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We propose a general and feasible approach to realize a large number of squeezed spatial modes.
This is achieved by manipulation of paraxial diffraction such that the critical wave components with
most significant squeezing contribute in-phase to the spatial squeezing. As an example, we then
demonstrate that it is possible to achieve localized squeezing of ∼ −1.51 dB at an area 102 µm2

within a homogeneously squeezed spatial regime of wp = 1 mm2 using four-wave mixing (FWM)
based on current experimental settings, corresponding to approximately 104 squeezed spatial modes,
which is > 102 larger in number of squeezed modes and also ∼ 6 times stronger in squeezing as
compared to that obtained in the state-of-the-art experiment. We also show that the obtained
extremely localized squeezed light can be directly applied to enhance the signal-to-noise ratio in
quantum imaging of weakly absorbing objects by a factor of ∼ 3.5 at a spatial resolution of d ∼ 1 mm
where d is the detector size.

I. INTRODUCTION

Light can have different modes and quantum states si-
multaneously. Owing to this intrinsic dual nature, it is
possible to realize multimode quantum light, e.g., mul-
timode entanglement and quadrature squeezing in the
discrete-variable and continuous-variable (CV) regime re-
spectively [1]. Owing to the intrinsic insensitivity to
environmental decoherence and the striking possibility
of substantial scalability [2], multimode quantum light
highlights its unparalleled advantages in quantum infor-
mation processing. In particular, in the CV regime mul-
timode quadrature squeezing has been revealed to be ca-
pable of achieving enhanced precision in quantum mea-
surements [3, 4], and generating CV cluster states [5, 6]
that hold promise for one-way quantum computation [7–
11].

Substantial progresses have been made to achieve up
to squeezing of 106 modes in the time domain [12, 13],
however, simultaneous squeezing of many spatial modes,
i.e., multi-spatial-mode (MSM) squeezing has been lack-
ing. Squeezing of a few spatial modes can be generated
via different physical mechanisms, e.g, the χ(2) processes
including parametric down-conversion or optical para-
metric amplification [14–17]. A highly flexible scheme
is the conjugate four-wave mixing (FWM) [18–28], a χ(3)

process in which the linear and nonlinear responses of
the medium can be easily tailored by the applied laser
fields [18–24]. Based on FWM, the most recent record
is the simultaneous squeezing of ∼ 75 spatial modes in a
single laser beam in the state-of-the-art experiment [23],
in which a squeezing of ∼ −0.25 dB is obtained in a min-
imal area of ∼ 1802 µm2. MSM squeezing in a single
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laser beam as a multimode quantum light source does
not only show advantages in quantum communication in
terms of the complexity of protocols [9, 29], but can as
well be of great importance to diverse applications where
either MSM or few-spatial-mode squeezing is required to
enhance spatial resolution, e.g., in quantum imaging [3],
measurements of nanometer displacement [30, 31] and bi-
ological systems [32, 33] since the single MSM squeezed
laser beam can be decomposed to a few spatial modes
with much stronger squeezing defined by the mode of the
local oscillator [23].

A large number of squeezed spatial modes within a
single finite-size laser beam suggests extremely localized
spatial squeezing. Paraxial diffraction is believed to be
the key obstacle to achieve strongly localized squeezing,
since it imposes phase shifts to affect the angle of the
squeezing ellipse differently for the various transverse
spatial wave components which might contribute out-of-
phase to the spatial squeezing. A seemingly straightfor-
ward way to achieve simultaneous squeezing of many lo-
calized spatial modes would be to eliminate the paraxial
diffraction, by exploring physical mechanisms including
nonlocal linear response due to atomic motion [34, 35],
coherent population trapping [36, 37] and optically writ-
ten waveguide [38]. These schemes to eliminate diffrac-
tion usually cancel only the propagation-accumulated
phase shifts for small paraxial wave components |k⊥| ∼
1/wp (k⊥ is the transverse wavevector of the component,
and wp is the probe beam waist) since the larger trans-
verse wave components |k⊥| � 1/wp are negligible for
the intensity profile. However, the larger components
|k⊥| are crucially important for squeezing in an area
� w2

p and may contribute out-of-phase to the spatial
squeezing. Thus in order to achieve extremely localized
squeezing, it is required to eliminate the phase shifts for
large |k⊥|. In typical χ(2) or χ(3) media, the nonlin-
earity is limited and can not support the cancellation of
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FIG. 1. (Color online) (a) A schematic illustration of the
squeezing process. The nonlinear medium is driving by a
pump field to generated MSM squeezed probe and single
fields denoted by âp(r) and âs(r) respectively. (b) The MSM
squeezing is measured by a bichromatic homodyne detection
method in which the local oscillator ELO(r) consists of two
strong laser beams with frequencies equal to that of âp(r) and
âs(r). The MSM squeezing is detected by varying the spatial
size of ELO(r).

phase shifts for large |k⊥|, thus it is physically impracti-
cal to achieve extremely localized squeezing via reduction
of diffraction.

Alternatively, here we propose a general and feasible
approach to realize strong squeezing at an area A (λ2 �
A� w2

p with λ being the laser wavelength) in a finite-size
probe beam, which is achieved surprisingly via not elim-
ination but manipulation of diffraction. The central idea
is to focus on the critical wave components which con-
tribute most significantly to the spatial squeezing. By
analyzing the squeezing properties of these critical wave
components, we are able to identify the conditions for
the susceptibilities to control the diffraction such that all
wave components contribute constructively to the spa-
tial squeezing. These conditions can be easily satisfied
by changing the laser parameters like detunings and in-
tensities. Since the analysis is derived from the paraxial
propagation equation of the quantum fields, therefore it
does not depend on the actual squeezing process. In other
words, our theory is applicable to either the χ(2) or χ(3)

nonlinear processes. As an example, we apply our theory
to the FWM and show that it is possible to reach quadra-
ture squeezing of −1.51 dB at an area of 102 µm2 for a
probe beam with size ∼ 1 mm2 in realistic parameter
regime, corresponding to around 104 detectable squeezed
spatial modes.

II. THEORETICAL MODEL

Considering a general squeezing process depicted in
Fig. 1(a), the propagation equations for the two quan-
tum fields in the continuous-wave limit are given by(

d

dz
+

i

2kp
∇2
⊥

)
â†p(r⊥, z) = −iP̂ †p (r) , (1a)

(
d

dz
− i

2ks
∇2
⊥

)
âs(r⊥, z) = iP̂s(r) (1b)

where âp(r⊥, z) [âs(r⊥, z)] is the annihilation opera-
tor for the quantum probe [signal] field with associated

wavenumber kp [ks], P̂p [P̂s] represents the correspond-
ing polarization operator of the nonlinear medium. The
terms including ∇2

⊥ introduces the paraxial diffraction
which affects both the squeezing degree and ellipse angles
for different k⊥. Eqs. (1) serve as a general description
of spatial squeezing in a traveling-wave setting and can
thus be applied to different mechanisms such as the χ(2)

or χ(3) nonlinear process.
A general form for P̂j(r) in the squeezing process can

be written as a linear combination of the field operators

P̂ †p (r) = Cpχppâ
†
p(r) + Cpχspâs(r) + F̂p(r) , (2a)

P̂s(r) = Csχpsâ
†
p(r) + Csχssâs(r) + F̂s(r) , (2b)

Cp [Cs] is a dimensional constant for the probe [signal]
field. χij with i, j ∈ {p, s} describes respectively the lin-
ear and nonlinear susceptibilities of the medium whose
exact expressions are usually complicated depending on
the medium properties and laser parameters. F̂p(r) and

F̂s(r) denote the quantum noises for the two fields re-
spectively owing to dissipative and dephasing processes
in the nonlinear medium. In principle, χij should also be
position-dependent determined by the specific physical
process. However, in order to focus on the diffraction of
the quantum fields themselves, we assume χij to be spa-
tially homogeneous for the two quantum fields. This is
possible when the pump lasers driving the squeezing pro-
cess are spatially much broader and also much brighter
(low-depletion regime) than the two quantum fields.

Inserting Eqs. (2) into Eqs. (1) and Fourier transform-
ing them from position to momentum space leads to

d

dζ
â(k⊥, ζ) = iĤ(k⊥)â(k⊥, ζ) + f̂(k⊥, ζ) (3)

where â(k⊥, ζ) = {â†p(−k⊥, ζ), âs(k⊥, ζ)}T with

âj(k⊥, ζ) = (
√

2π)−2
∫∫∞
−∞ âj(r⊥, ζ)e−ik⊥·ξdξ for j ∈

{p, s}. Here we have introduced the dimensionless vari-
ables ξ = r⊥/wp, ζ = z/Sz and Sz = kpw

2
p with wp and

Sz being the transverse and propagation scales respec-
tively. Ĥ(k⊥) is given by

H =

−χpl +
k2⊥
2 −χpn

χsn χsl − k2⊥
2

 , (4)

where k2
⊥ = k2

x + k2
y, χpl = CpSzχpp and simi-

larly for χpn, χsl and χsn. Furthermore f̂(k⊥, ζ) =

{f̂p(k⊥, ζ), f̂s(k⊥, ζ)}T = Sz{F̂p(k⊥, ζ), F̂s(k⊥, ζ)}T . In
the experiments that have been done to demonstrate
squeezing, the laser parameters are usually chosen
to work in the dispersive regime where |Im[χj ]| �
|Re[χj ]| (j ∈ {pl, sl, pn, sn}) such that the quantum
noises which are detrimental to the squeezing can be min-
imized. We may thus assume χj to be real and neglect
the noise terms in the following. A general analysis of the
noise properties in the context of FWM process is given
in the Appendix C.
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The effective Hamiltonian for Eq. (3) can be written
as

Ĥeff =(χpl −
k2
⊥
2

)â†p(−k⊥)âp(−k⊥)

+ (χsl −
k2
⊥
2

)âs(k⊥)âs(k⊥)

+ χpnâp(−k⊥)âs(k⊥) + χsnâ
†
p(−k⊥)â†s(k⊥) (5)

based on which Eq. (3) can be obtained from ∂
∂ζ â =

i[Ĥeff, â] + f̂j . The last two terms in the effective Hamil-
tonian describe a typical squeezing process, thus quadra-
ture squeezing will be generated between the wave com-
ponent âp(−k⊥) and âs(k⊥). Meanwhile, the squeezing
process is controlled by the paraxial diffraction term k2

⊥
in the sense that both the squeezing degree and angle
would be varied considerably as k⊥ changes. For a given
spatial mode, the corresponding squeezing degree is de-
termined by a weighted summation over squeezing of all
wave components where the weighting function is given
by the momentum spectrum of this spatial mode. De-
pending on the squeezing ellipse orientations, each wave
component may contribute in-phase or out-of-phase to
the spatial squeezing. Thus the spatial squeezing will be
significantly affected by the diffraction. Fortunately, the
effect of the diffraction can be controlled by the suscep-
tibilities χj . If we are able to manipulate χj by tun-
ing the laser parameters such that the most significantly
squeezed wave components have their squeezing ellipses
oriented in the same direction, then they will contribute
in-phase to the spatial squeezing. Note that this does
not necessarily mean that the paraxial diffraction needs
to be eliminated.

III. MANIPULATION OF DIFFRACTION

Having established that the diffraction is the key factor
limiting the number of squeezed spatial modes, here we
discuss how to control the diffraction by exploiting the
intrinsic properties of the squeezing process itself. We
first write the formal solution to Eq. (3)

â(k⊥, ζ) = M(k⊥, ζ)â(k⊥, 0) (6)

where M(k⊥, ζ) = eiH(k⊥)ζ , and the eigenvalues of
H(k⊥) are

β1,2 =
∆χl

2
± iβ (7)

with β =
√
χpnχsn − (χl − k2

⊥)2/4, ∆χl = χsl − χpl and
χl = χsl + χpl being the difference and sum of the two
linear atomic susceptibilities respectively. Then we have

M(k⊥, ζ) =

coshβζ + iδ
2β sinhβζ − iχpn

β sinhβζ

iχsn

β sinhβζ coshβζ − iδ
2β sinhβζ


(8)

FIG. 2. (Color online) The minimum variance and ellipse
angle as a function of |k⊥|. Here we have taken the linear and
nonlinear susceptibilities from the FWM example considered
in Fig. 3. Parameters are the same as in the caption of Fig. 3
except ∆ = 16.4Γ32.

with δ = k2
⊥ − χl, and we have neglected the common

phase term ei∆χlζ/2 which is not important here. The

commutation relation [âj(k⊥, ζ), â†j(k
′

⊥, ζ)] = δ(k⊥−k
′

⊥)
requires χsn = χpn which is usually the case in the ex-
periments, we thus set χpn = χsn = χnl.

We then analyze the squeezing properties of each
spatial wave component k⊥, the corresponding quadra-
ture operator is given by X̂(k⊥, ζ, θ) = {i[âp(−k⊥, ζ) +

âs(k⊥, ζ)]e−iθ + h.c.}/(2
√

2). The variation for

X̂(k⊥, ζ, θ) is

〈∆X̂2(k⊥, ζ, θ)〉

=
1

4

[
1 + 2C2 − 2C

√
1 + C2 cos(φ(k⊥)− 2θ)

]
(9a)

φ(k⊥) = arctan
[ 2β cosh(βζ)

(k2
⊥ − χl) sinh(βζ)

]
(9b)

with C = χnl sinh(βζ)/β. It can be seen that β plays the

central role determining both the variance 〈∆X̂2〉 and
phase φ. β is very sensitive to k⊥ due to the quadratic
dependence, and becomes purely imaginary for large |k⊥|
(k2
⊥ ≥ Max[χl + 2|χnl|, 0]) where both the squeezing de-

gree and phase undergo increasingly rapid oscillations.
The spatial squeezing in a certain area can be then

obtained by taking into account the contributions from
the spatial components. Maximal spatial squeezing can
be obtained by considering a local oscillator in which the
phase of each spatial component is controlled to minimize
〈∆X̂2(k⊥, ζ, θ)〉 in Eq. (9a). Obviously, preparing such
a local oscillator would be very challenging. Instead, we
consider the situation that the phase of each component
in the local oscillator is constant, and this constant phase
will be denoted as θ. We would like now to find the
optimal choice for θ to achieve extremely localized spatial
squeezing.

Extremely localized spatial squeezing will crucially de-
pends on the squeezing properties of large |k⊥| for which
β will become purely imaginary. For large |k⊥|, β turns
from real to purely imaginary such that C will oscillate
periodically as k⊥ grows. As a result, the variance 〈∆X̂2〉
changes periodically. We then find that for χnl > 0 and
θ = 0 there is a minimal 〈∆X̂2〉 in each period when
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|β|ζ = (n+1/2)π at which φ(k⊥) = 0 [see Eq. (9) and also
Fig. 2]. For χnl < 0, θ = π/2 has to be chosen to have a

minimal 〈∆X̂2〉 in each period. We call these wave com-

ponents having minimal 〈∆X̂2〉 as “critical wave com-
ponents” since they exhibit strongest squeezing in each
period.

Based on the previous discussions, the optimal choice
for the phase of the local oscillator to maximize the
localized spatial squeezing would be either θ = 0 or
θ = π/2 such that the critical wave components con-
tribute constructively. In order to have in-phase con-
tributions from all wave components, one would require
〈∆X̂2(k⊥, ζL)〉 ≤ 1/4 for either θ = 0 or θ = π/2, i.e.,

χnl(χl − k2
⊥ + 2χnl) sinh2(βζL)

β2
≤ 0 for θ = 0 (10a)

χnl(k
2
⊥ − χl + 2χnl) sinh2(βζL)

β2
≤ 0 for θ =

π

2
(10b)

here ζL = L/Sz with L being the interaction length of
the FWM process. Satisfying this condition for all k⊥
then leads to

χnl > 0, χl ≤ −2χnl for θ = 0 (11a)

χnl < 0, χl ≤ 2χnl for θ =
π

2
(11b)

Eqs. (11) also indicates that β will be imaginary for
all k⊥, i.e., there is no exponential growth of squeezing
for any k⊥. This is in sharp contrast to the single-mode
case in which strongest squeezing is obtained for real β
because of exponential growth. It is also worthy not-
ing here that satisfying Eqs. (11) may break the phase-
matching condition for different k⊥. Furthermore, in or-
der to have stronger squeezing in k⊥ space, one would
expect an efficient nonlinear process which requires

|χnl| � 1 (12)

Eqs. (11) and (12) are the essential requirements for the
linear and nonlinear susceptibilities to achieve optimal
squeezing in a very small spatial area by manipulation
of diffraction. This is the key finding from our work.
Note that the manipulation of diffraction is operated in
momentum space, meaning that it does not depend on
the specific spatial profiles of the two quantum fields as
long as they are spatially much smaller than the pump
fields.

In addition, if one would also like to maximize the
spatial squeezing in a large area, then the squeezing angle
for small wave components should be in-phase with these
critical wave components, i.e., φ(k⊥ ' 0) ' 0, which
leads to

√
χ2
l − 4χ2

nlζL
(2m0 − 1)π

' 1 (13)

with m0 being any positive integer. It should be noted
that Eq. (13) is not required to achieve extremely local-
ized squeezing which are determined by large wave com-
ponents.

IV. PHYSICAL IMPLEMENTATION AND
RESULTS

To demonstrate how many localized spatial modes can
be realized based on our theory, here we explore an ex-
ample, i.e, the conjugate FWM process to produce MSM
squeezing as shown in Fig. 3(a). The interacting Hamil-
tonian can be written as

Ĥ/~ =− [∆σ̂22 + ∆c1σ̂33 + (∆ + ∆c2)σ̂44

+ Ωc1σ̂31 + Ωc2σ̂42 + gpâpσ̂32 + gsâsσ̂41 + h.c.] ,
(14)

Here we have written σ̂ij(r, t) =
∑N
l=1 σ̂

(l)
ij (t)δ(r − rl)

as σ̂ij . gj is the coupling coefficient for the quantum
âj , and Ωcj (j ∈ {1, 2}) are the two Rabi frequencies of
the classical control fields respectively. ∆c1 = ωc1−(ω3−
ω1),∆c2 = ωc2−(ω4−ω2) and ∆p = ωp−(ω3−ω2) are the
detunings for the corresponding fields, and ∆ = ∆c1−∆p

is the two-photon detuning for Ωc1 and âp, and we have
ωp + ωs = ωc1 + ωc2. In order to have spatially homoge-
neous susceptibilities χjl for â†p and âs, we have assumed
the two classical control fields are spatially much larger
than the two quantum fields such that Ωc1 and Ωc2 can
be treated as plane-waves. Assuming the phase-matching
condition kc1,z+kc2,z = kp,z+ks,z in z direction, one then
obtain Eqs. (1) for â†p and âs.

Experimentally, the MSM squeezing is measured by
bichromatic homodyne detection [23, 39] as sketched in
Fig. 1(b) where the local oscillator ELO(r) consists of two
strong coherent fields whose frequencies match that of the
two quantum fields. The squeezing degree is obtained
as (see Appendix B)

S(θ, ζ) =10 log10

∫∫∞
−∞ dk|B(k⊥)|2G(k⊥, θ, ζ)

2
∫∫∞
−∞ dk|B(k⊥)|2

(15)

with

G(k⊥, θ, ζ) =
∑
jl

|Mij(k⊥, ζ)|2 − [Q(k⊥, ζ)e−2iθ + c.c]

(16)

where i, j ∈ {1, 2} and “c.c.” denotes complex conjugate.
And

Q(k⊥, ζ) =
B∗(−k⊥)

B(k⊥)
[M∗11(k⊥, ζ)M21(k⊥, ζ)

+M22(k⊥, ζ)M∗12(k⊥, ζ)] (17)

Here we have further assumed that the two coherent fields
in ELO(r) have the same momentum spectrum B(k⊥).
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FIG. 3. (Color online) (a) Conjugate FWM process to pro-
duce MSM squeezing. The calculated squeezing degree and
angle are plotted versus the width of the bichromatic lo-
cal oscillator wL for different two photon detuning ∆ as
shown in (b) and (c) respectively. (d) shows the degree
of squeezing as a function of wL and ∆. Here we have

chosen B(ξ) ∝ e−k2
⊥w2

L/2. Other parameters are: ∆c1 =
133.3Γ32, ω21 = 505.9Γ32,∆c2 = ∆c1 + ω21,Ωc1 = Ωc2 =
60Γ32, n0 = 4.0× 1012 cm−3, wp = 1 mm, Γ32 = 2π× 6 MHz,
λp = 795 nm, and the length of the sample is L = 1.25 cm.
Parameters are chosen as the same as in the experiment [23]
except for ∆.

For a real and symmetric spectrum B(k⊥) = B∗(−k⊥),
S(θ, ζ) reduces to

S(θ, ζ) = 10 log10

∫∫∞
−∞ dk|B(k⊥)|2〈∆X̂2(k⊥, ζ, θ)〉

2
∫∫∞
−∞ dk|B(k⊥)|2

(18)

which clearly shows that the spatial squeezing is indeed
a weighted summation of squeezing in momentum space
which depends on the spatial spectrum of the local oscil-
lator B(k⊥).

We then calculate the linear and nonlinear suscepti-
bilities and find that χnl > 0 for all the two-photon de-
tunings ∆ considered in Fig. 3 (see Appendix C). Subse-
quently, the squeezing degree S(θ, ζ) defined by Eq. (15)
can be obtained. In Fig. 3(b), we have plotted S(θ, ζ) as
a function of wL/wp for different ∆ where wL is the width
of the local oscillator. For ∆ = 16.4Γ32, Eqs. (11a), (12)
and (13) are all satisfied such that all spatial wave compo-
nents contribute constructively to the spatial squeezing.
We further notice that the actual phase for the local os-
cillator remains almost 0 as shown in Fig. 3(c) by the
dashed red line, which agrees with our previous analy-
sis presented in Sec. III. The corresponding squeezing S
keeps almost unchanged in the range 0.1 < wL/wp < 1,
indicating the multimode nature of the spatial squeez-
ing which is insensitive to the mismatch of the transverse

FIG. 4. (Color online) The spatial dependence of the linear
and nonlinear dispersions for the probe and signal by applying
super-Gaussian control beams with beam waist wc = 10wp.
Here we take the slice for y = 0. Note that the dashed black
lines only denote the probe profile and are irrelevant to the
vertical axis values. Here we choose ∆ = 16.4Γ32, and other
parameters are the same as in the caption of Fig. 3.

modes between the quantum field and the local oscillator.
Furthermore, when the local oscillators are displaced by
ξ0 in the transverse plane, i.e., B(k)→ B(k)eik·ξ0 , it can
be seen from Eq. (15) that S does not change. In other
words, the spatial squeezing is homogeneous in the probe
regime. This is in contrast to the case of single-mode
squeezing where the observed squeezing will be degraded
considerably for increasing mode mismatch [40–43]. The
squeezing decreases from −15.33 dB at wL/wp = 1 to
around −1.51 dB at wL/wp = 0.01, suggesting localized
squeezing at ∼ 102 µm2 and alternatively 104 of spatially
squeezed modes in the probe regime which is of an area
1 mm2.

For comparison, we have plotted S for ∆ = 14.0Γ32 at
which Eqs. (12) and (13) are satisfied but Eq. (11a) is
not. In this case, β is real for small k⊥ components such
that these components experience exponential growth of
squeezing. This leads to the strongest spatial squeezing
for wL ' wp which is determined by small k⊥ compo-
nents. However, S drops much faster than that in the
case of ∆ = 16.4Γ32 due to the breakdown of Eq. (11a).
When increasing ∆ to 19.0Γ32, Eq. (11) and (13) are
broken and only Eq. (12) is valid, the squeezing is al-
ways weaker as compared to the other two cases. An
interesting feature here is that the strongest squeezing is
obtained at wL/wp = 10−1.5, this is because in this case
the wave components having strongest squeezing locate
around |k⊥| ∼ 1/(101.5wp).

As wL/wp → 0.001, the dominant contributions comes
from even larger wave components whose squeezing are
negligible, thus the squeezing for all three cases converges
to S → 0 which corresponds to the quantum proper-
ties of vacuum. We also calculate the squeezing ver-
sus ∆ and wL/wp in Fig. 3(d), in which the squeez-
ing remains almost unchanged for ∆ in a wide range
16.0 ≤ ∆/Γ32 ≤ 17.0, suggesting that it is feasible in
realistic experimental settings where the involved laser
beams have certain frequency bandwidths.

In the calculation we have made the key approximation
that the two control fields can be considered as plane-
waves. Practically, this can be satisfied by choosing con-
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FIG. 5. (Color online) (a) sketch for quantum imaging.

(b) δ(k⊥,k
′
⊥) as a function of k⊥ and k

′
⊥; (c) Noise reduction

factor σ and the enhancement factor E ' 1/
√
σ as a function

of the detector size d. As d increases the squeezing measured
at the detector becomes stronger, leading to a better improve-
ment of SNR. Here ∆ = 16.4Γ32 and other parameters are the
same as in the caption of Fig. 3.

trol fields with much larger spatial size as compared to
the probe. For example, if taking super-Gaussian spatial
profiles for the two control fields as Ωc1(r⊥) = Ωc2(r⊥) ∝
e−r

4
⊥/(2w

4
c) with wc = 10wp, we find that the relative

changes in the direct and cross dispersions are within less
than 2% respectively across the probe spatial profile as
shown in Fig. 4. Furthermore, since the two strong con-
trol fields are far-detuned from the atomic transitions,
their propagation dynamics in the medium can be con-
sidered as the same in free space, and their spatial profiles
remain unchanged during the sample 0 ≤ ζ ≤ ζL. In this
respect, the super-Gaussian control beams act as plane-
waves in the spatial region of the probe. Note that the
absorptions which are not shown in Fig. 4 remain always
negligible.

V. APPLICATION IN QUANTUM IMAGING

In order to demonstrate the potential applications of
the extremely localized squeezed light obtained here, we
further apply our results to image a weakly absorbing
object denoted by α(r⊥) as shown in Fig. 5(a). The
output âs is shining on α(r⊥) and then is measured
by the detector of size d2, meanwhile âp is incident
on another detector of the same size; Finally the in-
tensity deference δN̂− = N̂p − N̂s is measured (Here

N̂j =
∫∫ d/2
−d/2 dr⊥â

†
j(r⊥)âj(r⊥) for j ∈ {p, s}) (see de-

tails in Appendix E). For a weakly absorbing object
|α(r⊥)| � 1, the enhancement in the signal-to-noise ra-
tio (SNR) as compared to the standard quantum limit is
given by E ' 1/

√
σ where σ is the noise reduction fac-

tor [44–49] defined as σ = 〈δN̂2
−〉/〈N̂p + N̂s〉, which can

be reduced to

σ = 1 +
1

2πd2N

∫∫ ∞
−∞

dk⊥dk
′

⊥Fd(k⊥,k
′

⊥)δ(k⊥,k
′

⊥)

(19)

with N =
∫∞
−∞ dk⊥|M12(k⊥)|2 being the total number in

either âp or âs, and

Fd(k⊥,k
′

⊥) = d4sinc2[(kx − k
′

x)d/2]sinc2[(ky − k
′

y)d/2]

(20)

being the momentum filter defined by the detector
size [50], and δ(k⊥,k

′

⊥) = |M12(k⊥)M12(k
′

⊥)|2 −
Re[M11(k⊥)M12(k⊥)M∗11(k

′

⊥)M∗12(k
′

⊥)] due to the
squeezing process (here the ζ dependence is omitted for
simplicity). Note here we have neglected the diffraction
for âj(r⊥) during the imaging process, which can be
either eliminated by adding lens or reduced by choosing
a compact imaging setting. At the optimal condition
∆ = 16.4Γ32, we plot δ(k⊥,k

′

⊥) as a function of k⊥ and

k
′

⊥ in Fig. 5, which shows a similar oscillation behavior
as in Fig. 2 in both directions. For larger d, the filter
Fd only covers the small area around k⊥ = k

′

⊥ where δ
is minimized, resulting in maximal E. For decreasing d,
Fd takes into account more wave components, and thus
E decreases. We found that the enhancement factor
E changes from ∼ 3.44 for d/wp = 1.0 to ∼ 1.1 for
d/wp = 0.01 as shown in Fig. 5, suggesting enhanced
SNR with high spatial resolution at the near-micrometer
regime (∼ 10 µm).

VI. SUMMARY

In summary, we have proposed a general and plausible
approach to realize extremely localized squeezing in an
area of 102 µm2 with a squeezing degree of −1.51 dB in
a probe beam of size 1 mm2, corresponding to approx-
imately 104 squeezed spatial modes. This is achieved
by tuning the laser detunings to manipulate the paraxial
diffraction such that all the squeezed spatial wave compo-
nents can contribute constructively to the spatial squeez-
ing based on the analysis of the critical wave components
having most significant squeezing. The localized squeez-
ing is further applied to quantum imaging of weakly ab-
sorbing object and results in greatly enhanced SNR. Our
results may facilitate a number of applications including
supersensitive quantum imaging and CV quantum infor-
mation processing.

L. Zhang is grateful for the fruitful discussions with
Tao Peng, Zhenhuan Yi, Fuli Li. We acknowledge the
support of Office of Naval Research Grant No. N00014-
16-1-3054 and Robert A. Welch Foundation Award No.
A1261. We also thank AFOSR Grant No. FA 9550-18-
1-0141 for support.
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Appendix A: Multi-spatial-mode squeezing

In order to see the multi-spatial-mode nature of squeezing, it is worthwhile to first decompose the input multi-mode
quantum field âj(ξ, 0) into any orthogonal transverse-mode basis

âj(ξ, 0) =
∑
n

φn(ξ)âjn , (A.1)

with j ∈ {p, s} and âjn is the annihilation operator of a photon in the transverse mode φn(ξ) at the input plane satisfy-
ing [âm, â

†
n] = δmn. The mode functions satisfy the orthogonal and completeness relations

∫∫∞
−∞ φ∗m(ξ)φn(ξ)dξ = δmn

and
∑
n φn(ξ)φ∗n(ξ

′
) = δ(ξ − ξ′

) with δmn and δ(ξ − ξ′
) being the Kronecker and Dirac delta function respectively.

From Eq. (A.1) we have âj(k, 0) =
∑
n φn(k)âjn with φn(k) = (

√
2π)−2

∫∫∞
−∞ φn(ξ)e−ik⊥·ξdξ. We thus find the

solutions for the two fields in position space

â†p(ξ, ζ) =
∑
n

a†pnv
∗
n,11(ξ, ζ) + âsnun,12(ξ, ζ) , (A.2a)

âs(ξ, ζ) =
∑
n

a†pnv
∗
n,21(ξ, ζ) + âsnun,22(ξ, ζ) , (A.2b)

where

un,jl(ξ, ζ) =

∫∫ ∞
−∞

φn(k)Mjl(k⊥, ζ)eik⊥·ξdk , (A.3a)

v∗n,jl(ξ, ζ) =

∫∫ ∞
−∞

φ∗n(−k)Mjl(k⊥, ζ)eik⊥·ξdk , (A.3b)

where j, l ∈ {1, 2}. A number of things implied by Eqs. (A.2) and (A.3) are worthy to be stated here. Firstly, the mode
functions un,jl, vn,jl at propagation distance ζL now depend crucially on the effect of paraxial diffraction included
in Mjl(k⊥, ζL). Secondly, the squeezing properties of mode φn are determined by its spatial frequency spectrum.
For the mode function φn having a narrow spectrum, it will experience stronger squeezing across its modal section;
meanwhile, for these modes associated with a broad spectra, the mode functions at ζL may be modified significantly
by Mjl(k⊥, ζL), and the consequent squeezing will be considerably weakened across its modal section; In short, the
number of squeezed spatial modes would critically depend on how we control the system parameters which determine
Mjl(k⊥, ζL).

Appendix B: Bichromatic Homodyne Measurement

Experimentally, the squeezing is measured by bichromatic homodyne detection and is defined by the variance of
the power difference operator as [23, 39]

P̂ (ζ) = i

∫∫ ∞
−∞

dξ[Êsq(ξ, ζ)Ê†LO(ξ, ζ)−H.c.] (B.1)

where

Êsq =âp(ξ, ζ) + âs(ξ, ζ) (B.2)

ÊLO =b̂p(ξ, ζ) + b̂s(ξ, ζ) (B.3)

the local oscillators ÊLO consists of two coherent fields b̂p(ξ, ζ) and b̂s(ξ, ζ) whose frequencies are the same as âp
and âs. Assuming that the coherent fields are much stronger in intensity as compared to the two quantum fields, we

then replace b̂p and b̂s by βpbp(ξ) and βsbs(ξ) with βp, βs and bp(ξ), bs(ξ) being the amplitude and normalized mode
functions respectively. For simplicity, we may assume that βp = βs = βeiθ and bp(ξ) = bs(ξ) = b(ξ).
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Substituting the expressions for Ês and ÊLO to Eq. (B.1) results in

P̂ (ζ) =iβ

∫∫
dξ{[âp(ξ, ζ) + âs(ξ, ζ)]b∗(ξ)e−iθ − [â†p(ξ, ζ) + â†s(ξ, ζ)]b(ξ)eiθ}

=iβ
∑
n

âpn[vn,11(ζ)e−iθ − vn,21(ζ)eiθ] + â†pn[v∗n,21(ζ)e−iθ − v∗n,11(ζ)eiθ]

+ iβ
∑
n

âsn[un,22(ζ)e−iθ − vn,12(ζ)eiθ] + â†sn[u∗n,12(ζ)e−iθ − u∗n,22(ζ)eiθ] (B.4)

where

vn,11(ζ) =

∫∫
dξvn,11(ξ, ζ)b∗(ξ) , v∗n,21(ζ) =

∫∫
dξv∗n,21(ξ, ζ)b∗(ξ) , (B.5a)

u∗n,12(ζ) =

∫∫
dξu∗n,12(ξ, ζ)b∗(ξ) , un,22(ζ) =

∫∫
dξun,22(ξ, ζ)b∗(ξ) , (B.5b)

We thus find the variance for P̂ as

〈∆P̂ 2〉 =〈P̂ 2〉 − 〈P̂ 〉2

=4β2

(∑
n

〈∆X2
pn〉[vn,11(ζ)e−iθ − vn,21(ζ)eiθ][v∗n,11(ζ)eiθ − v∗n,21(ζ)e−iθ]

+
∑
n

〈∆X2
sn〉[un,22(ζ)e−iθ − vn,12(ζ)eiθ][u∗n,22(ζ)eiθ − u∗n,12(ζ)e−iθ]

)
(B.6)

where 〈∆X̂2
jn〉 = (〈â†jnâjn〉+ 〈âjnâ†jn〉 − 2〈â†jn〉〈âjn〉)/4 with j ∈ {p, s}. Suppose now the input quantum probe is in

a single-mode coherent state, say, 〈âp0〉 = α0, then we have 〈∆X̂2
pn〉 = 〈∆X̂2

sn〉 = 1/4 for all n, which lead us to

〈∆P̂ 2〉 =β2

(∑
n

|vn,11(ζ)|2 + |vn,21(ζ)|2 + |un,12(ζ)|2 + |un,22(ζ)|2

− vn,11(ζ)v∗n,21(ζ)e−2iθ − v∗n,11(ζ)vn,21(ζ)e2iθ − un,22(ζ)u∗n,12(ζ)e−2iθ − un,22(ζ)u∗n,12(ζ)e2iθ

)
. (B.7)

Note that∑
n

|vn,11(ζ)|2 =

∫∫∫∫
dξdξ

′ ∑
n

vn,11(ξ, ζ)v∗n,11(ξ
′
, ζ)f(ξ

′
)f∗(ξ)

=

∫∫∫∫
dξdξ

′
∫∫∫∫

dk⊥dq⊥
∑
n

φn(−k)M11(k⊥, ζ)φ∗n(−q)M∗11(q, ζ)e−i(k⊥·ξ−q⊥·ξ
′
)b(ξ

′
)b∗(ξ)

=

∫∫∫∫
dξdξ

′
∫∫∫∫

dk⊥dq⊥δ(k − q)M11(k⊥, ζ)M∗11(q, ζ)e−i(k⊥·ξ−q⊥·ξ
′
)b(ξ

′
)b∗(ξ)

=

∫∫∫∫
dξdξ

′
∫∫

dk|M11(k⊥, ζ)|2e−ik⊥·(ξ−ξ
′
)b(ξ

′
)b∗(ξ)

=

∫∫
dk⊥|M11(k⊥, ζ)|2|B(k⊥)|2 (B.8)

where

B(k⊥) =

∫∫
dξb(ξ)eik⊥·ξ (B.9)
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is the spatial frequency spectrum of the local oscillator field. Similarly one has∑
n

vn,11(ζ)v∗n,21(ζ) =

∫∫
dkM∗11(k⊥, ζ)M21(k⊥, ζ)B∗(k⊥)B∗(−k⊥) . (B.10)

Thus one find that

〈∆P̂ 2(θ, ζ)〉 =〈P̂ 2〉 − 〈P̂ 〉2

=β2

∫∫
dk⊥|B(k⊥)|2G(k⊥, θ, ζ) (B.11)

with

G(k⊥, θ, ζ) =
∑
jl

|Mij(k⊥, ζ)|2 −
{B∗(−k⊥)

B(k⊥)
[M∗11(k⊥, ζ)M21(k⊥, ζ) +M22(k⊥, ζ)M∗12(k⊥, ζ)]e−2iθ + c.c.

}
(B.12)

where i, j ∈ {1, 2} and “c.c.” denotes complex conjugate.
As in Ref. [23], we now define the spatial squeezing as

S(θ, ζ) =10 log10

〈∆P̂ 2(θ, ζ)〉
〈∆P̂ 2(θ, 0)〉

=10 log10

∫∫∞
−∞ dk|B(k⊥)|2G(k⊥, θ, ζ)

2
∫∫∞
−∞ dk|B(k⊥)|2

(B.13)

Appendix C: Derivation of atomic susceptibilities

As formulated in Ref. [51], The equation of motion for the atomic operators is determined by the following
Heisenberg-Langevin equations (

d

dt
+ γjl

)
σ̂jl =

i

~
[Ĥ1, σ̂jl] + r̂jl + F̂jl , (C.1)

where γjl are dephasing rates which will be neglected since it is much smaller than the spontaneous decay given by

r̂jl. F̂jl stand for the Langevin random forces which satisfy

〈F̂jl(r, t)〉 = 0 , (C.2a)

〈F̂ †jl(r, t)F̂mn(r
′
, t

′
)〉 = 2Djlmnδ(r − r

′
)δ(t− t

′
) . (C.2b)

with Djlmn being the diffusion coefficients which can be calculated using the Einstein relationship as shown later.
In the following, we neglect the dephasing terms γjl which are much smaller that the spontaneous decay in our atom-

light interacting system. Then one can obtain the equations of motion for the relevant collective atomic operators

dσ̂32

dt
=i[∆32σ̂32 − Ωc1σ̂12 + Ωc2σ̂34 + gpâ

†
p(σ̂33 − σ̂22)] + F̂32 , (C.3a)

dσ̂12

dt
=i[∆12σ̂12 − Ωc1σ̂32 + Ωc2σ̂14 + gpâ

†
pσ̂13 − gsâsσ̂42] + F̂12 , (C.3b)

dσ̂34

dt
=i[∆34σ̂34 − Ωc1σ̂14 + Ωc2σ̂32 − gpâ†pσ̂24 + gsâsσ̂31] + F̂34 , (C.3c)

dσ̂14

dt
=i[∆14σ̂14 − Ωc1σ̂34 + Ωc2σ̂12 − gsâs(σ̂44 − σ̂11)] + F̂14 , (C.3d)
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where ∆32 = −∆p+ iΓ32,∆12 = ∆+ iΓ12,∆34 = −∆p+∆c2 + iΓ34 and ∆14 = ∆+∆c2 + iΓ14,∆ = ∆c1−∆p, and Γjl
represents the spontaneous decay rates of the corresponding transition respectively. In the following we will choose
Γ32 = Γ14 = Γ34/2 = Γ,Γ12 = 0. Considering the limit that the quantum probe and signal fields are much weak than
the control fields, the coherence operators can be considered to be only perturbed. In this case one can then write
the atomic operators as

σ̂ij(r, t) = σ̂
(0)
ij + σ̂

(1)
ij (r, t) , with 〈σ̂(1)

ij (r, t)〉 � 〈σ̂(0)
ij 〉 (C.4)

where the first constant term in the right hand side is the zeroth-order part when the probe and signal fields are
absent, and the second term is the first-order part which is introduced due to the two quantum fields. Since in the

zeroth-order limit the quantum effects have been neglected, one can replace the operator σ̂
(0)
ij by a number σ

(0)
ij . In

typical FWM experiments for squeezing, it is usual that âp and Ωc1 is chosen in an EIT structure, and meanwhile, âs
and Ωc2 forms an ARG configuration. Thus one can find that ∆c2 � ∆c1,∆p,Ωc1,Ωc2. Under these conditions, the
nonzero zeroth-order matrix elements can be obtained

σ
(0)
22 = 1 , σ

(0)
42 = − Ωc2

∆c2 + iΓ
, σ

(0)
24 = − Ωc2

∆c2 − iΓ
, (C.5)

(C.6)

Eqs. (C.3) are reduced to

d

dt
σ = iMσ + iv + F , (C.7)

where σ = {σ̂(1)
32 , σ̂

(1)
12 , σ̂

(1)
34 , σ̂

(1)
14 }T , v = {gpâ†p,−gsâsσ

(0)
42 ,−gpâpσ

(0)
24 , 0}T , F = {F̂42, F̂12, F̂43, F̂13}T , and the matrix

M is given by

M =


∆32 −Ωc1 Ωc2 0

−Ωc1 ∆12 0 Ωc2

Ωc2 0 ∆34 −Ωc1

0 Ωc2 −Ωc1 ∆14

 . (C.8)

The Langevin random force F̂ij is characterized by their diffusion coefficient Dijkl which is defined as

〈F̂ †ij(r, t)F̂kl(r, t)〉 = 2Dijklδ(r − r
′
)δ(t− t

′
) (C.9)

where δ is the Dirac delta function. The diffusion coefficient Dijkl can be calculated using the generalized Einstein
relationship [52, 53], then the Langevin force vector F would define the diffusion coefficient matrices as

〈F †(r, t)F (r
′
, t

′
)〉 = D1δ(r − r

′
)δ(t− t

′
) , (C.10a)

〈F (r, t)F †(r
′
, t

′
)〉 = D2δ(r − r

′
)δ(t− t

′
) . (C.10b)

where D1 and D2 are given by

D1 =



0 0 0 0

0
2ΓΩ2

c

2Γ2+∆2
c2+4Ω2

c
0 0

0 0
2ΓΩ2

c

2Γ2+∆2
c2+4Ω2

c
− i2Γ2Ωc

2Γ2+∆2
c2+4Ω2

c

0 0 i2Γ2Ωc

2Γ2+∆2
c2+4Ω2

c

2Γ(Γ2+2Ω2
c)

2Γ2+∆2
c2+4Ω2

c


, D2 =



2Γ(Γ2+∆2
c2+2Ω2

c)
2Γ2+∆2

c2+4Ω2
c

0 2iΓ(Γ+i∆c2)Ωc

2Γ2+∆2
c2+4Ω2

c
0

0
2ΓΩ2

c

2Γ2+∆2
c2+4Ω2

c
0 0

− 2iΓ(Γ−i∆c2)Ωc

2Γ2+∆2
c2+4Ω2

c
0

2ΓΩ2
c

2Γ2+∆2
c2+4Ω2

c
0

0 0 0 0


.

(C.11)

In order to obtain the atomic response for the two quantum fields, we need to calculate σ̂
(1)
32 and σ̂

(1)
14 . By performing

the Fourier transformation from t to ω in Eq. (C.7) one can then obtain the formal solution as

σ(r, ω) = i[M + ω]−1[iv(r, ω) + F (r, ω)] (C.12)
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FIG. 6. (Color online) Linear and nonlinear susceptibilities as a function of two-photon detuing ∆. Parameters are the same
as in the caption of Fig. 3.

In the following, we consider the continuous-wave limit which means the dependence on ω can be omitted. Then we
obtain

σ̂
(1)
32 (r) = gpχppâ

†
p(r) + gsχspâs(r) + F̂p(r) , (C.13a)

σ̂
(1)
14 (r) = gpχpsâ

†
p(r) + gsχssâs(r) + F̂s(r) , (C.13b)

χij with i, j ∈ {p, s} describe the atomic properties and can be derived

χpp =
∆12∆14∆34σ

(0)
22 −∆12∆14σ

(0)
24 Ωc − σ(0)

22 Ω2
c(∆12 + ∆34)

∆12∆14∆32∆34 − Ω2
c(∆12 + ∆34)(∆14 + ∆32)

, (C.14a)

χsp =
∆14∆34σ

(0)
42 Ωc

∆12∆14∆32∆34 − Ω2
c(∆12 + ∆34)(∆14 + ∆32)

, (C.14b)

χps =
Ωc(∆12∆32σ

(0)
24 − σ

(0)
22 Ωc(∆12 + ∆34))

∆12∆14∆32∆34 − Ω2
c(∆12 + ∆34)(∆14 + ∆32)

, (C.14c)

χss =
−∆32∆34σ

(0)
42 Ωc

∆12∆14∆32∆34 − Ω2
c(∆12 + ∆34)(∆14 + ∆32)

. (C.14d)

thus the susceptibilities can be obtained as χpl = g2NSzχpp/c as defined in the main text, similarly for χsl, χpn and
χsn. Their dependences on the two-photon detuning ∆ are plotted in Fig. 6.

Appendix D: The effect of optical depth

From our analysis, the spatial squeezing at a small area does not depend on the optical depth. To confirm this, we
further calculated the spatial squeezing as a function of wL/wp for different length of the atomic sample as shown in
Fig. 7. It can be seen indeed that the spatial squeezing at smaller area is almost the same for different length L; At
the same time, the squeezing angle is approximately zero, agreeing with our analytical analysis.

Appendix E: High-sensitivity quantum imaging of a weakly absorbing object

In this section, we apply the generated MSM squeezed light to quantum imaging of a weakly absorbing object, and
to see if we can obtain higher sensitivity beyond the standard quantum limit. The setup is given in Fig. 8, where
the output âs from the squeezing process is shining on a 2D weakly absorbing object represented by α(x, y), which is
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FIG. 7. (Color online) Here we plot the squeezing and the corresponding squeezing angle versus the spatial size of the local
oscillator for different length of the atomic sample. Here ∆ = 16.4Γ32 and other parameters are the same as in the caption of
Fig. 3.

further combined with âp in a intensity-difference detector. The singal-to-noise ratio is given by [45]

SNR =
〈N̂ ′

−〉√
〈δN̂ ′2

− 〉
(E.1)

where N̂
′

− = N̂p− N̂
′

s being the difference in photon number, N̂p and N̂
′

s are the detected photon numbers in the two
fields. After the object, the probe field is changed to

â
′

s(r⊥) = t(r⊥)âs(r⊥)− i
√

1− |t(r⊥)|2b̂(r⊥) (E.2)

where α(r⊥) = 1 − |t(r⊥)|2 (α(r⊥) � 1) with t(r⊥) is the transmission coefficient, and b̂⊥ represents the vacuum
field. Suppose the input probe field for the squeezing process is vacuum, then the output two fields have the same
intensities, i.e., 〈â†pâp〉 = 〈â†sâs〉. One can find that

N̂
′

− =

∫
A

dr⊥[â†p(r⊥)âp(r⊥)− [1− α(r⊥)]â†s(r⊥)âs(r⊥)− α(r⊥)b̂†b̂+ it(r⊥)
√

1− |t(r⊥)|2(â†s(r⊥)b̂− âs(r⊥)b̂†)] ,

(E.3)

here A stands for the area that is measured and r⊥ = (x, y). In the following, for simplicity we consider α to be

constant in the area A. Then we have 〈N̂ ′

−〉 = αNs with Nj = 〈N̂j〉 and N̂j =
∫
A
dr⊥â

†
p(r⊥)âp(r⊥) for j ∈ {p, s}.

Similarly

〈N̂
′2
− 〉 = 〈N̂2

p 〉+ (1− α)2〈N̂2
s 〉 − (1− α)[〈N̂pN̂s〉+ 〈N̂sN̂p〉] + α(1− α)Ns , (E.4)

then we have

〈δN
′2
− 〉 =(1− α)〈δN2

−〉+ α(〈N̂2
p 〉 − 〈N̂2

s 〉) + α2〈δN̂2
s 〉+ α(1− α)Ns

=(1− α)〈δN2
−〉+ α2〈δN̂2

s 〉+ α(1− α)Ns . (E.5)

The signal-to-noise ratio is calculated as

SNR =
αNs√

(1− α)〈δN2
−〉+ α2〈δN̂2

s 〉+ α(1− α)Ns

=
α
√
Ns√

α2Q+ 2σ(1− α) + α
, (E.6)

where Q = 〈δN̂2
s 〉/〈N̂s〉 − 1 is the Mandel-Q parameter for the signal field, and

σ =
〈δN̂2

−〉
Np +Ns

(E.7)
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FIG. 8. (Color online) Sketch for quantum imaging with MSM squeezed light.

characterizes the correlation between the two beams. In the case of two coherent beams with equal intensities, we
have Q = 0 and σ = 1, and we reach the signal-to-noise ratio at the standard quantum limit as

SNRSQL =
α
√
Ns

2− α
. (E.8)

We can then define the improvement of the SNR due to squeezed beams with respect to SQL, which is given by

E =
SNR

SNRSQL
=

√
2− α

α2Q+ 2σ(1− α) + α
, (E.9)

for very weak object α� 1 we have

E ' 1√
σ
. (E.10)

When considering the MSM squeezed beams as we derived in the main text, we have (the ζ dependence for Mij is
omitted here for simplicity)

Np = Ns =
1

(2π)2

∫
A

dr⊥e
−i(k

′
⊥−k⊥)·r⊥

∫∫ ∞
−∞

dk⊥dk
′

⊥〈â†s(k)âs(k
′

⊥)〉 =
A

2π

∫ ∞
−∞

dk⊥|M12(k⊥)|2 , (E.11)

and

〈δN̂2
−〉 =〈N̂2

−〉 − 〈N̂−〉2

=
2

(2π)2

∫∫
A

dr⊥dr
′

⊥

∫∫
dk⊥dk

′

⊥|M11(k⊥)|2|M12(k
′

⊥)|2e−i(k⊥−k
′
⊥)·(r⊥−r

′
⊥)

− 1

(2π)2

∫∫
A

dr⊥dr
′

⊥

∫∫
dk⊥dk

′

⊥
(
M11(k⊥)M12(k⊥)M∗11(k

′

⊥)M∗12(k
′

⊥)e−i(k⊥−k
′
⊥)·(r⊥−r

′
⊥) + c.c.

)
(E.12)

=
2

(2π)2

∫∫
A

dr⊥dr
′

⊥

∫∫
dk⊥dk

′

⊥[|M11(k⊥)|2|M12(k
′

⊥)|2

− Re[M11(k⊥)M12(k⊥)M∗11(k
′

⊥)M∗12(k
′

⊥)]]e−i(k⊥−k
′
⊥)·(r⊥−r

′
⊥) (E.13)

=2Np +
2

(2π)2

∫∫
A

dr⊥dr
′

⊥

∫∫
dk⊥dk

′

⊥[|M12(k⊥)|2|M12(k
′

⊥)|2

− Re[M11(k⊥)M12(k⊥)M∗11(k
′

⊥)M∗12(k
′

⊥)]] · e−i(k⊥−k
′
⊥)·(r⊥−r

′
⊥) (E.14)

=2Np +
2

(2π)2

∫∫ ∞
−∞

dk⊥dk
′

⊥F (k⊥,k
′

⊥)
(
|M12(k⊥)|2|M12(k

′

⊥)|2 − Re[M11(k⊥)M12(k⊥)M∗11(k
′

⊥)M∗12(k
′

⊥)]
)

(E.15)
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FIG. 9. (Color online) δ(k⊥,k
′
⊥) as a function of k⊥ and k

′
⊥. Note here the scale for the three cases varies significantly.

where we have applied the relations for Mij(k⊥) = Mij(−k⊥),M12(k⊥) = M∗21(k⊥) and M11(k⊥) = M∗22(k⊥) and

|M11(k⊥)|2 − |M12(k⊥)|2 = 1. And F (k⊥,k
′

⊥) is the filtering function in momentum space which is defined by the
area A. Suppose we define A as a pixel with size d, i.e., A = d2, then we have

F (k⊥,k
′

⊥) = d4sinc2[
1

2
(kx − k

′

x)d]sinc2[
1

2
(ky − k

′

y)d] . (E.16)

which agrees well with that derived in Ref. [50]. Finally we have

σ =
〈δN̂2

−〉
Np +Ns

= 1 +

∫∫∞
−∞ dk⊥dk

′

⊥F (k⊥,k
′

⊥)δ(k⊥,k
′

⊥)

2πd2
∫∞
−∞ dk⊥|M12(k⊥)|2

. (E.17)

with δ(k⊥,k
′

⊥) given by

δ(k⊥,k
′

⊥) = |M12(k⊥)|2|M12(k
′

⊥)|2 − Re[M11(k⊥)M12(k⊥)M∗11(k
′

⊥)M∗12(k
′

⊥)] (E.18)

It can be seen from Eq. (E.16) and (E.17) that increasing d leads to smaller σ as the width of the sinc function

becomes narrower, and thus a stronger improvement of the SNR. In our system, δ(k⊥,k
′

⊥) only depends on k⊥ and

k
′

⊥ (k⊥ =
√
k2
x + k2

y, the same for k
′

⊥). We thus plot δ(k⊥,k
′

⊥) as a function of k⊥ and k
′

⊥ for the three cases as

shown in Fig. 9. For ∆ = 14.0Γ32, since there is exponential squeezing for small k⊥, one might get best σ for large d.
However, δ(k⊥,k

′

⊥) soon becomes positive for increasing k⊥, leading to a rapidly decreasing σ. For ∆ = 16.4Γ32 which
corresponds to the case of optimal localized squeezing, δ is always smaller than 0 and leads to a slower decreasing
σ when reducing d. Increasing ∆ further to 19.0Γ32, σ will be always small as there is only very weakly localized
squeezing all the time. The calculated σ and the improvement of the SNR (' 1/

√
σ) is plotted in Fig. 5.
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