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We examine the field-field and field-atom entanglements generated by -type three-

level atoms placed in an optical cavity driven above threshold by two coherent input 

optical fields. It is shown that under realistic experimental conditions entanglement 

between the two output cavity fields as well as between the fields and the atoms can be 

achieved when the two cavity fields are both one- and two-photon (Raman) resonant 

with the atomic transitions, as in the configuration for electromagnetically-induced 

transparency (EIT). The entanglement has similar features to pump-signal-idler three-

color entanglement in an above-threshold optical parametric oscillator [Phys. Rev. Lett. 

97, 140504 (2006)]. This cavity-enhanced atom-field cooperative coupling could 

enable convenient and efficient generation of bright, nondegenerate, narrow-band 

entangled fields, which may find potential applications in realistic quantum 

communications and networking protocols. 
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Entanglement, as one of the most intriguing features of quantum mechanics, is at 

the heart of quantum networks and quantum information processing. A common way 

to generate entanglement is to use parametric down-conversion processes in nonlinear 

optical crystals [1-4], however, the entangled fields that are produced normally have 

large bandwidths and short correlation times. In order to reduce the bandwidth, an 

optical parametric oscillator (OPO) containing the optical crystal can be used and 

driven either below or above threshold [5-8]. Atomic systems in free space [9-15], 

cavity optomechanical systems [16-18], and atom-cavity hybrid systems [19-21], all 

interacting with light fields, can also be used to generate nondegenerate and narrow-

bandwidth entangled fields. In comparison with a single-pass interaction scheme in free 

space, an optical cavity can dramatically enhance the light-matter interaction, and 

subsequently enhance the generated squeezing or entanglement [15-23].  

Practical quantum communication networks would be composed of many 

quantum nodes and channels, where nondegenerate bright entangled fields with narrow 

bandwidth will be required to connect with many of the variety of physical systems, 

atoms or ions,  that could be present at the quantum nodes [12]. The atomic system 

interacting with light fields provides a promising interface for realizing various 

quantum information protocols, where light fields act as the long-distance quantum 

information carriers and the atomic ensemble acts as a quantum processor for storage 

and manipulation of quantum information [24, 25].  The atomic coherence decay time 

between the lower doublet of a -type atomic level system is relatively long (on the 

order of tens of ms or more [26, 27]), and makes it attractive for quantum memory 

applications [28]. 

In most of the previous studies on light-matter interactions, the relatively strong 

pump field is considered as a classical field and its quantum properties are ignored. In 

order to fully describe the quantum features of the light-matter interaction, however, all 

of the light fields should be treated quantum mechanically. Including the quantum 
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nature of the strong pump field, Villar et al. demonstrated the production of pump-

signal-idler three-color entanglement in an above-threshold optical parametric 

oscillator (OPO) [7, 8]. Recently, the same group experimentally observed quantum 

correlations between twin beams that are produced by nondegenerate four-wave mixing 

with 85Rb atoms when operating in an OPO above threshold [20].  This group has also 

presented a versatile model for exploring the multipartite entanglement among the 

strong pump field and the converted fields in open cavity (high transmission) OPOs for 

the doubly and triply resonant cavity configurations [21]. Moreover, they reported the 

experimental observation of intensity correlations and anti-correlations between the 

pump and probe fields in the simplest -type three-level atomic system [29-30] and 

pointed out that quantum correlated intensities and anti-correlated phases of the pump 

and probe fields would exist at an analysis frequency inside the electromagnetically-

induced transparency (EIT) window in their system [31]. However, as demonstrated in 

Refs. [32, 33], no quantum correlation or entanglement can exist in the traditional EIT 

configuration when the two fields interacting with the -type three-level atom are 

treated classically. 

By combining the virtues of the cavity-enhanced atom-field cooperative coupling 

with the full quantum mechanical treatment for both the atomic and field fluctuations, 

we show in the present work that entanglement between two bright output cavity fields, 

as well as between the output cavity fields and the atoms in the cavity, can be realized. 

We consider an optical cavity containing -type three-level atoms when the two cavity 

fields are both one- and two-photon (Raman) resonant to the atomic transitions under 

realistic experimental conditions. This method could simplify the generation of bright, 

nondegenerate, narrowband entangled fields, which is vital to a number of practical 

quantum communications and networking tasks requiring coupling to atoms. 

 

Theoretical model and Heisenberg-Langevin equations. 

We consider an ensemble of N  cold atoms with a -type energy level 

configuration (e.g. 85Rb) placed inside an optical cavity with the cavity length L, decay 
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rate κ, and finesse 𝐹 =
𝜋𝑐

𝐿𝜅
  , as shown in Fig. 1(a). The atom-cavity hybrid system 

is driven by two input laser fields with frequencies 1in  and 2in  coupling two 

neighboring longitudinal cavity modes with frequencies a1  and a2 , and the two 

cavity fields couple the atomic resonant transitions 1-3 and 2-3.  The levels 1, 2, and 

3 correspond here to the ground-state hyperfine levels 5S1/2 (F=2), 5S1/2 (F=3) and the 

excited state 5P1/2 of the D1 line of the 85Rb atom, respectively, as displayed in Fig. 1(b). 

In this case, the total Hamiltonian of the hybrid system can be written as [19, 22, 23]: 

𝐻 =  ℏ𝜔𝑎1𝑎1
†𝑎1 +   ℏ𝜔𝑎2𝑎2

†𝑎2 +   𝑖ℏ𝐸1(𝑎1
†𝑒−𝑖𝜔1 𝑖𝑛𝑡 −  𝑎1𝑒𝑖𝜔1 𝑖𝑛𝑡) 

          + 𝑖ℏ𝐸2(𝑎2
†𝑒−𝑖𝜔2 𝑖𝑛𝑡 − 𝑎2𝑒𝑖𝜔2 𝑖𝑛𝑡) +  ℏ𝜔1𝜎11  +  ℏ𝜔2𝜎22  +

 ℏ𝜔3𝜎33      

(1) 

          + (ℏ𝑔13√𝑁𝑎1
†𝜎13 +  ℏ𝑔23√𝑁𝑎2

†𝜎23 + 𝐻. 𝑐. ),                                          

where 𝑎𝑖 (𝑎𝑖
†
) (i = 1, 2) are the annihilation (creation) operators of the two cavity fields 

with decay rates 𝜅𝑖 . The two terms involving 𝐸𝑖 = √ 2𝑃𝑖𝜅/ℏ𝜔𝑖 𝑖𝑛  describe the 

interactions of the two input laser fields of power 𝑃𝑖 with the two cavity modes (here 

we assume 1 2    ). ( )
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are the collective operators of the atomic ensemble. 𝑔𝑖3 =  𝜇𝑖3 𝜀𝑖/ℏ is the atom-field 

coupling constant with 𝜇𝑖3 being the dipole moment for the i = 1, 2 to 3 transitions. 

𝜀𝑖 = √ℏ𝜔𝑎𝑖/2𝜖0𝑉 is the electric field of a single cavity field photon with the free space 

permittivity 𝜖0  and cavity mode volume V=r2L (with beam radius r). In our 

configuration, with suitably chosen experimentally available parameters, we consider 

cold atoms in a Fabry-Perot cavity and the condition where the inter-atomic separation 

is far larger than the resonant optical wavelength, so that the direct (or dipole-dipole) 

interaction between the atoms can be safely ignored in the above Hamiltonian in 

Eq. (1). By transforming the total cavity field 𝐸𝑖 and the atomic operators 𝜎𝑖𝑗 using 

a rotating wave approximation at the input field frequency 𝜔𝑖 𝑖𝑛 , the Heisenberg-
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Langevin evolution equations for the collective atomic operators and cavity field 

operators for the Hamiltonian in Eq. (1), adding damping and dephasing terms, are 

given by:  

in

1 1 c1 1 1 13 13 1 1( + ) 2 ,a i a E ig N a                                   (2a) 

in

2 2 c2 2 2 23 23 2 2( + ) 2 ,a i a E ig N a                                   (2b) 

12 12 1 1 2 2 12 13 1 32 23 2 13 12( ) [ ( )] + ,c ct i ig a ig a F                          (2c)  

13 13 1 1 13 13 1 11 33 23 2 12 13( ) [ ( )] ( ) / ,ct i ig a N ig a F                        (2d) 

23 23 2 2 23 23 2 22 33 13 1 21 23( ) [ + ( )] ( ) / ,ct i ig a N ig a F                       (2e)  

where Δ𝑐𝑖 = 𝜔𝑎𝑖 − 𝜔𝑖 𝑖𝑛  ( 1 a1 31=    and 2 a2 32=   ) are the frequency 

detunings of the two cavity fields 𝐸𝑖  with respect to the corresponding input laser 

fields (and the atomic 1-3 and 2-3 resonant transitions), respectively. 𝑎𝑖
𝑖𝑛(𝑡) are the 

optical noise operators with the relevant nonzero correlation functions 

〈𝑎𝑖
𝑖𝑛(𝑡)𝑎𝑖

𝑖𝑛†(𝑡′)〉 = 𝛿(𝑡 − 𝑡′) . 𝛾13 = 𝛾23 =
𝛾1+𝛾2

2
 with the 𝛾𝑖  being the population 

decay rates (multiplied by branching fractions) from level 3 to levels 1 and 2 (normally 

of the order 106 s-1), respectively. 𝛾12 is the coherence decay rate between levels 1 and 

2 due to the finite interaction time between atoms and light beams (normally of the 

order of 103 s-1), and the 𝐹𝑖𝑗(𝑡) are the  -correlated collective atomic Langevin noise 

operators.  

In order to study the quantum effects involving the two cavity fields as well as the 

atoms, one can write each atomic and cavity field operator as the sum of its mean value 

and a quantum fluctuation term (i.e., 
ij ij ij     and 

i i ia a a  ). As discussed 

in Ref. [21], it is expected that this linearization may fail close to or below the 

oscillation threshold [34], and if that is the case, one can go beyond the linear treatment 

and investigate the entanglement properties by solving the Fokker-Planck equation for 

the nonlinear systems, as done in Refs. [34, 35]. Here, we focus on the entanglement 

generation in an above-threshold optical parametric oscillator. We assume that the two 

cavity fields have equal power, the atomic lower doublet states have a long lifetime as 
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compared to the excited state ( 1 2 12,   ), and the pumping rate Γ𝑖 =  𝑔𝑖3
2  |〈𝑎𝑖〉|2/𝛾𝑖 

is much larger than 12  (i.e., in the EIT regime) and smaller than 1 2, ,   . In this case, 

the atoms are pumped into the dark state formed by the lower doublet states 1 and 2 

(i.e., the population in the excited state 3 can be neglected), and the optical coherences 

13  and 23  adiabatically follow the ground state observables. The two cavity fields 

are both one- and two-photon resonant with the -type three-level atoms and we can 

analytically derive the steady-state mean values of the two cavity fields and the atomic 

operators by setting the time derivatives equal to zero and neglecting the noise 

operators. The phase references of the two driving fields are chosen to let 
1a  and 

2a  be real and positive. Under the situations that 1 2in inP P , and 
2𝜅〈𝑎𝑖〉2

𝑁𝛾12
≫

1

𝐶𝑖
, 

where the cooperativity parameter 𝐶𝑖 =  𝑔𝑖3
2 𝑁/𝜅𝛾𝑖  quantifies the strength of the 

atom-field cavity coupling, we find 〈𝑎𝑖〉 = (𝐸𝑖 ± √𝐸𝑖 − 𝜅𝑁𝛾12)/2𝜅  (see the 

Appendix for more details). It can be seen from the steady state values that the 

intracavity fields exhibit bistable behavior when the input field power is larger than the 

threshold power 𝑃𝑖 𝑖𝑛
𝑡ℎ = ℏ𝜔𝑖 𝑖𝑛𝛾12𝑁. Under realistic experimental conditions, 𝐸𝑖 ≫

𝜅𝛾12𝑁, and we can safely take only the positive sign in the relation above and let 〈𝑎𝑖〉 =

(𝐸𝑖 + √𝐸𝑖 − 𝜅𝑁𝛾12 )/2𝜅. Using the input-output relation [12], 

〈𝑎𝑖
𝑜𝑢𝑡〉 = √2𝜅〈𝑎𝑖〉 − 〈𝑎𝑖

𝑖𝑛〉,                                            (3) 

the output field power 𝑃𝑖 𝑜𝑢𝑡  with respect to the input laser power 𝑃𝑖 𝑖𝑛  can be 

obtained,  

𝑃𝑖 𝑜𝑢𝑡 = 𝑃𝑖 𝑖𝑛 − 𝑃𝑖 𝑖𝑛
𝑡ℎ ,                                                (4) 

where the “th” superscript indicates the threshold value. The output power exhibits a 

linear response in the above-threshold regime. Similar linear response has been 

observed in an open cavity OPO for a doubly resonant cavity configuration [21].  

By defining the cavity field-fluctuation quadratures 𝛿𝑋𝑖 = (𝛿𝑎𝑖 + 𝛿𝑎𝑖
†)/√2  

and 𝛿𝑌𝑖 = (𝛿𝑎𝑖 − 𝛿𝑎𝑖
†)/√2𝑖 with the corresponding Hermitian input noise operators 
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𝛿𝑋𝑖
𝑖𝑛 = (𝛿𝑎𝑖

𝑖𝑛 + 𝛿𝑎𝑖
𝑖𝑛 †)/√2  and 𝛿𝑌𝑖

𝑖𝑛 = (𝛿𝑎𝑖
𝑖𝑛 − 𝛿𝑎𝑖

𝑖𝑛 †)/√2 , the atomic 

quadratures 
12 21=( + )/ 2aX    and 

12 21=( )/ 2aY i    with the corresponding 

Hermitian noise operators 
21 12=( )/ 2in

sX F F  and 
12 21=( )/ 2in

sY F F i . By eliminating 

the excited state population as well as replacing the optical coherences 13  and 23  

with their steady state values, one can obtain the quantum Langevin equations for the 

fluctuation operators. (In linearizing, we have ignored terms of the form 𝛿𝑎 𝛿𝜎 .) 

Taking the Fourier-transform of these equations, the quantum fluctuations of the 

operators with respect to the Fourier frequency   can be obtained. The fluctuations 

of the output fields can be obtained by using the input-output relation [12]:  

𝛿𝐴𝑖
𝑜𝑢𝑡(𝜔) = √2𝜅𝛿𝐴𝑖(𝜔) − 𝐴𝑖

𝑖𝑛(𝜔)  (𝐴 = 𝑋, 𝑌).                           (5) 

We employ the Duan-Giedke-Cirac-Zoller (DGCZ) criterion of Ref. [36] to test 

for entanglement between the two output cavity fields, as well as between the fields and 

the atomic spin coherence. The DGCZ criterion can be expressed as 

2U V   2 2V=( ) ( ) , where 1 2=U X X  and 1 2=V P P  with the quadratures 𝑋𝑖 =

(𝑎𝑖 + 𝑎𝑖
†)/√2 and 𝑌𝑖 = (𝑎𝑖 − 𝑎𝑖

†)/√2𝑖 being Einstein-Podolsky-Rosen (EPR) type 

operators. In the frequency domain, the criterion can be written as [37], 

2V U U V V         = ( ) [ ( ) ] ( ) [ ( ) ]                            (6) 

where = i jU X X    and = i iV Y Y    ( , 1,2,i j a ; taking the upper sign for V12 

and V1a, and the lower sign for V2a). If the above inequality is violated, then the 

bipartition is necessarily entangled, and in this case the smaller the correlation V, the 

stronger the degree of the entanglement. Note that similar entanglement properties can 

also be deduced using the criterion of the inferred variances described in Ref. [38]. In 

the following the parameters of the cavity-atom hybrid system are similar to those in 

the experiments of Ref. [39], and are set to L = 0.05 m, r = 200 μm, N = 104, 𝐹 =

𝜋𝑐

𝐿𝜅
 =100, λ = 795 nm 𝛾1 = 𝛾2 = 2𝜋 × 3 × 106 𝑠−1 , 𝛾12 = 2𝜋 × 103 𝑠−1 , 𝜔12 =

2𝜋 × 3 GHz, P1 = P2 = 1 μW and 1 2 c1 c2= = = 0     . The cavity length of 0.05 m 
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implies a free spectral range (FSR) of about 3 GHz, approximately corresponding to 

the hyperfine splitting of the ground state of the 85Rb atoms, which enables the 

simultaneous satisfaction of the one- and two-photon resonance conditions for the two 

cavity fields with respect to the atomic transitions. We consider cold atoms in the Fabry-

Perot cavity and the atom number given here would fit in a laser dipole trap. We did 

not consider hot atoms, as in this case the Doppler effect would need to be taken into 

account for interacting with the standing wave formed in the cavity. Using the above 

experimentally achievable parameters the approximations we have made in linearizing 

the dynamics of the system are valid, and the stability conditions derived by applying 

the Routh-Hurwitz criterion [40], are satisfied. 

 

Generation of Cavity-assisted Atom-field Entanglement.  

Figure 2 shows the correlations V12, V1a, and V2a as a function of the Fourier 

(measurement) frequency   (normalized to the cavity decay rate  ) when the 

frequency detunings of the two cavity fields 1 and 2 with respect to the corresponding 

input laser fields as well as the atomic 1-3 and 2-3 transitions are all equal to zero. In 

this case P1in = P2in = 1 μW and 
1 ,2

th th

in in inP P = 1.6 × 10−5 μW so that the system is 

operating well above threshold. The normalization is such that these variances take the 

value of 2 at the shot noise limit, and V = 1 represents 3 dB of noise suppression. V12 

represents the correlation between the two output cavity fields, and V1a (2a) represents 

the correlation between the output cavity field 1 (2) and the atoms, respectively. It can 

be seen that over a wide range of ω, V12 remains near 2 (the shot noise level), except 

that there exists a dip over a limited range (on the order of the cavity decay rate  ) 

around zero Fourier frequency, with a minimum value of  1.22, which demonstrates 

the generation of bipartite entanglement between the two output cavity fields in this 

regime. The correlations V1a and V2a, over nearly the entire range of the Fourier 

frequency  , are almost equal to 1, except for a dip within a similar limited range to 

that of V12 that appears around zero frequency, with the minimum values of  0.80 and 

 0.56, respectively. These results demonstrate that the two output fields are both 
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entangled with the atoms as well as with each other. Therefore, tripartite entanglement 

among the two cavity fields and the atoms can also be realized. Note that the higher 

degree of bipartite entanglement between the cavity field 2 and the atoms than that 

between cavity field 1 and the atoms is due to the parametric-type interaction of the 

cavity field 2 with the atoms and beam-splitter-type interaction between the cavity field 

1 and the atoms.  That is, every photon created in cavity field 2 is always accompanied 

by the annihilation of a photon in cavity field 1 and the creation of an atomic spin 

coherence excitation; a photon in cavity field 2 and an atomic spin coherence excitation 

are created simultaneously, similar to the twin beams in parametric down-conversion 

processes in nonlinear optical crystals. On the other hand, the creation of a photon in 

cavity field 1 is always accompanied by the annihilation of an atomic spin coherence 

excitation, which is analogous to a beam-splitter interaction. 

Figure 3 presents the dependence of the correlations V12, V1a, and V2a at zero 

Fourier frequency as a function of the normalized input laser power 1 2in in inP P P   

(normalized with respect to the threshold power 
1 ,2

th th

in in inP P = 1.6 × 10−5 μW for the 

parameter values given above) of the two driving fields. Obviously, V12, V1a, and V2a 

have initial values far larger than 2 that decrease rapidly with the increase of the input 

laser power. When the input laser power is increased to the order of the threshold power 

1 ,2

th

in inP , V12, V1a, and V2a become smaller than 2, indicating the initially uncorrelated 

fields and atoms become entangled with each other. That is, field-field and field-atom 

entanglements can be realized with the -type three-level atoms placed in an optical 

cavity operating above threshold. By further increasing the input laser power, V12, V1a, 

and V2a reach stable values of about 1.22, 0.80, and 0.56, respectively, and become 

insensitive to changes in the input field power, which is due to the fact that when the 

pumping rate Γ𝑖 =  𝑔𝑖3
2  |〈𝑎𝑖〉|2/𝛾𝑖 is far larger than 12   (i.e., in the EIT regime), the 

quantum coherence 
12  

saturates near its maximum value of -0.5, and stable values of 

the quantum correlations and entanglement are obtained. Similar behavior has also been 

studied in Ref.[20]. This indicates that with suitable cavity finesse F and atomic number 
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N, bright entangled output optical fields as well as light-atom tripartite entanglement 

can be obtained with this cavity-assisted atomic system. As discussed in Ref. [21], the 

noise compression or squeezing in the EPR-type operator criteria [36] is a sufficient 

condition for a successful teleportation of a quantum state between two sites [41].   

In Fig. 3 the atom-field correlations V1a and V2a are seen to behave almost 

identically below the threshold pump power, but the different type of atom-field 

interactions cause them to deviate from each other above the pump threshold, as 

discussed above. A more curious feature is that there is a noticeable change in the field-

field correlation V12 at a value of Pin/Pin
th = 4. Sharp features in the field-field 

correlations also appear in an OPO driven above threshold at similar pump values in 

[20, 42]. The OPO configuration is similar to what we have here, with a driven medium 

in a cavity, and in those cases the features were interpreted as a signature of pump 

depletion. The feature in V12 here is presumably also related to the onset of pump 

depletion. 

It is well known that the cooperativity parameter C, which quantifies the 

collective atom-field interaction in an optical cavity, plays a key role in the generation 

of atom/field squeezing or entanglement [5, 22, 23]. Figure 4 shows 3D plots of the 

correlations 12V , 1aV , and 2aV  at zero Fourier frequency with respect to the cavity 

finesse F and atomic number N. As seen from Fig. 4(a-c), when either the cavity finesse 

or the atomic number is very small, the correlations 12V , 1aV , and 2aV  are nearly equal 

to 2, 1, and 1, respectively, indicating that although there exists entanglement between 

the atoms and the two output cavity fields, no bipartite entanglement between the two 

output fields is created. With the increase of the cavity finesse and/or atomic number, 

the correlations 12V , 1aV , and 2aV  become smaller than 2, 1, and 1, respectively, 

implying the generation of bipartite entanglement between the two output cavity fields, 

as well as an enhancement of the degree of entanglement between the two output fields 

and the atoms. Within the experimentally feasible parameter range, as well as under the 

above adiabatic approximation, the larger the cavity finesse F and/or atomic number N, 
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the stronger the bipartite entanglement that is generated between the two output cavity 

fields and the atoms.  

 

Mechanism of Cavity-assisted Atom-field Entanglement.  

The strong bipartite entanglement between the two output cavity fields and 

between the fields and the atoms can be understood by considering the interaction 

between the cavity fields and the atoms. It is easy to deduce from Eqs. 2(a-e) that in the 

adiabatic approximation, by replacing the optical coherences 13  and 23  with their 

steady state values, the effective interaction Hamiltonian of the atom-field hybrid 

system can be described by 13 23
1 2 21

1 2

2
. .I

i g g N
H a a h c

 

  


. This interaction 

clearly indicates that every photon created in cavity field 2 is always accompanied by 

the annihilation of a photon in cavity field 1 and the creation of an atomic spin 

coherence excitation; that is, the cavity field 1 is quantum anti-correlated with the cavity 

field 2 as well as the atomic spin coherence. Note that the atomic interaction is not 

symmetric in the two cavity fields in that there is a creation of spin coherence along 

with phonons created in cavity field 2, while there is an annihilation of spin coherence 

with the photons created in cavity field 1. Strong tripartite entanglement among the two 

cavity fields and the atoms can be achieved. This is similar to the parametric 

downconversion process for generating pump-signal-idler three-color entanglement by 

using an OPO [7, 8]. It should be noted that in Ref. [31], the authors examined the 

quantum correlations at a fixed analysis frequency and showed that there exist quantum 

correlations (anti-correlations) between the amplitude (phase) quadratures of the pump 

and probe fields, which is distinct from the current quantum correlation relationship 

between the output fields. 

As seen in Eqs. 2(a-e), due to the quantum coherence 
12  between the atomic 

lower doublet induced by the two cavity fields, the two cavity field modes are coupled 

with each other and subsequently correlation and entanglement between them can be 

established. If there were no quantum coherence, 
12 , the existence of the atoms would 
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only influence the effective detunings and decay rates of the two cavity fields and there 

would be no mutual coupling between the two cavity fields, and no entanglement could 

be established between them. In addition, as seen from Eq. 2(c), the atomic spin 

coherence operator is a linear superposition of the two cavity field operators, which 

implies that the atomic spin coherence inherently gets entangled with both of the cavity 

fields. This shows that the entanglement between the two cavity fields and the atoms 

should exist the in the whole range of the Fourier frequencies in Fig. 2.   

In comparison to the 4-wave mixing technique of Ref. [10] the ultimate 

entanglement between the fields that can be obtained with the present technique is not 

any larger, but the light power levels required are drastically reduced by the use of the 

cavity in this case.  Using a cold atom system is perhaps a practical disadvantage here, 

but the use of hot atoms could also be investigated. 

Recently up to -1.5 dB of quantum field-field anticorrelations (corresponding to 

𝑉 ≈ 0.71) have been observed in an experiment that is somewhat similar to the one 

described here, but does not include a cavity [43].  The experiments involve similarly 

competing processes that can be described as Raman processes coupled through an 

exchange of atomic spin coherence in a vapor, and demonstrates the attainability of the 

needed experimental parameters.  

In conclusion, we have shown that field-field and field-atom entanglements can 

be achieved in an optical cavity containing -type three-level atoms in the above-

threshold regime. Due to the cavity-induced atom-field cooperative coupling, 

entanglement between two bright output cavity fields as well as entanglement of the 

fields with the atoms can be achieved with realistic experimental parameters. This 

atom-cavity hybrid system provides a convenient and efficient platform for producing 

bright nondegenerate entangled fields as well as atom-light multipartite entanglement 

by using only coherent input laser fields, and may find promising applications in 

quantum information processing and networking protocols. Further investigation into 

the possibility of doing similar experiments with hot atoms, which would simplify the 

experimental arrangements, is needed. 
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Appendix 

In the derivation of Eq. (4), we consider the frequency detunings of the two cavity 

fields 𝐸𝑖 with respect to the corresponding input laser fields (and the atomic 1-3 and 

2-3 resonant transitions) all equal to zero (EIT configuration), and we assume that the 

optical coherences 13  and 23  adiabatically follow the ground state observables. In 

this case, the mean value of 13  and 23  are pure imaginary numbers, and from 

Eqs. (2a-2e), together with 
11 22 33 N     , we obtain the following equations, 

2

1 1 1 1 13 33 0,a E a                                            (A1) 

2

2 2 2 2 23 33 0,a E a                                           (A2) 

2 2

2 2 1 22 2

1 2 33 12 13 1 2 12 33 2 2

1 2

( ) [ ( )] 4 ( 3 ) 0,
a a

g a a g N
a a

           


   

(A3) 

2 2

1 11 33 2 22 33( ) ( ) 0,a a                                    (A4) 

under the conditions that 1 2in inP P , 
22

3 3 12/ 1,i i ig a    and 
2𝜅〈𝑎𝑖〉2

𝑁𝛾12
≫

1

𝐶𝑖
, with the 

cooperativity parameter 𝐶𝑖 =  𝑔𝑖3
2 𝑁/𝜅𝛾𝑖, we find 〈𝑎𝑖〉 = (𝐸𝑖 ± √𝐸𝑖 − 𝜅𝑁𝛾12)/2𝜅.  
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FIG. 1 (a) The optical cavity containing N  85Rb atoms driven by two input 

laser fields with frequencies 𝜔1 𝑖𝑛  and 𝜔2 𝑖𝑛, where 1a  and 2a  represent 

the two longitudinal cavity field modes with frequencies a1  and a2 , 

respectively. (b) The relevant energy level scheme of the -type three-level 

85Rb atoms and corresponding frequency detunings of the two cavity fields 

with respect to the input laser fields as well as the atomic resonant transitions. 
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FIG. 2. (Color online) The correlations V12 (solid black line), V1a (dot-

dashed red line), and V2a (dashed blue line) as a function of the Fourier 

frequency   (normalized to the cavity decay rate κ). V12 represents the 

correlation between the two output cavity fields, and V1a, 2a represents the 

correlation between the output cavity field 1 (2) and the atoms. The relevant 

parameters are given in the text. 
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FIG. 3. (Color online) The correlations V12 (solid black line), V1a (dot-

dashed red line), and V2a (dashed blue line) at zero Fourier frequency as a 

function of the power P1in = P2in of the two input laser fields, normalized to 

the threshold power Pin
th. The other parameters are the same as those in Fig. 

2.  Below the horizontal gray dashed line the variance is sub-shot-noise. 

The small features appearing near / th

in inP P  = 4 are discussed in the text. 
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FIG. 4. 3D plots of the correlation parameters V12 (a), V1a (b), and V2a 

(c) at zero Fourier frequency with respect to the cavity finesse F and the 

atomic number N. The other parameters are the same as those in Fig. 2. 

(Each axis is a number without units.) The color bar on the left gives the 

scale for the values of the correlation parameters. 

 


