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We demonstrate that a circuit comprising two unstable LC resonators coupled via a gyrator sup-
ports an exceptional point of degeneracy (EPD) with purely real eigenfrequency. Each of the two
resonators includes either a capacitor or an inductor with a negative value, showing a purely imagi-
nary resonance frequency when not coupled to the other via the gyrator. With external perturbation
imposed on the system, we show analytically that the resonance frequency response of the circuit
follows the square-root dependence on perturbation, leading to possible sensor applications. Fur-
thermore, the effect of small losses in the resonators has been investigated, and we show that losses
lead to instability. In addition, the EPD occurrence and sensitivity are demonstrated by showing
that the relevant Puiseux fractional power series expansion describes the eigenfrequency bifurcation
near the EPD. The EPD has the great potential to enhance the sensitivity of a sensing system by
orders of magnitude.

I. INTRODUCTION

An exceptional point of degeneracy (EPD) is a point
in parameter space at which the eigenmodes of the cir-
cuit, namely the eigenvalues and the eigenvectors, co-
alesce simultaneously [1–9]. As the remarkable feature
of an EPD is the strong full degeneracy of at least two
eigenmodes, as mentioned in [10], the significance of re-
ferring to it as a “degeneracy” is here emphasized, hence
including “D” in the EPD. An EPD in the system is
reached when the system matrix is similar to a matrix
that contains a non-trivial Jordan block. EPD-induced
sensitivity according to the concept of parity-time (PT)
symmetry in multiple coupled resonators has been stud-
ied [11–13]. Also, the electronic circuits with EPD based
on PT symmetry have been expressed in [14, 15] and then
more developed in [16, 17] where the circuits are made
of two coupled resonators with gain-loss symmetry and a
proper combination of parameters leads to an EPD. Pri-
marily, it has been confirmed that the eigenvalues bifur-
cation feature at EPD can significantly increase the effect
of external perturbation; namely, the sensitivity of res-
onance frequency to component value perturbations can
be enhanced. Moreover, frequency splitting happens at
degenerate frequencies of the system where eigenmodes
coalesce, and this feature at EPDs has been investigated
to conceive a new generation of sensors [18–21]. The
resulting perturbation leads to a shift in the system reso-
nance frequency that can be recognized and measured us-
ing the proper measurement setup [18]. When a second-
order EPD at which specifically two eigenstates coalesce
is subjected to a small external perturbation, the result-
ing eigenvalue splitting is proportional to the square root
of the external perturbation value, which is bigger than
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the case of linear splitting for conventional degeneracies
[22]. The concept of EPD has been employed in various
sensing schemes such as optical microcavities [13], optical
microdisk [23], electron beam devices [24], mass sensors
[25], and bending curvature sensors [26].

The gyrator is a two-terminal network in which the
transmission phase shift in one direction differs by π
from the transmission phase shift in the reverse direction
[27]. Another property of the gyrator network is that
of impedance inversion. The inductance at the output
of the gyrator is observed as capacitance at the input
port, and a voltage source is transformed to a current
source. A relevant alias for the gyrator might be the
“dualizer” since it can interchange current and voltage
roles and turns an impedance into its dual [28]. Gyrators
could be designed directly as integrated circuits [29, 30].
Also, many operational-amplifier (opamp) gyrator cir-
cuits have been proposed [31–33], which can be classified
into two types. First, 3-terminal gyrator circuits in which
both ports are grounded [31]; second, 4-terminal gyrator
circuits in which the output port is floating [32, 33]. Be-
cause of the availability of different realizable circuits for
gyrators and their versatility as practical circuit devices,
gyrator-based circuits may form an essential part of inte-
grated circuit technology in a wide range of applications.

In this paper, we study the second-order EPDs in a
gyrator-based sensing circuit as Fig. 1 and explore its
enhanced sensitivity (variation in the sensor’s resonance
frequencies to external perturbations) and its potential
for sensing devices in the vicinity of the EPD. At the
EPD, the degeneracy is in both the real and imaginary
parts of the eigenvalues, as well as in the eigenvectors.
Two series LC resonators are coupled in the utilized cir-
cuit via an ideal gyrator, as explained in [34]. Contrary
to the study in [34], this paper demonstrates the con-
ditions to get the EPD with real eigenfrequency by us-
ing unstable resonators. In other words, we study the
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case of two unstable resonators coupled via an ideal gy-
rator. A general mathematical approach for constructing
lossless circuits for any conceivable Jordan structure has
been developed in [35], including the simplest possible
circuit as in Fig. 1 and other circuits related to the Jor-
dan blocks of higher dimensions. In addition, important
issues related to operational stability, perturbation anal-
ysis, and sensitivity analysis are studied in [36], whereas
analysis of stability or instability by adding losses to the
circuit is not discussed. We show that the gyrator-based
circuit can achieve EPD with real eigenfrequency even
when two unstable resonators are used in the circuit.
Hence, dispersion diagrams corresponding to perturba-
tions in the circuit’s parameters show the eigenfrequen-
cies split. Then, we show examples for different cases
and analyze the voltage signals by using time-domain
simulations. We then study the impact of small losses
in the circuit and explain how they can make it unsta-
ble. Besides, we look at the sensitivity of circuit eigenfre-
quencies to component variations, and we show that the
Puiseux fractional power series expansion well approxi-
mates the bifurcation of the eigenfrequency diagram near
the EPD [3]. The sensitivity enhancement is attributed
to the second root topology of the eigenvalues in param-
eter space, peculiar to the second-order EPD. Lastly, we
examine the gyrator-based circuit’s enhanced sensitivity
and provide a practical scenario to detect physical pa-
rameter variations and material characteristics changes.
This work is important for understanding the instability
in the coupled resonators circuit, in addition to exploring
EPD physics in gyrator-based circuits. The given anal-
ysis and circuit show promising potential in novel ultra
high-sensitive sensing applications.

II. GYRATOR CHARACTERISTIC

A gyrator is a two-port component that couples an
input port to an output port by a gyration resistance
value. It is a lossless and storage-less two-port network
that converts circuits at the gyrator output into their
duals, with respect to the gyration resistance value [37].
For instance, this component can make a capacitive cir-
cuit behave inductively, a series LC resonator behave like
a parallel LC resonator, and so on. This device allows
network realizations of two-port devices, which cannot
be realized by just the basic components, i.e., resistors,
inductors, capacitors, and transformers. In addition, the
gyrator could be considered a more fundamental circuit
component than the ideal transformer because an ideal
transformer can be made by cascading two ideal gyrators,
but a gyrator cannot be made from transformers [27].
The circuit symbol for the ideal gyrator is represented in
Fig. 1 (red dashed box), and the defining equations are
[27, 38]

{
v2 = Rgi1
v1 = −Rgi2

(1)

where Rg is called gyration resistance and has a unit
of Ohm. A gyrator is a nonreciprocal two-port network
represented by an asymmetric impedance matrix Z as
[38]

Z =

[
0 −Rg

Rg 0

]
. (2)

III. EPD CONDITION IN THE LOSSLESS
GYRATOR-BASED CIRCUIT

This section provides an analysis of a gyrator-based cir-
cuit in which two series LC resonators are coupled via an
ideal gyrator as illustrated in Fig. 1. In the first step, we
consider the circuit’s components to be lossless. The cir-
cuit resembles the one in [34], but here the two resonance
angular frequencies ω01 = 1/

√
C1L1 and ω02 = 1/

√
C2L2

of the two uncoupled resonators are imaginary with a
negative sign (also the counterpart with the positive sign
is a resonance), since we consider three cases: (i) both
L1 and L2 are negative while the capacitors have positive
values, (ii) both C1 and C2 are negative while the induc-
tors have positive values, and (iii) L1(C1) and C2(L2)
are negative while other elements have positive values.
Then, we investigate the conditions for an EPD to occur
in the three cases just mentioned. In realistic sensing
devices, various sensor types are used. For instance, ca-
pacitive sensors are used to sense humidity, temperature,
and distance. Proximity sensors and distance measure-
ment sensors are available on the market, which operate
based on electromagnetic induction, hence the variation
of inductance mutual coupling. Some other sensors are
based on a perturbation of the inductance. Therefore,
both the inductance and capacitance can be used as sens-
ing components, and we will investigate both cases in two
separate subsections.

In the past years, EPDs have been found by using bal-
anced loss and gain in a PT symmetry scheme [13, 15, 39].
More recently, EPDs have also been found in systems
with time-periodic modulation [40, 41]. Here, we obtain
EPDs by using a negative inductance and a negative ca-
pacitance in the gyrator-based circuit, constituting a new
class of EPD-based circuits.

We consider the Kirchhoff voltage law equations in
the time-domain for two loops of the circuit in Fig. 1.
In order to find the solution of the circuit differential
equations, it is convenient to define the state vector as
Ψ(t) ≡ [Q1, Q2, Q̇1, Q̇2]T , where T denotes the trans-
pose operator. The state vector consists of stored charges
in the capacitors Qn =

∫
indt = Cnvcn , and their time

derivative (currents) Q̇n = in, n = 1, 2. We utilize the
Liouvillian formalism for this circuit as [34]
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FIG. 1. The schematic illustration of the proposed gyrator-
based circuit with the ideal gyrator is indicated by the red
dashed box. In this circuit, two different (unstable) LC res-
onators are embedded in a series configuration, coupled via
an ideal gyrator.

dΨ(t)

dt
= MΨ(t), M =


0 0 1 0
0 0 0 1

−ω2
01 0 0

Rg

L1

0 −ω2
02 −

Rg

L2
0

 ,

(3)
where M is the 4× 4 circuit matrix. Assuming time har-
monic dependence of the form Qn ∝ ejωt, we obtain the
characteristic equation allowing us to find the eigenfre-
quencies by solving det(M − jωI) = 0, where I is the
identity matrix. The corresponding characteristic equa-
tion of the circuit is

ω4 − ω2

(
ω2

01 + ω2
02 +

R2
g

L1L2

)
+ ω2

01ω
2
02 = 0, (4)

where any solution ω is an eigenfrequency of the circuit.
In the case of Rg = 0, the two resonators are uncou-
pled, and the circuit has two eigenfrequency pairs of
ω1,3 = ±ω01, and ω2,4 = ±ω02, that are purely imagi-
nary (in contrast to the case studies in [34], where the
resonance frequencies have real values). All the ω’s coef-
ficients of the characteristic equation are real, so ω and
ω∗ are both roots of the characteristic equation, where *
indicates the complex conjugate operator. Moreover, it
is a quadratic equation in ω2; therefore, ω and −ω are
both solutions of the Eq. (4). As we mentioned before,
we only consider unstable resonators, i.e., resonators with
an imaginary resonance frequency. Therefore, only one
circuit element in each resonator should have a negative
value, leading to ω2

01 and ω2
02 with negative values. After

finding the solutions of the characteristic equation, the
angular eigenfrequencies (resonance frequencies) of the
circuit are expressed as

ω1,3 = ±
√
a+ b, ω2,4 = ±

√
a− b, (5)

where

a =
1

2

(
ω2

01 + ω2
02 + ω2

g

)
, (6)

b2 = a2 − ω2
01ω

2
02 , (7)

where it has been convenient to define ω2
g = R2

g/(L1L2),
that may be positive or negative depending on the con-
sidered case. According to Eq. (5), the EPD condition
requires

b = 0, (8)

leading to an EPD angular frequency ωe =
√
a (with

its negative pair −ωe). According to Eq. (7), the EPD
condition is rewritten as a2 = ω2

01ω
2
02. As in [34], we

consider positive values for a to have a real EPD angular
frequency ωe , so we have

ω2
01 + ω2

02 + ω2
g > 0. (9)

Finally, the EPD frequency is calculated by using Eqs.
(6), (7), and (8) as

ωe =
√

1
2

(
ω2

01 + ω2
02 + ω2

g

)
. (10)

The last equation can also be rewritten as ωe =
4
√
ω2

01ω
2
02, with the quartic square root defined by tak-

ing the positive value; in other words, if we consider
that the two unstable frequencies have the following
purely imaginary expression, ω01 = −j/

√
|C1L1| and

ω02 = −j/
√
|C2L2|, the EPD frequency can be expressed

as ωe =
√
−ω01ω02. We obtain the desired value of a real

EPD frequency by optimizing the values of the compo-
nents in the circuit. Theoretically, the employed opti-
mization method is not critical, and we need to find the
solutions of Eq. (8). Obviously, practical limitations also
affect the selection of suitable constraints for optimiza-
tion. In the particular case the two circuits are identical,
one has ω2

0 ≡ ω2
01 = ω2

02 = 1/(LC) < 0, and the EPD
condition reduces to 4ω2

0 = −ω2
g ,that in turns leads to

the EPD angular frequency ωe =
√
−ω2

0 . In the follow-
ing subsections, we analyze the circuit in three different
cases, i.e., the three different assumptions mentioned ear-
lier.

A. Negative Inductances L1 and L2

As a first case, we consider a negative value for both
inductances and a positive value for both capacitances;
hence, in this case ω2

g > 0. According to the required
condition for EPD expressed in Eq. (8) and by using
Eq. (7), the first and second terms in Eq. (6) are neg-
ative and the third term is positive. Eq. (10) shows
that, if

∣∣ω2
01 + ω2

02

∣∣ < ω2
g we obtain a real value for EPD

frequency, and if
∣∣ω2

01 + ω2
02

∣∣ > ω2
g , the EPD frequency

yields an imaginary value.
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FIG. 2. The sensitivity of the (a) real/imaginary parts and (b) magnitude/phase of the eigenfrequencies to gyration resistance
perturbation, while inductances are negative. Voltage v1(t) under the EPD condition in the (c) time-domain, and (d) frequency-
domain. The frequency-domain result is calculated from 40 kHz to 120 kHz by applying an FFT with 106 samples in the time
window of 0 ms to 0.4 ms. The three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to C1 and
C2 perturbation. The real part of eigenfrequencies for (g) higher and (h) lower value of resonance frequencies which colormap
show the resonance frequency value. The black dashed line in these plots shows the EPD.

We explain the procedure for obtaining an EPD in this
circuit by presenting an example. We select L1, L2, and
C2 to have standard commercial values. Then, the cal-
culated value for C1 can be realized by a combination of
the standard capacitors values and a trimmer capacitor.
Various combinations of values for the circuit’s compo-
nents can satisfy the EPD condition demonstrated in Eq.
(8), and here as an example, we consider this set of val-
ues: L1 = −47 µH, L2 = −47 µH, C2 = 47 nF, and
Rg = 50 Ω. Then, the capacitance of the first resonator
is determined by solving the resulting quadratic equation
from the EPD condition demonstrated in Eq. (8). In this
example, we consider C1 as a sensing capacitance of the
circuit, which has a positive value and it can detect vari-
ations in environmental parameters and transform them
into electrical quantities. According to Eq. (8), after
solving the quadratic equation, two different values for
capacitance in the first resonator are calculated, and we
consider C1,e = 139.17 nF for the presented example.
In this example, both ω2

01 and ω2
02 have negative values,

with ω01 = −j391 krad/s, and ω02 = −j672.82 krad/s,
leading to a positive result for a in Eq. (6) and real
EPD angular frequency ωe = 512.9 krad/s. The results
in Figs. 2(a), and (b) show the real/imaginary parts and
magnitude/phase of perturbed eigenfrequencies obtained
from the eigenvalue problem when Rg of the ideal gyrator
is perturbed, revealing the high sensitivity to perturba-
tions. An EPD occurs when both eigenvalues and eigen-
vectors coalesce. Therefore, the eigenvalues coalesce in
both the real and imaginary parts.

To investigate the time-domain behavior of the circuit
under EPD conditions, we use the Keysight Advanced
Design System (ADS) circuit simulator. The transient

behavior of the coupled resonators with the ideal gyrator
is simulated using the time-domain solver with an ini-
tial condition vc1(0) = 1 mV, where vc1(t) is the voltage
of the capacitor in the left resonator. Fig. 2(c) shows
the time-domain simulation results of the voltage v1(t),
where v1(t) is the voltage at the gyrator input port (see
Fig. 1). The extracted result is obtained in the time span
of 0 ms to 0.4 ms. The solution of the eigenvalue problem
in the Eq. (3) and at the EPD is different from any other
regular frequency in the dispersion diagram since the sys-
tem matrix contains repeated eigenvalues associated with
one eigenvector. Thus, the time-domain response of the
circuit at the second-order EPD is expected to be in the
form of Ψ(t) ∝ tejωet, as it is indeed shown in Fig. 2(c).
The envelope of the voltage signal grows linearly with
increasing time, whereas the oscillation frequency is con-
stant. This remarkable feature is peculiar to an EPD,
and it is the result of coalescing eigenvalues and eigen-
vectors that also correspond to a double pole in the cir-
cuit (or zero, depending on what is observed). We take a
fast Fourier transform (FFT) of the voltage v1(t) to show
the frequency spectrum, and the calculated result is illus-
trated in Fig. 2(d). The result is calculated from 40 kHz
to 120 kHz by applying an FFT with 106 samples in the
time window of 0ms to 0.4ms. The numerically observed
oscillation frequency is f0 = ωo/(2π) = 81.63 kHz, which
shows the frequency corresponds to the maximum value
in Fig. 2(d). The numerically obtained value is in good
agreement with the theoretical value calculated above.

So far, we have used the gyrator-based circuit to mea-
sure the perturbation near EPD by varying the gyrator
resistance. Next, we analyze the circuit’s sensitivity to
independent perturbations in the positive values of both
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FIG. 3. The sensitivity of the (a) real/imaginary parts and (b) magnitude/phase of the eigenfrequencies to gyration resistance
perturbation, while capacitances are negative. Voltage v1(t) under the EPD condition in the (c) time-domain, and (d) frequency-
domain. The frequency-domain result is calculated from 100 kHz to 180 kHz by applying an FFT with 106 samples in the time
window of 0 ms to 0.2 ms. The three-dimensional plot of the (e) real and (f) imaginary parts of the eigenfrequencies to L1 and
L2 perturbation. The real part of eigenfrequencies for (g) higher and (h) lower value of resonance frequencies which colormap
show the resonance frequency value. The black dashed line in these plots shows the EPD.

capacitances. We change the capacitance value on each
resonator independently and calculate the eigenfrequen-
cies’ real and imaginary parts. The three-dimensional
result for the calculated eigenfrequencies is illustrated in
Figs. 2(e), and (f). The elevation value of any point on
the surface shows the eigenfrequency, and the associated
color helps to recognize it conveniently. In these figures,
only the two solutions with Re(ω) > 0 are illustrated. Al-
though the resonance frequency of each resonator in this
paper is imaginary, in the specific range of C1 and C2, the
EPD frequency is purely real. To utilize these calculated
results, the flat version of the three-dimensional diagram
for the real part is provided in Figs. 2(g), and (h) for
higher and lower eigenfrequency. These figures can help
designers in the design procedure to select the proper
value for components to achieve the desired real reso-
nance frequency. The intersection of two surfaces (eigen-
frequencies surface and surface of constant z plane) is a
one-dimensional curve. Therefore, there is a different set
of values for capacitances to produce oscillation at a cer-
tain frequency. Moreover, the intersection of the higher
eigenfrequencies surface and lower eigenfrequencies sur-
face indicates the possible EPD that various combina-
tions of capacitances values can yield. Designers can use
these figures to pick the proper value in the design steps
according to their practical limitations.

B. Negative Capacitances C1 and C2

In the following section, we consider another condi-
tion in which negative capacitances are used on both res-
onators; so ω2

g > 0. Using the mentioned presumption,

the first and second terms in Eq. (6) are negative be-
cause of the imaginary value of the resonance frequencies
of resonators, and the third term is positive. So, if the
EPD condition is met, the sign of a in Eq. (6) indicates
whether the eigenfrequency is real or imaginary. Accord-
ing to Eq. (5), if

∣∣ω2
01 + ω2

02

∣∣ < ω2
g we get a real value

for the EPD frequency, and if
∣∣ω2

01 + ω2
02

∣∣ > ω2
g , the EPD

frequency is imaginary.
Different combinations of values for the circuit’s com-

ponents can satisfy the EPD condition demonstrated in
Eq. (8), and here as an example, we use this set of
values: C1 = −47 nF, C2 = −47 nF, L2 = 47 µH, and
Rg = 50 Ω. The inductance value on the left resonator
is calculated by solving the resulting quadratic equation
from Eq. (8). In the presented example, L1 can be a
sensing inductor in a system. According to Eq. (8), two
different values for inductance in the first resonator are
calculated after solving the quadratic equation. We con-
sider L1,e = 15.87 µH for this example, so both ω2

01 and
ω2

02 have negative values, with ω01 = −j1.16Mrad/s, and
ω02 = −j672.82 krad/s. Then, we obtain a positive value
for a in Eq. (6), leading to a real EPD angular frequency
of ωe = 881.6 krad/s. The results in Figs. 3(a), and (b)
shows the the real/imaginary parts and magnitude/phase
of eigenfrequencies obtained by perturbing Rg near the
value that made the EPD.

The time-domain simulation result by using the
Keysight ADS with an initial condition v1(0) = 1 mV
is presented in Fig. 3(c). The voltage v1(t) is calculated
in the time interval of 0 ms to 0.2 ms. Fig. 3(c) shows the
envelope of v1(t) is growing linearly with increasing time.
The growing signal demonstrates that the circuit eigen-
values coalesce, and the output envelope rises linearly at
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the second-order EPD frequency. In order to evaluate the
oscillation frequency from the time-domain simulation,
we take an FFT of voltage v1(t) from 100 kHz to 180kHz
using 106 samples in the time window of 0 ms to 0.2 ms.
The calculated spectrum is shown in Fig. 3(d), showing
an oscillation frequency of f0 = ωo/(2π) = 140.31 kHz,
which is in good agreement with the calculated theoreti-
cal value obtained from Eq. (10).

In the following step, we investigate the circuit’s sensi-
tivity to independent perturbations in the value of both
inductances. The real and imaginary parts of the eigen-
frequencies are calculated when the values of the induc-
tances are changed. The three-dimensional eigenfrequen-
cies map of the two solutions with Re(ω) > 0 is shown in
Figs. 3(e), and (f). In order to provide a better represen-
tation, the flat view of the three-dimensional diagram for
the real part is shown in Figs. 3(g), and (h) for higher
and lower eigenfrequencies.

C. Negative Inductance on One Side and Negative
Capacitance on The Other Side

In this last case, different constraints for components
value are considered. We assume a component with a
negative value on one side (capacitance/inductance) and
the other component with a negative value on the other
side (inductance/capacitance); hence, in this case ω2

g < 0.
For instance, we consider a negative inductance on the
right resonator and a negative capacitance on the left
resonator. So, we have two unstable resonators when
they are uncoupled. When two resonators are coupled,
EPD should satisfy Eq. (7). According to Eq. (10), all
terms inside the square root are negative, and the sum
of negative values is always negative. As a result, it is
impossible to achieve an EPD with a real eigenfrequency
under the assumption mentioned above. Since we focus
on cases with real EPD frequency in this paper, we will
skip considering this condition in the rest of the paper.

IV. FREQUENCY-DOMAIN ANALYSIS OF THE
RESONANCES IN LOSSLESS GYRATOR-BASED

CIRCUIT

We demonstrate how the EPD regime is associated
with a special kind of circuit’s resonance, directly ob-
served in frequency-domain circuit analysis. First, we
calculate the transferred impedance on the left port of
the gyrator in Fig. 1, which is

Ztrans(ω) =
R2

g

Z2(ω)
, (11)

where Z2(ω) = jωL2 + 1/(jωC2) is the impedance of
LC tank on the right side of the gyrator. The total
impedance observed from the input port (see Fig. 1)
is

FIG. 4. Root locus of zeros of Ztotal(ω) = 0 shows the real
and imaginary parts of the resonance frequencies of the cir-
cuit when varying gyration resistance (arrows represent grow-
ing Rg values). In these figures, we consider two cases with
a negative value of (a) both inductances and (b) both capac-
itances, discussed in Section III. At the EPD, the system’s
total impedance is Ztotal(ω) ∝ (ω − ωe)2; hence it exhibits a
double zero at ωe .

Ztotal(ω) , Z1(ω) + Ztrans(ω) = Z1(ω) +
R2

g

Z2(ω)
, (12)

where Z1(ω) = jωL1 + 1/(jωC1) is the impedance of LC
tank on the left side of the gyrator. The complex-valued
resonance frequencies of the circuit are calculated by im-
posing Ztotal(ω) = 0. Fig. 4 shows the zeros of such
total impedance Ztotal(ω) for various gyration resistance
values (arrows represent growing Rg values). When con-
sidering the EPD gyrator resistance Rg = Rg,e = 50 Ω,
one has Ztotal(ω) ∝ (ω−ωe)2, i.e., the two zeros coincide
with the EPD angular frequency ωe , that is also the point
where the two curves in Fig. 4 meet. For gyrator resis-
tances Rg < Rg,e , the two resonance angular frequencies
are complex conjugate, consistent with the result in Fig.
4. Also, for gyrator resistances such that Rg > Rg,e ,
the two resonance angular frequencies are purely real.
In other words, the EPD frequency coincides with the
double zeros of the frequency spectrum, or double poles,
depending on the way the circuit is described.

V. EPD IN THE LOSSY GYRATOR-BASED
CIRCUIT

The following section analyzes the EPD condition in
the gyrator-based circuit by accounting for series resistors
R1 and R2 in resonators as illustrated in Fig. 5. A
procedure analogous to the one discussed earlier, using
the same state vector Ψ ≡ [Q1, Q2, Q̇1, Q̇2]T , leads to
[34]

dΨ

dt
= MΨ, M =


0 0 1 0
0 0 0 1

−ω2
01 0 −γ1

Rg

L1

0 −ω2
02 −

Rg

L2
−γ2

 . (13)
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FIG. 5. Schematic view of the lossy gyrator-based circuit,
with a resistor in each resonator.

In the presented lossy circuit matrix, γ1 = R1/L1, and
γ2 = R2/L2 determine losses in each resonator. These
eigenfrequencies of the circuit are calculated by solving
the below characteristic equation,

ω4 − jω3 (γ1 − γ2)− ω2
(
ω2

01 + ω2
02 + γ1γ2 +

R2
g

L1L2

)
+jω

(
γ1ω

2
02 + γ2ω

2
01

)
+ ω2

01ω
2
02 = 0.

(14)
The coefficients of the odd-power terms of the angular

eigenfrequency in the characteristic equation are imagi-
nary; therefore, ω and −ω∗ are both roots of the charac-
teristic equation. In order to obtain a stable circuit with
real-valued eigenfrequencies, the coefficients of the odd-
power terms in the characteristic equation of Eq. (14),
−j(γ1 − γ2) and j(γ1ω

2
02 + γ2ω

2
01), should vanish, oth-

erwise a complex eigenfrequency is needed to satisfy the
characteristic equation. The coefficient of the ω3 term is
zero when γ1 = γ2, but according to this condition, the
coefficient of the ω term is non-zero because ω2

01 and ω2
02

are both negative. Moreover, the coefficient of the ω term
never vanishes when both resonators are lossy because
both ω2

01 and ω2
02 have the same sign. Consequently, it

is not possible to have all real-valued coefficients in the
characteristic polynomials, except when γ1 = γ2 = 0,
which corresponds to a lossless circuit.

A. RLC Resonators With Negative Inductances L1

and L2

In the first case, we assume inductances with negative
values. In Figs. 6(a) and (b), γ1 is perturbed while we
assume γ2 = 0, whereas in Figs. 6(c), and (d), γ2 is
perturbed while γ1 = 0. These four figures present the
real/imaginary parts and magnitude/phase of eigenfre-
quencies when the resistances R1 and R2 are perturbed
individually. We use the same values for the circuit com-
ponents as already used in the lossless circuit presented in
Subsection III A. The normalization term ωe is the EPD
angular frequency obtained when γ1 = γ2 = 0, which is
the same EPD frequency as the lossless circuit. In this
case, losses in the circuit are represented by negative γ1

and γ2 since L1, and L2 are negative, so the right half side
of the figure axes show the loss and the left half side of the

axes represent the gain in the circuit through a negative
resistance. In Figs. 6(a)-(d), we recognize the bifurca-
tions of the real/imaginary parts and magnitude/phase
of the eigenfrequencies, so the circuit is extremely sensi-
tive to variations of resistances in the vicinity of EPD.
By perturbing γ1 or γ2 away from γ1 = γ2 = 0, the
circuit becomes unstable, and it begins to self oscillate
at a frequency associated with the real part of the unsta-
ble angular eigenfrequency. In addition, we show the real
and imaginary parts of the eigenfrequencies by separately
perturbing the resistances on both sides in Figs. 6(e)-
(f). The black contour lines in these three-dimensional
figures show constant real and imaginary parts of the
eigenfrequencies. We observe that by adding either loss
or gain, the circuit becomes unstable. Instability in the
circuit is not due to the instability of the uncoupled res-
onators, but rather it is unstable because of the addition
of losses, as was the case in [34] for different configura-
tions. When γ1 or γ2 is perturbed from the EPD, the
oscillation frequency is shifted from the EPD frequency,
and it could be measured for sensing applications. The
eigenfrequency with a negative imaginary part is associ-
ated with an exponentially growing signal (instability).
Considering the existence of instability, there are a few
possible ways of operation: preventing the system from
reaching saturation by switching off the circuit, partially
compensating for losses, or making the circuit an oscilla-
tor. In the partial compensation scheme, the instability
effect due to losses in the circuit can be counterbalanced
by adding an independent series gain to each resonator.
A negative resistance can be easily implemented using
the same opamp-based circuit designed to achieve nega-
tive inductance and capacitance. This issue is beyond the
scope of this paper, and it seems a complicated strategy
for stability. We believe that exploiting the system’s in-
stability may be an excellent strategy to design sensitive
oscillators that work as sensors; this could be the subject
of future investigations.

B. RLC Resonators With Negative Capacitances
C1 and C2

In the second case, we consider the negative value for
capacitances. In Figs. 7(a) and (b), γ1 is perturbed while
we consider γ2 = 0 and in Figs. 7(c), and (d), γ2 is per-
turbed while γ1 = 0. These figures show the real and
imaginary parts of the eigenfrequencies when each resis-
tor is perturbed individually. We use the same values
for the circuit components as used earlier in the lossless
circuit shown in Subsection III B, and the EPD angular
frequency is obtained for these circuit parameters when
γ1 = γ2 = 0, which is the same EPD frequency as the
lossless circuit. In Figs. 7(a)-(d), we observe the bifurca-
tions of the real/imaginary parts and magnitude/phase
of the eigenfrequencies, so the circuit exhibits extreme
sensitivity to resistance value variations in the vicinity of
EPD. We show the real and imaginary parts of the eigen-
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FIG. 6. Case with negative value of the inductances on both
resonators. Variation of (a) real/imaginary parts and (b)
magnitude/phase of the angular eigenfrequencies to a resis-
tor perturbation on the left resonator, i.e., when −γ1 changes
and γ2 = 0. (c) and (d), as in (a) and (b), but the resistor
perturbation is on the right resonator, i.e., −γ2 changes and
γ1 = 0. Variation of (e) real and (f) imaginary parts of the
angular eigenfrequencies to independent resistor perturbation
on the both sides.

frequencies by independently changing the resistances in
both sides in Figs. 7(e)-(f). The black contour lines in
these three-dimensional figures show constant real and
imaginary parts of the eigenfrequencies. Angular eigen-
frequencies are complex-valued when perturbing γ1 and
γ2 away from γ1 = γ2 = 0; hence the circuit gets unstable
and it starts to oscillate at a fundamental frequency as-
sociated with the real part of the unstable angular eigen-
frequency. In Figs. 7(a)-(f), both conditions γ1 > 0 and
γ2 > 0 represent loss, whereas the conditions γ1 < 0 and
γ2 < 0 represent gain in the circuit through a negative
resistance.

VI. HIGH-SENSITIVITY AND PUISEUX
FRACTIONAL POWER SERIES EXPANSION

Eigenfrequencies at EPDs are extremely sensitive to
perturbations of the circuit elements, a property that is
peculiar to the EPD condition. We study the circuit
under EPD perturbation to investigate the circuit’s sen-

FIG. 7. Case with negative value of the capacitances on both
resonators. Variation of (a) real/imaginary parts and (b)
magnitude/phase of the angular eigenfrequencies to a resis-
tor perturbation on the left resonator, i.e., when −γ1 changes
and γ2 = 0. (c) and (d), as in (a) and (b), but the resistor
perturbation is on the right resonator, i.e., −γ2 changes and
γ1 = 0. Variation of (e) real and (f) imaginary parts of the
angular eigenfrequencies to independent resistor perturbation
on the both sides.

sitivity near the EPD. We demonstrate how small per-
turbations in a component’s value perturb the eigenfre-
quencies of the circuit. In order to do this analysis, the
relative circuit perturbation ∆X is defined as

∆X =
X −Xe

Xe
, (15)

where X is the perturbed parameter value, and Xe is its
unperturbed value that provides the EPD. The pertur-
bation in ∆X value leads to a perturbed circuit matrix
M(∆X). We demonstrate the extreme sensitivity to ex-
trinsic perturbation by resorting to the general theory
of EPD and utilizing the Puiseux fractional power series
expansion [3]. Accordingly, when a small relative pertur-
bation in component value ∆X is applied, the resulting
two different eigenfrequencies ωp(∆X), with p = 1, 2 are
estimated using the convergent Puiseux series. Here we
provide the first two terms to estimate the eigenfrequen-
cies near an EPD, using the explicit formulas given in
[42],
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FIG. 8. Sensitivity of (a) real and (b) imaginary parts of the eigenfrequencies to a capacitance perturbation (solid lines), ∆C =
(C1 − C1,e)/C1,e , while the inductances values on both sides are negative. Dashed lines show the perturbed eigenfrequencies
according to the Puiseux expansion up to its first order. Sensitivity of (c) real and (d) imaginary parts of the eigenfrequencies
to an inductance perturbation (solid lines), ∆L = (L1 − L1,e)/L1,e , while the capacitances values on both sides are negative.
Dashed lines show the perturbed eigenfrequencies according to Puiseux expansion up to its second order.

ωp(∆X) ≈ ωe + (−1)pα1

√
∆X + α2∆X, (16)

α1 =

√√√√− ∂H(∆X,ω)
∂∆X

1
2!

∂2H(∆X,ω)
∂ω2

∣∣∣∣∣∣
∆X=0, ω=ωe

, (17)

α2 = −
α2

1
1
3!

∂3H(∆X,ω)
∂ω3 + ∂2H(∆X,ω)

∂ω∂∆X

∂2H(∆X,ω)
∂ω2

∣∣∣∣∣∣
∆X=0, ω=ωe

, (18)

where H(∆X, ω) = det[M(∆X) − jωI], and α1, and α2

are first- and second-order coefficients respectively. Eq.
(16) indicates that for a tiny perturbation in component
value ∆X � 1 the eigenvalues change sharply from their
original degenerate value due to the square root function,
which is an essential characteristic of second-order EPD.

Typically, the inductor or capacitor changes in re-
sponse to an external perturbation of the parameter of
interest, leading to a shift in resonance frequency. We
consider variations of L1, or C1, one at the time, and
the calculated real and imaginary parts of the eigen-
frequencies near the EPD is shown in Figs. 8. In the
first case, the perturbation parameter is the capacitance,
∆C = (C1 − C1,e)/C1,e , and a negative value for both
inductances is assumed, so the first-order Puiseux expan-
sion coefficient is calculated as α1 = 3.228 × 105 rad/s.
To calculate the coefficients, we use the components value
utilized in Subsection III A. Figs. 8(a) and (b) exhibit
the real and imaginary parts of the perturbed eigenfre-
quencies ω obtained from the eigenvalue problem after
perturbing ∆C. Furthermore, green dashed lines in these
figures demonstrate that such perturbed eigenfrequen-
cies are well estimated with high accuracy by using the
Puiseux expansion truncated at its first order. For a neg-
ative but small value of ∆C, the imaginary part of the

eigenfrequencies experiences a rapid change, and its real
part remains constant. On the other hand, a very small
positive value of ∆C causes a sharp change in the real
part of the eigenfrequencies while its imaginary part re-
mains unchanged.

In the second example, the inductance value in the
left resonator is considered as a perturbed parameter,
∆L = (L1 − L1,e)/L1,e , whereas capacitances values are
both negative. By using Eqs. (17), and (18) and using
the components values utilized in Subsection III B, the
coefficients of the Puiseux expansion are calculated as
α1 = j5.548 × 105 rad/s and α2 = −3.960 × 105 rad/s.
The calculated results in Figs. 8(c), and (d) show the
two branches (solid lines) of the exact perturbed eigenfre-
quencies evaluated from the eigenvalue problem when the
external perturbation is applied to the circuit. This figure
shows that the perturbed eigenfrequencies are estimated
accurately by applying the Puiseux expansion truncated
at its second order (dashed lines). For a tiny value of
positive perturbation, the imaginary part of the eigenfre-
quencies undergoes sharp changes, while its real part re-
mains approximately unchanged. However, a small nega-
tive perturbation in the inductance value rapidly changes
the real part of the two eigenfrequencies away from the
EPD eigenfrequency. The bifurcation in the diagram, de-
scribed by a square root, is the most exceptional physical
property associated with the EPD. It can be employed
to devise ultra-sensitive sensors for various applications
[16, 43–45].

VII. SENSING SCENARIO FOR LIQUID
CONTENT MEASUREMENT

In recent years various well-established techniques have
been proposed to measure the liquid level, such as
light-reflection sensors [46], chirped fiber Bragg grat-
ing [47, 48], fiber optic sensors [49–51], ultrasonic Lamb
waves [52], and capacitive sensors [53–56]. The use of a
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capacitive sensor is a well-known method for liquid level
measurement [57]. This kind of sensor has been proven to
be stable, can be assembled using various materials, and
can provide high resolution [58]. The principle of opera-
tion of capacitive sensors is that they converts a variation
in position, or material characteristics, into measurable
electrical signals [59]. Capacitive sensors are operated by
changing any of the three main parameters: relative di-
electric constant, area of capacitive plates, and distance
between the plates. In conventional methods, a capaci-
tive liquid level detector can sense the fluid level by mea-
suring variations in capacitance made between two con-
ducting plates embedded outside a non-conducting tank
or immersed in the liquid [57, 60]. The same concept
applies when the liquid occupies a varying volume per-
centage of a mixture’s components.

In order to compare the advantages of the EPD-based
sensors with conventional sensors based on a single LC
circuit, we use a simple ideal scheme for liquid con-
tent measurement. We demonstrate the sensitivity of a
gyrator-based circuit by operating near the EPD is much
higher than the one of a conventional LC resonator cir-
cuit. We provide the required setup and the measure-
ment procedure to measure the liquid volume. Here, we
use the following set of values for the components in the
gyrator-based circuit: L1 = −4.7 nH, L2 = −4.7 nH,
C2 = 47 pF, and Rg = 50 Ω. Consider a cylindrical
glass with top and bottom metal plates. This structure
can serve as a variable capacitor in which the volume of
filled liquid (or a percentage of a mixture) can change
the total capacitance. A schematic structure for this sce-
nario is illustrated in Fig. 9(a). The designed device
includes the gyrator-based circuit (see Fig. 1) where the
positive capacitor on the left side is the cylindrical con-
tainer with height d2 = 3.0142 cm, of which a height
d1 is filled with water and the area of metal plates are
A = 100 cm2. Pure water is assumed to have a relative
permittivity of εr = 78.7 at T = 22.0o C, and we ne-
glect losses in this simple case [61]. Two series variable
capacitors model the structure, that the bottom one has
a capacitance Cfilled = ε0εrA/d1,and the top one has a
capacitance Cempty = ε0A/(d2 − d1). The total capaci-
tance is Ctotal = CfilledCempty/(Cfilled +Cempty), which
changes when varying the water level. By opening the
top inlet, the height of the water will increase, so the ca-
pacitance value will be increased. On the contrary, the
water’s height decreases when opening the bottom out-
let, and the total capacitance value will be decreased.
In summary, the level of water is related to the capaci-
tance, and the perturbation in the value of capacitance
will change a circuit’s eigenfrequencies. Using the steps
explained in Section III and by solving the eigenvalue
problem, the plot of resonance frequency versus water
level percentage for this specific example is illustrated in
Fig. 9(b) by the solid blue line. The measuring scheme
is very sensitive near 0 water content. The EPD can be
designed for different water contents, so the frequency
variation caused by changes in the water level around

FIG. 9. (a) Schematic illustration of a device for liquid level
measurement. (b) The EPD is designed at a given level of
water content (0 in the figure). The solid blue line in the plot
shows the two resonance frequencies of the gyrator-based cir-
cuit versus water level variation with very high sensitivity near
0. Also, the red dashed line shows the resonance frequency
of a single resonator when the water content changes. The
EPD-based circuit and the single LC resonator have the same
resonance frequency at 0. It is clear that the EPD-based
circuit provides much higher sensitivity to the capacitance
perturbation than the single LC resonator.

that mentioned level would be very sensitive. We now
compare the sensitivity of the EPD-based scheme with
that of a single LC resonator. We consider an LC res-
onator with the resonance frequency of ω0 = ωe, i.e.,
coincident with one of the EPD systems. We assume
that the sensing capacitor is the same as the one in Fig.
9, i.e., the same as that considered in the EPD system.
The variation in the resonance frequency by perturbing
the capacitance as described above, i.e., the level of water
content, is shown in Fig. 9(b) by the red dashed line. It
is clear that the EPD-based bifurcation in the dispersion
diagram, characterized by a square root, dramatically
enhances the circuit’s sensitivity compared to the sensi-
tivity of the single LC resonator to the same capacitance
perturbation.

In the proposed scheme for liquid content measure-
ment, we assume that the gyrator-based circuit works
in the stable region where eigenfrequencies are purely
real. However, when considering the instabilities gener-
ated by losses, one eigenfrequency has a negative imagi-
nary value, as explained in Section V. Consequently, the
circuit starts having growing oscillations. The exponen-
tial growth rate can be controlled in two ways: either
by stopping (switching off) the circuit to reach satura-
tion or by letting it saturate. In this latter case, the
gyrator-based circuit should be designed as a sensor that
oscillates. The circuit can be used to sense physical or
chemical parameters changes by measuring the oscilla-
tion frequency variations.

VIII. CONCLUSIONS

A second-order EPD with a real (degenerate) eigenfre-
quency in a gyrator-based circuit is achieved using two
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unstable series LC resonators coupled via a gyrator. Each
unstable resonator has either a negative capacitance or
a negative inductance; hence, the resonance frequency of
each resonator is purely imaginary when they are uncou-
pled. We have demonstrated that coupling the two un-
stable resonators can make the overall circuit marginally
stable with a purely real-valued EPD frequency. We have
also shown that the system becomes unstable when small
losses or gains are considered in the circuit. We investi-
gated and demonstrated the enhanced sensitivity to per-
turbations when operating at the EPD. In particular, we
have considered the perturbation of the gyration resis-
tance, capacitance, and inductance. The perturbation in
physical or chemical parameters affects the circuit com-
ponent’s value in realistic applications. Such a pertur-
bation could be estimated by measuring the shift of res-

onance frequencies that follow the square root behavior
typical of an EPD perturbation. The presented results
may impact sensing technology, security systems, parti-
cle monitoring, and motion sensors. Future studies using
resonators with purely imaginary frequencies like waveg-
uides below cutoff may help miniaturize microwave sens-
ing devices.
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