimal perfor-
mance of coherent and incoherent access models.

We pose this problem because it will be natural to
consider two limits in the single noise parameter σ and
the mean separation δ. One limit is the near noiseless
case, i.e., σ → 0; in the absence of noise, the coherent
model is strictly better than the incoherent model, which
we discuss in Section II. The other limit is when the noise
is much larger than the mean angular separation δ, or
simply when δ → 0 for any fixed non-zero σ. In this
limit coherence is almost immediately lost, and a fully
incoherent protocol will show advantage.

As the concrete protocols we consider will encom-
pass well-performing strategies for both limits discussed
above, they will also be useful in discussing the more
difficult to analyze intermediate regions in σ, δ.

Taking a step back, we are most interested in per-
formance differences between quantum algorithms situ-
ated in coherent and incoherent access models for spe-
cific tasks. We want to make concrete the distinction
between quantum strategies for RDGs in these two mod-
els, depicted in Figure 1. Before this, however, we give a
short definition. In the single-qubit and binary outcome
setting a complete measurement, in analogy to a term
used in [1], will mean simply a projective measurement,
defined by {|ψ〉〈ψ|, I−|ψ〉〈ψ|} for some pure single qubit
state |ψ〉. More generically, a complete measurement is
one that prepares quantum states which are completely
defined by (classical) measurement results. We now de-
fine our access models of interest.

• Incoherent access: The querying party is forced
to perform a complete measurement (see above) be-
tween each channel application. Measurement out-
comes are processed through some classical thresh-
olding (or post-processing) procedure.

• Coherent access: The querying party must now
defer complete measurement, and may instead per-
form intermediate unitary quantum gates on the
qubit between successive applications of Eb.

The protocols we consider will, as stated in Def. I.1,
take place in a serial, non-adaptive setting regardless of
access model. That is, the single-qubit channel Eb is not
applied jointly to many qubits, and quantum operations
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are performed independent of intermediate measurement
results. This is a restriction, but one which does not
remove all interesting properties of the comparison.

Eb,1

Eb,2

Eb,3

Eb,n

...

C

(Incoherent)

V1

V2

Eb,1

Eb,2

Eb,3

Eb,n

...

(Coherent)

FIG. 1. Non-adaptive serial incoherent access (right) and
coherent access (left) protocols for RDGs. Here C is some
classical thresholding procedure performed on the results of
measurements, dotted lines indicate transmission of classical
information, and triangles are complete measurements when
leaving a channel application and classically controlled quan-
tum state preparations going into a channel application. The
Vj are unitary quantum gates, while Eb,j is the j-th appli-
cation of b-labelled hypothesis channel. This figure follows
conventions established in [1], in which time progresses as
one moves up the diagram.

B. Prior work

Much of the work discussing quantum advantage in re-
lation to coherence does so for problems in inference [2, 7–
9]. Statistical inference, a central and broad tool in ex-
perimental contexts, has been investigated with respect
to quantum mechanical systems for over fifty years, and
hypothesis testing among quantum channels specifically,
the subject of this work, has been studied in a variety of

contexts for the past twenty years [10–13]. While binary
hypothesis testing in quantum settings has been charac-
terized for both quantum states [7] and restricted sets
of quantum channels [8, 10, 11], such initial treatments
did not consider generally noisy settings. Moreover, these
seminal results are still being elaborated currently to per-
tain to more diverse settings, most often the presence of
noise and adaptiveness [14–16].

The specific approach of analyzing quantum algorith-
mic performance according to access model is more recent
[1]. Along with the complexity-theoretic treatment of [1],
a similar distinction has been investigated for machine
learning problems [2], differentiating between the perfor-
mance of coherent access and incoherent access protocols
for worst-case approximation of specific observables. In
the latter work, [2], as their inference task involves all n-
qubit Pauli operators, which can be efficiently measured
in the coherent access model by clever constructions, a
performance separation is proven by information theo-
retic methods against any, even adaptive incoherent ac-
cess protocol. Surprisingly, the work of [2] guarantees the
persistence of this quantum advantage in the presence of
noise of any strength. While their problem is one of re-
gression, inferring expectation values averaged over noise,
a new challenge appears when considering classification.
Such problems, primarily investigated in [1], can lead to
a vanishing of quantum advantage under finite noise. It
is the fragility of quantum advantage for certain classi-
fication tasks, and its apparent robustness in regression
problems, that presents an interesting gap. Extending
such robustness to general noisy classification problems
remains an intriguing obstacle to overcome.

Quantum mechanics is known to be a resource convex
theory [17, 18], i.e., that there exist discrimination prob-
lems for which any additional resource can provide al-
gorithmic advantage. However, investigating algorithmic
advantage among access models, even for simple access
models and tasks, is in general a difficult problem, sen-
sitive to the algorithmic families considered, and is thus
often approached by non-constructive methods. There-
fore, providing constructive evidence for any gap in per-
formance, even within relatively restrictive access mod-
els, can provide insight into the benefits of coherence.
Moreover, if these restrictions are nonetheless physically
motivated, conclusions drawn can serve as a good basis
for future constructive generalizations, and their use in
experiment.

Various bounds exist for the performance of algorithms
for quantum hypothesis testing among noisy quantum
channels, though these results rely on novel information-
theoretic proofs in complicated resource models [12, 13].
This complexity is required by the broadness of the set-
tings they consider. While it is surprising and intriguing
that these results exist, most still do not consider (1) rel-
ative performance among coherent and incoherent access
protocols specifically, and (2) classification problems for
these protocols. For even simple classification games like
RDGs, no existing work investigates the relative advan-
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tage between coherent and incoherent access models.
Moreover, although the protocols that are considered

in this paper will be non-adaptive, a great deal of litera-
ture exists which (non-constructively) proves that adap-
tiveness is not required to achieve optimial discrimina-
tion in many quantum channel discrimination problems.
Most notably these include classical feed-forward adap-
tive quantum channel discrimination problems [19] as
well as a variety of channel sets whose structure is richer
than those investigated in this work [9, 15, 20]. Conse-
quently, within the resource models introduced in this
work, separations in performance are robust to even the
introduction of adaptiveness.

In a seemingly entirely separate subfield of quantum al-
gorithms, the development of quantum signal processing
(QSP) [3–5] and the quantum singular value transform
(QSVT) [6] has encouraged a fresh look at the common
mechanisms underlying notable quantum algorithms [21].
QSP and QSVT, which permit the efficient polynomial
transformation of eigenvalues of unitary operators and
singular values of embedded linear operators respectively,
have proven flexible ansätze: able to reproduce optimal
quantum algorithms for problems as diverse as Hamil-
tonian simulation, the quantum linear systems problem,
and factoring [6, 21]. Since the polynomial transforma-
tions within QSP and QSVT can be efficiently performed
even on unknown unitary processes, they are expected to
be powerful methods for addressing problems in inference
as well. That said, their application to noisy settings has
been limited, and introduces caveats. Building a bridge
between quantum algorithms and quantum inference in
noisy settings (e.g. from QSP to RDGs) is consequently
of great interest for understanding constructive methods
to achieve quantum advantage for inference problems,
and fleshing out further uses for QSP and QSVT.

II. NOISELESS DISCRIMINATION

Before discussing solutions to the major problem dis-
cussed in this work, i.e., the discrimination of noisy quan-
tum processes in the form of RDGs (Definition I.1), it is
worthwhile to discuss the noiseless case. This simpler
problem is not only amenable to closed form results but
also provides intuition that will help guide us through
the introduction of noise.

It is the aim of this section to answer the following
questions in the noiseless case, as each will become im-
portant and non-trivial in the general setting.

• Do there exist pairs of quantum channels for which
coherent access (e.g., QSP-based) discrimination
methods outperform incoherent access protocols,
and what is the quantitative nature of this relative
speedup?

• Given a pair of quantum channels (hypotheses),
what is the simplest resource model in which an
optimal discrimination protocol is possible? More

fundamentally, what methods exist for defining op-
timality.

We consider these questions below, first analytically,
and then with a concrete example.

A. Sufficiency of QSP protocols for optimal
noiseless discrimination

To investigate these questions we state a simple chan-
nel discrimination problem concretely in the noiseless set-
ting in Definition II.1.

Definition II.1. Noiseless RDGs. We consider one
concrete instantiation of an RDG (Definition I.1): dis-
tinguishing between two quantum channels E0, E1 with
explicit form exp{iθ0σx} and exp{iθ1σx} respectively,
where σx is a Pauli operator as before, and each of θ0, θ1

is fixed.
A party is given the ability to apply a quantum channel
Eb for some consistent b ∈ {0, 1} without knowledge of b.
The party is tasked with the following goal: determine,
given repeated access to Eb, the hidden bit b.

In comparison to general RDGs, in this game the dis-
tributions Θb over angles return unitary channels Eb, and
are thus Dirac distributions peaked about µb = θb. In
other words, this is the problem of discriminating two
fixed, known rotations. The problem of unitary channel
discrimination, for which this problem is one example,
has been studied for both coherent and incoherent ac-
cess protocols [7, 8]. This section translates these results
into the language of QSP protocols, and provides a new
statement for the separation in performance of coherent
access and incoherent access protocols, toward analysis of
the more complicated case where each Eb is non-unitary
(Section III).

In this setting we have a complete characterization of
both coherent access and incoherent access protocols (in
the non-adaptive case). To make this more clear, we
present a new family of quantum protocols.

Definition II.2. A QSP protocol for an RDG
is defined by (1) a series of QSP phase angle
lists, {Φ1,Φ2, · · · ,Φm}, each of which is in Rrj
for j ∈ {1, 2, · · · ,m} and rj a positive integer,
and (2) a series of classical descriptions of qubit
preparations and binary projective qubit measurements
{(ψ1, ψ

′
1), (ψ2, ψ

′
2), · · · , (ψm, ψ′m)}.

Here the probability to measure |ψj〉 is |〈ψ′j |QΦj |ψj〉|2,
and QΦj has the form

QΦj = eiφ0σz

rj∏
`=1

(
Eb eiφ`σz

)
. (3)

The total number of z-rotations is equal to the number of
channel applications:

∑
j rj = N .
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Evidently QSP protocols have non-trivial intersection
with coherent access protocols, and moreover when m =
1 they are a proper subset of coherent access protocols. It
is not difficult to see that in the case of rj = 1 the QSP
protocol given in Definition II.2 reduces to an incoher-
ent access protocol. For the incoherent access protocol
we will consider in comparison with general QSP proto-
cols, theN classical measurement outcomes are processed
through a simple thresholding procedure: majority vote.

When comparing coherent and incoherent access pro-
tocols, we will optimize over both QSP angles and choice
of state preparations and projective measurements such
that the overall error probability in discrimination is min-
imized. Performing this comparison, QSP protocols are
shown to be a useful subset of coherent access quantum
algorithms for RDGs.

It is worthwhile to cast our procedure in the frame-
work of [1]. The problem they consider also concerns the
inference of an unknown quantum channel from among
two possibilities, though the advantage they prove is for
a noiseless variant. The quantum circuit they propose
for a coherent access protocol, like ours, comprises a set
of possible gates, while in the incoherent case any two
unknown channel applications must be interrupted by lo-
cal operations and classical communication (LOCC). The
majority vote we introduce can always be implemented
with LOCC, and thus our work, while more general in
the channels it considers, is narrower in the protocols
proposed to distinguish these channels. We nevertheless
show quantum advantage for the noiseless case in this sec-
tion, and in Section III we go further than [1] by showing
a quantum advantage which persists even in the presence
of finite noise.

Given well-known results for the form of QSP-
generated unitary operators, and the ease of analysis of
the corresponding embedded eigenvalue transforms, QSP
provides an excellent starting point for the analysis of
quantum hypothesis testing. Using QSP, we first state
the following theorem for noiseless RDGs.

Theorem II.1. For noiseless RDGs (Definition II.1),
coherent access protocols can always match or exceed the
performance of incoherent access protocols. Moreover,
there exists a finite positive integer N and a coherent
access non-adaptive protocol using N queries such that
this protocol perfectly decides the bit b naming the hidden
channel, where N = O(δ−1) is optimal.

Proof. The existence of such an N follows from the major
result of [8] by recognition that this is a unitary channel
discrimination problem, and direct construction for ro-
tations about a fixed axis can be found in [22] (Lemma
IV.4). That coherent access protocols can always out-
perform incoherent access ones follows from the set de-
scribing the latter strictly containing the set of protocols
comprising the former. This shows the sufficiency of QSP
protocols for optimal noiseless discrimination.

It is worthwhile to explain why the fully coherent QSP

protocol given in Theorem II.1 performs obviously bet-
ter than its incoherent access counterpart. We motivate
a simple and old result from quantum information which
will appear again and again in analyzing the basic be-
havior of incoherent access protocols.

The one-shot distinguishability of two unitary quan-
tum channels E0, E1 is determined by the maximum over
initial density operators σ and all POVMs, and gives the
minimum error probability

perr = min
σ

1

2

(
1− ‖E0(σ)− E1(σ)‖

2

)
, (4)

where ‖ · ‖ is the trace distance, the implicit optimal
POVM the Helstrom measurement, and the overall state-
ment the Helstrom bound. For noiseless RDGs, this
bound takes the form

perr =
1

2
(1− sin |θ0 − θ1|), (5)

where it will be taken without loss of generality that δ =
|θ0 − θ1| ≤ π/2. This simple bound completely defines
the performance of incoherent protocols up to polynomial
factors when paired with non-adaptive post-processing
on measurement results, and will serve to constitute a
performance bound in the comparison to coherent access
protocols.

One possible post-processing method in the incoherent
access setting is the majority vote: a simple threshold-
ing procedure; this work will solely be considering this
type of non-linear, non-adaptive post-processing, though
many additional classical statistical methods and thresh-
olding procedures are possible. We are able to forgo, in
this instance, adaptive strategies due to previous work in
Sec. I B showing their lack of benefit in our setting.

We define the majority vote below and discuss its per-
formance in comparison to QSP protocols for noiseless
RDGs. A majority vote (here denoted MAJ) unsurpris-
ingly returns the majority result from a set of (2M + 1)
i.i.d. Bernoulli samples defined by some underlying suc-
cess probability 1/2 ≤ p ≤ 1. The distribution which
defines the output of a majority vote is itself a Bernoulli
distribution with a modified p. I.e., it corresponds to
a single sample returned from the Bernoulli distribution
defined by

p′ =

M∑
k=0

(
2M + 1

k

)
p2M+1−k(1− p)k, (6)

which for the constraints given satisfies p′ ≥ p when M >
0, an integer. An analogous reversed statement can be
made for 0 ≤ p < 1/2.

For incoherent access protocols we consider that the
querent is forced to completely measure after each use of
the quantum channel, but is however free to choose this
measurement as well as the preparation of the qubit state
to which the channel is applied. In this restricted setting
the Helstrom bound can be combined with majority vote
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FIG. 2. Error probability plotted as a function of distance
between signal means δ, with no noise, i.e., σ = 0. This
figure compares protocols that use three total queries (N =
3), and which are either fully coherent (solid), fully incoherent
and non-adaptive (dashed), and fully incoherent and adaptive
(dotted dashed) as described in Appendix A.

to give a more complete picture of the performance of
incoherent access protocols.

For coherent access protocols, in comparison, we con-
sider instead that the querent may successively apply the
quantum channel multiple times to a chosen input, pos-
sibly interspersing these applications with quantum op-
erations of their own choosing before finally measuring
with respect to a chosen complete measurement. While
it is clear that the use of the hypothesis channel in a QSP
sequence is a subset of such protocols, it is not clear that
optimal discrimination protocols can be performed seri-
ally and without entanglement. However, this is demon-
strated to be the case in settings like those of Theorem
II.1, as well as for many noiseless channel discrimination
protocols [11]. This paper will continue to consider dis-
crimination strategies which do not use entanglement due
to these strong indications that, at least in small noise
settings, the benefit of entanglement vanishes [11, 20].

Having made the statement that coherent protocols
can always outperform incoherent ones in the noiseless
setting, we are now interested in an upper bound for
the magnitude of the relative advantage between the two
protocols with respect to a particular pair of quantum
channels. One such bound is discussed in a concrete,
simple example below.

B. A simple concrete example

If we consider a concrete hypothesis testing problem
and employ constructive QSP protocols for its solution,
corresponding performance differences become easier to
visualize. In Figure 2 we compare the performance of

two methods for symmetric binary hypothesis testing for
rotations about a fixed axis in the N = 3 case. The same
functional form derived here will extend easily to larger
N .

Considering the performance of incoherent protocols
first, the probability of error from successive Helstrom
measurements followed by majority votes can be calcu-
lated explicitly, taking N = 2M + 1 an odd positive in-
teger

pMAJ = 2−(2M+1)
M∑
k=0

(
2M + 1

k

)
× (1− sin δ)

2M+1−k
(1 + sin δ)

k

(7)

for δ ∈ [0, π/2], where pMAJ is the error probability of
the majority vote.

We can compare the the behavior of (7) with the be-
havior of an optimized QSP sequence of length 3 (QSP-3,
precisely the length 3 form of Def. II.2), which for this
noiseless setting is provably optimal in query complex-
ity, and has a simple form. For any fixed N , the error
probability of the optimized QSP sequence is given by

pQSP =
1

2
(1− sinNδ) (8)

for δ = |θ0−θ1| ≤ π/N and zero otherwise (in which case
the results of [8, 22] enable perfect discrimination). The
form of Eq. 8 is merely the Helstrom bound applied to
the N -th power of the signal rotation. It is not difficult
to numerically verify (see, e.g., Fig. 2) that this function
is always strictly less than (7) for any positive choice of
N and any non-zero separation δ within [0, π/N ]. While
this result can be shown empirically, its proof for some
finitely sized region in δ follows from simple observation
that the respectively derivatives of each continuous func-
tion around δ = 0 (at which they both equal 1/2) are
respectively

pQSP ∝ 2M + 1, pMAJ ∝ 2−2M (2M + 1)!

(M !)2
, (9)

the later of which is derived in Appendix C. Moreover,
for some finite M the right hand side of Eq. 10 is greater
than the left as they asymptotically approach

pQSP → 2M, pMAJ → 2

√
M

π
, (10)

respectively, by Stirling’s approximation. Finally, the
magnitude of the ratio of the error probabilities is dis-
cussed in Figure 2, and can for certain choices of pa-
rameters be arbitrarily large. Consequently as the func-
tions involved are bounded and differentiable, there ex-
ists some finite positive δ for which our coherent protocol
beats its incoherent access counterpart in this simple dis-
crimination problem.

As an addendum, it is known from literature [19, 20]
that there is no asymptotic improvement added in the
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consideration of adaptive protocols when only classical
feed-forward is allows, and so beyond constant factors,
we need only compare non-adaptive incoherent access
and fully coherent access models for our problem. How-
ever, although we will not discuss adaptive protocols in
the rest of this work, we do depict the performance of
one adaptive strategy for an incoherent access protocol
in Figure 2 for illustrative purposes. The details of the
method employed are given in Appendix A.

This adaptive incoherent protocol asymptotically con-
verges to the measurement which minimizes the error
probability, and is strictly better than plain majority
vote [23], though not asymptotically better for large N .
Moreover, such protocols provably cannot achieve per-
fect discrimination when the hypothesis channels are not
orthogonal, i.e., when δ 6= π, as expected [19].

III. NOISY DISCRIMINATION

The consideration of noise in channel discrimination is
essential, given both that realistic quantum computers
exhibit noise and more pressingly that the introduction
of noise can impart important nuance on statements of
advantage for specific quantum algorithms [1, 24].

This section explores if and when the observed gap
in performance between coherent and incoherent access
protocols for RDGs discussed in the previous section is
robust to finite noise. We will show that even for simple,
parameterized noise, this question leads to a transition
boundary for quantum advantage among access models.
We present these findings in two subsections below, first
numerically, then analytically.

A. Quantum advantage for noisy discrimination

In QSP, we can tailor the sequence of phase angles
defining the QSP protocol to optimize for discriminat-
ing between two channels parameterized by underlying
classical distributions, Θ0 and Θ1. When the channels
are noiseless, i.e., σ = 0, QSP protocols were shown in
the previous section to have better success in hypothesis
testing than incoherent access protocols.

In the limit of large noise, we might expect that a
coherent protocol can do no better than its incoherent
counterpart. Consequently an interesting regime occurs
when, by some reasonable metric, the signal to noise ratio
for the quantum channel is in an intermediate range. We
investigate this region, and give evidence for a transition
boundary for relative quantum advantage in the param-
eter space defining the underlying noise. Additionally,
we analytically determine this boundary in two distinct
limits where its computation is simplified.

Where we cannot analytically approximate this tran-
sition boundary, for RDGδ,σ with σ > 0, we use Monte
Carlo methods to numerically optimize over QSP angles
as described in Appendix B. The result for length three

QSP protocols (QSP-3) is shown in Figure 3(b). Here, p
denotes taking an average with respect to the probability
distributions defining channel noise, i.e., Eq. (2). For a
fair comparison we fix the number of channel applications
(the query complexity) afforded to each quantum proto-
col, so we compare with MAJ for M = 1 (equivalently
N = 2M + 1 = 3) in Figure 3(a). In a side-by-side com-
parison, it is evident that the QSP-3 protocol has a lower
error probability in regions of low δ and low σ. On the
other hand, however, both protocols perform poorly in
regions of high noise, although this is expected, since in
the limit of uniform Θ0,Θ1, these distributions become
indistinguishable.

The application of QSP to this task is not merely the
blind application of a useful ansatz; indeed in Fig. 5 we
see that even in regions of non-zero noise, the quantum
response function induced by the optimized angles is in-
tuitively obvious, producing a large distance between the
induced Bernoulli distributions.

To visualize the region of the quantum advantage more
clearly, we show the log ratio of the success probabilities
of QSP-3 versus MAJ-3, i.e., ln(pQSP/pMAJ), in terms of
δ and σ in Fig 3(c). The darker blue region indicates the
region of advantage, and later analytic results will show
that this region extends to both finite δ and σ for any
fixed N .

B. Transition boundaries in the low-separation
limit

In the previous subsection the relative performance of
QSP and incoherent access protocols was investigated nu-
merically. To cross-check the validity of these results, as
well as extend them to a region (i.e., low separation, or
low δ) in which the simulations are numerically unsta-
ble, we can consider the limit of the multi-dimensional
integrals which define these success probabilities.

For a noisy RDG, when the angular separation be-
tween the means of the possible rotations is sufficiently
small, the optimal phase angles of a QSP protocol tend
to zero (i.e., toward the simple QSP protocol which sim-
ply rotates along a fixed great circle on the Bloch sphere,
and performs the Helstrom measurement). This limit fol-
lows from that such protocols can never achieve perfect
discrimination, and thus their success probability is an
monotonic function of the maximum possible mean sep-
aration between the overall rotation applied by the pro-
tocol unitary, in a natural metric on SU(2). This mean
separation is maximized by rotating about a fixed axis
(i.e., with all QSP angles zero), or else traveling along a
locally straight path on this Riemannian manifold. We
give a definition of such ‘simple’ protocols below.

Definition III.1. Simple QSP protocol. A simple QSP
protocol is one which uses the trivial choice of Φ =
{0, 0, · · · , 0} as well as a projective measurement which
optimizes discrimination success for a particular pair
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FIG. 3. (a, b) Error probabilities for MAJ-3 (a) and QSP-3 (b). In (c) is depicted the log of the ratio of the error probability of
MAJ-3 and that of QSP-3. Red is used for the area where MAJ-3 performs better, white indicates roughly equal performance,
and blue indicates where QSP-3 performs better. Quantum advantage for coherent access protocols is present when both the
‘signal’ (δ) and the ‘noise’ (σ) are not too large.

of hypothesis channels. Note that this physically corre-
sponds to rotation about a fixed axis.

In this case, we can analytically calculate the expected
success probability even in the noisy case and thus iden-
tify the transition boundary between coherent and inco-
herent access protocols. We first compare coherent and
incoherent access protocol performance for a fixed odd
query complexity N = 2M + 1. In this setting it is not
too difficult to compute the expected error probability of
a simple QSP protocol

pQSP =
1

2

(
1− (2M + 1)δe−2(2M+1)σ2

)
, (11)

where the angular separation is small enough that sin δ ≈
δ. Relatedly, we can take the M = 0 (N = 1) instance
of (8), the Helstrom bound, and apply the majority vote
(Eq. (6)), again keeping only leading order terms in δ,

pMAJ =
1

2

(
1 + δ2−2M (2M + 1)!

(M !)2
e−2σ2

)
, (12)

which is computed by summing the relevant binomial
terms in the expansion of the majority vote function
of the Helstrom success probability (see Appendix C).
Equating these two in the limit of small angular separa-
tion δ � π/2, one finds the condition for the transition
boundary in terms of σ,

σ =
1

2

√
1

M
ln

(
22M (M !)2

(2M)!

)
, (13)

which can be shown by approximation to scale as σ2 ≈
log (M)/M = log (N)/N as N grows sufficiently large.

For M = 1 (the length N = 3 sequences discussed at
length in this paper’s numerical results), this boundary

occurs at σ =
√

ln 2/2, which agrees well with numeri-
cal simulation. Qualitatively, we see that the region of
advantage, for a fixed noise, grows smaller with increas-
ing query complexity; one might naturally expect this as
the Bloch sphere is compact, and thus a standard appli-
cation of the law of large numbers cannot be applied to
arbitrarily accurately threshold about a mean.

IV. HYBRID PROTOCOLS FOR LARGE N AND
OPTIMAL COHERENCE LENGTH

We now pose a separate, related, and natural question
regarding the protocols for RDGs we have been inves-
tigating. We will show that this question leads to yet
another limit under which the transition boundary dis-
cussed above becomes amenable to analytic description.

Imagine that the querying party has some large bud-
get for the total number of queries they can make to the
quantum process defining some RDG. It is known from
the previous sections that, if one knows that the underly-
ing distributions for the two possible quantum channels
are relatively narrow, then a coherent access protocol is
best, while for sufficiently large noise an incoherent access
protocol does well.

If the querying party has knowledge of the magnitude
of the channel noise then how should they choose to split
the difference between coherent and incoherent access
protocols? How long should they compute before mea-
suring, where this length (in terms of query complexity)
will be termed the coherence length. To make this ques-
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tion concrete we need one more definition.

Definition IV.1. Hybrid protocols. A ξ-hybrid proto-
col for an RDG is one which, given a total budget of N
queries to one among two quantum channels, performs
ξ-length QSP protocols a total of N/ξ times, followed
by a majority vote on the N/ξ measurement outcomes.
While stating nothing of the methods for finding optimal
ξ-hybrid protocols, it is easy to see that coherence lengths
ξ = N and ξ = 1 correspond to fully coherent and fully
incoherent access protocols respectively.

If we consider again (1) the limit of small separation
between the means of the distributions defining the two
possible quantum channels (i.e., where simple QSP pro-
tocols are optimal), and (2) the large N limit, then the
work we did before can be re-purposed for differing ξ.

I.e., if we suitably scale (11) and (12) by ξ, we recover
that in this limit, as N → ∞, that the error probability
for a ξ-hybrid protocol goes as

1

2

(
1− ξδ [N/ξ]!

[(N/ξ − 1)/2)!]2
2−(N/ξ−1)e−2ξσ2

)
(14)

where N has been taken to replace 2M + 1 in (12) for
simplicity, and is the total number of queries. This can
easily be minimized over ξ (and in fact this minimum is
unique), where ξmin satisfies the relation

(2σ2ξ − 1)ξ − n log

(
1− ξ

n

)
= 0, (15)

where we have taken the small ξ (and large N) limits
in order to replace digamma functions with familiar log-
arithms. Note that we have assumed that the limit of
large N has permitted suitable analytic continuation of
the discrete objects in (12). We now hope to further ex-
plain what solutions for ξmin look like in various limits.
We define these limits below:

1. First limit: consider large N , large σ (and conse-
quently small ξ � N).

2. Second limit: consider large N , small σ, (and con-
sequently ξ ≈ N).

For large noise, and thus small coherence length, we
can ignore the second, logarithmic term in Eq. 15 entirely
(as it approaches one as ξ approaches one and N grows
large,

ξmin ≈
1

2
σ−2, (16)

which tracks with intuition; in the limit of large noise
(a classical limit) the optimal coherence length decreases
according to the inverse variance. In the regime of small
δ � 1/N , underlying all of these limits, the simple
QSP sequences used merely accrue the collected rotation
about a single axis on the Bloch sphere.

In the small noise, large N limit (i.e., where the opti-
mal ξ is expected to be large), we are not able to expand
the expression given taking the derivative of Eq. 14 with
respect to ξ as simply. We may, however numerically
verify that up to an including this regime, the scaling
of the optimal coherence length retains the same inverse
polynomial behavior in σ seen in the low noise regime.
While this observation is not exciting from the point of
view of obtaining an unexpected quantum advantage, it
is also not incomprehensible; this setting exhibits noise
with little quantum structure, and thus we would not ex-
pect, even in highly coherent regimes, that an algorithm
would perform polynomially better.

In Figure 4, numerical results for the optimal coherent
length (solid line), and its closed form expression in the
large σ limit (dotted dashed line) are shown. The depen-
dence ξ ∝ σ−2 in the large σ region indicates that the
optimal length is, as mentioned previously, determined
classically, as the coherence length is such so that the ac-
cumulated error is kept constant. Even for small sigma
(i.e., up to an until clipping in the optimal ξ occurs), the
power-law dependence is roughly the same.

Note finally that (15) was obtained by analytic con-
tinuation of the factorial function, and thus, ξmin is not,
in principle, bounded between 1 and N . In Fig. 4, ξmin

becomes smaller than one around σ/π = 0.2, indicating
that an incoherent access protocol gives a minimum error
probability. Similarly, a fully coherent protocol becomes
optimal around σ/π = 0.02. Evidently a hybrid protocol
is optimal between these limits.
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FIG. 4. Optimal coherence length for a hybrid simple QSP
sequence for increasing noise, using a log-log scale. Note that
not only in the limit of large noise does the coherence length
fall as one would classically expect, ξ ∝ σ−2. For small noise
the slope implies the same relation holds. This plot shows
the case for N = 100 as an explicit example (and thus the
optimal ξmin is truncated between N = 1 and N = 100).



10

V. CONCLUSION AND DISCUSSION

In this work we show a quantitative difference in per-
formance among quantum protocols for hypothesis test-
ing against pairs of noisy quantum channels. The two
families of quantum protocols considered for this task,
coherent and incoherent access protocols, were construc-
tively instantiated as QSP protocols (Definition II.2) and
non-adaptive thresholding protocols infomed by the Hel-
strom bound. For these specific protocols, in the case
of rotation discrimination games (RDGs; Definition I.1),
we provided analytic arguments for their relative per-
formance in multiple limits, as well as numerical results
characterizing the conditions under which a crossover in
relative advantage appears.

This work determines that for these specific quantum
protocols the performance gap between incoherent and
coherent access protocol performance is robust to small
finite noise, although the region of relative advantage,
plotted in space defined by σ (noise strength) and δ (sig-
nal strength), shrinks inverse-polynomially with increas-
ing query complexity. We are able to depict this region in
terms of these two defining parameters, and verify that
numerical approximation of its boundary agrees with said
boundary’s analytic form in multiple limits.

Moreover, by analyzing hybrid protocols, we were able
to compute the ideal method for distributing probes to
the underlying quantum process between coherent and
incoherent subroutines for optimal performance in RDGs.
Here optimality is defined with respect to protocols of the
hybrid type given, and such protocols outperform their
fully incoherent and fully coherent counterparts. For
small noise, we find that the optimal coherence length
depends on the noise parameter according to the stan-
dard quantum limit, while for large noise the dependence
on noise becomes more classical in character.

This work represents a new application of QSP meth-
ods to noisy settings, and a concrete series of methods
for numerically and analytically investigating the robust-
ness of such protocols to reasonable noise. Moreover, this
work situates a physically realistic question of robustness
within recent work regarding the complexity-theoretic
characterization of quantum algorithms in differing ac-
cess models [1]. We also provide a complement to the
recent quantum machine learning work in [2], proposing
a separate noise model and classification scheme which
is not amenable to their analysis of adaptiveness, but
which is amenable to generalization to large-dimension
channels through the methods of QSVT. While the chan-
nels considered in this work are simple, they are minimal

examples for which QSP-based methods can characterize
the presence of quantum advantage.

A major caveat of this work, and various works consid-
ering the relative performance of specific quantum algo-
rithmic models, is the non-exhaustive characterization of
incoherent and coherent access protocols. We do not con-
sider adaptive hybrid protocols (though we show that in
our simple setting, such consideration is not required), or
entangled protocols (again unecessary by statements in
[11]), which are known in general to offer (sometimes only
modest) performance improvements for certain problems
[17, 18]. However, for the limits we do consider, small
noise and small mean separation, the limited protocols
we consider perform well, and are physically reasonable
to implement.

Finally while there are results indicating sufficient con-
ditions under which the performance of adaptive pro-
tocols in similar discrimination problems tracks exactly
with the performance of their non-adaptive counterparts
(asymptotically) [19, 20], these bounds are in general dif-
ficult to compute outside highly symmetric noise-models
(e.g., Haar-random channel access, as in [1]), in the pres-
ence of any non-Markovian channel noise, or for chan-
nel discrimination which permits coherent feed-forward
subroutines. Such settings might permit more extensive
applications of QSP methods, as well as hybrid QSP-
adaptive protocols, but are beyond the scope of this work.

The broad question of the robustness of the advantage
of coherent access protocols over incoherent access ones
for general noise models remains open, and is not wholly
addressed by this work. Indeed, the simple nature of
the noise in this work leaves only the possibility of mod-
est quantum advantage in the presence of quite small
noise. That said, under additional assumptions or for
more structured problems, such as the case of correlated
noise or asymmetric hypothesis testing, our finding of
classical character for the scaling of the coherence length
in Section IV need not hold, leaving the door open to
more dramatic statements of quantum advantage.
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Appendix A: Adaptive incoherent strategy

We consider adaptive incoherent access protocols based
on Bayesian inference, as discussed in the main text.
We consider these protocols not because adaptiveness
yields asymptotic improvement in discrimination for our
setting, but because it is worthwhile to illustrate how
such protocols can produce constant-factor improve-
ments. Let the prior probability that Θb (b = 0, 1) is
the correct hypothesis underlying an RDG be P (Θb), i.e.,
that P (Θ0)+P (Θ1) = 1. Moreover, before the first mea-
surement, take P (Θb) = 0.5.

We can update this prior following each measurement
using Bayes’ theorem. To be more concrete, denote the
basis of the adaptive projective measurement by ψ0 and
ψ1, corresponding to Θ0 and Θ1, respectively. We denote
conditional probabilities P (A | B) in the usual way. The
conditional probability we’re interested in is:

P (Θb|ψb′) =
P (ψb′ |Θb)P (Θb)

P (ψb)
, (A1)

where

P (ψb) =

1∑
b′=0

P (ψb|Θb′)P (Θb′). (A2)

From the prior probability P (Θb) and the conditional
probability P (ψb′ |Θb), which we can analytically calcu-
late, we update the probability P (Θb|ψb′) after each mea-
surement. After all measurements have been completed,
we threshold to determine the most likely Θb.

In this procedure, there is a degree of freedom for
choosing the measurement basis, and a good measure-
ment basis is one for which states represented by choice
of projector ψb are strongly correlated to the hypothesis
distributions Θb for b ∈ {0, 1}. This correlation is made
concrete in the maximization of the mutual information:

I(Θ;ψ) =
∑
b,b′

P (Θ, ψ) ln

(
P (Θ, ψ)

P (Θ)P (ψ)

)
, (A3)

where P (Θ, ψ) is the joint probability distribution
P (Θ, ψ) = P (ψb′ |Θb)P (Θb). In Figure 2, we numeri-
cally perform this maximization and plot the resulting
discrimination performance, showing a slight improve-
ment. Various results [19, 20] show that this improve-
ment will asymptotically vanish in the large N limit.
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Appendix B: Numerical methods

The error probabilities which constitute Fig. 2 and
Fig. 3 are generated by numerical optimization on an
0.001×0.001 grid in δ, σ space. The relevant code is avail-
able in the noisy-qsp-rdg repository on Github [25].

The classical probabilities can be computed via ana-
lytical integration. Given two distributions with PDFs
Θ0 and Θ1, the success probability we’re interested in is
given by∫ ∞

−∞

1

2

(
Θ0(θ) cos2(α+ θ) + Θ1(θ) sin2(α+ θ)

)
dθ,

(B1)
where α is chosen to maximize the success probability.
Here cos2(α + θ) is the probability of successfully mea-
suring some known |ψ0〉 if Θ0 is chosen and sin2(α + θ)
is the probability of successfully measuring some known
|ψ1〉 perpendicular to |ψ0〉 if Θ1 is chosen. For normal
distributions Θ0 = N (0, σ2) and Θ1 = N (δ, σ2), the in-
tegral evaluates to

1

4

([
1 + e−2σ2

cos(2α)
]

+
[
1− e−2σ2

cos(2(α+ θ))
])
,

(B2)
with the optimal α = π

4 − δ
2 given by the Helstrom bound

[7]. The error probability is equal to the complement of
this value, and majority votes are applied to this base
probability in the calculation shown in Eq. 6.

For a given list of QSP-N phase angles Φ with prepared
initial and final (i.e., measurement basis) states ψ and ψ′,
the success probability of the QSP protocol QΦ is simply

pΦ,ψ,ψ′ =

∫
Θ(θ0)Θ(θ1)Θ(θ2)|〈ψ′|QΦ(θ)|ψ〉|2 dθ0 dθ1 dθ2.

(B3)

However, analytically integrating this is difficult, so
we numerically calculate this by Monte Carlo methods.
Specifically, we evaluate the success probability by ran-
dom sampling the introduced θ (i.e., N samples per se-
quence):

papprox
Φ,ψ,ψ′ =

1

Nr

∑
r

|〈ψ′ |QΦ(θr) |ψ〉|2 (B4)

where θr (r = 1, 2, · · · , Nr) are prepared according to
the PDF of Θ. Note that papprox converges to the exact
probability p when Nr →∞.

Another merit of using (B4) instead of (B3) is that
we can readily optimize Φ on a computer, e.g. with
scipy.optimize. We optimize both the set of QSP an-
gles Φ and the prepared states ψ and ψ′ to minimize
the error probability. Since there are many local minima
given N+4 degrees of freedom, a single run may not gen-
erate the global optimum. Hence we run the optimization
several times and take the best set of angles.

For a concrete view into whether these optimizations
are fundamentally sensible, one can look at Fig. 5, which

0 π/6 π/3 π/2
Rotation angle, θ

0

1

|〈ψ
1
|U

Φ
|ψ

0
〉|2

δ = π/6

δ = π/4

δ = π/3

FIG. 5. Transition probability induced by a numerically op-
timized QSP-3 unitary from an optimized initial state |ψ0〉
to an optimized final state |ψ1〉 for fixed (small) σ = 0.05
and differing δ ∈ {π/6, π/4, π/3}. Note that for the first hy-
pothesis (implicitly δ = 0), the transition probability is near
1, while for the chosen alternative δ it is near zero, indicat-
ing near perfect discrimination in the case of small noise and
reasonably large δ.

depicts the induced quantum response functions for fixed
non-zero σ and varying δ. Evidently one observes that
the optimization does indeed tend toward a unitary and
pair of preparation and measurement which produces
a large difference in probability defining the resulting
Bernoulli distributions for each hypothesis distribution.

The fact that the functions depicted in Fig. 5 are well-
defined trigonometric polynomials further bolsters the in-
tuition that smaller δ necessitates higher degree polyno-
mials and thus longer QSP sequences for near-optimal
discrimination.

Appendix C: Majority vote for Helstrom bound

We compute the success probability of a fully incoher-
ent non adaptive protocol for an RDG. Given access to a
binary process whose success probability follows, in the
limit of small δ, the form

p =
1

σ
√

2π

∫ ∞
−∞

e(θ−δ)2/2σ2 1

2
(1 + sin θ), (C1)

which has the solution by simple integration methods

p =
1

2
(1 + δe−2σ2

), (C2)

then the expected success probability of the classical sta-
tistical process which takes 2M + 1 samples from this
Benoulli distribution and performs majority vote is

p′ =
1

2

(
1 + δ2−2M (2M + 1)!

(M !)2
e−2σ2

)
. (C3)
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Proof of this statement follows from applying the major-
ity vote function to p

M+1∑
j=0

(
2M + 1

j

)
p2M+1−j(1− p)j , (C4)

and keeping only the first-order terms in δ (equivalently
assuming δ small). This results in two terms when the
sums are collected

2−(2M+1)

M+1∑
j=0

(
2M + 1

j

)+ (C5)

2−(2M+1)

 M∑
j=0

(
2M + 1

j

)
(2M + 1− 2j)

 , (C6)

the first of which is simply 1/2 by the known symmetry
and total sum of the binomial coefficients, and the later
of which is a known identity in combinatorics in terms
of hypergeometric functions, namely providing the par-
tial sum of j against binomial coefficients depending on
j. Collecting the sum results in the previously given ex-
pression, both in Eq. C3 and Eq. 12. It is an interesting
generalization to this method to compute the higher or-
der δ terms, which have similar character, though that is
not shown here.
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