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We study multilevel fermions in an optical lattice described by the Hubbard model with on
site SU(n)-symmetric interactions. We show that in an appropriate parameter regime this system
can be mapped onto a spin model with all-to-all SU(n)-symmetric couplings. Raman pulses that
address internal spin states modify the atomic dispersion relation and induce spin-orbit coupling,
which can act as a synthetic inhomogeneous magnetic field that competes with the SU(n) exchange
interactions. We investigate the mean-field dynamical phase diagram of the resulting model as a
function of n and different initial configurations that are accessible with Raman pulses. Consistent
with previous studies for n = 2, we find that for some initial states the spin model exhibits two
distinct dynamical phases that obey simple scaling relations with n. Moreover, for n > 2 we find
that dynamical behavior can be highly sensitive to initial intra-spin coherences. Our predictions are
readily testable in current experiments with ultracold alkaline-earth(-like) atoms.

I. INTRODUCTION

SU(n) symmetries play an important role in physics.
Underpinning much of high energy physics, the SU(n)
gauge theory known as Yang-Mills theory is central to
our understanding of the electroweak and strong forces.
Extensions of Yang-Mills and SU(n) symmetry feature
in the most well-studied examples of holographic duality
[1] and the connection between entanglement and grav-
ity [2] through the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence. In a condensed matter set-
ting, SU(2) appears ubiquitously as a symmetry of the
Hubbard model, with important consequences for the
study of quantum magnetism and high temperature su-
perconductivity [3]. The extension of SU(2) Hubbard
and spin models to SU(n) has led to predictions of ex-
otic phases of matter such as valence bond solids [4–
7] and chiral spin liquids [7–10], novel magnetic behav-
iors [11, 12], and flavor selective phase transitions [13–
16] as well as the potential to perform universal topo-
logical quantum computation [17, 18]. Furthermore,
disordered SU(n) spin models have opened analytically
tractable avenues for studying quantum chaos and infor-
mation scrambling [19].

The tremendous theoretical significance of SU(n) sym-
metries makes it all the more exciting that they appear
naturally in experimental atomic, molecular, and optical
(AMO) platforms with exquisite degrees of microscopic
control. This symmetry arises through the independence
of atomic orbital and interaction parameters on the n
nuclear spin states of alkaline-earth(-like) atoms, with
e.g. n = 10 for 87Sr [20–23]. As a result, AMO experi-
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ments can directly probe the role of SU(n) interactions
in controllable settings. Recent progress includes stud-
ies of the thermodynamic properties of SU(n) fermionic
gases [16, 24–31], SU(n) Hubbard phases and phase tran-
sitions [32–34], single- [35] and two-orbital SU(n) mag-
netism [36–39], and multi-body SU(n)-symmetric inter-
actions [40, 41].

In the spirit of quantum simulation, further investiga-
tions in controlled settings will play an important role
in understanding the consequence of SU(n) symmetries
for fundamental questions in physics, as well as their
practical use in technological applications. For example,
SU(2)-symmetric spin interactions can be harnessed to
develop quantum sensors that surpass classical limits on
measurement precision [42, 43]. The prospect of similarly
exploiting more general SU(n) symmetries to achieve a
technological advantage is still an unexplored avenue of
research with untapped potential.

In this work, we consider an experimentally relevant
and theoretically tractable regime of the SU(n) Hub-
bard model, highlighting differences and similarities with
the more familiar case of SU(2). Working at ultracold
temperatures and unit spatial filling (one atom per lat-
tice site), we begin by mapping the SU(n) Hubbard
model onto a multilevel spin model with all-to-all SU(n)-
symmetric interactions in Section II. In Section III we
consider the use of control fields to address nuclear spins,
finding a simple three-laser driving scheme that allows
for the preparation of interesting states with nontrivial
intra-spin correlations when n > 2. We consider the ef-
fect of spin-orbit coupling (SOC) induced by control fields
in Section IV, finding in particular that the weak-SOC
limit generally gives rise to a (synthetic) inhomogeneous
magnetic field, extending previously known results to
n > 2 [42, 44–48]. Finally, we combine these ingredients
to examine mean-field dynamical behaviors of the SU(n)
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spin model in Section V, finding that: (i) long-time-av-
eraged observables obey simple scaling relations with the
spin dimension n, exhibiting (for spin-polarized initial
states) dynamical ferromagnetic and dynamical param-
agnetic phases, as previously seen for the case of n = 2
[49, 50], and (ii) for n > 2 the long-time dynamics can
be highly sensitive to the intra-spin coherences of the ini-
tial state. We conclude and discuss future directions in
Section VI.

II. FROM LATTICE FERMIONS TO AN SU(n)
SPIN MODEL

Here we derive a collective SU(n) spin model for a sys-
tem of ultracold alkaline-earth(-like) atoms trapped in an
optical lattice. Without external driving fields, the evo-
lution of such atoms in their electronic ground state is
governed by the single-body kinetic and two-body inter-
action Hamiltonians

Ĥkin = −J
∑
〈j,j′〉,µ

ĉ†jµĉj′µ + h.c., (1)

Ĥint =
U

2

∑
j,µ,ν

ĉ†jµĉjµĉ
†
jν ĉjν , (2)

where 〈j, j′〉 denotes neighboring lattice sites j and j′;
µ, ν ∈ {s, s− 1, · · · ,−s} index orthogonal spin states of
a spin-s nucleus, with s = n−1

2 (e.g. s = 9
2 in the case

of 87Sr with 10 nuclear spin states); ĉjµ is a fermionic
annihilation operator, J is a tunneling amplitude (for
simplicity assumed to be the same in all directions); and
U is a two-body on-site interaction energy. In the present
work, we neglect inter-site interactions and interaction-
assisted hopping, which is a good approximation for a
sufficiently deep lattice, namely when J . ER, where
ER is the atom recoil energy. For simplicity, we now as-
sume a one-dimensional periodic lattice of L sites, and
expand the on-site fermionic operators in terms of op-
erators addressing (quasi-)momentum modes q (in units
with lattice spacing a = 1), ĉjµ = 1√

L

∑
q e
−iq·j ĉqµ, find-

ing that

Ĥkin = −2J
∑
q,µ

cos (q) ĉ†qµĉqµ, (3)

Ĥint =
u

2N

∑
k,`,p,q,µ,ν

ĉ†kµĉ`µĉ
†
pν ĉqν × δk+p,`+q, (4)

where N is the total number of atoms on the lattice, we
define u ≡ U ×N/L for convenience, and the Kronecker
delta δk+p,`+q = 1 if k + p = ` + q and zero otherwise
(enforcing conservation of momentum).

Momentum-space modes are delocalized across the lat-
tice, which is why interactions between these modes are
O(U/L) = O(u/N). Mode-changing collisions thereby
generally become off-resonant when these interactions
are weak compared to the single-particle mode spac-

ing, i.e. U/L � J/L (equivalently U � J)a. In this
regime, we can make the frozen-mode approximation
{k, p} = {`, q} (i.e. either k = ` and p = q, or k = q
and p = `)b. The terms with k = ` and p = q are
u

2N

∑
ĉ†kµĉkµĉ

†
pν ĉpν = 1

2Nu, which is a constant energy
shift that we can freely neglect. Defining the spin oper-
ators ŝµνq ≡ ĉ†qµĉqν , the remaining terms of the kinetic
and interaction Hamiltonians are

Ĥkin = −2J
∑
q,µ

cos (q) ŝµµq, (5)

Ĥint = − u

2N

∑
p,q,µ,ν

ŝµνpŝνµq. (6)

Throughout this work, we will assume that atomic modes
are singly-occupied, e.g. due to the initialization of a
spin-polarized state with one atom per lattice site, in
which multiple occupation of an atomic mode is forbid-
den by fermionic statistics (Pauli exclusion). In this case
we can simply treat our system as N distinguishable n-
level quantum spins at “lattice sites” p, q. Note that the
“kinetic” terms of this spin model (Ĥkin) are proportional
to the identity operator, contributing an overall shift in
energy that we can neglect at this point. Nevertheless,
these kinetic terms will become important in the presence
of an external drive, which we discuss in Section IV. The
validity of approximating the Hubbard model in Eqs. (1)–
(2) by the spin model in Eqs. (5)–(6) has been previously
benchmarked for SU(2)-symmetric interactions [42, 49],
and we provide additional benchmarking for SU(4) and
SU(6) in Appendix A.

To further simplify the interaction Hamiltonian Ĥint
and write it in a form reminiscent of more familiar SU(2)
spin models, we now construct the operator-valued spin
matrix

ŝq ≡
∑
µ,ν

ŝµνq |µ〉〈ν| , (7)

and for any pair of such operator-valued matrices Â, B̂,
we define the inner product

Â · B̂ ≡
∑
µ,ν

Â†µνB̂µν . (8)

a A reasonable objection to this argument is that each momentum-
space atom interacts with O(N) other atoms, which suggests that
its total interaction energy is O(U)� J/L. However, the typical
energy difference between two states that are coupled by inter-
actions is O(J), so if U � J then again interactions become off-
resonant in the “typical” case, leaving only the “atypical” terms
that approximately conserve energy, which again leads to the
frozen-mode approximation.

b Note that the frozen-mode approximation neglects correlated
momentum-hopping terms of the form ĉ†π−p,µĉπ−q,µĉ

†
pν ĉqν ,

which also conserve energy. We defer a careful treatment of
these terms to future work, noting only (i) that they vanish on
the manifold of permutationally symmetric spin states with one
atom per lattice site, and (ii) that the frozen-mode approxima-
tion is benchmarked in Refs. [42, 49] and Appendix A.
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FIG. 1. (a) Ultracold atoms on a lattice of L sites tunnel
between neighboring lattice sites at a rate J , and locally re-
pel each other with interaction energy U . (b,c) When the
interaction energy U is small compared to the single-particle
bandwidth 4J , the frozen-mode approximation enables the
interaction Hamiltonian to be written as a spin model con-
sisting of exchange terms ŝp · ŝq, which swap the states of two
spins pinned to modes p, q. (d) Interactions open an energy
gap u = U × N/L between the manifold of permutationally
symmetric states of N spins, and the orthogonal complement
of states that break spin-permutation symmetry.

These definitions allow us to write the spin Hamiltonian
in Eq. (6) as

Ĥint = − u

2N

∑
p,q

ŝp · ŝq = − u

2N
Ŝ · Ŝ, (9)

where Ŝ ≡ ∑q ŝq is a collective spin matrix, analogous
to the collective spin vector ~S = (Ŝx, Ŝy, Ŝz) in the case
of SU(2) [42], with 1

2 Ŝ · Ŝ ' ~S · ~S = Ŝ2
x + Ŝ2

y + Ŝ2
z when

n = 2 (here ' denotes equality up to identity terms).
We now discuss the spin Hamiltonian Ĥint in Eq. (9).

The operator ŝp · ŝq simply swaps the nuclear spin states
of two atoms pinned to modes p, q. The term −ŝp · ŝq
thereby assigns a definite energy of −1 (+1) to a pair
of spins that are symmetric (anti-symmetric) under ex-
change. In this sense, ŝp · ŝq is analogous to the en-
forcement of SU(2) spin alignment by ferromagnetic in-
teractions, which similarly assigns different energies to
the anti-symmetric spin-0 singlet |↑↓〉−|↓↑〉 and the sym-
metric spin-1 triplets {|↑↑〉 , |↓↓〉 , |↑↓〉+ |↓↑〉}. By sum-
ming over all pair-wise exchange terms ŝp ·ŝq, the interac-
tion Hamiltonian Ĥint energetically enforces a permuta-
tional symmetry among all spins, opening an energy gap
u between the manifold of all permutationally symmet-
ric (PS) states and the orthogonal complement of excited
(e.g. spin-wave) states that break permutational symme-
try. See Figure 1 for a summary of this section thus far.

In the case of SU(2), the PS manifold is pre-
cisely the Dicke manifold of collective states |mz〉
with total spin S = N

2 and definite spin projection
mz ∈ {S, S − 1, · · · ,−S} onto a fixed quantization axis.
Equivalently, Dicke states |mz〉 = |m↑,m↓〉 can be labeled
by a definite number of spinsm↑ = S+mz (m↓ = S−mz)
pointing up (down) along the spin quantization axis, with

n = 2

→

n = 2 n = 10

FIG. 2. Whereas the state of a two-level spin (qubit) can
be represented by a point on (or inside) the Bloch sphere,
the state of an n-level spin is more generally represented by a
probability distribution on the Bloch sphere. The distribution
shown for n = 10 corresponds to a Haar-random pure state.

m↑+m↓ = N . In the general case of SU(n), the PS man-
ifold is similarly spanned by states |ms,ms−1, · · · ,m−s〉
with a definite number mµ of spins in state µ, and∑
µmµ = N . The dimension of the PS manifold is equal

to the number of ways of assigning N identical spins to
n distinct internal states, or

(
N+n−1
n−1

)
∼ Nn−1.

External fields or additional interactions that respect
permutational symmetry can induce nontrivial dynam-
ics within the PS manifold. Moreover, additional terms
that explicitly break permutational symmetry can nev-
ertheless lead to interesting dynamics that can be cap-
tured within the PS manifold perturbatively, as long as
the coupling to non-PS states is weak compared u (see
Appendix B) [51]. This perturbative regime is thereby
efficiently simulable, as the PS manifold has dimension
∼ Nn−1 (as compared to nN for the entire spin Hilbert
space). Simulating dynamics within the PS manifold re-
quires calculating matrix elements 〈`|Ô|m〉 of spin oper-
ators Ô with respect to PS states |`〉 , |m〉; we discuss this
calculation in Appendix C.

Finally, we take a moment to discuss individual n-level
spins. The state of a two-level spin, or a qubit, is com-
monly represented by a point on (or within) the Bloch
sphere. More generally, the state |ψ〉 of an n-level spin
can be represented by a quasi-probability distributionQψ
on the Bloch sphere (commonly known as the Husimi-Q
function, e.g. in the spin-squeezing community [52]). The
value Qψ (v) at a point v on the sphere is equal to the
overlap of |ψ〉 with a pure state |v〉 that is maximally
polarized in the direction of v: Qψ (v) ≡ |〈v|ψ〉|2 (see
Figure 2). In the case of a mixed state ρ̂, this distribution
is defined by Qρ̂ (v) ≡ 〈v|ρ̂|v〉. Closely related spherical
representations of multilevel spin states and operators are
discussed in Refs. [53, 54]. In practice, it is conceptually
useful to identify the Hilbert space of a single n-level spin
with the Dicke manifold of n− 1 spin- 1

2 particles.

III. EXTERNAL CONTROL FIELDS

We now consider the addition of external control fields
to address atoms’ internal spin states, which will deter-
mine the observables we can access and initial states we
can prepare. Specifically, we consider off-resonantly ad-
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FIG. 3. Sketch of the three-laser drive used to address
nuclear spins on a one-dimensional lattice. Two counter-
propagating lasers with right-circular polarization and ampli-
tudes Ω± point at an angle θ to the lattice axis. A third, lin-
early polarized laser with amplitude Ω0 points in a direction
orthogonal to both the lattice and the other driving lasers.
Absorbing a photon from the laser with amplitude Ωm in-
duces a transition (g, µ)→ (e, µ+m) for the (electronic, nu-
clear spin) state of an atom, where nuclear spin is quantized
along the z axis.

dressing an electronic |g〉 → |e〉 transition of the atoms,
and then perturbatively eliminating electronic |e〉 exci-
tations to arrive at an effective ground-state Hamilto-
nian addressing nuclear spins. For simplicity, we will
assume that the total spin s of the ground- and excited-
state (hyperfine) manifolds are the same, as e.g. with
the 1S0 → 3P0 transition of alkaline-earth-like atoms
(AEAs). However, the results of this section (namely
the general form of effective nuclear spin Hamiltonians,
as well as the corresponding set of accessible observables
and initial states) are the same for transitions that take
s→ s± 1, so in practice one is free to address the hyper-
fine manifolds of the 1S0 → 3P1 transition of AEAs.

We consider a specific three-laser driving scheme with
a geometry sketched in Figure 3. Here the lattice lies in
the y-z plane at an angle θ to the z axis, oriented along
` = (0, sin θ, cos θ). We set the spin quantization axis
along z. The laser setup consists of (i) two counter-prop-
agating right-circularly polarized lasers with drive ampli-
tudes Ω± and wavevectors κv±, propagating in opposite
directions along the z axis, v± = (0, 0,±1), and (ii) a
third laser linearly polarized along z, with drive ampli-
tude Ω0 and wavevector κv0, propagating along the x
axis v0 = (1, 0, 0). All driving lasers are detuned by ∆
below an electronic transition. The full Hamiltonian for
this three-laser drive can be written as

Ĥ full
3LD =

∑
j,m

Ωm

(
e−imφj ŝmj ⊗ |e〉〈g|j + h.c.

)
+ ∆N̂e,

(10)

where m ∈ {+1, 0,−1} indexes the laser pointing along
vm; the SOC angle φ ≡ κv+ · ` = κ cos θ (in units with
lattice spacing a = 1); ŝz,j , ŝ+,j ŝ−,j are standard axial,
spin-raising, and spin-lowering operators for the spin at
lattice site j; ŝ0,j ≡ ŝz,j for shorthand; |g〉j and |e〉j re-
spectively denote the ground and excited electronic states

TABLE I. Drive Hamiltonians (left column) that can be
implemented with different amplitude-matching conditions
(right three columns), some of which are specified by an
arbitrary sign σ ∈ {+1,−1}. The drives shown here are
equal to that of Eq. (12) up to a possible energy shift of
ŝ2x+ŝ2y+ŝ2z = s(s+1), and come in mutually commuting pairs:
a drive with |Ωm| = 1 and Ωn = 0 for both n 6= m commutes
with the drive in which Ωm = 0 and both |Ωn| = 1.

Ĥsingle
drive Ω̃0 Ω̃+ Ω̃−

−ŝ2z 1 0 0
−ŝ2x 0 1 0
−ŝ2y 0 0 1

σŝz + ŝ2z 0 1 σ

σŝx + ŝ2x 1 0 σ

σ (ŝzŝx + ŝxŝz) + ŝ2y 1 σ 0
±ŝz ± σŝx + σ(ŝzŝx + ŝxŝz) 1 σ ±σ

of atom j; and N̂e = 1⊗∑j |e〉〈e|j counts the number of
excited atoms (with 1 the identity operator on all spin
degrees of freedom).

In the far-detuned limit |∆| � |Ωm|, a second-order
perturbative treatment of electronic excitations (|e〉)
yields an effective drive Hamiltonian that only addresses
ground-state nuclear spins. After additionally making
the gauge transformation ŝmj → eimφj ŝmj (equivalently
ĉ†jµ → eiφµj ĉ†jµ), the drive Hamiltonian then becomes

Ĥ3LD =
∑
j

Ĥsingle
3LD,j , (11)

where Ĥsingle
3LD,j denotes the action of Ĥsingle

3LD on spin j:

Ĥsingle
3LD = Ω̃+Ω̃−ŝz + Ω̃0Ω̃−ŝx + Ω̃0Ω̃+(ŝzŝx + ŝxŝz)

− Ω̃2
0ŝ

2
z − Ω̃2

+ŝ
2
x − Ω̃2

−ŝ
2
y, (12)

with

Ω̃0 ≡ −
Ω0√

∆
, Ω̃± ≡

Ω+ ± Ω−√
∆

, (13)

where we have made the simplifying assumption that all
drive amplitudes are real to arrive at the form of Ĥsingle

3LD
in Eq. (12). We relax the assumption of real drive am-
plitudes in Appendix D.

There are three important observations to make about
Eqs. (11) and (12). First, the fact that Ĥ3LD acts iden-
tically on all spins means we can freely replace the site
index j with a momentum index q (as can be verified
by substituting ĉjµ = 1√

L

∑
k e
−iq·j ĉqµ), which is impor-

tant to ensure that this drive addresses the same spin
degrees of freedom as the spin Hamiltonians previously
considered in Section II. Second, each of Ω̃0, Ω̃+, Ω̃− can
be tuned independently by changing the amplitudes of
the driving lasers; some particular Hamiltonians for spe-
cific values of these amplitudes are shown in Table I.
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Third, due to the appearance of mutually commuting
pairs of Hamiltonians in Table I, specifically −ŝ2

α and
±ŝα+ŝ2

α for α ∈ {z, x}, the three-laser drive admits pulse
sequences that exactly implement arbitrary SU(2) (spa-
tial) rotations of the form e−iχ~n·~s, where χ is a rotation
angle, ~n is a rotation axis, and ~s ≡ (ŝx, ŝy, ŝz). The ca-
pability to perform arbitrary spatial rotations, together
with the capability to measure the number of atoms with
spin projection µ onto a fixed quantization axis, 〈Ŝµµ〉
(where Ŝµν =

∑
j ŝµνj), implies the capability to recon-

struct all components of the mean collective spin ma-
trix 〈Ŝ〉 =

∑
µν 〈Ŝµν〉 |µ〉〈ν| via spin qudit tomography

[55, 56]. Moreover, we expect that advanced quantum
control techniques (similar to those of Refs. [57, 58]) can
be used to implement arbitrary SU(n) rotations by de-
signing suitable time-dependent drive amplitudes.

If the excited-state manifold |e〉 has total spin s ± 1,
the effective ground-state Hamiltonians in Eq. (12) and
Table I remain almost identical, but with some additional
n-dependent factors that do not affect the general results
and discussions above. These results still hold if (for
example) all excited hyperfine manifolds of an electronic
1S0 → 3P1 transition (with total spins s+ 1, s, s− 1) are
addressed simultaneously. See Appendix D for additional
details.

Finally, we comment on the preparation of initial
states. Initial states are nominally prepared in the “lab
frame”, and must be transformed according to the gauge
transformation ĉ†jµ → eiφµj ĉ†jµ prior to evolution under
the three-laser drive Ĥ3LD in Eq. (11), which is expressed
in the “gauge frame”. We assume the capability to pre-
pare an initial state in which all spins are maximally po-
larized along the z axis, i.e. |z〉⊗N = |s〉⊗N , which is
unaffected by the gauge transformation (up to a global
phase). The best-reported fideity for preparing a spin-
polarized degenerate Fermi gas is about ∼ 92% [31], and
there are no major technical barriers to further improve-
ment. After preparing a spin-polarized gas, the three-
laser then allows us to rotate this state into one that is
polarized along any spatial axis (in the gauge frame). In
addition, when n > 2 the three-laser drive allows us to
prepare product states with nontrivial intra-spin corre-
lations. For example, when n is even we can prepare an
N -fold product of the “kitten” state

e−i π2 (ŝy+ŝ2y) |s〉 n even∝ |s〉+ |−s〉 . (14)

This state has a vanishing mean spin vector, 〈ŝx〉 =
〈ŝy〉 = 〈ŝz〉 = 0, but variances 〈ŝ2

x〉 = 〈ŝ2
y〉 = s/2 and

〈ŝ2
z〉 = s2.

IV. SPIN-ORBIT COUPLING

We now consider the effect of spin-orbit coupling
(SOC) induced by the control fields in Section III. Be-
fore discussing SOC for n-level fermions, we briefly re-
view the well-studied case of two-level SOC with a one-

dimensional lattice [42, 45, 47, 48]. In this case, SOC
is induced by an external driving field that imprints a
phase e−iφj on lattice site j, or equivalently imparts a
momentum kick q → q + φ, upon the absorption of a
photonc:

Ĥ
(φ)
drive =

Ω

2

∑
q

ĉ†q+φ,↑ĉq,↓ + h.c.. (15)

Identifying a numerical spin index µ = + 1
2 (− 1

2 ) with the
state ↑ (↓), this drive Hamiltonian can be diagonalized
in its momentum index q by the gauge transformation
ĉ†qµ → ĉ†q−µφ,µ (equivalently ĉ†jµ → eiφµj ĉ†jµ), which takes

Ĥ
(φ)
drive → Ĥdrive ≡ ΩŜx, Ŝx ≡

∑
q

ŝx,q, (16)

where ŝx,q = 1
2 ĉ
†
q,↑ĉq,↓ + h.c. for two-level spins.

The two-level SOC drive in Eq. (15) has been imple-
mented with an external laser that couples the two elec-
tronic states of nuclear-spin-polarized atoms, with ↓ (↑)
indexing the ground (excited) electronic state [42, 45–
48]. In contrast, the drive we considered in Section III
addresses electronic excitations off-resonantly, inducing
an effective Hamiltonian in the ground-state hyperfine
manifold with spin projections µ ∈ {s, s− 1, · · · ,−s} (a
similar scheme was used to study SOC in a subspace
of the ground-state manifold in Ref. [44]). Nonetheless,
both the two-level drive in Eq. (15) and the n-level drive
in Eq. (11) become homogeneous (i.e. independent of the
spatial mode index j or q) and independent of the SOC
angle φ after the same spin-symmetric gauge transforma-
tiond ĉ†jµ → eiφµj ĉ†jµ.

Of course, spin-orbit coupling cannot be “gauged away”
entirely. Making a gauge transformation to simplify the
drive comes at the cost of making the kinetic energy in
Eq. (5) spin-dependent, taking

Ĥkin → Ĥ
(φ)
kin ≡ −2J

∑
q

cos (q + µφ) ŝµµq, (17)

as visualized in Figure 4. To better interpret this Hamil-
tonian, we can write it in the form

Ĥ
(φ)
kin = −2J

∑
q

[
cos (q) ŵ

(φ)
+,q − sin (q) ŵ

(φ)
−,q

]
, (18)

where

ŵ
(φ)
+,q ≡

∑
µ

cos (µφ) ŝµµq, (19)

ŵ
(φ)
−,q ≡

∑
µ

sin (µφ) ŝµµq. (20)

c In order for the drive Hamiltonian Ĥ(φ)
drive to be well-defined, φ

should be commensurate with the lattice, e.g. φ ∈ Z × 2π/L on
a one-dimensional lattice of L sites.

d The “asymmetric” gauge transformation (ĉ†j,↑, ĉ
†
j,↓) →

(eiφj ĉ†j,↑, ĉ
†
j,↓), sometimes performed in the two-state SOC lit-

erature, does not generalize as nicely to n > 2.
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FIG. 4. Spin-orbit coupling for 2-level (a,c) and 4-level
(b,d) spins. Colors indicate different spin projections µ. In
the “lab frame” (a,b), kinetic energy is insensitive to spin, but
a spin transition µ → µ+ 1 is accompanied by a momentum
kick q → q + φ from the drive. Changing into the “gauge
frame” (c,d), essentially by shifting the momentum label q for
each spin state µ, makes the drive diagonal in the momentum
index, but comes at the cost of making kinetic energy spin-
dependent.

For two-level spins with µ = ± 1
2 , ŵ

(φ)
+,q is proportional

to the identity operator and ŵ
(φ)
−,q = 2 sin (φ/2) ŝz,q, so

the kinetic Hamiltonian in the gauge frame describes a
(synthetic) inhomogeneous magnetic field:

Ĥ
(φ)
kin

∣∣∣
n=2

= 4J sin (φ/2)
∑
q

sin (q) ŝz,q. (21)

When n > 2, an inhomogeneous magnetic field is likewise
recovered in the weak SOC limit sφ� 1, in which case

Ĥ
(φ)
kin

∣∣∣
sφ�1

= 2Jφ
∑
q

sin (q) ŝz,q +O
(
(sφ)2

)
. (22)

For larger φ, this Hamiltonian acquires terms with higher
powers of ŝz,q, up to ŝn−1

z,q .
Finally, the gauge transformation ĉ†qµ → ĉ†q−µφ,µ also

transforms the interaction Hamiltonian. Applying this
transformation to Eq. (4) and keeping only terms that
respect coherences that can be imposed on initial states
by the laser drive in Section III (applied to an initially
spin-down-polarized state) again results in an effective
spin model. For sufficiently weak SOC (sφ → 0) this
spin model is still well-approximated by Ĥint in Eqs. (6)
and (9). The validity of this approximation has been pre-
viously benchmarked for SU(2)-symmetric interactions
[42, 49], and we provide additional benchmarking for
SU(4) and SU(6) in Appendix A (which finds that the
spin model works well even for large φ). To ensure that
Ĥ

(φ)
kin does not become trivial as φ → 0, we can keep

Jφ/u constant, either by increasing J/U or decreasing

N/L. Altogether, the interacting spin Hamiltonian in
the gauge frame becomes

Ĥspin = − u

2N
Ŝ · Ŝ + 2Jφ

∑
q

sin (q) ŝz,q, (23)

consisting of a spin-locking Ŝ · Ŝ term that energetically
favors permutational symmetry, and an inhomogeneous
magnetic field that causes inter-spin dephasing.

V. MEAN-FIELD THEORY AND DYNAMICAL
PHASES

We now study the dynamical behavior of the SOC spin
Hamiltonian Hspin in Eq. (23), and henceforth work ex-
clusively in the “gauge frame” of Ĥspin and the three-
laser drive Ĥ3LD in Eq. (11). We use a Ramsey-like
setup wherein we prepare an initial state with the three-
laser drive (using fast pulse sequences), then let the state
evolve freely for some time under Ĥspin, and finally apply
again the three-laser drive to map observables of interest
onto spin projection measurements (e.g. with spin qudit
tomography [55, 56]). At the mean-field (MF) level, the
undriven spin Hamiltonian (neglecting constant energy
shifts) becomes

ĤMF = u
∑
q

[−〈s̄〉 · ŝq + h sin (q) ŝz,q] . (24)

where s̄ ≡ 1
N

∑
q ŝq is the average spin matrix, and

h ≡ 2Jφ/u is a dimensionless strength of the inhomo-
geneous magnetic field. We assume that all momenta
q ∈ ZN × 2π/N are occupied. Fixing the atom number
N , the spin Hamiltonian has one free parameter, h, which
determines the relative strength of the single-particle and
interaction terms. One should therefore expect distinct
dynamical behaviors when h � 1, in which case strong
spin-locking interactions should give rise to a long-range
ordered phase, as opposed to h� 1, in which case long-
range order should be destroyed by the strong inhomo-
geneous magnetic field [49].

To investigate these behaviors quantitatively, we ex-
amine time-averaged observables of the form

〈〈Ô〉〉MF = lim
T→∞

1

T

∫ T

0

dt 〈Ô (t)〉MF , (25)

where 〈Ô (t)〉MF is the mean-field value of observable Ô
at time t. Specifically, we consider the time-averaged
magnetization

σMF ≡ |〈〈~σ〉〉MF|, ~σ ≡ 1

Ns
× ~S, (26)

where ~S ≡ (Ŝx, Ŝy, Ŝz) with Ŝα ≡
∑
q ŝα,q, and the time-

averaged (dimensionless) interaction energy

〈〈s̄ · s̄〉〉MF =
1

N2
× 〈〈Ŝ · Ŝ〉〉MF. (27)
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By design, these non-negative quantities are normalized
to lie on the interval [0, 1], independent of the system
size N or spin dimension n. In the remainder of this
section we will assume that n is even, both for the sake
of experimental relevance (most relevant atomic nuclei
are fermionic) and to avoid complications from parity
effectse.

Our numerical simulations of mean-field dynamics are
performed with a Schwinger boson decomposition of spin
operators: ŝµνq = b̂†µq b̂νq. This decomposition requires
no approximations, and reduces the number of variables
to keep track of by a factor of ∼ n. See Appendices E and
F for additional details about our numerical simulations
and the Schwinger boson equations of motion.

A. Initial spin-polarized state

Figure 5 shows time-averages of the mean-field magne-
tization σMF and interaction energy 〈〈s̄ · s̄〉〉MF for N =
100 spins in a few different initial states. We first dis-
cuss the case of an initial x-polarized state |X〉 ≡ |x〉⊗N ,
where

|x〉 ≡ e−i π2 ŝy |s〉 =
1

2s

∑
µ

(
2s

s+ µ

)1/2

|µ〉 . (28)

Here
(
m
k

)
is a binomial coefficient. As expected, the spin

model exhibits a mean-field dynamical phase transition
between an ordered phase at small h and a disordered
phase at large h. The ordered phase has a non-zero mag-
netization σMF and an interaction energy 〈〈s̄ · s̄〉〉MF that
asymptotically approach their maximal values as h→ 0.
The disordered phase has no (time-averaged) magneti-
zation, σMF = 0, but the interaction energy 〈〈s̄ · s̄〉〉MF
nonetheless indicates persistent inter-spin correlations
that tend to a minimal value enforced by conservation
laws as h → ∞ (clarified below). By minimizing the re-
duced field h for which σMF = 0, we numerically find that
the transition between ordered and disordered phases oc-
curs at a critical field hcrit = (n/2)

−α with α ≈ 1/3 (see
Figure 6). When n = 2, this transition is consistent
with the predictions of a Lax vector analysis [49, 59–62]
that exploits integrability of Ĥspin to determine long-time
behavior. However, additional theoretical tools are nec-
essary to understand this transition when n > 2. We
elaborate on this point in Appendix G.

e Odd n is accessible in principle by addressing a subset of the
hyperfine levels of an even-n atom. However, the controls in Sec-
tion III unavoidably address all hyperfine sublevels of an atom.
These controls are used to prepare the initial states in Section
V, and are moreover the source of SOC in Section IV (which is
in turn the origin of the spin Hamiltonian simulated in Section
V). Preparing analogous initial states and simulating analogous
spin Hamiltonians to those in Section V is therefore nontrivial
quantum state and Hamiltonian engineering problem.

As shown in insets of the left column in Figure 5, mean-
field results for different spin dimensions n collapse onto
each other when normalizing the field h to its critical
value, h→ h× (n/2)

1/3, and rescaling

σMF →
σMF

γ (n/2)
, 〈〈s̄ · s̄〉〉MF →

〈〈s̄ · s̄〉〉MF − γ (n)

1− γ (n)
,

(29)

where

γ (k) ≡ Γ
(
k − 1

2

)
√
π Γ (k)

k≥2≈ 1√
π(k − 1)

. (30)

The rescaling of magnetization and interaction energy
can be understood by considering their limiting behavior
as h→∞ or h→ 0.

In the strong-field limit h → ∞, we can ignore inter-
actions and treat spins as though they simply precess
at different rates. The time-averaged transverse mag-
netization σMF then trivially vanishes as h → ∞. The
interaction energy 〈s̄ · s̄〉MF = 〈s̄〉MF · 〈s̄〉MF + O(1/N),
meanwhile, has contributions from: (i) the diagonal parts
of the mean spin matrix 〈s̄〉MF, which are conserved by
inhomogeneous spin precession, and (ii) the off-diago-
nal parts of 〈s̄〉MF, whose oscillations average to zero
when evaluating the time average in 〈〈s̄ · s̄〉〉MF. Alto-
gether, the interaction energy 〈〈s̄ · s̄〉〉MF in the strong-
field limit is determined by the time-independent diago-
nal part diag 〈s̄〉MF = diag |x〉〈x|, namely

lim
h→∞

〈〈s̄ · s̄〉〉MF = Tr
[
(diag |x〉〈x|)2

]
= γ (n) . (31)

The same result can be obtained by computing the time-
averaged interaction energy of two spins precessing at
different rates.

In the weak-field limit h→ 0, the spin-locking Ŝ · Ŝ in-
teractions of the Hamiltonian Ĥspin energetically restrict
dynamics to the permutationally symmetric (PS) mani-
fold. To first order in h, the effect of the inhomogeneous
field can be acquired by projecting it onto the PS man-
ifold, which takes ŝz,q → 1

N Ŝz. The first order effect of
the inhomogeneous field thus vanishes, as∑

q

sin (q) ŝz,q →
∑
q

sin (q)× 1

N
Ŝz = 0. (32)

At second order in h, the effective Hamiltonian within
the PS manifold is related to the variance of the inhomo-
geneous field, rather than its (vanishing) average. On a
high level, the second-order effect of the inhomogeneous
field within the PS manifold thus consists of permutation-
symmetrized products of two spin-z operators, ŝz,pŝz,q
(with p, q possibly equal). Altogether, the effective spin
Hamiltonian at second order in h is (see Appendix B)

Ĥeff
spin =

h2u

2(N − 1)
×
[
Ŝ2
z −N

∑
q

ŝ2
z,q

]
, (33)
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as determined by mean-field simulations of N = 100 spins for a time T = 105/u. The initial states are N -fold tensor products
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FIG. 6. The critical value of hcrit as determined by mean-
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α = 0.333(5), and α = 1/3 is consistent with all mean-field
results to within an uncertainty determined by the resolution
of h in mean-field simulations.

which in the mean-field approximation becomes

Ĥeff
MF = −1

2
h2u

∑
q

ŝ2
z,q, (34)

where we have used the fact that the axial magnetizations
〈ŝz,q〉 = 1

N 〈Ŝz〉 within the PS manifold, and the initial

value of 〈Ŝz〉 = 0 is conserved by Ĥspin. The weak-field
effective Hamiltonian preserves permutational symmetry,
so 〈〈s̄ · s̄〉〉MF → 1 as h → 0. Moreover, the initial y-
magnetization 〈Ŝy〉 = 0 is conserved by Ĥspin, so the
long-time-averaged magnetization σMF is determined by
the time-average of ŝx for a single (any) spin:

lim
h→0

σMF =
1

s

∣∣∣∣∣ lim
T→∞

1

T

∫ T

0

dτ 〈x|ŝx (τ) |x〉
∣∣∣∣∣, (35)

where

ŝx (τ) = eiτŝ2z ŝxe
−iτŝ2z . (36)

We can adapt exact analytical results for the dynamics
of an infinite-range Ising model [63]f to find that

〈x|ŝx (τ) |x〉 = s (cos τ)
n−2

, (37)

so for even n

lim
h→0

σMF =
1

2π

∫ 2π

0

dτ (cos τ)
n−2

= γ
(n

2

)
. (38)

f See Appendix K of Ref. [64] for a simpler adaptation of the
analytics in Ref. [63] to the one-axis twisting model ĤOAT = χŝ2z .
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When going beyond mean-field theory, inter-spin corre-
lations generated by Ŝ2

z in Eq. (33) will cause 〈Ŝx〉 (and
thereby the magnetization 〈~σ〉) to decay as e−O(t2/Ns);
the timescale of this decay diverges as N → ∞. On a
lattice of linear size L without periodic boundary con-
ditions, additional corrections to the behavior predicted
above will appear on O(L/J) timescales.

Finally, we note that the mean-field interaction energy
〈〈s̄ · s̄〉〉MF exhibits a sharp transition for n = 2 that ap-
pears to get smoothed out as n increases. This behavior
likely has to do with the fact that mean-field theory is
sensitive to additional intra-spin correlations and coher-
ences when n > 2, and thereby sensitive to more quan-
tum fluctuations. Quantum fluctuations are known to
smooth out signatures of a dynamical phase transition,
and moreover these fluctuations have a larger effect on
higher-order correlators [65].

B. Initial kitten states

We now discuss the results in the middle and right
columns of Figure 5, for the initial “kitten” states |XX〉 ≡
|xx〉⊗N and |XXi〉 ≡ |xxi〉⊗N , where

|xx〉 ≡ |x〉+ |−x〉√
2

, |xxi〉 ≡
|x〉+ (−1)

s |−x〉√
2

, (39)

and |−x〉 is a state polarized along −x, defined similarly
to |x〉 in Eq. (28):

|−x〉 ≡ e−i π2 ŝy |−s〉 =
1

2s

∑
µ

(−1)
s+µ

(
2s

s+ µ

)1/2

|µ〉 .

(40)

Here s and µ are half-integer-valued, so (−1)s = ±i and
(−1)s+µ = ±1. The first and perhaps most interesting
observation to make about the results for |XX〉 and |XXi〉
in the middle and right columns of Figure 5 is that they
are different, signifying the importance of intra-spin co-
herences for the dynamical behavior of multilevel spin
models.

Unlike the case of |X〉, the results for |XX〉 exhibit
no sharp transition between distinct dynamical phases.
When n = 2, the kitten state |XX〉 is polarized along
−z, and is therefore an eigenstate of Ĥspin with σMF =
〈〈s̄ · s̄〉〉MF = 1 at all times. When n > 2, the time-
averaged magnetization σMF = 0 for all values of the field
h, and the interaction energy 〈〈s̄ · s̄〉〉MF smoothly crosses
over from a maximal value of 1 to a minimal value of
2γ (n). The minimal value of 〈〈s̄ · s̄〉〉MF approached as
h → ∞ can be explained with arguments identical to
those in the paragraph containing Eq. (31), which now
imply that

lim
h→∞

〈〈s̄ · s̄〉〉MF = Tr
[
(diag |xx〉〈xx|)2

]
= 2γ (n) . (41)

The vanishing initial magnetization σMF = 0 for |XX〉
with n > 2, meanwhile, is protected by symmetries of
Ĥspin and |XX〉. The collective spin operator Ŝz com-
mutes with the spin Hamiltonian Ĥspin, so 〈Sz〉 = 0 at all
times for all initial states we consider (with the exception
of |XX〉 with n = 2, for which 〈Ŝz〉 = −N2 ). Moreover,
both the spin Hamiltonian Ĥspin and the state |XX〉 are
invariant (up to global phase) under the action of R̂πz ,
where R̂θz ≡ e−iθŜz , which is to say that

R̂πz ĤspinR̂
π
z
† = Ĥspin R̂πz |XX〉 ' |XX〉 , (42)

where ' denotes equality up to an overall phase. This
symmetry implies that, for the initial state |XX〉,

〈Ŝx〉 = 〈R̂πz †ŜxR̂πz 〉 = −〈Ŝx〉 = 0, (43)

〈Ŝy〉 = 〈R̂πz †ŜyR̂πz 〉 = −〈Ŝy〉 = 0 (44)

at all times, so altogether σMF = 0.
Turning now to mean-field results for the initial kitten

state |XXi〉, we remark that the magnetization σMF and
interaction energy 〈〈s̄ · s̄〉〉MF behave identically to those
for the initial spin-polarized state |X〉. This finding can
be understood through the fact that

|XXi〉 ' R̂π/2z T̂π/2z |X〉 , (45)

where T̂ θz ≡ e−iθŜ2
z . The operators R̂θz and T̂ θz are gener-

ated by axial fields that respect permutational symmetry,
and therefore commute with the spin Hamiltonian Ĥspin,
so

e−itĤspin |XXi〉 ' e−itĤspinR̂π/2z T̂π/2z |X〉 (46)

' R̂π/2z T̂π/2z e−itĤspin |X〉 . (47)

In turn, expanding s̄ · s̄ according to Eq. (8) shows that

T̂ θz
†R̂θz

† s̄ · s̄ R̂θz T̂ θz = s̄ · s̄, (48)

which implies that the interaction energy 〈s̄ · s̄〉 through-
out dynamics of the initial kitten state |XXi〉 is the same
as that of the spin-polarized state |X〉.

To make sense of why the magnetization σMF is iden-
tical for an initial state |XXi〉 as for |X〉, we follow a
four-part argument:

(i) The time-averaged magnetization vector 〈〈~σ〉〉MF
can be written as a function of the time-averaged
spin matrix 〈〈s̄〉〉MF.

(ii) The spin matrix 〈〈s̄〉〉MF is only ever nonzero on its
diagonal and anti-diagonal, regardless of the initial
state. That is, nonzero components 〈〈s̄µν〉〉MF of
〈〈s̄〉〉MF always have µ = ±ν (see discussion below).

(iii) The twist operator T̂ θz acts trivially on the diago-
nal and anti-diagonal components of s̄, which to-
gether with point (ii) implies that 〈〈T̂ θz † s̄ T̂ θz 〉〉MF =
〈〈s̄〉〉MF.
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(iv) The rotation operator R̂θz merely rotates the mag-
netization vector 〈〈~σ〉〉MF without changing its mag-
nitude.

Altogether, points (i)–(iv) imply that the magnetization

σMF = |〈〈~σ〉〉MF| =
∣∣∣〈〈T̂ θz †R̂θz† ~σ R̂θz T̂ θz 〉〉MF

∣∣∣ (49)

is the same for the initial state |XXi〉 as for |X〉.
The only nontrivial step in the above argument is

point (ii), which says that 〈〈s̄µν〉〉MF is guaranteed to
be zero unless µ = ±ν. This observation, nomi-
nally a numerical finding in mean-field simulations, can
be understood as follows. The eigenstates |m,w〉 of
Ĥspin are uniquely identified by definite numbers m =
(ms,ms−1, · · · ,m−s) of atoms occupying each internal
spin state µ ∈ {s, s− 1, · · · ,−s}, and an auxiliary in-
dex w that encodes how |m,w〉 transforms under per-
mutations of all spins (see Appendix B)g. The operator
s̄µν = 1

N Ŝµν with µ 6= ν couples the state |m,w〉 to states
|m′, w′〉 in which (m′µ,m

′
ν) = (mµ + 1,mν − 1). Gener-

ically, states |m,w〉 and |m′, w′〉 with m 6= m′ will have
different energies, so their coherence oscillates and aver-
ages to zero when evaluating time-averaged expectation
values.

However, degeneracies yield stationary (time-
independent) coherences that survive time-averaging. In
the weak-field limit h → 0, such a degeneracy occurs
at the mean-field level between PS states differing
only in the populations mµ,m−µ (with a fixed value
of mµ + m−µ), as the effective Hamiltonian becomes
Ĥeff

MF ∝
∑
µ µ

2mµ. This symmetry is preserved at
all orders in perturbation theoryh, so some coherence
between such states is preserved as h → hcrit, although
this coherence decays as perturbative corrections to
degenerate eigenstates cause them to leak out of the
PS manifold (and thereby have a smaller overlap with
the initial state |X〉). Note that beyond-mean-field
effects break the symmetry protecting anti-diagonal
components of 〈〈ŝ〉〉MF, causing them to decay on time
scales that should diverge as N →∞.

As a final point, we note that the numerical results in
this work are obtained at zero temperature. A nonzero
motional temperature T . ∆gap, where ∆gap is the
single-particle band gap, should have little effect on our
results: at a filling of f = N/L = 1 atoms per lattice site,
the initial state and Hamiltonian are essentially identical

g Seen otherwise, since Ŝµµ commutes with Ĥspin, eigenvectors
of Ĥspin can be indexed by eigenvalues of Ŝµµ. The num-
ber mµ is then the eigenvalue of |m,w〉 with respect to Ŝµµ,
i.e. Ŝµµ |m,w〉 = mµ |m,w〉, while w encodes all other informa-
tion required to uniquely specify |m,w〉.

h Only even powers of the “perturbation”
∑
q sin (q) ŝz,q can be

nonzero within the PS manifold, and even powers of this pertur-
bation exhibit the same mean-field degeneracy between states
differing only in the populations mµ,m−µ.

for T = 0 and T . ∆gap (with exponentially small cor-
rections). A filling f < 1, meanwhile, a non-zero tem-
perature results in a mixture of different occupied quasi-
momenta, which corresponds to single-particle ŝz disor-
der for the spin model in Eq. (23)i. This disorder does
not effect the phenomenology of the spin model, which
is insensitive to the precise form of the inhomogeneous
single-particle field. Finally, a nonzero spin temperature
should result in a spin mixture that suppresses the mag-
nitudes of 〈〈~σ〉〉 and 〈〈s̄ · s̄〉〉. We leave a more detailed
analysis of nonzero temperatures to future work.

VI. CONCLUSIONS AND FUTURE
DIRECTIONS

Starting with an SU(n) Hubbard model describing ul-
tracold fermionic alkaline-earth(-like) atoms on an opti-
cal lattice, we derived a momentum-space multilevel spin
model with all-to-all SU(n)-symmetric interactions. We
then introduced external control fields, finding a simple
three-laser drive that homogeneously addresses nuclear
spins with a variety of spin Hamiltonians. Taking a closer
look at the effect of the spin-orbit coupling (SOC) in-
duced by the driving lasers, we found that maintaining
the validity of the spin model requires weak SOC, which
in turn gives rise to a (synthetic) inhomogeneous mag-
netic field. Finally, we examined dynamical behavior of
the SU(n) spin model at the mean-field level, finding that
long-time observables obey simple scaling relations with
n, and that when n > 2 dynamical behavior can be highly
sensitive to intra-spin coherences.

Our work makes important progress in understanding
the SU(n) Fermi-Hubbard model in experimentally rel-
evant parameter regimes, and we expect our findings to
be readily testable in experiments with ultracold atoms.
Given the possibility for long-range SU(n) interactions,
we hope our work stimulates further efforts into simu-
lating Sachdev-Ye-like (SY-like) and Sachdev-Ye-Kitaev-
like (SYK-like) models [19, 66] in cold atomic platforms.
In follow-up work, it would be interesting to study the
relationship between initial states and dynamical phases
of our SU(n) spin model more systematically, and to
consider the effect of quantum corrections to mean-field
behavior. There is also room to improve on the three-
laser drive introduced in this work, for which it is natu-
ral to ask what additional techniques or ingredients are
necessary to implement universal control of individual
nuclear spins. Universal control would allow for an ex-
perimental study of n-dependence (including even/odd-n
parity effects) in a single experimental platform, simply
by controlling the occupation and coherence of internal
spin states. Finally, one can also study the SU(n) Hub-
bard model in the superexchange regime that gives rise

i Note, however, that f ≈ 1 is necessary for the validity of the
spin model at any temperature.
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to a real-space (as opposed to momentum-space) spin
model, where SOC gives rise to chiral multilevel spin in-
teractions. Unlike our present work, the superexchange
regime does not require weak SOC, and therefore has
a larger parameter space in which to explore dynamical
behavior.
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Appendix A: Numerical benchmarking of the spin model

In this appendix we present numerical evidence to support the validity of the spin models derived in Sections II and
IV. Figures 7 and 8 show a set of time-averaged observables computed via numerical integration of the Schrödinger
equation for a Fermi-Hubbard model and an effective spin model, respectively, with n = 4 (Figure 7) and n = 6
(Figure 8) internal levels per spin. Details for these simulations are provided in the caption of Figure 7. Our main
conclusion from these figures is that the two models show remarkable agreement for the observables considered in
our work. Due to strong finite-size effects, the results in Figures 7 and 8 do not provide reliable numerical values for
realistic systems, and are only intended to benchmark the approximation of a Fermi-Hubbard model by a spin model.
In particular, these results are not expected to agree with the mean-field theory in Section V.

● ● ● ● ●
●
●
●
●
●
●
●
●
● ● ● ●

●
● ● ● ● ● ●

■ ■ ■ ■ ■
■
■
■
■
■
■
■
■
■
■ ■ ■ ■

■ ■ ■ ■ ■
■

◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆
◆ ◆

◆ ◆ ◆ ◆ ◆ ◆
◆

U/J
● 0.1
■ 0.25
◆ 0.5

0.1 0.5 1 5 10
h

0.6
0.7
0.8
0.9
1.0

(a)〈〈S·S〉〉 |X〉
● ● ● ● ● ●

●
●
●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■
■
■
■ ■ ■ ■

■
■ ■ ■

■
■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆
◆
◆
◆
◆
◆ ◆ ◆ ◆

◆ ◆
◆ ◆ ◆ ◆

◆
◆ ◆ ◆

0.1 0.5 1 5 10
h

0.6
0.7
0.8
0.9
1.0

(b)〈〈S·S〉〉 |XX〉
● ● ●

●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

■
■

■

■

■

■

■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆

◆

◆

◆

◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

0.5 1 5 10
h

0.2

0.4

0.6

0.8

1.0
(c)〈〈σ〉〉

5000 10000
tJ0

.5
1
〈σ〉

|X〉

FIG. 7. Numerical results (analogous to Figure 5 of the main text) for the time-averaged interaction energy and magnetization
(both normalized to a maximal value of 1) in a system of L = 5 lattice sites, for both a Fermi-Hubbard model (dots) and spin
model (lines) with n = 4 internal states per spin. The corresponding initial state (defined in Section V of the main text) is
indicated in each panel, and observables are averaged over a time tJ = 200. Color indicates the value of U/J , and the field
h corresponds to 2Jφ/u in the case of the Fermi-Hubbard model. Simulations are performed in real-space, with spin-orbit
coupling (SOC) implemented through a homogeneous drive (with no site or φ dependence) and nearest-neighbor tunneling
terms that contain factors of e±iµφ. Results for the initial kitten state |XXi〉 are excluded because they are identical to those of
|X〉, and magnetization for the initial state |XX〉 is always 0. Note that while panels (a) and (b) are representative of infinite-
time behavior, the inset in panel (c) shows that the spin model (dotted line) and Fermi-Hubbard model (solid line instead of
dots in the inset) exhibit different behaviors on very long time scales, although good agreement is restored by rescaling time
in the spin model, indicating the likelihood of a need to renormalize spin model parameters. In any case, such time scales are
inaccessible in current experiments and diverge as N →∞, so these corrections do not affect the main results of our work.
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FIG. 8. Numerical results identical to Figure 7, but with L = 4 lattice sites and n = 6 internal states per spin.

Appendix B: Perturbation theory for SU(n) ferromagnets

Here we work out a general perturbation theory for SU(n) ferromagnets with a gapped permutationally symmetric
(PS) manifold. We begin with an SU(n)-symmetric interaction Hamiltonian of the form

Ĥ0 =
∑
i<j

gij Π̂ij , Π̂ij ≡ ŝi · ŝj =
∑
µ,ν

ŝµνiŝνµj , (B1)

where gij are (real) scalar coefficients for the permutation operators Π̂ij , and ŝµνi ≡ ĉ†µiĉνi is a transition operator
for spin i. We can then consider the addition of, for example, an inhomogeneous magnetic field or Ising couplings,

Ĥfield =
∑
i

Biŝz,i, ĤIsing =
∑
i 6=j

Jij ŝz,iŝz,j , (B2)

or more generally an M -body operatorj

Ô(w, X̂) =
∑

k∈DN (M)

wkX̂k, (B3)

where w is a dimension-M (i.e. M -index) tensor of scalar coefficients wk ≡ wk1k2···kM ; X is an M -spin operator,
e.g. ŝz ⊗ ŝz in the case of Ising interactions with M = 2; k ≡ (k1, k2, · · · , kM ) is a list of the individual spins
ki ∈ ZN ≡ {1, 2, · · · , N} that the operator X̂k ≡ X̂k1k2···kM acts on; and

DN (M) ≡
{
k ∈ ZMN : all entries ki of k are distinct

}
, (B4)

is the strictly “off-diagonal” part of ZMN , which is necessary to identify for a consistent definition of X̂k as an M -body
operator. In this notation, the magnetic field and Ising Hamiltonians in Eq. (B2) respectively become Ô (B, ŝz) and
Ô (J, ŝz ⊗ ŝz).

If the addition Ô(w, X̂) to the SU(n)-symmetric Hamiltonian Ĥ0 in Eq. (B1) is sufficiently small, namely with
operator norm ‖Ô(w, X̂)‖ less than half the spectral gap ∆gap of Ĥ0, ‖Ô(w, X̂)‖ < ∆gap/2, then we can treat the
effect of Ô(w, X̂) on the ground-state PS manifold E0 perturbatively. The effective Hamiltonians Ĥ(1)

eff and Ĥ
(2)
eff

induced by Ô(w, X̂) on the PS manifold E0 at leading orders in perturbation theory are [51]

Ĥ
(1)
eff = P̂0Ô(w, X̂)P̂0, Ĥ

(2)
eff = −

∑
∆ 6=0

1

∆
P̂0Ô(w, X̂)P̂∆Ô(w, X̂)P̂0, (B5)

j At face value, an M -body operator with M > 2 does not typ-
ically appear in experiments. Nonetheless, considering M > 2
illuminates the structure of eigenstates (and eigenvalues) of Ĥ0,
and allows us to go to high orders in perturbation theory with
single- and two-body perturbations.
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where P̂∆ is a projector onto the eigenspace E∆ of Ĥ0 with interaction energy ∆ above that of the PS manifold. The
first order effective Hamiltonian Ĥ(1)

eff simply projects Ô(w, X̂) onto the PS manifold E0, and takes the form

Ĥ
(1)
eff = wX, (B6)

where the coefficient w is the average of all coefficients wk; and X is a collective version of X:

w ≡ 1

|DN (M)|
∑

k∈DN (M)

wk, X ≡
∑

k∈DN (M)

X̂k, (B7)

with |DN (M)| = ∏M−1
j=0 (N − j). In the case of a magnetic field ŝz or Ising interactions ŝz ⊗ ŝz, for example,

ŝz =
∑
i

ŝ(i)
z = Ŝz, ŝz ⊗ ŝz =

∑
i 6=j

ŝ(i)
z ŝ(j)

z = Ŝ2
z −N

∑
i

ŝ2
z,i. (B8)

The second order effective Hamiltonian Ĥ(2)
eff in Eq. (B5) takes more work to simplify due to the presence of a projector

P̂∆ onto the manifold E∆ of states with excitation energy ∆. This projector essentially picks off the part of Ô(w, X̂)
that is strictly off-diagonal with respect to the ground- and excited-state manifolds E0 and E∆. We therefore need
to decompose Ô(w, X̂) into components that generate states of definite excitation energy when acting on PS states
|ψ〉 ∈ E0. The SU(n) symmetry of Ĥ0 enables such a decomposition to take the form

Ĥ0Ô(w, X̂) |ψ〉 =
∑
∆

(E0 + ∆) Ô(w∆, X̂) |ψ〉 , E0 ≡
∑
i<j

gij , (B9)

where E0 is the interaction energy of PS states, and thinking of the tensor w as a |DN (M)|-component vec-
tor, the tensor w∆ can be found by (i) using the coefficients gij to construct a matrix g(M) of dimensions
|DN (M)| × |DN (M)| ∼ NM × NM , and (ii) projecting w onto the eigenspace of g(M) with eigenvalue ∆. We
construct g(M) for the single-body (M = 1) case below (in Appendix B 1), and provide explicit forms of g(M) with
arbitrary M .

Equipped with the decomposition Ô(w, X̂) =
∑

∆ Ô(w∆, X̂) with terms Ô(w∆, X̂) that generate states of definite
excitation energy ∆, we can expand

Ĥ
(2)
eff = −

∑
∆ 6=0

1

∆
P̂0Ô(w∆, X̂)2P̂0. (B10)

If X is a single-body operator, then

Ĥ
(2)
eff =

∑
∆ 6=0

w∆ · w∆

N (N − 1) ∆

(
X2 −NX2

)
, (B11)

and if furthermore all gij = −U/N , as for Ĥint in Eq. (9), then the only relevant excitation energy is ∆ = U (see
Section B 2), and

wU · wU =
∑
i

(wi − w)
2

= Nw̃2 (B12)

is simply N times the variance w̃2 of w, so

Ĥ
(2)
eff =

w̃2

(N − 1)U

(
X2 −NX2

)
. (B13)

1. Generating excitation energy eigenstates

Here we construct the matrix g(M) that enables decomposing M -body operators Ô(w, X̂) into terms Ô(w∆, X̂)
that generate states of definite excitation energy ∆ above the PS manifold, as in Eq. (B9). We work through the
calculation of g(1) explicitly, and provide the result for g(M) from a generalized version of the same calculation. To
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this end, we consider the action of a single-body operator Ô(w, X̂) =
∑
i wiX̂i on an arbitrary PS state |ψ〉 ∈ E0 and

expand

Ĥ0Ô(w, X̂) |ψ〉 =
1

2

∑
i 6=j

∑
k

gijwkΠ̂ijX̂k |ψ〉 , (B14)

where strictly speaking gij has only been defined for i < j, so for completeness we define gji = gij and gii = 0. The
sum in Eq. (B14) has terms with k ∈ {i, j} and terms with k /∈ {i, j}. In the case of k /∈ {i, j}, the permutation
operator Π̂ij commutes with X̂k and annihilates on |ψ〉, and we can replace the sum∑

k/∈{i,j}

→
∑
k

−
∑

k∈{i,j}

, (B15)

allowing us to simplify

1

2

∑
i 6=j

∑
k/∈{i,j}

gijwkΠ̂ijX̂k |ψ〉 = E0Ô(w, X̂) |ψ〉 − 1

2

∑
i 6=j

∑
k∈{i,j}

gijwkX̂k |ψ〉 , (B16)

where E0 = 1
2

∑
i6=j gij is the interaction energy the PS state |ψ〉 ∈ E0. Switching the order of sums over i 6= j and

k ∈ {i, j} as ∑
i 6=j

∑
k∈{i,j}

→
∑
k

∑
i 6=j
{i,j}3k

, (B17)

we can simplify

1

2

∑
i6=j
{i,j}3k

gij =
1

2

∑
i

gik +
1

2

∑
j

gkj = gk, gk ≡
∑
i

gik, (B18)

which implies that the terms in Eq. (B14) with k /∈ {i, j} are

1

2

∑
i 6=j

∑
k/∈{i,j}

gijwkΠ̂ijX̂k |ψ〉 = E0Ô(w, X̂) |ψ〉 −
∑
k

gkwkX̂k |ψ〉 . (B19)

The terms in Eq. (B14) with k ∈ {i, j}, meanwhile, are

1

2

∑
i 6=j

k∈{i,j}

gijwkΠ̂ijX̂k |ψ〉 =
∑
i,j

gijwjX̂i |ψ〉 . (B20)

so in total

Ĥ0Ô(w, X̂) |ψ〉 = E0Ô(w, X̂) |ψ〉+
∑
k

∑
j

gkjwj − gkwk

 X̂k |ψ〉 . (B21)

The action of the single-body perturbation Ô(w, X̂) on a permutationally symmetric state therefore generates an
eigenstate of Ĥ0 with interaction energy E0 + ∆ if the vector w =

∑
k wk |k〉 satisfies the eigenvalue equation

g(1) · w = ∆w, g(1) ≡ g − diag~g, (B22)

where g ≡∑i,j gij |i〉〈j| is a matrix of all couplings gij ; the vector ~g ≡
∑
i,j gij |i〉 =

∑
i gi |i〉 is the sum of all columns

of g; and the matrix diag~g ≡∑i gi |i〉〈i| has ~g on the diagonal and zeroes everywhere else.
A similar calculation as above with arbitrary M yields an eigenvalue equation of the form

g(M) · w = ∆w, (B23)
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where we treat w as an |DN (M)|-component vector, and g(M) is a matrix with dimensions |DN (M)| × |DN (M)|. In
the case of M = 2, we have

g(2) =
∑

(k,`)∈DN (2)

|k`〉

 ∑
i∈ZN
i/∈{k,`}

(gik 〈i`|+ gi` 〈ki|) + gk` 〈`k| − (gk + g` − gk`) 〈k`|

 , (B24)

and more generally

g(M) =
∑

k∈DN (M)

|k〉

 ∑
a∈ZM

∑
i∈ZN
i/∈k

gika 〈ka:i|+
∑

{a,b}∈CM (2)

gkakb 〈ka↔b| − g̃k 〈k|

 , (B25)

where ka ∈ k = (k1, k2, · · · , kM ); ka:i a list that is equal to k except at the a-th position, where ka replaced is by i,
i.e. ka:i = (· · · , ka−1, i, ka+1, · · · ); CL (p) is the set of all subsets (“choices”) of p elements from ZL; ka↔b is equal to k
except at the a-th and b-th positions, at which ka and kb are switched; and

g̃k ≡
∑

{i,j}∈CN (2)
i∈k or j∈k

gij =
∑
i∈k

gi −
∑

{a,b}∈CM (2)

gkakb . (B26)

If the tensor w is permutationally symmetric, meaning that wk is invariant under arbitrary permutations of k, then
this symmetry is preserved by g(M). In this case, we can replace sums over k ∈ DN (M) in Eqs. (B24) and (B25)
by sums over k ∈ CN (M), and replace vectors |k1, k2, · · · , kM 〉 → |{k1, k2, · · · , kM}〉, such that e.g. |ka↔b〉 = |k〉.
These replacements reduce the size of g(M) from |DN (M)| × |DN (M)| to |CN (M)| × |CN (M)|, where |DN (M)| =∏M−1
j=0 (N − j) = M !×

(
N
M

)
and |CN (M)| =

(
N
M

)
. Additional symmetries of g and w, such as translational invariance

or lattice symmetries, can be used to further reduce the computational complexity of the eigenvalue problem in
Eq. (B23).

2. Recovering spin-wave theory

If the interaction Hamiltonian Ĥ0 is translationally invariant, then the single-body eigenvalue problem in Eq. (B22)
is solvable analytically. In this case, the couplings gij depend only on the separation |i− j|, so eigenvectors of g are
plane waves of the form

wk ≡
∑
d∈ZDL

eid·k |d〉 , (B27)

where on a D-dimensional periodic lattice of N = LD spins, lattice sites are indexed by vectors d ∈ ZDL , and
wavenumbers take on values k ∈ ZDL × 2π/L. The eigenvalues of g can be determined by expanding

g · wk =
∑

c,d∈ZDL

gcde
id·k |c〉 =

∑
c,d∈ZDL

gc,c+de
i(c+d)·k |c〉 =

∑
d∈ZDL

g0,d cos (d · k)wk, (B28)

where the imaginary contributions vanish in the sum over d because g0,d = g0,−d. The remainder of Eq. (B22) that
we need to sort out is diag~g, where all gi =

∑
i,j gij =

∑
d g0,d are equal, which implies that diag~g =

∑
d g0,d is a

scalar. We thus find that

g(1) · wk = ∆kwk, ∆k ≡
∑
d∈ZDL

g0,d [cos (d · k)− 1] , (B29)

in agreement with standard spin-wave theory. Excitations generated by the action of Ô (wk, X) on PS states |ψ〉 ∈ E0
are known as spin-waves. If gij = −U/N is constant, then the spin-wave excitation energies are ∆k = U independent
of the wavenumber k.
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Appendix C: Restricting spin operators to the permutationally symmetric manifold

Here we provide the restriction of a general M -body spin operator Ô to the permutationally symmetric (PS)
manifold of N spins (each with n internal states). Denoting the projector onto the PS manifold by P̂0, our task is
essentially to find the coefficients of the expansion

P̂0ÔM P̂0 =
∑

a,b∈An(N)

〈a|ÔM |b〉 |a〉〈b| , (C1)

where An (N) is the set of all ways to assign N (identical) spins to n (distinct) states, such that for any a ∈ An (N)
the state |a〉 = |a1, a2, · · · , an〉 is labeled by the occupation number aµ of state µ, with

∑
µ aµ = N . Written out

explicitly,

|a〉 =
1√
C (a)

∑
distinct

permutations
Π̂ of ã

Π̂ |ã〉 , |ã〉 ≡
⊗
µ

|µ〉⊗aµ , C (a) ≡

(∑
µ aµ

)
!∏

ν aν !
. (C2)

Here C (a) is a multinomial coefficient that counts the number of distinct ways to permute the tensor factors of the
“standard-ordered” state |ã〉, enforcing 〈a|a〉 = 1. Using these states, with some combinatorics we can expand

〈a|ÔM |b〉 =
∑

α,β∈An(M)
α≤a,β≤b

δa−α,b−β

√
C (α) C (a− α) C (β) C (b− β)

C (a) C (b)
〈α|ÔM |β〉 , (C3)

where the restriction α ≤ a and the difference a − α are evaluated element-wise, i.e. α ≤ a =⇒ αµ ≤ aµ and
(a− α)µ = aµ − αµ for all µ; and δcd = 1 if c = d and zero otherwise. We sum over both α and β above merely
to keep the expression symmetric with respect to transposition (a, α) ↔ (b, β); in practice, one can simply sum over
α ∈ An (M) and set β = b− a+ α, throwing out terms with any βµ < 0. Note that, by slight abuse of notation, the
operator ÔM on the left of Eq. (C3) acts on an arbitrary choice of M spins (out of N), whereas the operator ÔM on
the right of Eq. (C3) is simply an M -spin operator, with matrix elements 〈α|ÔM |β〉 evaluated with respect to the PS
M -spin states |α〉 , |β〉 ∈ An (M).

Appendix D: Relaxing assumptions of the three-laser drive

In order to arrive at the drive Hamiltonian in Eq. (12) of the main text, we made two simplifying assumptions:
(i) that the excited-state hyperfine manifold had the same total spin s as the ground-state manifold, and (ii) that
all drive amplitudes are real (which enforces a phase-locking condition between the driving lasers). To derive an
effective drive Hamiltonian for the general case in which the excited-state hyperfine manifold has total spin s+ r with
r ∈ {+1, 0,−1}, we decompose all lasers into their right- and left-circular polarization components and write the full
drive Hamiltonian in the form

Ĥ full
drive =

∑
j,v,σ

Ωvσ

(
e−iκv·`j ŝ

(r)
vσj ⊗ |e〉〈g|j + h.c.

)
+ ∆N̂e, (D1)

where Ωvσ is the amplitude of σ-polarized light propagating along axis v, with σ = +1 and −1 respectively for
right and left circular polarizations; and ŝvσj is a spin-raising/lowering operator for atom j along axis v, defined by
appropriately rotating the single-atom spin operators

ŝ
(r)
± ≡ −

√
n(n+ 1)(n− 1)

6
× T̂ (r)
± , T̂

(r)
± ≡ ∓

√
2(s+ r) + 1

2`+ 1

∑
µ

〈sµ; 1,±1|s+ r, µ± 1〉 |µ± 1〉〈µ| . (D2)

Here 〈j1m1; j2m2|j3m3〉 is a Clebsch-Gordan coefficient, and we have normalized T̂ (r)
± such that tr

[
T̂

(r)
±
†T̂

(r)
±

]
= 1.

Still assuming real drive amplitudes, the corresponding effective drive Hamiltonian that replaces Eq. (12) in the
far-detuned limit |∆| � |Ωvσ| is then

Ĥsingle
3LD = f (1)

r

[
Ω̃+Ω̃−ŝz + Ω̃0Ω̃−ŝx

]
+ f (2)

r

[
Ω̃0Ω̃+(ŝzŝx + ŝxŝz)−

(
Ω̃2

0ŝ
2
z + Ω̃2

+ŝ
2
x + Ω̃2

−ŝ
2
y

)]
− f (3)

r

∑
m

Ω̃2
m, (D3)
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where f (k)
r are scalars that depend on the spin dimension n:

f
(1)
0 = 1, f

(1)
+1 = −s, f

(1)
−1 = s+ 1, (D4)

f
(2)
0 = 1, f

(2)
+1 = − s

n+ 2
, f

(2)
−1 = − s+ 1

n− 2
, (D5)

f
(3)
0 = 0, f

(3)
+1 =

s(s+ 1)2

n+ 2
, f

(3)
−1 =

s2(s+ 1)

n− 2
. (D6)

If additionally the drive amplitudes are complex, Ωm → Ωme
−iηm (with real Ωm, ηm), then

Ĥsingle
3LD = f (1)

r Ω̃+Ω̃−ŝz + Ω̃0

∑
σ∈{±1}

Ω̃+ + σΩ̃−
2

[
f (1)
r σŝη̃σ,x + f (2)

r (ŝzŝη̃σ,x + ŝη̃σ,xŝz)
]

− f (2)
r

[
Ω̃2

0ŝ
2
z + Ω̃+ŝ

2
η̃0,x + Ω̃−ŝ

2
η̃0,y

]
− f (3)

r

∑
m

Ω̃2
m, (D7)

where ŝηα ≡ e−iηŝz ŝαe
iηŝz is a rotated spin-α operator (e.g. ŝπ/2,x = ŝy), and

η̃± ≡ ± (η± − η0) , η̃0 ≡
η+ − η−

2
, (D8)

are the relative phases of the drive amplitudes.

Appendix E: Mean-field theory

Here we describe the mean-field theory used to simulate the spin Hamiltonian

Ĥspin = − u

2N
Ŝ · Ŝ + 2Jφ

∑
q

sin (q) ŝz,q (E1)

in Eq. (23) of the main text. We begin by decomposing individual spin operators into Schwinger bosons as ŝµνq =

b̂†µq b̂νq, such that the spin Hamiltonian becomes

Ĥspin → Ĥboson = − u

2N

∑
p,q,µ,ν

b̂†µpb̂νpb̂
†
νq b̂µq + 2Jφ

∑
q,µ

sin (q)µ b̂†µq b̂µq. (E2)

The Heisenberg equations of motion for the Schwinger boson operators are (see Appendix F)

i∂tb̂µq = − u

N

∑
ν,p

b̂†νpb̂µpb̂νq + 2Jφ sin (q)µ b̂µq. (E3)

Our mean-field theory then treats all boson operators in these equations of motion as complex numbers, b̂µq → 〈b̂µq〉MF,
with the initial value 〈b̂µq (t = 0)〉MF equal to the initial amplitude of spin q in state µ. Specifically, for an N -fold
product state of the form |ψ〉 =

⊗
q

∑
µ ψµq |µ〉 we set 〈b̂µq (t = 0)〉MF = ψµq. For pure initial product states, this

mean-field treatment of the boson operators b̂µq is mathematically equivalent to a mean-field treatment of the spin
operators ŝµνq, as in Eq. (24), but reduces the number of variables to keep track of by a factor of ∼ n.

Appendix F: Schwinger boson equations of motion for quadratic spin Hamiltonians

Here we decompose a quadratic spin Hamiltonian into Schwinger bosons, and derive the equations of motion for
the resulting boson operators. We begin with a general spin Hamiltonian of the form

Ĥ =
∑

µ,ν,ρ,σ
j<k

gµνjρσkŝµνj ŝρσk +
∑
µ,ν,j

εµνj ŝµνj , (F1)
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where µ, ν index orthogonal states of an n-level spin; j, k index one of N spins; gµνjρσk and εµνj are scalars; and
ŝµνj = |µ〉〈ν|j is a transition operator for spin j. Strictly speaking, Eq. (F1) only defines the couplings gµνjρσk for
j < k, so we enforce gµνkρσj = gµνjρσk and gµνjρσj = 0 for completion. Decomposing spin operators into Schwinger bosons as
ŝµνj = b̂†µj b̂νj , where b̂νj a annihilates a boson of type ν on site j, we can write this Hamiltonian as

Ĥ =
∑

µ,ν,ρ,σ
j<k

gµνjρσk b̂
†
µj b̂νj b̂

†
ρk b̂σk +

∑
µ,ν,j

εµνj b̂
†
µj b̂νj . (F2)

The Heisenberg equations of motion for the boson operators are then

i∂tb̂α` =
[
b̂α`, Ĥ

]
=

∑
µ,ν,ρ,σ
j<k

gµνjρσk

[
b̂α`, b̂

†
µj b̂νj b̂

†
ρk b̂σk

]
+
∑
µ,ν,j

εµνj

[
b̂α`, b̂

†
µj b̂νj

]
(F3)

=
∑

µ,ν,ρ,σ,k

gµν`ρσk

[
b̂α`, b̂

†
µ`b̂ν`

]
b̂†ρk b̂σk +

∑
µ,ν

εµν`

[
b̂α`, b̂

†
µ`b̂ν`

]
(F4)

=
∑
µ,ν

∑
ρ,σ,k

gµν`ρσk b̂
†
ρk b̂σk + εµν`

[b̂α`, b̂†µ`b̂ν`] (F5)

where [
b̂α`, b̂

†
µ`b̂ν`

]
= δαµδαν b̂α` + δαµ (1− δαν) b̂ν` = δαµb̂ν`, (F6)

so

i∂tb̂α` =
∑
ν

∑
ρ,σ,k

gαν`ρσk b̂
†
ρk b̂σk + εαν`

 b̂ν`. (F7)

In the case of uniform SU(n)-symmetric interactions of the form g
2 Ŝ · Ŝ and a diagonal external field, we have

gαν`ρσk = g × δασδνρ, εαν` = εα` × δαν (F8)

so

i∂tb̂α` = g
∑
ν,k

b̂†νk b̂αk b̂ν` + εα`b̂α`. (F9)

Appendix G: Lax vector analysis

We start with the spin Hamiltonian

Ĥspin = − u

2N

∑
µ,ν

Ŝµν Ŝνµ + 2Jφ
∑
q

sin (q) ŝz,q, (G1)

where Ŝµν =
∑
q ŝµνq. The Lax formalism [49, 59–62] for analyzing a Hamiltonian of this form constructs a polynomial

constant of motion, parameterized by a single (arbitrary) complex number. This polynomial has N residues (where N
is the number of spins) corresponding to mutually commuting quantities whose appropirately weighted sum is equal to
Ĥspin. When n = 2, conservation of these residues provides sufficient dynamical constraints to make the spin system
fully integrable. However, the size of Hilbert space grows with n, while the number of conserved quantities provided
by the Lax analysis (namely, N) does not. In fact, a straightforward generalization of the Lax formalism to n > 2
makes predictions that are inconsistent with the mean-field results in Figures 5 and 6 of the main text. We illustrate
this claim with a direct calculation below, noting that this inconsistency is not a failure of the Lax formalism, but
rather an indication that new theoretical tools are necessary to understand multilevel (n > 2) spin models.

The single-body operators that appear in Eq. (G1) have squared norms

tr
(
ŝ†µνq ŝµνq

)
= 1 and tr

(
ŝ†z,q ŝz,q

)
=
∑
µ

µ2 =
1

12
(n+ 1)n(n− 1) ≡ ξ2, (G2)
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whereas Lax formulation requires all single-body operators to have the same normalization. We therefore substitute
s̃z,q ≡ ŝz,q/ξ to expand

Ĥspin

u
= − 1

2N

∑
µ,ν

Ŝµν Ŝνµ + ξh
∑
q

sin (q) s̃z,q, where h ≡ 2Jφ

u
. (G3)

The intensive, dimensionless, (n2 − 1)-component Lax vector ~̀(z) associated with Ĥspin, which is defined with an
auxiliary complex parameter z, has components

`α (z) =
1

N

∑
q

s̃α,q
z − sin q

+ δα,z ξh, (G4)

where α indexes elements of a basis {s̃α} of self-adjoint generators of SU(n) that have normalization tr
(
s̃2
α

)
= 1, and

δα,z = 1 if α = z and 0 otherwise. The squared magnitude ~̀(z)
2

=
∑
α `α (z)

2 is a constant of motion (for any z),
and its residues provide N mutually commuting quantities whose weighted sum recovers Ĥspin.

Within the permutationally symmetric manifold, we can replace s̃α,q → s̄α ≡ 1
N

∑
q ŝα,q at the cost of O(1/N)

errors that vanish as N →∞, so taking this limit we find

`α (z) = I (z) s̄α + δα,z ξh, (G5)

where

I (z) ≡ lim
N→∞

1

N

∑
q

1

z − sin (q)
=

1

2π

∫ 2π

0

dq
z − sin (q)

=
1√

z2 − 1
for z /∈ [−1, 1] . (G6)

The squared magnitude of the Lax vector is therefore

~̀(z)
2

=
∑
α

`α (z)
2

= I (z)
2
∑
α 6=z

s̄2
α + [I (z) s̄z + ξh]

2
, (G7)

where we can define the scalar Q2 ≡∑α s̄
2
α to simplify

~̀(z)
2

= I (z)
2 (
Q2 − s̄2

z
)

+ [I (z) s̄z + ξh]
2

= I (z)
2
Q2 + ξ2h2 + 2I (z) ξhs̄z. (G8)

For initial states with 〈s̄z〉 = 0, we thus find that

~̀(z)
2

=
Q2

z2 − 1
+ ξ2h2, (G9)

which is zero whenk

z = ±
√

1−
(
Q

ξh

)2

. (G10)

These roots change character when z = 0, suggesting that the critical field hcrit separating dynamical phases satisfies

h2
crit

?
=
Q2

ξ2
, (G11)

where we use the relation ?
= to indicate that this “prediction” of the Lax analysis is not necessarily valid for all n. For

a permutationally symmetric state, up to vanishing O(1/N) corrections we can expand

Q2 =
∑
α

s̄2
α =

∑
µ,ν

sµνsνµ −
1

n
= 1− 1

n
=
n− 1

n
, (G12)

k Strictly speaking, the zeros in Eq. (G10) occur at values of z
at which I (z) is undefined. We avoid this issue by analytically
continuing I (z)2 to the interval z ∈ (−1, 1).
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which implies that

h2
crit

?
=
n− 1

n
× 12

n(n+ 1)(n− 1)
=

12

n2 (n+ 1)
. (G13)

This Lax analysis correctly predicts that hcrit = 1 when n = 2, but otherwise predicts hcrit ∼ n−3/2, which is
inconsistent with the finding that hcrit ∼ n−1/3 in the mean-field results of the main text (see Figure 6). This
inconsistency is not a failure of the Lax formalism, but rather an indication that new theoretical tools are necessary
to understand multilevel (n > 2) spin models.


	Engineering infinite-range SU(n) interactions with spin-orbit-coupled fermions in an optical lattice
	Abstract
	Introduction
	From lattice fermions to an SU(n) spin model
	External control fields
	Spin-orbit coupling
	Mean-field theory and dynamical phases
	Initial spin-polarized state
	Initial kitten states

	Conclusions and future directions
	Acknowledgements
	References
	Numerical benchmarking of the spin model
	Perturbation theory for SU(n) ferromagnets
	Generating excitation energy eigenstates
	Recovering spin-wave theory

	Restricting spin operators to the permutationally symmetric manifold
	Relaxing assumptions of the three-laser drive
	Mean-field theory
	Schwinger boson equations of motion for quadratic spin Hamiltonians
	Lax vector analysis


