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Pairs of photons entangled in their time-frequency degree of freedom are of great interest in quan-
tum optics research and applications, due to their relative ease of generation and their high capacity
for encoding information. Here we analyze, both theoretically and experimentally, the behavior of
phase-insensitive spectrally-resolved interferences arising from two pairs of time-frequency entangled
photons. At its core, this is a multimode entanglement swapping experiment, whereby a spectrally
resolved joint measurement on the idler photons from both pairs results in projecting the signal
photons onto a Bell state whose form depends on the measurement outcome. Using this scheme we
herald a large, though non-orthogonal, set of pulse-mode Bell states, which we characterize through
spectral measurements and through two-photon quantum interference. In principle, the number of
mutually-orthogonal states which can be generated with our scheme is limited only by the amount
of entanglement available in the sources, and thus our setup demonstrates a versatile and scalable
multimode entanglement swapping scheme requiring no source engineering.

I. INTRODUCTION

With the advent of the quantum information age, it
is well-established by now that the encoding of quan-
tum information into the degrees of freedom of light
is the key component of quantum communication net-
works [1]. Whereas polarization and spatial-mode encod-
ing benefit from ease of implementation, they are prone
to scrambling from environmental noise and optical-fiber
transmission, which undermines their suitability for long-
distance communication. Meanwhile, the time-frequency
(TF) degree of freedom is more robust in this regard
(frequency-channel crosstalk does not occur in optical
fiber), and TF-encoding has now been established as a
complete toolkit for quantum-information processing [2],
opening an active venue of research into the generation,
manipulation, and measurement of TF-encoded quantum
states of light.

In the quantum regime, entanglement plays a key role
in many protocols for computation [3] and communica-
tion [4, 5]. Furthermore, entanglement of photons has
recently been of great interest to the metrology and spec-
troscopy communities due to its promise of enhancements
in sensitivity beyond what is attainable in the classical
domain [6]. It comes as no surprise, then, that the gener-
ation of photon pairs in well-defined TF-entangled states
is a widely-researched area of quantum optics, and great
strides have been made over this terrain in the past two
decades [7]. In addition to state generation, harness-
ing the full capabilities of quantum entanglement also
requires the ability to perform projective measurements
onto entangled states. Indeed, entangled measurements
[8], of which the Bell-state measurement is the prototype,
are nearly as ubiquitous in quantum protocols as entan-
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gled states, most notably in quantum teleportation [9]
and entanglement swapping [10].

In this work, we describe theoretically, and demon-
strate experimentally, an entanglement swapping scheme
that relies on the multimode nature of TF-entanglement
in pairs of photons. The central component of the setup
is a multimode, frequency-resolved Bell-state measure-
ment (BSM), performed on idler photons from two inde-
pendent TF-entangled pairs generated from spontaneous
parametric down conversion (SPDC). The BSM heralds
the signal photons onto a pulsed Bell state whose cen-
tral frequencies depend on the result of the BSM. In this
way we are able to herald multiple orthogonal Bell pairs
and verify entanglement in each pair, all derived from the
same source state and within the measurement scheme.
This aspect of our work can be viewed as a generaliza-
tion of pulse-mode entanglement swapping, such as that
reported in Ref. [11], to utilizing the high-dimensional
TF entanglement that is available in standard of-the-
shelf SPDC sources. In section II we outline the theory
underlying our work. In section III we describe the ex-
perimental setup. Then, in section IV we describe our
results, which show remarkable agreement with a simple
and intuitive Gaussian model using pure quantum states,
before concluding in section V. Finally, in the Appendix
we cover the more technical details of our work which
would otherwise encumber the account of our main re-
sults.

II. THEORY

A. Four photon state

The entanglement swapping protocol we realize is de-
picted conceptually in Fig. 1. The protocol consists of
two independent spontaneous parametric down conver-
sion (SPDC) sources. Each source generates pairs of pho-
tons into paths labeled by the bosonic operators ân for
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the signal and b̂n for the idler, where n ∈ {1, 2} labels
the two sources. Here we consider pulsed collinear type
II SPDC sources, where the signal and idler modes are
distinguished by their orthogonal polarization. Further-
more, all the light is collected into single-mode optical
fibers, so that only the time-frequency degree of freedom
is relevant.

In Appendix A, we derive the general four-photon
quantum state of SPDC in the context of Fig. 1. Gen-
erally, this state is a coherent superposition containing
terms corresponding to either source generating two pairs
of photons, as well as a term corresponding to each source
generating exactly one pair of photons. This last term
is the one of interest throughout this work, and in Ap-
pendix A we outline the assumptions that allow us to
consider solely this term. Under the assumptions that
both sources are identical, the four photon state arising
from this term is given by

|ψ〉 =

ˆ
d4ω f(ωS, ωI)f(ω′S, ω

′
I)×

â†1(ωS)b̂†1(ωI)â
†
2(ω′S)b̂†2(ω′I) |vac〉 , (1)

where f(ωS, ωI) is the joint spectral amplitude (JSA) as-
sociated with either source. The modulus squared of the
JSA, known as the joint spectral intensity (JSI), corre-
sponds to the probability density function for creating
a pair of photons, called signal and idler, at optical fre-
quencies ωS and ωI , respectively. The two-photon state
from either source contains spectral entanglement when
the JSA cannot be factored into a product of the form
f(ωS, ωI) = fS(ωS)fI(ωI).

Most of the experiments in this paper rely on perform-
ing a spectrally-resolved BSM on the idler photons. Al-
though the spectral resolution of this BSM is finite, we
model the results in the limit of narrow spectral resolu-
tion. This limit has the benefit of providing a simple and
intuitive model with which to understand the physics in
terms of pure quantum states. A more complete model
taking into account the finite spectral resolution of the
BSM and the resulting states is then easily constructed
from this pure-state approximation, which is done in Ap-
pendix B. As we shall see, the pure-state approximation
is sufficient to account for the majority of the results of
our experiment.

B. Heralded state and JSI

A Bell-state measurement is performed on the idler
photons by resolving their frequencies at the output of a
50:50 beam splitter, with a small path difference at the
input giving a relative time delay τI as depicted in Fig.
1. The beam splitter transforms the input field operators

Source 1

Source 2

FIG. 1. Conceptual scheme of the experiment. Two sources,
1 and 2, emit photon pairs into the modes labelled â and b̂
for signal and idler, respectively. The BSM Π̂jk on the idler
photons projects the signal photons onto the state |Ψjk〉. This
state in the signal modes is characterized by measuring its JSI
Fjk, as well as the two-photon interference signal Pjk. The
time delays τI and τS serve to balance the interferometer.

b̂†1, b̂†2 into

b̂†3(Ω) =
eiΩτI b̂†1(Ω) + b̂†2(Ω)√

2
,

b̂†4(Ω′) =
eiΩ

′τI b̂†1(Ω′)− b̂†2(Ω′)√
2

,

(2)

and coincidences are detected between b̂3 and b̂4. For
clarity, we will label the optical frequencies of the idlers
as Ω and those of the signals as ω. Because we use
the pure state approximation, we can consider that this
spectral measurement is achieved with perfect resolution,
whereby the measurement operator is given by

Π̂jk = b̂†3(Ωj)b̂
†
4(Ωk) |vac〉 〈vac| b̂3(Ωj)b̂4(Ωk) (3)

which is a projector onto single photon states with
monochromatic frequencies Ωj and Ωk. Although this
limit of frequency-resolved detection corresponds to pro-
jective measurements, it is important to recognize that
a more realistic model of the measurement with finite
resolution should incorporate a positive operator-valued
measure (POVM) element defined over a frequency band,
as we outline in Appendix B. Furthermore, since the
POVM formalism describes the most general quantum
measurements, projectors such as Π̂jk are indeed POVM
elements, and for consistency throughout the text, we re-
fer to all our measurement operators as POVM elements.
We define

|Ωj ,Ωk〉34 = b̂†3(Ωj)b̂
†
4(Ωk) |vac〉 ,

and we compute the heralded signal state, |Ψjk〉12, de-
fined by

|Ψjk〉12 ⊗ |Ωj ,Ωk〉34 =
Π̂jk |ψ〉√
pjk

, (4)

with the norm pjk given by

pjk = 〈ψ| Π̂jk |ψ〉 . (5)
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Since our original state |ψ〉 only contains a single photon

in each of paths b̂†1 or b̂†2, applying Π̂jk acts as an effective
Bell-state measurement on these modes. Henceforth, we
will drop the 12-index in |Ψjk〉12 for convenience.

To compute the form of |Ψjk〉, we will introduce, for
convenience, the reduced density matrices for the states
of the signal and idler photons, given respectively by,

ρS(ω, ω′) =

ˆ
dΩf(ω,Ω)f∗(ω′,Ω),

ρI(Ω,Ω
′) =

ˆ
dωf(ω,Ω)f∗(ω,Ω′),

(6)

both of which obey the relation ρ(ω, ω′) = ρ∗(ω′, ω). Us-
ing these, along with the assumption of identical sources,
it is straightforward to show that

pjk =
1

2

[
ρI(Ωj ,Ωj)ρI(Ωk,Ωk)− |ρI(Ωj ,Ωk)|2 cos θjk

]
,

(7)

with

θjk = (Ωj − Ωk)τI = ∆ΩjkτI, (8)

where we defined ∆Ωjk as the difference between the
heralding frequencies. Eq. (7) is the probability dis-
tribution for a coincidence between the idler photons at
(Ωj ,Ωk), or equivalently, the JSI of the idler photons at
the output of the beam splitter.

Most importantly, the heralded signal Bell-state has
the simple form

|Ψjk〉 =
|φj〉1 |φk〉2 − e

iθjk |φk〉1 |φj〉2√
2Cjk

, (9)

where |φj〉n is a pulse-mode normalized single photon
state [12] given by

|φj〉n =

ˆ
dω φj(ω)â†n(ω) |vac〉 , (10)

with

φj(ω) =
f(ω,Ωj)√

Nj
, (11)

where Nj = ρI(Ωj ,Ωj), as described in Appendix H, and
n ∈ {1, 2}. Essentially, |φj〉n is the state that the signal
photon is projected onto, when its corresponding idler
photon is detected at frequency Ωj . Finally the normal-
ization constant Cjk is given by

Cjk = 1− |〈φj |φk〉|2 cos θjk, (12)

where the inner product 〈φj |φk〉 is taken either in mode
1 or in mode 2, but we have dropped the index for better
readability. The functions φj are defined from the JSA
and several identities are shown in Appendix H. While
normalized, they are not necessarily orthogonal, hence

the dependence on the modal overlap in the normaliza-
tion from Eq. (12). In Sec.IV, we will use a Gaussian
approximation that gives a simple expression for those
functions.

Since nearly all of our measurements are conditioned
upon the BSM on the idler photons, we will use the state
|Ψjk〉 to calculate our quantities of interest. In addition,
we also consider the case of a non-resolving BSM, given
by

Π̂ =
∑
j,k

Π̂jk (13)

=

¨
dΩjdΩk |Ωj ,Ωk〉 〈Ωj ,Ωk| ,

which, upon taking Tr
(

Π̂ |ψ〉 〈ψ|
)

, heralds the mixed

state

ρ̂ =

∑
jk pjk |Ψjk〉 〈Ψjk|∑

jk pjk
. (14)

This state is normalized by
∑
jk pjk, which is not equal

to unity in general, but this fact is inconsequential to our
measurements, as only the relative probabilities pjk are
physically relevant. At this point we note that we are
using the sum

∑
jk in place of the integral

´
dΩjdΩk.

This summation serves as a reminder that the pure state
description of |Ψjk〉 is itself an approximation stemming
from the infinite spectral resolution limit. In Appendix B
we justify the validity of this approximation, which gives
similar results as the model taking into account the finite
resolution of the BSM and the resultant impurity of the
heralded state.

C. State characterization and entanglement
verification

We characterize the heralded state |Ψjk〉 first by mea-
suring its joint spectral intensity (JSI). This measure-
ment is defined by the POVM element

Π̂JSI = |ω1, ω2〉 〈ω1, ω2| , (15)

with

|ω1, ω2〉 = â†1(ω1)â†2(ω2) |vac〉 ,

and we calculate the resultant JSI as

Fjk(ω1, ω2) = 〈Ψjk| Π̂JSI |Ψjk〉 . (16)

Using (9), we then obtain

Fjk(ω1, ω2) =
1

2Cjk

∣∣∣φj(ω1)φk(ω2)− eiθjkφj(ω2)φk(ω1)
∣∣∣2.

(17)
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In the absence of spectral resolution in the BSM, the
heralded state is ρ̂ from Eq.(14), and the measured JSI
is given by

F (ω1, ω2) =
∑
jk

pjkFjk(ω1, ω2). (18)

In terms of previously defined quantities, this function
takes the general form

F (ω1, ω2) =
1

2

[
ρS(ω1, ω1)ρS(ω2, ω2)

−
∣∣∣∣ˆ dΩf(ω1,Ω)f∗(ω2,Ω)eiΩτI

∣∣∣∣2
]
. (19)

To verify that the heralded state |Ψjk〉 is indeed en-
tangled, beyond classical correlation, two-photon inter-
ference is used in a manner analogous to Refs. [11, 13].
In our verification protocol, the signal photons are com-
bined at a 50:50 beam splitter while scanning a relative
delay between the input modes (â1 and â2) denoted by
τS and monitoring coincidences at the output modes (â3

and â4) as depicted in Fig. 1. These modes transform as

â†3(ω) =
eiωτS â†1(ω) + â†2(ω)√

2
,

â†4(ω′) =
eiω

′τS â†1(ω′)− â†2(ω′)√
2

. (20)

The POVM element associated with such a coincidence
detection is defined as

Π̂verif =

¨
dωdω′ |ω, ω′〉 〈ω, ω′| , (21)

with

|ω, ω′〉 = â†3(ω)â†4(ω′) |vac〉 , (22)

where we will again consider only the terms that contain

both â†1 and â†2. The probability of detecting a coinci-
dence heralded for the input state |Ψjk〉 is given by

Pjk(τS) =
〈

Ψjk

∣∣∣ Π̂verif

∣∣∣Ψjk

〉
=

¨
dωdω′

∣∣∣ 〈ω, ω′|Ψjk〉
∣∣∣2. (23)

Evaluating this using Eq. (9), we obtain

Pjk(τS) =
1

2Cjk

(
1

+ Φj(τS)Φk(τS) cos [(ωj − ωk)τS − θjk]

−O(|〈φj |φk〉|2)
)
. (24)

where Φj(τS) is modulus of the Fourier transform of
|φj(ω)|2, ωj is the center frequency of φj , and finally,

O(|〈φj |φk〉|2) =

∣∣∣∣ˆ dωφ∗j (ω)φk(ω)eiωτS
∣∣∣∣2

+ |〈φj |φk〉|2 cos θjk (25)

are terms that depend on the overlap of φj and φk and
are negligible except for when Ωj ≈ Ωk, which is the
regime where pjk ≈ 0. The main feature of Pjk(τS) is
the interference due to the oscillating term at the differ-
ence frequency (ωj − ωk). This interference is a signa-
ture of frequency-bin entanglement [13, 14], as it arises
due to the coherence between the two terms in the state
|Ψjk〉. It is important to note that Pjk(τS) also depends
on τI implicitly through θjk, and we will sometimes write
Pjk(τS, τI) when showing this dependence explicitly.

In the absence of frequency resolution of the BSM, we
can consider the interference signal associated with the
mixed state ρ̂, and obtain

P (τS, τI) =
∑
jk

pjkPjk(τS, τI). (26)

In terms of the previously defined quantities, we have

P (τS, τI) =
1

4

(
1 +

∣∣∣∣¨ dωdΩ |f(ω,Ω)|2 ei(ωτS+ΩτI)

∣∣∣∣2
−
¨

d2Ω |ρI(Ω,Ω
′)|2 ei(Ω−Ω′)τI

−
¨

d2ω |ρS(ω, ω′)|2 ei(ω−ω
′)τS

)
. (27)

In both Eqs. (18) and (26), we see that the quantities
F and P are obtained by taking a weighted sum over the
individual quantities Fjk and Pjk, with the weights given
by pjk. The results are equivalent to replacing the spec-
trometers with ”bucket” (non-resolving) detectors. This
weighted sum may also be interpreted in terms of prob-
abilities, where the probability of obtaining a four fold
coincidence is the product of the probability of a herald-
ing event from a coincidence between the idler photons,
and the probability of a coincidence between the signal
photons conditional on the heralding event. This con-
cept of weighting the average is analogous to other ex-
periments that utilize multi-pixel detection in the spatial
[15] or spectral [16, 17] domains.

III. EXPERIMENT

A. Description

The experimental setup shown in Fig. 2(a) consists
of a single 2.5mm-long bulk BiBO crystal, double-passed
by a pump laser to generate two pairs of SPDC photons
in a type-II configuration, where signal and idler are or-
thogonally polarized. By convention we label the first-
pass SPDC process as source 1, and the second-pass pro-
cess as source 2. The pump for this process is obtained
by second harmonic generation (SHG) of a commercial
Ti:Sapph laser (Spectra-Physics Tsunami) delivering 100
fs-long pulses at a repetition rate of 80 MHz centered at
a wavelength of 830 nm. A part of the Ti:Sapph beam
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100 fs
830 nm
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(c)

(d)

FIG. 2. a) Experimental setup; PD: photodiode; SHG: second
harmonic generation; DM: dichroic mirror; PDC: parametric
down conversion; PZT: piezoelectric actuator; PBS: polariz-
ing beamsplitter; TOFS: time of flight spectrometer; SMF:
single mode fiber; CFBG: chirped fiber Bragg grating; FBS:
fiber beam splitter. b) Bell state measurement: the idler pho-
tons interferences are spectrally-resolved and used as a herald.
c-d) different configuration of the measurement on the signal
photons depending on the experiment.

is directed to a fast photodiode to generate a clock for
the experiment. The SHG is realized in a 1mm-long type
I BiBO crystal and the output consist of another train
of pulse centered at 415 nm with a bandwidth of 2.3 nm
at full width at half-maximum (FWHM). The SHG ef-
ficiency is over 30%, with an average output power of
over 300 mW at 415 nm. To ensure better quality of the
spatial mode of the SPDC photons, the pump beam is
spatially filtered by a pinhole, transmitting about 60%
of the power. This filtering has been shown to greatly
optimize the heralding efficiency of SPDC sources when
the photons are collected by single-mode fibers.

The double-pass configuration consists of reflecting the
pump beam back into the crystal, while transmitting the
SPDC single photons from the first source (first pass)
through the dichroic mirrors used to steer the pump
beam. This configuration ensures spectral overlap of the
two sources. The back mirror for the second source (sec-
ond pass) is mounted on a piezo actuator (PZT) with a
10 µm travel to finely adjust the phase between the two
sources. The SPDC photon pairs are separated by polar-
ization with polarizing beam splitter (PBS) as signal (V
polarization, 10 nm FWHM) and idler (H polarization, 16
nm FWHM) and injected into single mode polarization-
maintaining fibers. Motorized delay lines are introduced
into both signal and idler of source 1 to match their time
of arrival with the other photons from the second source.

The BSM is achieved by interfering the idler photons
from each source on a fiber beamsplitter prior to the
heralding spectral measurement. Spectral resolution is
then obtained by utilizing frequency-to-time conversion
at the output of the beamsplitter, thus heralding the fre-
quency bins Ωj and Ωk, see Fig. 2(b). Finally, the her-
alded JSI and verification is done respectively by routing
the signal photons through the setup described in Fig.
2(c), (d).

B. Detection

The single photons are detected utilizing supercon-
ducting nanowire single photon detectors (SNSPDs) from
IDQuantique (ID281) which can detect the arrival time
of photons with a resolution of 20 ps. This temporal res-
olution is translated into spectral resolution using time-
of-flight spectrometers (TOFS), thanks to frequency-to-
time conversion [18, 19]. For coarse spectral resolution,
we used two spools of 500 m-long HP780 fiber (see Fig.
2(a) ). These imprint a dispersion of approximately 50 ps
per nm of bandwidth at 830 nm, with losses of less than
1 dB per spool. For fine resolution, we used two chirped
fiber Bragg gratings (CFBG from Teraxion) with a dis-
persion of ∼ 1000 ps/nm [20] (see Fig. 2(a) ). This
extra resolution comes at the expense of an overall sig-
nal attenuation of over 10 dB due to coupling losses and
to a finite spectral window of 10 nm. The photocurrent
coming out of the detectors is registered with a time-to-
digital converter (TDC, ID900 from IDQuantique). The
time reference is provided by the optical clock, thus en-
suring that each time tag is taken with respect to a stable
signal for each pulse.

When the photons are detected at the SNSPDs, their
time of arrival is recorded with an adjustable precision.
Throughout this work, this resolution was set to 100 ps
unless stated otherwise, which corresponds to a spectral
resolution that depends on which dispersive medium is
used. Using the calibration data shown in Fig. 14 in
Appendix C, this spectral resolution is 0.1 nm for the
CFBG and 2 nm for the fiber spools. These resolutions
define the minimal bin size in which the frequency of
any event is recorded. Therefore, when doing any type
of four-fold coincidence measurement, the time of arrival
of every event may be binned with that resolution in
a histogram, thus resulting in spectral bins, or pixels,
as depicted in Fig. 3, which can be analyzed in post
processing.

For instance, for experiments that only require spectral
resolution on the herald (such as the verification Pjk),
time tags corresponding to heralding frequencies Ωj ,Ωk
are acquired and subsequently binned at the resolution
of the spectrometer, corresponding to the probability of
getting spectral coincidences in every possible combina-
tion of frequency bins. When all four spectrometers are
needed (for instance to measure the JSI Fjk heralded by
a BSM at frequencies Ωj and Ωk), the measurement then
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FIG. 3. Acquisiton of the heralded JSI pjk of the idler pho-
tons showing the calibration and indexing convention of the
frequency bins.

consists of four sets of time tags that can be binned into
a four-dimensional histogram, such as shown in Fig. 6.
For more readability, we label those heralding bins by
integers j and k, such that index 0 corresponds to Ω0,
the central wavelength of the idler spectrum. The axes
in Fig. 3 give the index-to-wavelength mapping.

C. Source distinguishability

This experiment relies on the indinstinguishability of
the two sources as noted in the previous section. This
has to be achieved on every degree of freedom. Since
the polarization and the spatial degree of freedom are
constrained by polarization-maintaining fibers, there re-
mains to match the sources in frequency and in time.

The spectral indistinguishability can be estimated by
measuring the joint spectral intensity of both sources.
We obtained such JSI measurements by using the two
500m fiber spools (TOFSb) to detect signal and idler
photons from each source in coincidence, while operating
the time tagger at its maximum resolution of 13 ps, such
that the spectral resolution is only limited by the timing
jitter of the SNSPDs. These measurements are shown in
Fig. 4. It can be seen that both sources are very similar
thanks to the dual-pass configuration of the pump. A
Gaussian fit to this experimental JSI is used throughout
this paper to define the parameters of the JSA f(ω,Ω)
that are used in our mathematical model, as described
in Sec.IV A. Note that there can be an additional cause
of distinguishability due to spectral phase mismatch be-
tween both sources which cannot be determined with an
intensity measurement. Therefore, the dispersion was
mostly matched in every path of the interferometer by
ensuring that every fiber element had the same length.

Temporal mode matching is achieved by scanning both
delays τS and τI while monitoring the coincidences be-

tween ports b̂3 and b̂4 for the idlers (at FBSb) and â3
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Coincidences per frequency bin over 10s

FIG. 4. Experimental joint spectral intensity of both sources.
Insets: marginal spectra.

and â4 for the signals (at FBSa), which do not share
photon number correlations. This results in an unher-
alded Hong-Ou-Mandel (HOM) dip with a poor visibility
(less than 10%), which is still sufficient to coarsely match
the time of arrival of the photons. We also measured a
higher-visibility HOM interference in a heralded manner

by detecting fourfold coincidences between ports b̂1, b̂2,
â3 and â4. In Appendix E, we show how such a mea-
surement with and without spectral resolution can give
a lower bound on the purity of the heralded state.

Finally, another convenient method [21] to match both
sources can be applied. With the configuration from
Fig.1, we can monitor the two-fold coincidences between
combinations of one output from each beamsplitter, for

instance b̂3 and â3. When both delays are matched, i.e.
τS = τI = 0, then these coincidences oscillate at the op-
tical frequency. This interference is phase-sensitive, and
analogous to classical first-order interference, except that
it is observed in the coincidences. In Appendix D, we
show that the visibility of this interference provides a di-
rect measurement of the overlap between both sources,
taking into account any phase effects. This method
proved essential to accurately match delays before every
experiment, while it also provided a bound to quantify
indistinguishability, with a maximum measured contrast
of 80%.

IV. SIMULATIONS AND RESULTS

In this section, we further model the experiment with
a Gaussian approximation of the JSA to derive analytical
expressions from the quantities defined in Sec. II. This al-
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lows for a better understanding of the dependence of the
interferences on the experimental parameters, notably on
the delay between the idler photons in the BSM. We then
compare our experimental results to the theory using this
approximation.

A. Gaussian model

It is convenient to write the JSA f(ωS, ωI) as a Gaus-
sian distribution by approximating the sinc function with
a Gaussian of the same width :

f(ωS, ωI) = C exp

[
−
(
ωS − ω0

2σS

)2

−
(
ωI − ω0

2σI

)2

− α(ωS − ω0)(ωI − ω0)

]
, (28)

where σs (σI) is the cross-sectional width of the JSI in
the ωS- (ωI-) direction evaluated at ωI (ωS), ω0 is the
center frequency, α quantifies the amount of spectral en-

tanglement, and C =
(´

d2ω |f(ω, ω′)|2
)−1/2

is a nor-

malization constant. Fitting the experimental JSI from
Fig. 4 to this function, we obtain the following parame-
ters: σS = 2.39 THz, σI = 5.24 THz and α = 37.5 · 103

fs2. These provide all the values necessary to simulate
the experiment in the Gaussian model that is presented
here. Note that the center frequency ω0 is adjusted to
the experimental data, so it is a free parameter.

Using the form of Eq. (28) for the JSA, the density
matrices ρS and ρI are given by

ρS(ω, ω′) = C2
√

2πσI exp

[
− (ω − ω0)2 + (ω′ − ω0)2

4σ2
S

+
1

2
α2σ2

I (ω + ω′ − 2ω0)2

]
,

(29)

ρI(Ω,Ω
′) = C2

√
2πσS exp

[
− (Ω− ω0)2 + (Ω′ − ω0)2

4σ2
I

+
1

2
α2σ2

S(Ω + Ω′ − 2ω0)2

]
.

(30)
Meanwhile, the φj functions are given by

φj(ω) =
1√

σS

√
2π

exp[−(ω − ωj)2/4σ2
S], (31)

which are Gaussians with a width equal to that of the sig-
nal’s cross-sectional width and a central frequency given
by

ωj − ω0 = −2α σ2
S (Ωj − ω0). (32)

ϕk(ω)2

ϕj(ω)2

ω j

ωk

Ω jΩk

Optical frequency ωi

O
pt
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al
fr
eq
ue
nc
y
ω
s

0 200 400 600 800 1000

Coincidences per frequency bin over 10s

FIG. 5. Gaussian approximation of the spectral heralding: a
detection at frequency Ωj(k) projects the signal photon onto
the mode φj(k), centered at ωj(k), shown on the left (dashed).
The pure state model assumes that the idler photon is de-
tected with perfect resolution onto a mode with infinitesimal
spectral support (top, dashed). A more accurate development
is shown in Appendix B, which considers integration over a
finite spectral window for the herald.

Finally, the normalization constant Cjk is given by

Cjk = 1− exp
[
−∆ω2

jk/4σ
2
S

]
cos [∆ΩjkτI] , (33)

where ∆ωjk = ωj −ωk is the difference between the cen-
tral frequencies of the heralded modes, and follows the
relation ∆ωjk = −2ασ2

s∆Ωjk. Note that, for most of our
data, (ωj−ωk)2 � σ2

S, so that Cjk ' 1. In Fig. 5, we used

the experimental JSI to plot the measured
∣∣φj(k)(ω)

∣∣2 in
the limit of infinite spectral resolution at the BSM.

In the following, we first consider the case of a perfect
BSM with τI = 0, and then explore the effect of minor
distinguishability in the BSM with τI 6= 0. The latter,
more general, case, not only describes the four photon
interference effect more comprehensively, but also allows
for the heralding of the generalized Bell states given by
Eq. (9).

B. Case of τI = 0 (θjk = 0)

We first study the case where the idler paths are ex-
actly matched, setting τI = 0(θjk = 0), which yields the
results that we report on in [22]. Under this constraint,
and using the Gaussian model in Eq. (28), we proceed to
obtain analytic forms for our measured quantities. First,
the probability pjk of performing a BSM at frequencies
Ωj and Ωk and heralding the state |Ψjk〉 is given by Eq.
(7) with θjk = 0

pjk =
1

2

[
ρI(Ωj ,Ωj)ρI(Ωk,Ωk)− |ρI(Ωj ,Ωk)|2

]
. (34)

The distribution pjk in fact corresponds to the joint prob-
ability of detecting two photons at the output of a beam
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splitter, when they are in a separable state at the input,
with each photon described by a density matrix ρI. No-
tably, the indistinguishability of the photons manifests
as a dip along the degenerate Ωj = Ωk frequencies as
pj=k = 0. This implies that the probability of measuring
any quantities is zero in this case. An experimental mea-
surement of pjk is shown in Fig. 3, showing the bimodal
structure of this distribution. It also shows our labelling
convention for Ωj(k) where we set j(k) = 0 to correspond
to Ω0 which is the center frequency of the degenerate
SPDC light.

Next we compute the JSI Fjk associated with the state
|Ψjk〉 from Eq. (17)

Fjk(ω1, ω2) =
|φj(ω1)φk(ω2)− φj(ω2)φk(ω1)|2

2Cjk
, (35)

which can be approximated for |Ωj − Ωk| � 0, i.e. for
distant heralding frequencies, as

Fjk(ω1, ω2) ' |φj(ω1)φk(ω2)|2 + |φj(ω2)φk(ω1)|2

2
, (36)

which corresponds to two Gaussian spots centered at
(ωj , ωk) and (ωk, ωj), mirror-symmetric about the ω1 =
ω2 axis. For exactly degenerate heralding events Ωj =
Ωk, the heralded JSI vanishes as the probability of ob-
taining a BSM result is null in this case.

In the intermediate case where Ωj ' Ωk, the two Gaus-
sian spots of the heralded JSI begin to overlap. However,
the cross terms obtained by expanding Eq. (35) mani-
fest in the JSI as a dip along the degenerate ω1 = ω2

frequencies, akin to Eq. (34). The heralded JSI is simu-
lated in Fig. 6(a) for the pure state approximation and
using values of (Ωj ,Ωk) that are determined experimen-
tally, showing the aforementioned behavior. To retrieve
the same quantity experimentally, we set up the experi-
ment for the characterization procedure (Fig. 2(c)) and
measure spectral coincidences at the output of FBSa her-
alded by a BSM at frequencies (Ωj ,Ωk) (Fig. 2(b)). The
result is shown in Fig. 6(b) where the frequency bins are
labelled according to Fig. 3. Note that both color maps
are normalized, such that the amount of energy per bin
has to be multiplied by the probability of realizing this
measurement, given by pjk in Fig. 3. Therefore, when
computing the total number of four fold coincidences per
pixel in Fig. 6(b), we obtain exactly the distribution
depicted in Fig. 3.

We assess the validity of our theoretical model by com-
paring it with the experimental data. For each measured
Fjk, the counts are distributed into two clusters. We cal-
culate the center of mass of each of the two clusters for
a given experimental Fjk, and, by taking the difference
of the centers of mass, obtain an experimental measure
of ∆ωjk for that JSI. We compute the relative error with
respect to the theoretical value of each ∆ωjk from the
Gaussian model as given by Eq. (32). Over the whole
set presented in Fig. 6(b), the relative error is 25%, which
is mostly dominated by the statistical noise due to the

low number of events close to the degenerate heralding
frequencies (j = k). For the Fjk with a high number
of total counts (corresponding to a high probability of a
coincidence between the heralding photons, see Fig. 3),
the relative error is lower than 10%. This simple com-
parison shows that the pure state approximation used in
our model is adequate for describing our results.

Taking a weighted sum over Fjk(ω1, ω2) from Eq. (35),
with the weights given by pjk according to Eq. (18), we
obtain the mixed-state JSI F (ω1, ω2) from Eq. (19) with
τI = 0, which simplifies to

F (ω1, ω2) =
1

2

[
ρS(ω1, ω1)ρS(ω2, ω2)− |ρS(ω1, ω2)|2

]
.

(37)

First we note that the distribution F (ω1, ω2) for the sig-
nal photons is analogous to the distribution pjk from Eq.
(34) for the idler photons. Indeed, this is the joint spec-
tral distribution that would be obtained were the beam
splitter placed in the signal paths rather than the idler
paths, and the fact that such a distribution is measured
without the presence of a beam splitter is evidence of the
non-local nature of this fourfold measurement. In Fig.
7(a), we simulate F (ω1, ω2) using the values obtained
from the source JSI’s, where it can be seen the bimodal
structure persists in the summation.

By summing our experimental data from Fig. 6(b) over
all heralded bins, we obtain the histogram shown in Fig.
7(b), which closely matches the simulation. We note that
the JSI is indeed zero for degenerate frequencies, which
is a consequence of HOM interference. The measurement
of the heralded JSI shows the validity of the pure state
approximation for the resolution of the heralding TOFS,
which is sufficiently narrow.

We now proceed to evaluate the entanglement verifica-
tion signal Pjk(τS) from Eq. (24), for this case of θjk = 0.
We find that Φj(τS) = Φk(τS) since the Gaussians φj(k)

only differ in their first moment ωj(k) (see Eqs. (31) and
(32)), such that we have:

Pjk(τS) =
1

2Cjk

{
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS

]
− | 〈φj |φk〉 |2(1 + e−σ

2
Sτ

2
S )
}
. (38)

Similar to the heralded JSI, we analyzing this function
depending on the spectral distance between Ωj and Ωk.
We find that for |Ωj − Ωk| � 1/ασS , 〈φj |φk〉 → 0 such
that the verification signal reduces to

Pjk(τS) =
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS

]
2

. (39)

The constant term corresponds to a background proba-
bility of 1/2 of getting a coincidence event between un-
correlated, heralded single photons after the balanced
beam splitter. The other term is a Gaussian envelope
with the transform-limited temporal width of the sig-
nal photon, analogous to what is obtained in classical



9

(a) (b)
4,-4 4,-3 4,-2 4,-1 4,0 4,1 4,2 4,3 4,4

3,-4 3,-3 3,-2 3,-1 3,0 3,1 3,2 3,3 3,4

2,-4 2,-3 2,-2 2,-1 2,0 2,1 2,2 2,3 2,4

1,-4 1,-3 1,-2 1,-1 1,0 1,1 1,2 1,3 1,4

0,-4 0,-3 0,-2 0,-1 0,0 0,1 0,2 0,3 0,4

-1,-4 -1,-3 -1,-2 -1,-1 -1,0 -1,1 -1,2 -1,3 -1,4

-2,-4 -2,-3 -2,-2 -2,-1 -2,0 -2,1 -2,2 -2,3 -2,4

-3,-4 -3,-3 -3,-2 -3,-1 -3,0 -3,1 -3,2 -3,3 -3,4

-4,-4 -4,-3 -4,-2 -4,-1 -4,0 -4,1 -4,2 -4,3 -4,4

4,-4 4,-3 4,-2 4,-1 4,0 4,1 4,2 4,3 4,4

3,-4 3,-3 3,-2 3,-1 3,0 3,1 3,2 3,3 3,4

2,-4 2,-3 2,-2 2,-1 2,0 2,1 2,2 2,3 2,4

1,-4 1,-3 1,-2 1,-1 1,0 1,1 1,2 1,3 1,4

0,-4 0,-3 0,-2 0,-1 0,0 0,1 0,2 0,3 0,4

-1,-4 -1,-3 -1,-2 -1,-1 -1,0 -1,1 -1,2 -1,3 -1,4

-2,-4 -2,-3 -2,-2 -2,-1 -2,0 -2,1 -2,2 -2,3 -2,4

-3,-4 -3,-3 -3,-2 -3,-1 -3,0 -3,1 -3,2 -3,3 -3,4

-4,-4 -4,-3 -4,-2 -4,-1 -4,0 -4,1 -4,2 -4,3 -4,4

0 0.2 0.4 0.6 0.8 1.0

Probability Fjk

0 0.2 0.4 0.6 0.8 1.0

Normalized counts

FIG. 6. (a) Simulation of the heralded JSI Fjk for pure states, from Eq. (35), using experimental parameters derived from the
sources’ JSI measurement. (b) Experimental result from [22] obtained by acquiring 30000 spectral coincidences over 10 hours
and binning the JSI into frequency bins, labelled according to Fig. 3.

cross-correlation between ultrafast pulses. This envelope
is modulated by fringes at the difference of the heralded
frequencies ωj − ωk. Note that the fringes vanish when
setting α = 0 in Eq. (32), consistent with the notion that
the observed fringes are a result of discrete frequency en-
tanglement. Additionally, for the case of τI = 0 and
θjk = 0, these fringes have no phase offset and always a
maximum at τS = 0.

In the pure state model, the probability pjk of obtain-
ing a coincidence detection event after the balanced beam
splitter at degenerate frequencies Ωj = Ωk is null, and the
verification signal Eq. (38) is not defined. However, we
find that it has the following limit

Pj→k(τS)→ 1

2
− 1

2

(
2σ2

Sτ
2
S − 1

)
e−σ

2
Sτ

2
S , (40)

which can be easily demonstrated by noticing that
〈φj |φk〉 is a Gaussian function of the variable ∆ωjk under
the Gaussian approximation (see for instance Eq. (33)).
The expression is similar to that reported in [11] that uti-
lizes an engineered non-linear interaction to obtain spec-
tral Bell states.

In Fig. 8(a), we plotted the simulated Pjk using our ap-
proximated model and parameters obtained experimen-
tally. This plot shows the previously described behav-
ior, showing oscillations at the difference frequency which
merge into a single peak in the near degenerate case. The
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FIG. 7. (a) Simulation of the full heralded JSI F defined by
the sum of Eq. (18) over all j, k. (b) Experimental result
obtained by summing the acquisitions from Fig. 6(b) over all
bins.

background color map for these plots represent the prob-
ability of measuring these events, i.e. pjk from Eq. (34).

In Fig. 8(b), we show the experimental counterpart,
with the colored background representing the experimen-
tal pjk obtained by computing the total number of counts
in each bin. Using a fit to the Gaussian model (shown
as a solid red curve in the experimental plot), we again
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FIG. 8. Left: simulation of the entanglement verification signal Pjk for pure states, see Eq. (38). Right: experimental result
from [22], obtained by binning the verification signal acquired over 15 hours. These results are fitted to the approximated model
from (39). The frequency bins are labelled according to Fig. 3. The colormap in the background represents the probability pjk
of an heralding event, theoretical (left) and experimental (right).

assess the validity of the model. The fitted parameters
∆ωjk are within 15% of the value predicted by the model
when averaged over all bins, while for several bins that
contain faster oscillations (such as (3,−3) and its imme-
diate neighbors), the relative error is lower than 5%. It is
also worth noting that the fitted values agree within the
same margins with the retrieved values from the experi-
mental JSI in Fig.6(b). Additionally, we find that the vis-
ibility of the interference fringes is between 70 and 80%.
While the visibility should in theory be unity, in practice
it is limited by the indistinguishability of the two source
JSA’s. In App. D, we demonstrate this relationship and
we experimentally estimate the indistinguishability to be
on the order of 80%, and thus the visibility of the fringes
shown in Fig. 8(b) is in good agreement with the theory
(a).

Finally we evaluate the verification signal P (τS) with
θjk = 0 for the non-spectrally-resolved case, given by Eq.
(26). We find that it contains four terms:

P (τS) =
1

4

[
1 +

∣∣∣∣¨ dωdΩ |f(ω,Ω)|2 eiωτS
∣∣∣∣2

−
¨

d2Ω |ρI(Ω,Ω
′)|2

−
¨

d2ω |ρS(ω, ω′)|2 ei(ω−ω
′)τS

]
. (41)

The first term is simply a background probability, while
the second term corresponds to the overlap between the
two sources with a relative delay τS between the signal
photons. Evaluating this term reveals a Gaussian along

τS whose width depends on the joint temporal distribu-
tion of the sources. This is quite similar to the cross-
correlation between two classical pulses, except that in
the present case, the phase of the fringes is constant, im-
plying that the Pjk sum coherently to a single peak at
τS = 0. We will see in the next section how that phase
can be offset by introducing an additional time delay in
the BSM.

The last two terms of Eq. (41) correspond respectively
to the overlap integrals between the idler and the signal
density matrices of each source. The former evaluates to
a constant, which is unity when the sources are perfectly
matched. The latter describes an unheralded HOM dip
between the signal photons. Hence, the full verification
signal can be summarized as a Gaussian peak centered in
a HOM dip which is similar in form to Eq. (40). In Fig.
9(a), we plot a simulation of the full signal P (τS) showing
this behavior. In Fig. 9(b), we show the experimental
result obtained without binning the data from Fig. 8(b),
where the red curve is not a fit, but rather the sum of the
fits to the individual Pjk signals. Most remarkably, the
visibility of the HOM peak is not limited by the purity of
the incident quantum state, suggesting that antibunching
can reveal entanglement even for a certain class of mixed
states.

We stress that the presence of oscillating fringes in
Pjk(τS) or a peak in P (τS), where the coincidence prob-
ability goes above the baseline of 1/2, is a witness of an
entangled state (see, for example, [14]). Our setup is
therefore capable of performing entanglement swapping
between a large number of frequency Bell states. As we
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FIG. 9. Probability P (τS) of a coincidence heralded by a
BSM without spectral resolution. Left: simulation from Eq.
(41); Right: experimental result presented in [22] obtained by
summing the individual Pjk that are depicted in Fig. 8(b).
The solid red curve is a sum of the individual fits on the
experimental Gaussian model from Eq. (39).

show in [22], not all of the heralded states shown in Fig.
6(b) are mutually orthogonal, but it is possible to select
multiple subsets which form a set of mutually orthogo-
nal Bell states. In Appendix G, we show how to post-
select an orthogonal set of states by running an algorithm
that isolates sets of quasi-orthogonal modes, all of which
satisfy the verification procedure for our entanglement
swapping protocol.

C. Case of τI 6= 0 (θjk 6= 0)

We now study the case when there is a temporal de-
lay τI between the idler photons at the output of FBSb.
Note that when this delay becomes too large compared
to the temporal width σ−1

I ≈ 300 fs of the idler photons,
they become distinguishable at the output of the beam
splitter, effectively reducing the entanglement in the her-
alded Bell state. Therefore, in the scope of the paper, we
take τI to be smaller than this value, such that the state
|Ψjk〉 retains some entanglement. One limitation of the
pure state model arises because the idler BSM from Eq.
(3) assumes perfect spectral resolution, leading to infi-
nite temporal support of the quantities defined in Sec. II
over τI whereas they should necessarily be bounded by
an envelope whose width is inversely proportional to the
spectral resolution. The derivation for the mixed state
case, corresponding to finite spectral resolution, is shown
in Appendix B. Nevertheless, the pure state model ac-
curately predicts our results and is therefore sufficient
to describe the effects of slight distinguishability in the
BSM.

The heralded state in the Gaussian model is given by
Eq.(9) and shows a phase offset between the two states
that depends on τI. The heralded JSI from Eq. (17)
evaluates to

Fjk(ω1, ω2) =
1

2Cjk

[
|φj(ω1)φk(ω2)|2 + |φk(ω1)φj(ω2)|2

− 2γjk(ω1, ω2) cos (∆ΩjkτI)
]
, (42)

where γ(ω1, ω2) = φj(ω1)φk(ω2)φj(ω2)φk(ω1) for real

modes φj(k), for simplicity. The last term is responsi-
ble for the HOM dip along the degenerate frequencies
ω1 = ω2, marking indistinguishability. As previously,
γjk → 0 when heralding distant bins |Ωj − Ωk| � 0 so
the delay between the idlers photons has no influence.
However, for degenerate bins Ωj → Ωk and for τI < σ−1

I ,
γjk × cos θjk → 0 which causes the two Gaussian spots
to merge.

Putting these limits together, we find that a small de-
lay between the idler photons results in a heralded JSI
similar to Fig. 6(a) where the JSI in the bins close to
the j → k diagonal are more or less merged depending
on τI. For spectral bins that are spaced further, the JSI
is unchanged since the distinguishability is marked by a
relative phase between the Gaussian spots.

The full JSI is obtained by summing Fjk according to
Eq.(18):

F (ω1, ω2) =
ρS(ω1, ω1)ρS(ω2, ω2)− Γ(ω1, ω2; τI)

2
, (43)

where Γ is a function that depends on the overlap of the
signal density matrices as a function of the idler delay (see
Appendix H). Similar to the previous case, the overlap
between φj and φk depends on the indistinguishably in
time of the idlers.

We next consider the entanglement verification signal
from Eq. (24), which depends on both τS and τI. Evalu-
ating it with the Gaussian model, we obtain

Pjk(τS, τI) =
1

2Cjk

(
1 + e−σ

2
Sτ

2
S cos

[
∆ωjkτS − θjk

]
− | 〈φj |φk〉 |2(e−σ

2
Sτ

2
S + cos θjk)

)
. (44)

We perform yet another asymptotic behavior analysis.
For distant heralding frequencies, we find that the limit
is similar to Eq. (39) with an additional phase shift

Pjk(τS, τI) =
1 + e−σ

2
Sτ

2
S cos

[
∆ωjk(τS − τ ′I)

]
2

, (45)

where we used Eq. (32) to factorize by the difference of
heralded frequencies and we defined τ ′I = τI/2ασ

2
S. We

can see that the value of τI has a more noticeable effect
compared to the heralded JSI. The fringes are no longer
synchronized to the envelope and a phase shift occurs
when the delay between the idlers photons is nonzero.
This effect is quite important in our case since a delay as
small as 100 fs between the idler photons is sufficient to
cause a phase shift of π due to the relatively large spectral
bandwidth of the JSA. Note that using the more realis-
tic mixed state model, the envelope of the fringes is also
affected by this delay and causes a reduction in visibil-
ity. In the pure state approximation, the envelope in the
idler direction is infinite, but it is sufficient to show the
most noticeable effect of the phase shift. Note also that
it is possible to find a value for both delays such that
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FIG. 10. Simulated (left) and experimental (right) probability
to get a coincidence at FBSa between â3 and â4 heralded by a
BSM at frequencies Ωj and Ωk for (j, k) = (2,−2). The sim-
ulation utilizes the Gaussian, pure state approximation from
Eq. (45) with the same parameters as in the experimental
case. The experimental plots are acquired over 900s for dif-
ferent positions of the idler stage (on the right). The heralding
frequencies are separated by 8nm (or about 10 THz). The red
curve represents a fit to the theoretical model. This is a dif-
ferent representation of the data shown in Fig. 11 in the bin
labelled (2,−2).

τS = τ ′I , in which case the phase shift cancels, but the
visibility of the fringes would be decreased. This is illus-
trated in Fig. 10 which compares a simulation (left) that
uses the approximated model with the same parameters
as the experimental results (right). The entanglement
verification utilizes the previous experimental protocol
for 7 different values of τI. While we see good qualitative
good agreement between the experimental and simulated
fringes, the envelope in the model has no dependence on
τI whereas it is clearly the case experimentally.

For near-degenerate heralding frequencies, we have the
following limit

Pj→k(τS, τI) =
1

2
− 1

2
· 2σ2

S(τS − τ ′I)2 − 1

1 + 4(τ ′I)
2

e−σ
2
Sτ

2
S . (46)

which is equal to Eq. (40) when setting τI = 0. Putting
both limits together, we find that a scan over τS and τI of
the verification signal Pjk from Eq. (44) look very simi-
lar to Fig. 8(a), except that the fringes will be offset as
a function of τI while the peak close to the diagonal re-
mains centered. In both cases, the visibility is decreased.
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FIG. 11. Waterfall plot of Pjk plotted against τS (horizontal)
for different values of τI (vertical) where each plot represents
a frequency bin Ωj ,Ωk labelled by j and k. The plot range
and units for τS and τI are the same as shown in Fig. 10. For
each j, k subplot, the color gradient spans the entire range
for that subplot, such that the color is representative of the
amount of data collected.

This effect was very useful experimentally to verify that
the delay at both beam splitters was as close to zero as
possible. Moreover, the decrease in contrast for non-zero
values of τI is yet another proof that the visibility of the
oscillations in Pjk is a marker of entanglement. In Fig. 11
we show an experimental waterfall plot representing each
Pjk for values of τI ranging from -300 to +300 fs which
originates from the same dataset as Fig. 10. In this
measurement, the spectrally resolved heralding is done
at half the resolution than used earlier (shown in Fig. 3)
to have sufficient data statistics. These plots show that
the fringes have a phase shift as a function of τI for dis-
tant (j, k) frequency bins as predicted by Eq. (45), while
in the degenerate j = k case, the fringes collapse to a
single peak as described by Eq. (46). The phase shift is
defined by the proportionality factor between τI and τ ′I ,
which depends on the amount of entanglement and on
the spectral bandwidth of the signal photons. This data
shows that entanglement swapping is still achieved for
this specific range of delay mismatch in the BSM, even
though this mismatch introduces some distinguishability.

Finally, by repeating the same experiment either with-
out spectral resolution of the BSM or by summing the
individual Pjk according to Eq. (26), we find that the
expression of the verification signal is then given by
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FIG. 12. Top: Simulation of Eq. (47) with experimental
parameters. Bottom: experimental acquisition obtained by
monitoring four-fold coincidences over 15 hours while scan-
ning both τS and τI without spectral resolution of the herald.

P (τS, τI) =
1

4

(
1 +

∣∣∣∣¨ dωdΩ |f(ω,Ω)|2 ei(ωτS+ΩτI)

∣∣∣∣2
−
¨

d2Ω |ρI(Ω,Ω
′)|2 ei(Ω−Ω′)τI

−
¨

d2ω |ρS(ω, ω′)|2 ei(ω−ω
′)τS

)
, (47)

which is similar to Eq.(41) with an additional dependence
on τI. We simulated this expression using the Gaussian
model in Fig. 12 and show the corresponding experimen-
tal result. It is straightforward to identify the three non-
constant terms as familiar quantities. The second term is
the cross-correlation between both JSA as a function of
both delays. It can be written as the product of Fourier
transform of the joint spectrum with respect to ω and
Ω, thus reducing to the product of envelope functions
centered at τS and τI. This term is responsible for the
slanted peak in Fig. 12. The last two terms correspond
respectively to the overlap integrals between the density
matrices of the idlers and of the signals. They show the
effect of interferences between uncorrelated photons and
hence are visible as HOM dips along either τS or τI, as
shown again in Fig. 12. This figure allows us to identify
more clearly the range over which entanglement swap-
ping can be verified, which is essentially the area over
which the slanted peak appears, since the HOM dips

correspond only to quantum interferences between un-
entangled single-photon states.

By exploring the range of both time delays in this con-
figuration, we explicitly see the ultimate equivalence be-
tween signals and the idlers in what is effectively a four-
photon interferometer. As such, it is adequate to con-
sider Pjk(τS, τI) and P (τS, τI) as the most general rep-
resentation of the phase-insensitive part of four-photon
interference where TF entanglement is present.

V. CONCLUSION

In this work, we have undertaken a more thorough and
more general analysis of the results we report on in Ref.
[22]. In summary, we demonstrated and analyzed a novel
scheme for TF entanglement swapping, using a multi-
mode, spectrally-resolved Bell-state measurement as the
heralding mechanism. The most salient feature of our
method is the heralding of several, mutually-orthogonal
Bell states derived from identical multimode entangled
photon pairs. We further generalized our result to con-
sider the case of non-zero time delay in the heralding
Bell-state measurement, giving rise to Bell states with a
varying amount of phase. Our setup is the first known
to the authors to incorporate four simultaneous time-of-
flight spectrometers, and thus points towards a promising
venue of study of TF entangled four-photon interferom-
etry.

As a proof-of-concept experiment, our work paves a
way towards utilizing the high-dimensionality of the TF
entanglement available in SPDC sources for distributed
quantum information. It is straightforward to scale this
protocol to herald a large number of orthogonal entan-
gled states, which is in principle limited by the band-
width, and thus the amount of the entanglement, of the
SPDC sources. Our measurement scheme could further
be extended to high-dimensional quantum teleportation
and entanglement swapping, whereby ancillary photons
and multiport beam splitters are used to implement a
high-dimensional Bell state measurements, as has been
recently demonstrated for path [23, 24] and orbital angu-
lar momentum [25] entanglement. Alternately, it is pos-
sible in principle to use sum-frequency generation to im-
plement projective measurements onto high-dimensional
TF-entangled states for the same purpose [26]. Finally,
if used in combination with deterministic sources of en-
tangled photon pairs [27] and with quantum memories
[28], multimode quantum repeaters of the kind that our
protocol allows could prove to be a scalable solution for
multiplexed quantum networks.
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APPENDIX

Appendix A: Deriving the four-photon state

In the low gain regime, the output state of the nth

SPDC source, where n ∈ {1, 2}, is given by

|ψn〉 =

∞∑
p=0

√
ηn
p

p!

(¨
dωSdωIfn(ωS, ωI)â

†
n(ωS)b̂†n(ωI)

)p
|vac〉 .

(A1)

The function fn(ωS, ωI) is the joint spectral amplitude
(JSA), given by

fn(ωS, ωI) = un(ωS + ωI)sinc

[
∆kn(ωS, ωI)L

2

]
, (A2)

where un represents the spectral mode function of the
pump, ∆kn is the wave-vector mismatch between the
pump, signal and idler modes, and L is the length of
the interaction medium. Finally, ηn is the gain of the
parametric process, which depends on the length L, the
non-linear strength of the material and the number of
photons in the pump beam.

The SPDC state due to the two independent sources
can be written as a tensor product |ψ1〉⊗|ψ2〉. We expand
this and keep only terms of order η, which are responsible
for the four-photon contribution, obtaining the following
state after normalization

|ψη〉 =

(√
η1η2 |ψ12〉+ η1

2 |ψ11〉+ η2
2 |ψ22〉

)√
η1η2 + η2

1/4 + η2
2/4

, (A3)

where

|ψnm〉 =

ˆ
d4ω fn(ωS, ωI)fm(ω′S, ω

′
I)×

â†n(ωS)â†m(ω′S)b̂†n(ωI)b̂
†
m(ω′I) |vac〉 . (A4)

is the four-photon state arising from either a photon pair
from each source, or two pairs from one source and none
from the other.

To facilitate the discussion of our results, we made a
few simplifying assumptions in the main text, which we
will now enumerate in the context of Eq. (A3). First,
we assumed that both sources are identical, such that
f1(ωS, ωI) = f2(ωS, ωI) = f(ωS, ωI) and η1 = η2 = η.
This is because in the experiment, the two sources are
derived from double-pumping the same crystal as in Ref.
[29], and are matched to a great degree as discussed in
the experimental section. Further, any source mismatch
does not reduce the quality of the entanglement in the
swapped state, just the visibility of quantum interference
in the method we use to verify entanglement.
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FIG. 13. Representation of the effect of finite resolution on the
heralding. The finite bandwidth (white vertical lines) implies
that a detection at frequencies (Ωj ,Ωk) (vertical dashed lines)
is integrated over the filtered modes, shown in the top plots.
The heralded modes are represented on the left, where the
black dashed line represent |φj |2 and |φk|2 from the pure state
model.

Second, we assumed that the relative phases between
the three terms in Eq. (A3) are random. This implies
that these terms are not mutually coherent and therefore
do not contribute to any quantum interference. In reality
there is such a coherence, which is due to the phase of the
pump, and we observe this in both two- and four-photon
interference, as we show in Appendix D. However, this
phase drifts over the course of the interference measure-
ments we will describe, which are several hours long, and
thus |ψ11〉 and |ψ22〉 contribute to a constant background
in these measurements.

Finally, in the main text we focused our attention
solely on the |ψ12〉 term of Eq. (A3), which corresponds
to each source producing a pair of entangled photons,
which is rewritten as |ψ〉 for better readability. In most
entanglement swapping and quantum teleportation ex-
periments relying on SPDC sources, the other two terms
(the double-pair terms), though present, do not con-
tribute when the four photons are detected in coinci-
dence, so that heralded states are post-selected [30]. Sim-
ilarly, the double-pair terms only contribute in our setup
in the aforementioned interference measurement, where
they constitute a constant background, which we mea-
sure and subtract in Appendix F.

Appendix B: Mixed state model

In the realistic case, the BSM on the idler photons
is not performed with perfect resolution, but rather
within a finite spectral window. In our case, this is



15

due to the resolution of the time-of-flight spectrome-
ter, which is a convolution of multiple response func-
tions in the frequency-to-time conversion. It is domi-
nated by the timing jitter (' 20 ps) of the superconduct-
ing nanowires.When this resolution is not perfect, then
we can show that the signal photons are heralded into a
mixed state. The effect of this finite resolution on the
heralded spectral distributions is shown graphically in
Fig. 13.

We begin by redefining the BSM operator as:

Π̂BSM
lm =

¨
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2 Π̂BSM

jk

=

¨
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2 |Ωj ,Ωk〉 〈Ωj ,Ωk| ,

|Ωj ,Ωk〉 = b̂†3(Ωj)b̂
†
4(Ωk) |vac〉 ,

(B1)

where tl(m)(Ωj(k)) are transmission amplitudes centered

at Ωl(m), and satisfy
∑
lm |tl(Ωj)|2|tm(Ωk)|2 = 1. We

have introduced new indices l, m, so that we may in-
corporate the j, k-dependent quantities from the main
text into our analysis. Moreover, it is straightforward
to show that the POVM element (3) is obtained by set-
ting tl(m)(Ω) → δ(Ω − Ωl(m)). To simplify our notation
henceforth, we will use the following shorthand
¨
lm

dΩjdΩk :=

¨
dΩjdΩk|tl(Ωj)|2|tm(Ωk)|2. (B2)

It can be seen from Fig.5 that the finite resolution of
the idler detection bin reduces the purity of the heralded
signal state, due to the entanglement of the two-photon
state. Because of this, the POVM element (B1) requires
that we describe the heralded state as a mixed state

ρ̂lm =
Trb̂

[
Π̂BSM
lm |ψ12〉 〈ψ12|

]
plm

, (B3)

where Trb̂ is the partial trace over the subspace defined

by operators b̂1 and b̂2. Analogously to the pure state
case, the probability plm are defined as

plm = Tr
[
Π̂BSM
lm |ψ12〉 〈ψ12|

]
=

¨
lm

dΩjdΩk pjk. (B4)

where the idler density matrix is defined as Eq.(6), and
we again obtain Eq.(7) by setting the filters tl(m) as δ
functions.

We may now compute the heralded state density ma-
trix:

ρ̂lm =
1

plm

¨
lm

dΩjdΩk pjk |Ψjk〉 〈Ψjk| (B5)

while recalling the definition of φj(k)(ω) in |Ψjk〉 as

φj(k)(ω) =
f(ω,Ωj(k))√
ρI(Ωj(k),Ωj(k))

. (B6)

This has the intuitive interpretation of a mixed state as
an incoherent sum of pure states over the detection band-
width of tl(m). All of the measured quantities follow in
a straightforward manner. In the absence of frequency
resolution, we herald again the mixed state

ρ̂ =
∑
lm

plm ρ̂lm, (B7)

just as with the pure state model.
The heralded JSI is given by:

Flm(ω1, ω2) = 〈ω1, ω2| ρ̂lm |ω1, ω2〉 , (B8)

which can be expressed in terms of Fjk as

Flm(ω1, ω2) =
1

plm

¨
lm

dΩjdΩk pjk Fjk(ω1, ω2). (B9)

The integrated JSI corresponding to the state ρ̂ is again
given by

F (ω1, ω2) =
∑
lm

plmFlm(ω1, ω2). (B10)

When the signal photons in the state ρ̂lm are incident
on a 50:50 beamsplitter, the coincidence fringes at the
output are given by

Plm(τS, τI) = Tr
(

Π̂verif ρ̂lm

)
=

¨
d2ω 〈ω, ω′| ρ̂lm |ω, ω′〉 ,

(B11)

where |ω, ω′〉 = â†3(ω)â†4(ω′) |vac〉 as before. Evaluating
this in terms of Pjk, we

Plm(τS, τI) =
1

plm

¨
lm

dΩjdΩk pjk Pjk(τS, τI). (B12)

Finally the integrated interference peak for the state ρ̂ is
recovered by taking

P (τS, τI) =
∑
lm

plm Plm(τS, τI). (B13)

We will make a few comments regarding the most
interesting feature of comparing this model with the
pure state model. To this end, we shall represent
the pure state |Ψjk〉 〈Ψjk| as a density matrix in the
{|φj〉 |φk〉 , |φk〉 |φj〉} basis as follows:

|Ψjk〉 〈Ψjk| =
1

2Cjk

(
1 eiθjk

−e−iθjk 1

)
. (B14)

Meanwhile, the mixed state ρ̂lm has the representation:

ρ̂lm =
1

plm

¨
lm

dΩjdΩk
pjk
2Cjk

(
1 eiθjk

−e−iθjk 1

)
. (B15)

Notably, the off-diagonal terms e±iθjk = e±i(Ωj−Ωk)τI ,
the coherence terms, are the hallmark of the bipartite
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entanglement in these states, and are responsible for the
interference we observe in Pjk. It seems reasonable then
to ask if, and to what extent, the averaging over the
l,m bands in the mixed state is expected to reduce the
entanglement. Take first the special case of τI = 0. In
this case, θjk = 0 ∀ j, k, and the off-diagonal terms are
equal to unity, and hence, no phase-averaging occurs for
the mixed state ρ̂lm. Indeed, the off-diagonals survive
even for the fully-averaged state ρ̂, and one can interpret
this as the reason why the interference peak survives at
full visibility for τI = 0.

More generally, however, for τI 6= 0, the disagreement
between the two models becomes more salient. The pure-
state model assumes that the idler photons are detected
at monochromatic frequency modes at (Ωj ,Ωk), which
are necessarily infinite in extent in the time domain. This
means that the idler photons remain indistinguishable at
the output of the BSM beamsplitter, even for arbitrary
τI delays at the input. On the other hand, taking into
account the averaging over the l,m bands introduces dis-
tinguishability, and the BSM is no longer ideal in this
case. Furthermore, this averaging introduces more dis-
tinguishability the larger τI is, since the argument of the
phase factor (Ωj −Ωk)τI is proportional to this time de-
lay. This phase-averaging results in a reduction of the
off-diagonal terms, and of the visibility of the Plm inter-
ference for large enough τI. This behavior is most clearly
seen in the profile of the fully-integrated two-dimensional
peak in Fig. 12, which results from averaging over all
phases with a weight pjk. The peak vanishes in the τI di-
rection over a delay timescale comparable to the inverse
bandwidth of the idler photons. The intuitive interpreta-
tion is that the idler photons become distinguishable at
the output of the beamsplitter when the relative delay is
at least as long as their pulse durations.

Appendix C: Time-of-flight spectrometers
calibration

To ensure that our TOFS are accurate, it is necessary
to calibrate them. While it is usually sufficient to use a
rough estimate of the dispersion imprinted by the fiber
spool or by the CFBG, this doesn’t take into account
waveguide dispersion or other sources of dispersion in
the setup. Therefore, we opted for an in-situ calibration
utilizing the single photons from the SPDC.

We used a pulse shaper based on a spatial light mod-
ulator (SLM) placed at the midpoint of a 4-f line [31],
enabling us to address both the amplitude and phase of
the mode-function of single photons over a 30 nm range
with a resolution of 0.02 nm. By scanning a narrow inter-
ference filter of 1 nm FWHM over the SLM mask while
recording the resulting time tags, we obtain a calibration
curve between the recorded time tags and the wavelength
of the filter set on the pulse shaper. Over our wavelength
range, this function is mostly linear and its slope is the
dispersion parameter of the TOFS. The results are shown
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FIG. 14. Calibration of each TOFS. The curves have been
offset vertically for better visibility.

in Fig. 14. With the two CFBG-based spectrometers, we
obtained a dispersion of 944±4 ps/nm and 946±2 ps/nm.
With the fiber spools, we measured an equal dispersion
of −54 ± 1 ps/nm. With the calibration in hand, it is
straightforward to convert time stamps to wavelength for
any detection event after a TOFS, see for example Fig.3.

Appendix D: Source distinguishability

The entanglement verification protocol we use, that is,
the two-photon interference of the state |Ψjk〉, ultimately
relies on the indistinguishability of the two source states.
To see this, we relabel the source JSA’s as f1(ω,Ω) and
f2(ω,Ω), and for simplicity, we assume that they are
identical up to a translation in frequency space. Note
now that this leads to a heralded state

|Ψjk〉 ∝ |φ1
j 〉1 |φ

2
k〉2 − |φ

1
k〉1 |φ

2
j 〉2 , (D1)

where

|φ1(2)
j(k)〉 =

ˆ
dωφ

1(2)
j(k)(ω)â†1(2)(ω) |vac〉 , (D2)

and

φ
1(2)
j(k)(ω) =

f1(2)(ω,Ωj(k))

ρ1(2)(Ωj(k),Ωj(k))
. (D3)

Although this state is still entangled, the verification
method using coincidence fringes in Pjk(τS) will suffer
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from a reduction in visibility due to the distinguishability
of f1 and f2. To see this, we recalculate Pjk(τS) in its
approximate form (45), and find

Pjk(τS) ≈ 1

2

(
1− Vjk eσ

2
Sτ

2
S cos

[(
ω1
j + ω2

j

2
− ω1

k + ω2
k

2

)
τS

])
(D4)

where the visibility Vjk is given by

Vjk =

(ˆ
dωφ1∗

j (ω)φ2
j (ω)

)(ˆ
dωφ1∗

k (ω)φ2
k(ω)

)
.

(D5)

We can maximize this visibility by maximizing the
overlap f1 and f2. We see that this latter provides a
lower bound on Vjk by writing

ˆ
dωφ1∗

j (ω)φ2
j (ω) =

´
dωf∗1 (ω,Ωj)f2(ω,Ωj)√
ρ1(Ωj ,Ωj)ρ2(Ωj ,Ωj)

≥
ˆ

dωdΩf∗1 (ω,Ω)f2(ω,Ω), (D6)

and likewise for k.
It is relatively straightforward to maximize the quan-

tity on the left by tuning experimental parameters,
namely pump wavelength, phasematching angle, and
transverse optical fiber position (due to residual spa-
tial chirp), and observing two-fold coincidences resulting
from first order interference of the sources. Because both
sources are pumped with the same pulse, the two-photon
term of the state is given by

|ψ〉 ∝
ˆ

dωdΩ
(
f1(ω,Ω)â†1(ω)b̂†1(Ω)+

f2(ω,Ω)â†2(ω)b̂†2(Ω)
)
|vac〉 . (D7)

A straightforward calculation shows that the probability

of a two-fold coincidence between ports b̂3 (or b̂4) and â3

(or â4) is given by

Pcc =
1

4

ˆ
d2ω

∣∣∣f1(ω,Ω)± f2(ω,Ω)
∣∣∣2

=
1

2

(
1± Re

ˆ
d2ωf∗1 (ω,Ω)f2(ω,Ω)

)
(D8)

In the following, we will outline additional measure-
ments to quantify the source indistinguishability. In our
case, our dual-pass geometry implies that we need to
match the JSI of both sources, which is achieved when
both signals and idlers from both sources have maximum
overlap. We opted for a bulk crystal source in Type II
to enable pumping in both directions while being able to
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FIG. 15. Measured coincidence fringes Pcc(τ) with a contrast
of 80%.

separate our four photons into different paths. We used
a BiBO crystal due to its relatively high non linearity.

First, we measured the JSI by directing the two pho-
tons from either source into the fiber spools, since their
large spectral bandwidth would be cropped with the
CFBG. The JSI from each source is depicted in Fig4.
They show that both sources are nearly indistinguish-
able; a singular value decomposition yields a Schmidt
number of K1 = 2.9± .1 and K2 = 2.9± .1. These values
are lower than the theoretical expectation (K ∼ 5) be-
cause of the timing jitter of our detectors that result in a
broader distribution. This was confirmed by measuring
the JSI with the CFBG’s, which have a better resolu-
tion but are limited in range. The correlation width was
found to be lower and therefore the Schmidt number can
be expected to be at least K = 4.

Note that this method is insensitive to any spec-
tral phase difference, such as dispersion from the pump
(which is equivalent to setting α ∈ C in the JSA (28)),
since the second pump is slightly more dispersed than the
first due to propagation. This has been shown to increase
the entanglement and the Schmidt number [7, 32]. How-
ever, this difference should be negligible, and the method
presented that relies on Eq.(D8) allows for a more accu-
rate estimation of the overlap. Nevertheless, the JSI mea-
surement showed near-perfect correspondence between
the intensity of the two sources which is a critical step to
ensure indistinguishably between the uncorrelated pho-
ton pairs.

To further characterize the indistinguishability of the
sources, we measure their heralded g(2) by splitting their
signal photon into a beamsplitter. This yields a value of

g
(2)
1 = 0.16± 0.003 and g

(2)
2 = 0.14± 0.003. These values

are consistent with the relatively high optical power that
is utilized to pump the sources in order to maximize the
probability of four-fold coincidences. The lower value of
g(2) for source 2 is consistent with the fact that it also has
a higher heralding efficiency than source 1. The reason
is not entirely clear, but it is likely that the previous
interaction with the PDC crystal on the first pass results
in an additional filtering on the pump as well as a slight
reduction in optical power because of absorption.
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FIG. 16. Left: HOM dip between the signal photons heralded by a coincidence between the idler photons. Right: same
measurement but with spectral resolution of the heralding photons, labelled j, k for Ωk,Ωk, where index j, k = 0 corresponds
to the center frequency ω0. The labelling convention is described in Fig. 3.

Finally, in Fig. 15 we measured the coincidences be-

tween ports b̂3 and â3 (see Fig1) while scanning the rel-
ative phase between the two pump fields with a piezo-
electric stack, which is related to the probability from
Eq.(D8). We scanned using a slow voltage ramp resulting
in a few micrometers of displacement over a few seconds.
The visibility of those fringes is 80%, which is a direct
measurement of the overlap between the two sources, and
therefore a quantification of distinguishability.

Appendix E: Purity of the heralded states

Since the state |ψ12〉 from the sources is assumed to
be a pure state, the purity of the heralded states |Ψjk〉 is
ultimately dependent on the amount of spectral filtering
in the heralding BSM. To assess this purity, we measure
HOM interference between the heralded signal photons
when there is no beamsplitter in the idler arms. In this
case, upon a coincidence detection of the idler photons
at (Ωj ,Ωk), the reduced state of the signal photons is
separable, and given by

ρ̂j ⊗ ρ̂k =

(ˆ
d2ωρj(ω, ω

′)

)(ˆ
d2ω̃ρk(ω̃, ω̃′)

)
â†1(ω)â†2(ω̃) |vac〉 〈vac| â1(ω′)â2(ω̃′), (E1)

where

ρj(k)(ω, ω
′) =

ˆ
dΩ|tj(k)(Ω)|2f(ω,Ω)f∗(ω′,Ω). (E2)

When the signal photons in this state are incident on
a 50:50 beamsplitter, the expected visibility of the HOM
interference is given by [33]

V = Tr(ρ̂j ρ̂k), (E3)

and when the idlers are detected in identical frequency
bins (j = k), this becomes

V = Tr(ρ̂2
j(k)) = P(ρ̂j(k)), (E4)

where P(·) denotes the purity of a state. Thus, for
(j = k) the visibility of the HOM dip gives a lower bound
on the purity of the state ρ̂j(k), and by extension, the
state ρ̂jk. Our measurements, shown in Fig. 16, indicate
that purity of the heralded states is at least 70%, as ev-
idenced by the HOM visibility along the j = k line. By
comparison, a direct calculation of the expected purity
using our experimental parameters gives ∼ 78%. The pu-
rity of our heralded state seems to be dominated by the
spectral resolution of our spectrometer. Without spectral
resolution, the purity of the heralded state is about 20%
as shown in Fig. 16. We note that at the time of writing,
an experiment has been reported using spectral-to-spatial
spectrally-multiplexed HOM interference scheme, show-
ing a similar decrease in HOM visibility as a function of
distance between frequency bins [34].

Appendix F: Background signal

As shown by Eq.(A3), the full four photon state in the
interferometer (see Fig. 1) contains a contribution from
photon pairs emitted by individual sources due to the
stochastic nature of parametric down conversion. These
terms contribute to P (τS) in the form of interferences
that get averaged over the course of a measurement. It is
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FIG. 17. Left: P (τS) without removing the constant two photon contribution from source 1 (dot) and source 2 (square). P (τS)
resembles Eq.(41) and the fit is obtained by summing the individual fits of Pjk as given by (26). Right: distribution of these
background terms as a function of the heralding frequencies Ωj ,Ωk

therefore possible to remove that contribution from the
signal subsequently to the measurement by blocking a
source and recording the rate of four-fold coincidences.

We therefore repeated the measurement of Pjk(τS)
with either source blocked to obtain the constant back-
ground signal for each j, k frequencies, as shown in
Fig. 17. This shown that the background terms are sim-
ilar between both sources, therefore the two sources are
similar. Summing over all the bins, we can plot on the
same scale the contribution of all term in Fig. 17. The
peak corresponds to interferences from |ψ12〉 while the
flat terms represent |ψ11〉 and |ψ22〉. As expected from
the theory, both source contribute to 1/4 of the full sig-
nal. Removing those backgrounds at Ωj ,Ωk from Pjk,
we obtain the fringes from the main paper with optimal
visibility.

As stated in the main text, we have assumed that the
three terms in the full state Eq. (A3) are mutually inco-
herent. This is because our measurements are taken over
a long timescale of a few hours where the optical phase
drifts significantly and any phase-sensitive interference
can be neglected. Over a shorter time-scale, we can mea-
sure this optical phase in real time by measuring fourfold
coincidences with the two beamsplitters present, while
scanning the PZT between both sources. A straightfor-
ward calculation taking into account the full state (A3)
shows that there is a term that oscillates at the sum fre-
quency ω+Ω ≈ ωp, where ωp is the pump frequency, cor-
responding to about 415 nm in wavelength. In Fig. 18,
we plot the measured interference of the two-fold (red)
coincidences against the four-fold fringes (blue), where
the latter can be seen to modulate at twice the frequency
of the two-fold modulation.
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FIG. 18. Interference fringes in the two-fold (red) and fourfold
(blue) coincidences, obtained in ”real-time”, while scanning
a PZT as described in the text. The four-fold fringes can be
seen to occur at twice the frequency of the two-fold fringes.

Appendix G: Orthogonal modes

From Eq.(9), we see that the heralded state |Ψjk〉 is
dependent on the modes |φj〉 and |φk〉, which, in the
pure state case, results in a heralded joint spectrum
(17) dependent on the outer products φj(ω1)φk(ω2). For
each heralding bin j and k, we label the heralded JSI
from (9) as Fn(ω1, ω2), where n indexes a pair (j, k).
These are normalized as

´
d2ωFn(ω1, ω2) = 1 ∀ n but

are not orthogonal, even in the pure state case, i.e´
d2ωFn(ω1, ω2)Fm(ω1, ω2) 6= δnm. Orthogonality is

usually a corner stone in any quantum protocol, and it is
therefore necessary to select the heralded states from our
measurement that are orthogonal. To do so, we utilize
our measurement of Fjk by measuring the spectral coin-
cidences between the signal’s photon heralded by a BSM
on the idlers. We then obtain the set of JSI presented in
Fig. 7(b).
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FIG. 19. Sets of orthogonal modes Fjk that have less than 15 % of mutual overlap. The insets label j and k.

First, it is important to notice the symmetry in (9),
where Fjk = Fkj for j 6= k. Since our TOFS are
well-calibrated, it is reasonable to symmetrize our mea-
sured heralded JSI by averaging the experimentally ob-
tained Fjk and Fkj (for j 6= k) thus defining the
Fn functions. Then we compute the mutual overlaps´

d2ωFn(ω1, ω2)Fm(ω1, ω2) and use an algorithm to se-
lect a set of modes {Fn} which all have an overlap below
a certain threshold of 15%. We represented a few of these
JSI in Fig. 19. Since the spectral range of our high res-
olution TOFS is limited, so is the range over which we
can compute overlap, as can be seen from the modes that
are labelled with a large j, k. Nevertheless, there is a suf-
ficient amount of spectral coincidence in those cases to
infer orthogonality with the other JSI.

Note that while this overlap is computed between the
joint spectral intensities and not between the states, it
can be shown that if the overlap in intensity is zero, then
the states are necessarily orthogonal, hence the strategy
is valid to select which |Ψjk〉 are mutually orthogonal.
Therefore, it is fair to say that the JSI’s Fjk from Fig. 19
correspond to heralded states |Ψjk〉 that are all mutually
orthogonal.

Appendix H: Miscellaneous functions and relations

Our theoretical derivation relies on the definition of
the φj(k)(ω) functions which renders computation easier
thanks to the Gaussian approximation. These functions
can be also written in a density matrix formalism.
Using the definitions from Sec.II, the φj(k) functions are
defined from the JSA by:

f(ω,Ωj(k)) =
√
Njφj(k)(ω), (H1)

where Nj is a function that depends on the heralding
frequency Ωj , the JSA bandwidth over the idler axis σI

and the amount of entanglement α. The reduced density

matrix of the idler, given by Eq.(30), can then be written
in the following manner:

ρI(Ωj ,Ωk) =

ˆ
dω f(ω,Ωj)f

∗(ω,Ωk)

=
√
NjNk

ˆ
dω φj(ω)φ∗k(ω)

=
√
NjNk 〈φj |φk〉 , (H2)

where we see that the idler density matrix can be linked
to the overlap integral between the heralded signal states.
The Nj(k) functions are then found to be equal to the
diagonal elements of the idlers density matrix:

Nj(k) = ρI

(
Ωj(k),Ωj(k)

)
, (H3)

since the φj(k) are `2 normalized.
The signal density matrices then follow a similar

derivation, with

ρS(ω, ω′) =

ˆ
dΩj(k) f(ω,Ωj(k))f

∗(ω′,Ωj(k))

=

ˆ
dΩj(k) Nj(k)φj(k)(ω)φ∗j(k)(ω), (H4)

and the diagonal elements are given by

ρS(ω, ω) =

ˆ
dΩj(k) Nj(k)

∣∣φj(k)(ω)
∣∣2 . (H5)

It is easy to show that in the case of similar sources, we
also have the identity

ρS(ω, ω′) = ρ∗S(ω′, ω). (H6)

Finally, the overlap between the modes φj and φk can
also be written in term of the density matrices, as:

〈φj |φk〉 =
ρI(Ωj ,Ωk)√

NjNk
(H7)
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