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The spectral phase of high harmonic and attosecond pulses is typically shaped by the interaction of
the recollision electron with the strong field in the continuum. However, the phase of the transition
moment coupling bound and continuum states can be significant in shaping the emitted radiation.
It has been commonly assumed that the propagation and recombination steps of the recollision
process can be described independently. Here, we investigate the effect that the transition moment
has recollision trajectories by incorporating the transition moment phase into the Lewenstein model
of recollision. We then use our model to investigate the all-optical measurement of the transition
moment phase around the Cooper minimum in argon and the spectral minimum due to two-centre
interference in a diatomic molecular system. Our results indicate that, while all-optical methods
are generally sensitive to the transition moment phase, they are insensitive to the phase shifts due
to two-centre interference and ionic structure. Thus, we have resolved the apparent discrepancy
between studies with conflicting conclusions regarding the sensitivity of all-optical approaches to
the transition moment phase. Our work demonstrates that all-optical measurements focus on pho-
torecombination time delays attributable to electronic structure and dynamics. Our method will
allow any laboratory capable of generating attosecond pulses to perform these measurements, even
at wavelengths where the single photoionization cross-section becomes small.

Visible or infrared ultrafast optical technology requires
a nonlinear interaction for generating ultrashort pulses
and for measuring ultrafast phenomena. Nonlinearity is
essential because it allows information to be shared be-
tween the frequencies that make up any wave packet. In
a laser oscillator, nonlinear optics ensures that there is an
exchange of energy between modes that allows them to
become locked in phase. For a measurement, nonlinear-
ity is equally important and the nonlinear process can,
but does not need to be, all-optical. The issue that we
address in this paper is, “are all-optical approaches [1, 2]
permitted in attosecond science”?

A semi-classical theory of extreme nonlinear optics and
recollision was introduced in this journal in 1994 [3]. This
theory, known as the Lewenstein model, provided the
classical model [4] of recollision with a rigorous quantum
mechanical foundation. Within this theory, the three-
step recollision process consists of an electron in the pres-
ence of a strong field (1) tunnelling into the continuum,
(2) being accelerated by the strong field, and (3) recom-
bining into its initial state and emitting an XUV pho-
ton. The phase of the emitted radiation is predominantly
shaped by the continuum propagation of the ionized elec-
tron [5, 6], but can be significantly shaped by the phase
of the transition moment coupling the initial and contin-
uum states [7–10].

At that time, the important issue was high-harmonic
generation and so the potential of using extreme non-
linear optics for measurement was not addressed. Yet
the formalism introduced in that paper clarifies what has
since become a very controversial issue of measurement
[8, 10], just as it clarified the issue of attosecond pulse
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generation at the time it was published: whether all-
optical approaches are permitted in attosecond science is
directly related to how each step of the recollision process
is related.

The controversy can be understood by considering
the three-step model of high-harmonic generation, in-
troduced in 1993 [4]. Although not stated at the time,
the three steps appear independent [11]. Quantitative
rescattering [12] (introduced later) made the indepen-
dence of the steps a formal assumption. If the steps are
truly independent, then nonlinear optics can only mea-
sure those steps that are optically influenced and it is
the recollision electron trajectory in the continuum that
is most easily influenced. Thus, it would seem that non-
linear optics might have little to say about the dynam-
ics of ionization or recombination. This perspective is
supported by studies comparing all-optical measurement
with photoionization-based attosecond measurement [13]
in systems exhibiting a transition moment phase shift
due to two-centre interference [8] and a shape resonance
[10]. However, this perspective is challenged by recent
experimental and theoretical work demonstrating the
all-optical measurement of the transition moment phase
around the Cooper minimum in argon [14].

It is not that attosecond dynamics cannot be measured
by other nonlinearities. There is little controversy, but
much complexity, about attosecond measurements using
photoelectron spectroscopy [2, 13, 15]. This, however, is
not merely an academic issue. High harmonics seem to
be a universal response of matter when irradiated by an
intense field [16, 17] and it is important to make attosec-
ond measurements in all these media. If we are confined
to photoelectron spectroscopy, attosecond measurements
will only be possible in near vacuum.

However, one can easily understand an alternate per-
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spective. The observation of coherent radiation from rec-
ollision requires the recolliding electron to return to its
initial state [3]. The requirement for recombination to
the same initial state acts analogously to phase-matching
in determining attosecond pulse emission. If the transi-
tion moment coupling the initial and continuum states
is complex, then phase-matching favours components of
the continuum electron wave packet appropriately phased
with respect to both the initial state and the transition
moment to dominate dipole emission. That is, the tran-
sition moment not only affects ionization and recombina-
tion, but continuum propagation as well.

In this letter, we will show how this occurs during rec-
ollision and, thereby, how fully optical measurements of
attosecond dynamics can be accomplished. We do this
by first extending the Lewenstein model of recollision,
the strong-field approximation (SFA) [3], to account for
phase shifts in the transition moment between bound and
continuum states. We then describe all-optical attosec-
ond measurement [1] and investigate its application in
systems with transition moment phase shifts due elec-
tronic structure [18] and due to ionic structure [8, 19].
Our results show that the sensitivity of all-optical mea-
surement to the transition moment phase shift depends
on the origin of the phase shift. In particular, we show
all-optical measurement is insensitive to phase shifts aris-
ing from ionic structure, but sensitive to phase shifts per-
taining to electronic structure and dynamics.

I. THE STRONG FIELD APPROXIMATION
AND ATTOSECOND IN SITU MEASUREMENT

A. The Strong Field Approximation with a
Transition Moment Phase

We begin with a single-active electron atom with
ground state |ψ0〉 and ionization potential Ip. We then
consider recollision driven by a time-dependent strong
laser field E(t) polarized along ẑ with vector potential
A(t). We omit vector notation because all parameters
herein are oriented along ẑ. We define P (t) = k + A(t)
as the recollision electron kinetic momentum, where k is
the electron canonical momentum. We work within the
same assumptions as in [3]: (i) the contribution of all
bound states except the ground state can be neglected,
(ii) ground state depletion is neglected, and (iii) the influ-
ence of the ionic potential in the continuum is neglected.

Within the SFA, the time-dependent recollision dipole
spectrum at time tr can be expressed as follows [3]:

D(tr) = −i
∫
dk

∫ tr

−∞
dtbd

∗(P (tr))

× e−i[S(k,tb,tr)+Ip(tr−tb)]E(tb)d(P (tb)),

(1)

where tb is the time of ionization, tr is the time of recom-
bination, S(k, tb, tr) is the semi-classical action,

S(k, tb, tr) =
1

2

∫ tr

tb

[k +A(τ)]
2
dτ, (2)

and d(k) is the complex transition moment along ẑ,

d(k) = 〈k|ẑ|ψ0〉. (3)

The total integrand phase is then

Φtot(k, tb, tr) = S(k, tb, tr) + Ip(tr − tb)
+ Φ(k +A(tb))− Φ(k +A(tr)),

(4)

where Ip(tr − tb) describes the evolution of the ground
state wavefunction and Φ(k) = arg(d(k)).

Eq. (1) is typically solved using a saddle-point ap-
proximation [20], wherein the stationary points (i.e. the
saddle-point solutions) of the integrand phase in Eq. (4)
are used to select the dominant components of the inte-
grand. The integral is then approximated as a weighted
summation over the integrand evaluated at the saddle-
point solutions. Thus, the stationary-phase analysis is
analogous to phase-matching, selecting only components
of the recollision electron wave packet which are appro-
priately phased [3].

Within the initial description of the SFA, it is assumed
that the integrand phase is predominantly determined by
the semi-classical action and the evolution of the ground
state. That is, it is assumed that the transition moment
varies slowly and can be neglected in the saddle-point
analysis. This approximation is applicable in many sys-
tems and the saddle-point solutions provide the link be-
tween the quantum mechanical and semi-classical recol-
lision models [4].

As implied in [3], however, this assumption does not
apply to systems with a rapidly varying transition mo-
ment. In such systems, the variation of the transition
moment phase can be on the same order as the semi-
classical action and it must be included in the saddle-
point analysis. The measurement of the effect that this
phase has on the saddle-point solutions is the subject of
this letter.

B. Attosecond In Situ Measurement

Optical measurements of recollision are accomplished
by perturbing recollision with a weak infrared field. The
perturbation modulates recollision trajectories and these
modulations are used to reconstruct recollision dynamics
[2]. Since these measurements are performed during the
recollision process itself, they are referred to as in situ
measurement.

Many variations of in situ measurement exist [1, 2,
21, 22]. We consider a measurement used to character-
ize high-harmonic spectra generated with long driving
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pulses wherein a co-polarized, co-phased, and collinear
weak second harmonic of the driving field perturbs rec-
ollision [1]. The driving and perturbing field vector po-
tentials at time t are given, respectively, as follows:

A(t) = A0 sin(ω0t), (5)

Ap(t) = ηA0 sin(2ω0t+ φ), (6)

where A0 is the driving field vector potential amplitude,
ω0 is the driving field frequency, and η and φ are the
relative amplitude and phase between the driving and
perturbing fields. It is assumed that η � 1 and is suf-
ficiently small such that the perturbing field does not
affect the saddle-point analysis.

In situ measurement was originally described in sys-
tems wherein the transition moment phase is slowly vary-
ing. Thus, the effect of the perturbing field is included
solely within Eq. (2) and the effect of the perturbing
field on the transition moment is neglected. With this
assumption, the phase shift of the recollision electron in-
duced by perturbation results from the expansion of the
semi-classical action to first-order in η:

σ0(k, tb, tr, φ) =

∫ tr

tb

[k +A(τ)]Ap(τ, φ)dτ. (7)

Here, however, we are interested in the case where the
transition moment phase is rapidly varying and cannot
be neglected. In this case, the total perturbation-induced
phase shift is found by expanding the total phase in Eq.
(4) to first-order in η and is given as follows:

σ(k, tb, tr, φ) = σ0(k, tb, tr, φ) +Ap(tb, φ)Φ′(P (tb))

−Ap(tr)Φ′(P (tr)).
(8)

This phase shift is affected by the transition moment
in two ways. First, the transition moment affects the
saddle-point solutions and, thus, directly affects the semi-
classical action, σ0(k, tb, tr, φ). Second, the measurement
is affected by the influence of the perturbing field on the
transition moment.

With Eqs. (5-8), the perturbation-induced phase shift
can be factored into rapidly and slowly varying compo-
nents, Σ(k, tb, tr) and cos(φ−θ(k, tb, tr)), respectively, as
follows [1]:

σ(k, tb, tr, φ) = σc(k, tb, tr) sin(φ) + σs(k, tb, tr) cos(φ)

= Σ(k, tb, tr) cos(φ− θ(k, tb, tr)),
(9)

where

Σ(k, tb, tr) =
√
σ2
c (k, tb, tr) + σ2

s(k, tb, tr), (10)

θ(k, tb, tr) = arctan

(
σc(k, tb, tr)

σs(k, tb, tr)

)
. (11)

We now consider the perturbed dipole emission from
two adjacent half-cycles, DL(t) and DR(t), of the driving
field, which we label as left (L) and right (R), respec-
tively. Symmetry requires that the unperturbed dipole
emission from the left and right half-cycles exhibit a π-
phase difference and that the perturbation-induced phase
shift in each half-cycle is equal but opposite in sign. With
this, the superposition of the dipole emission from the left
and right half-cycles, D(tr, φ), satisfies the following:

D(tr, φ) ∝
∫
dk

∫ tr

−∞
dtbσ(k, tb, tr, φ)DL(k, tb, tr). (12)

The dipole spectrum at even harmonic 2N (integer N)
is found through the Fourier transform of Eq. (12) at
frequency 2Nω0. We define Φtot(t) = −i ln(Σ(k, tb, tr) +
DL(t)), such that

D̃(2Nω0, φ) ∝
∫
dk

∫ ∞
−∞

dtr

∫ tr

−∞
eiΦtot(tr)

cos(φ− θ(k, tb, tr))e2iNω0tr .

(13)

After finding the unperturbed saddle-point solutions,
the variation of the 2N th even-harmonic intensity with
respect to the relative phase φ is given as

∣∣∣D̃(2Nω0, φ)
∣∣∣2 ∝ cos2 (φ− θ(k, tb, tr)) . (14)

Experimentally, the relative phase which maximizes
the even-harmonic signal is recorded while varying the
relative phase between the driving and perturbing fields.
From Eq. (14), the even-harmonic signal is maximized
when φ = θ(k, tb, tr). Thus, we call θ(k, tb, tr) the max-
imizing phase. Since the maximizing phase has an ana-
lytic expression, the measured maximizing phase can be
related directly to the recollision dynamics for each even
harmonic. Thus, the feasibility of in situ measurement to
measure the transition moment phase in the subsequent
section will be determined through the maximizing phase
θ(k, tb, tr).

II. IN SITU MEASUREMENT AND THE
TRANSITION MOMENT PHASE

We are now ready to describe in situ measurement in
systems exhibiting a transition moment phase shift. We
first consider the case of a transition moment phase shift
due to electronic structure, using the Cooper minimum in
argon as an example [18]. We then consider the measure-
ment of recollision in a diatomic molecule [8, 19], which
exhibits a π-phase jump in its transition moment due to
two-centre interference. We will demonstrate that in situ
measurement is generally sensitive to the transition mo-
ment phase, but insensitive to phase shifts arising from
ionic structure.
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FIG. 1. The recombination cross-section (solid red) and phase
(dashed blue) for the model argon atom are plotted on the left
and right axes, respectively. A spectral minimum and π-phase
shift occur near 52 eV.

For consistency, all our results are calculated using a
sinusoidal driving field with wavelength 1.8 m and peak
intensity of 1×1014 W/cm2 and a perturbing co-polarized
second-harmonic field with a relative intensity 10−4.

A. Cooper Minimum in Argon

We consider an atomic system of ionization potential
15.8 eV with a transition moment cross-section and phase
as depicted in Fig. 1. A spectral minimum and π-phase
shift are observed near 52 eV. We choose this model,
as it provides a simple description of the transition mo-
ment phase in argon including both s- and d-wave contin-
uum channels [7]. We incorporate the transition moment
phase Φ(k) at momentum k into the saddle-point analysis
of the SFA by using the following modified saddle-point
equations to find the dipole moment in the time domain:

0 =

∫ tr

tb

P (τ)dτ − Φ′(P (tr)) + Φ′(P (tb)), (15)

0 =
P 2(tb)

2
+ Ip + E(tb)Φ

′(P (tb)), (16)

We numerically solve Eqs. (15) and (16) in the time
domain for the saddle-point solutions with the transition
moment phase in Fig. 1. Figure 2 (a) depicts the trajec-
tory excursion time as a function of the emitted photon
energy from the system including the transition moment
phase (solid red) and a reference equivalent system with-
out the transition moment phase (dashed blue). The ex-
cursion time for the system with the transition moment
phase shift deviates from the reference system around 52
eV due to the transition moment phase shift. This dif-
ference is depicted in Fig. 2 (b) along the left axis (solid
red) and is largest (- 145 as) near 50 eV.

Within the modified saddle-point equations, the gradi-
ent of the transition moment phase acts equivalently to a
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FIG. 2. (a) The short-trajectory excursion times as a func-
tion of emitted photon energy calculated with (solid red) and
without (dashed blue) the transition-moment phase from Fig.
1 in Eqs. (15-16). (b) The difference in excursion time be-
tween the systems with and without the transition moment
phase from the excursion times presented in (a) (solid red)
are plotted on the left axis. The difference in the positions of
ionization and recombination for the trajectories leading to
photon emission at a given energy (dashed blue) are plotted
on the right axis. The sinusoidal driving field intensity and
wavelength are 1 × 1014 W/cm−2.

spatial offset. The return condition in Eq. (15) is offset
by the difference in the transition moment phase at the
times of ionization and recombination. In Eq. (16), the
condition for energy conservation during the ionization
step, is shifted in energy analogously to a dipole interac-
tion between the driving electric field and the transition
moment phase gradient. Thus, we expect the relative po-
sitions of ionization and recombination to depend on the
gradient of the transition moment phase.

Fig. 2(b) shows the difference between the positions of
ionization and recombination, ∆x, along the right axis
(dashed blue). The structure of ∆x reflects the structure
of the change in excursion time. In argon, the Cooper
minimum results from the nodal structure of the ground
state wavefunction [18], wherein the radial ground state
wavefunction exhibits a tightly-bound inner lobe and
a larger outer lobe with a radial extent of ∼ 10 a.u.
Below the spectral minimum, dipole emission from the
outer lobe dominates dipole emission. At the spectral
minimum, the dipole emission from these lobes cancels.
Above the spectral minimum, the lobe which dominates
dipole emission changes, resulting in a shift in the posi-
tion of photon emission. Thus, we interpret the variation
in Fig. 2 (b) as a consequence of the structure of the
ground state wavefunction.
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FIG. 3. The spectrogram showing variation of the even-
harmonic intensity in an in situ measurement of the model
argon atom with respect to the relative phase between the
driving and perturbing fields. The overlaid solid red and
dashed blue lines show the maximizing phase for the model
argon and reference atoms, respectively. The overlaid purple
dash-dotted line depicts the scaled excursion time as shown in
Fig. 2. The driving field intensity and wavelength are 1×1014

W/cm−2.

We are now ready to consider an in situ measurement.
We use Eqs. (8) and (11) to calculate the phase θ(k, tb, tr)
which maximizes the even-harmonic signal and Eq. (14)
to calculate the variation of the even-harmonic intensity
with the relative phase between the driving and perturb-
ing fields. We perform the same calculation for an equiv-
alent system without a transition moment phase to use
as a reference.

The resultant spectrogram depicting the normalized
variation of the even-harmonic intensity with the rela-
tive phase between the driving and perturbing fields is
shown in Fig. 3. The overlaid solid red line depicts the
maximizing phase θ(k, tb, tr) calculated from the model
argon atom while the dashed blue line shows the same
result for the reference atom. A clear deviation from the
reference around 52 eV is observed in the result that in-
cludes the transition moment phase. Above and below
the resonance, the two results agree. The trajectory ex-
cursion time from our model argon atom (dot-dash pur-
ple) agrees with the maximizing phase, indicating that in
situ measurement is sensitive to the transition moment
phase. This result agrees with recent experimental and
theoretical work [14] reporting the in situ measurement
of photorecombination time delays around the Cooper
minimum in argon.

As mentioned previously, however, it is well-accepted
within the attosecond science community that in situ
measurement is incapable of measuring the transition
moment phase [8]. It is argued that the perturbing
field does not significantly affect the transition moment
enough to have a measurable effect. However, as demon-
strated in Section I A and Fig. 2, the perturbing field
doesn’t need to affect the transition moment. Attosec-

ond pulse generation occurs when the continuum elec-
tron wave packet overlaps with the ground state, result-
ing in an oscillating dipole which returns the system to
its initial state. The components of the recollision elec-
tron wave packet which dominate dipole emission are de-
termined through phase-matching conditions dictated by
the strong driving field and atomic or molecular system.
In systems with a real, or slowly varying, transition mo-
ment, the phase-matching conditions are determined by
the strong driving field and result in the well-known atto-
chirp.

In systems with a rapidly varying transition moment
phase, however, the variation of the transition moment
phase can be comparable to that of the semi-classical
action. In such cases, the transition moment phase must
be taken into account in the SFA saddle-point analysis,
as in Section I A. The transition moment phase then
modifies the phase matching conditions and, thus, which
recollision trajectories dominate dipole emission. These
trajectories are measurable and this measurement does
not require the perturbing field to affect the transition
moment.

B. Ionic Structure

We now address the apparent discrepancy between
the recent experimental and theoretical study of an in
situ measurement in argon [14] and the study which
demonstrated attosecond in situ measurement is insen-
sitive to the transition moment phase associated with
two-centre interference in diatomic molecular systems [8].
The two-center study compared attosecond in situ mea-
surement with a conventional photoionization-based at-
tosecond measurement technique [13] and found that,
while the conventional measurement is sensitive to the
transition moment phase, the effect of the phase shift was
completely absent from the in situ measurement. Here,
we show that our analysis is consistent with that study.
The insensitivity of in situ measurement to two-centre in-
terference is a characteristic of phase shifts arising from
ionic structure.

There are several methods for calculating recollision
processes in diatomic molecules using the SFA. We
use the formalism presented in [23], due to the agree-
ment of the dipole phase with numerical time-dependent
Schrödinger equation simulations. For simplicity, we con-
sider a one-dimensional diatomic molecule with atomic
centres located at x = ±R/2, where R is the internuclear
separation. We label the atomic centres of ionization and
recombination as α, β = 1, 2, respectively, such that the
positions of ionization and recombination are (−1)γR/2
with γ = α, β. Accordingly, we label the parameters for
each trajectory with the subscript αβ. Our analysis can
be easily extended to more complex systems.

We describe the ground state ψ(x) using a linear
combination of atomic orbitals (LCAO) centred at each
atomic centre. Recombination and ionization from atom
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FIG. 4. The recombination cross-section and phase for a one-
dimensional diatomic molecule with an internuclear separa-
tion of 1.8 a.u. and ionization potential of 15.8 eV calculated
using eqs. (21-23), the first-order approximation given in [23],
and a sinusoidal driving field of wavelength 1.8 m and peak
intensity 1 × 1014 W/cm2.

α at momentum k and time t are described by the fol-
lowing matrix elements:

drec(k) = R(k)
(
eikR/2 + e−ikR/2

)
, (17)

dion(k, t) = J1(k, t)eikR/2 + J2(k, t)e−ikR/2, (18)

where R(k) and Jα(k, t) denote the recombination and
ionization matrix elements for the atomic orbital which
makes up the ground state. With these, the recollision
dipole spectrum is represented as the sum of four terms,
corresponding to each αβ trajectory:

D̃(Ω) =

2∑
α,β=1

∫
dk

∫ ∞
−∞

dtr

∫ tr

−∞
dtbR(P (tr))Jα(P (tb), tb)

× e−i[S(k,tb,tr)−Ωtr+Φα(P (tb))−Φβ(P (tr))],

(19)

where

Φγ(k) = (−1)γk
R

2
(20)

acts as an effective transition moment phase for the αβ
trajectory. From Eq. (20), the gradient of the transition
moment phase Φ′γ(k) = (−1)γR/2 is a constant.

The changes to the saddle-point solutions from a sim-
ple atomic system due to the transition moment phase in
Eq. (20) are small. As in [23], we find the first-order
Taylor expansion of the saddle-point equations in the
frequency domain to first-order with respect to R using
Eq. (20). We perform this expansion about the saddle-
point solutions for a system without a transition moment
phase, k, tb, and tr, which we label as the zeroth-order
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FIG. 5. The recombination times for trajectories recombining
to the left (red) and right (blue) atomic centres in a diatomic
molecule of internuclear separation R = 1.8 a.u and ionization
potential 15.8 eV are shown. The recombination times in
a reference atom with an equivalent ionization potential is
shown by the dashed green line. A sinusoidal driving field of
wavelength 1.8 and peak intensity 1 × 1014 W/cm2 is used.

solutions. This results in the following corrections to the
saddle-point solutions from the zeroth-order solution for
each αβ trajectory [23]:

∆k
(1)
αβ = 0, (21)

∆t
(1)
b,α =

(−1)αR

2(k +A(tb)
, (22)

∆t
(1)
r,β =

(−1)βR

2(k +A(tr))
. (23)

As shown in [23], the dipole moment in Eq. (19) can
be expanded to first-order in R using these saddle-point
corrections. The first-order recombination transition mo-
ment cross-section and phase calculated with this model
are shown in Fig. 4. Although it appears like the tran-
sition moment depicted in Fig. 1 for the model argon
atom, the origin of the spectral minimum in each case
differs. While the Cooper minimum is a result of the
structure of the ground state wavefunction, the spectral
minimum here results from the interference of the four
possible αβ trajectories.

From Eqs. (21-23), it is apparent that the individ-
ual trajectories do not reflect the spectral structure of
the transition moment phase. This is demonstrated in
Fig. 5, which shows the recombination times for trajec-
tories with β = 1, 2 (red and blue solid lines, respectively)
and the recombination time for the reference atomic sys-
tem (dashed green). The correction to the recombination
time corresponds to the time required for an electron of
kinetic momentum P (tr) to travel a distance of (−1)βR/2
and varies adiabatically with the electron kinetic energy.

We now consider an in situ measurement in a two-
centre system. Since |∆t(1)

r,β |/tr � 1, we expand Eq. (8)

to first-order in ∆t
(1)
r,β for each αβ trajectory. A similar
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FIG. 6. The spectrogram showing the variation of the even-
harmonic intensity in an in situ measurement in the two-
centre system with respect to the relative phase between the
driving and perturbing fields. The overlaid solid red and
dashed blue lines show the maximizing phase for the diatomic
molecule and reference atom, respectively. The driving field
intensity and wavelength are 1 × 1014 W/cm−2.

analysis can be done accounting for the correction to the
ionization time, but we omit it for brevity. Given that
the recollision phase is predominantly shaped by contin-
uum propagation and recombination, this omission does
not affect our results or conclusions. To first-order in
∆t

(1)
r,β , the perturbation-induced phase shift for trajecto-

ries recombining to atomic centre β can be approximated
as follows:

σβ(k, tb, tr, φ) ≈ σ0(k, tb, tr, φ)−Ap(tr, φ)Φ′β(P (tr))

+

(
Ep(tr, φ)Φ′(P (tr)) +

∂σ0

∂tr

∣∣∣∣
k,tb,tr

+ E(tr)Ap(tr, φ)Φ′′β(P (tr))

)
∆t

(1)
r,β ,

(24)

where we have solely retained terms which include the
perturbing field. Within this first-order approximation,
the influence of the perturbing field on the transition mo-
ment exactly cancels the change in σ0(k, tb, tr, φ) due to

∆t
(1)
r,β , since

∂σ0

∂tr
∆t

(1)
r,β = Ap(tr, φ)Φ′β(P (tr)). (25)

Further, the phase Φβ(k) varies linearly with respect
to momentum and, therefore, Φ′′β(k) = 0. The total
perturbation-induced phase shift is then given as follows:

σβ(k, tb, tr, φ) = σ0(k, tb, tr, φ) +
Ep(tr, φ)

k +A(tr)
R2. (26)
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FIG. 7. The difference in the maximizing phase between the
diatomic molecule and reference atomic systems from the sim-
ulated in situ measurement in Fig. 6.

The effective perturbation-induced phase shift is equal
to the sum of that in a system without a transition mo-
ment phase and a term proportional to the square of
the distance of the displaced recombination atomic cen-
tre to the origin. Thus, all trajectories exhibit the same
perturbation-induced phase shift. Further, the change
in the perturbation-induced phase shift is small, since
ω0 � 1. Therefore, the results of an in situ measurement
in a two-centre system and reference atomic system will
exhibit negligible differences. This is in contrast to the
study of the Cooper minimum in argon, wherein the tran-
sition moment phase is not a linear function of momen-
tum and the large variation of the phase shift within a
single recollision trajectory necessitates higher-order de-
scriptions of the measurement.

This is confirmed in Fig. 6, which depicts a spectro-
gram of the variation of the even-harmonic intensity with
the relative phase between the driving and perturbing
fields. The overlaid solid red and dashed blue lines depict
the maximizing phase for the two-centre and an equiv-
alent reference atomic system. The results for the di-
atomic molecule and reference atomic system are nearly
identical, except at low energies, and the structure of the
phase jump in Fig. 4 is completely absent. The difference
in the maximizing phase for the two-centre and reference
atomic systems is shown in Fig. 7. Like the change in
recombination time due to molecular structure, the dif-
ference in maximizing phase between the two-centre and
reference atom is largest at low energies and decreases
monotonically with energy.

This result implies the nature of the transition mo-
ment phase is critical in determining the sensitivity of
in situ measurement to recombination dynamics. We
expect that we can use differences between a conven-
tional photoionization-based streaking experiment and
an in situ measurement to isolate spectral features of
attosecond pulses due to ionic and electronic structure
and dynamics.
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III. CONCLUSION

The sensitivity of attosecond in situ measurement to
transition moment phase shifts is explained by how the
transition moment phase affects recollision trajectories.
If the transition moment is real or its phase varies suffi-
ciently slowly, then its effect on recollision trajectories
is negligible and the semi-classical action dictates the
phase-matching conditions. If, however, the transition
moment is complex and rapidly varying, its phase can be
as important in determining the stationary points as the
semi-classical action. Since the ground state wavefunc-
tion is negligibly varied, phase matching favours compo-
nents of the recollision wave packet with a spectral phase
that complements the transition moment phase.

Our results demonstrate that the nature of the tran-
sition moment phase determines its effect on recollision
trajectories and, thereby, the sensitivity of in situ mea-
surement to such phase shifts. In particular, in situ mea-
surement is sensitive to the transition moment phase, but
insensitive to phase shifts due to two-centre interference.
Thus, we explain the apparent discrepancy between re-
cent experiments reporting photorecombination time de-
lay measurements using in situ techniques in argon [12]
and studies which showed these techniques are insensi-
tive to the phase jump from two-centre interference. Al-
though we investigated recollision in a diatomic molecule,
our results are easily extended to more complex molecu-
lar systems.

The all-optical measurements of photorecombination
time delays offers a new direction for attosecond mea-
surement without obfuscation from ionic structural ef-
fects and can be performed in any laboratory capable of
generating high harmonic radiation. Such measurements
can be used to characterize multielectron interaction [24–
26], electronic structure [14, 27], and strong-field-driven
electron dynamics.

Further, the relationship between photorecombination
time delays and electronic structure suggests a form of
tomography [28, 29], wherein electronic structure is in-
ferred from all-optical measurements. Finally, by com-
bining in situ measurement with methods such as the
attosecond streak camera or reconstruction of attosec-
ond bursts by two-photon transitions (RABBITT), ionic
and electronic effects on the phase of attosecond and high
harmonic pulses can be isolated.
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A. Maquet, T. Shaaran, P. Salières, and R. Täıeb, Dy-
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J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, Tomo-
graphic imaging of molecular orbitals, Nature 432, 867
(2004).

[29] J. B. Bertrand, H. J. Wörner, P. Salières, D. M. Vil-
leneuve, and P. B. Corkum, Linked attosecond phase in-
terferometry for molecular frame measurements, Nature
Physics 9, 174 (2013).


