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We propose an analog quantum simulator for simulating real-time dynamics of (1 + 1)-d non-
Abelian gauge theory well within the existing capacity of ultracold atom experiments. The scheme
calls for the realization of a two-state ultracold fermionic system in a 1-dimensional bipartite lattice,
and the observation of subsequent tunneling dynamics. Being based on novel loop string hadron
formalism of SU(2) lattice gauge theory, this simulation technique is completely SU(2) invariant and
simulates accurate dynamics of physical phenomena such as string breaking and/or pair production.
The scheme is scalable and particularly effective in simulating the theory in weak coupling regime,
and also a bulk limit of the theory in strong coupling regime up to certain approximations. This
paper also presents a numerical benchmark comparison of the exact spectrum and real-time dynamics
of lattice gauge theory to that of the atomic Hamiltonian with an experimentally realizable range
of parameters.

I. INTRODUCTION

Gauge field theories constitute an exceptionally pow-
erful theoretical framework that describes at least three
of the four fundamental interactions of nature. Non-
Abelian gauge symmetry lies at the heart of the standard
model of particle physics. Quantum chromodynamics
(QCD), which is an SU(3) gauge theory, can accurately
represent quark-gluon interactions. In 1974, Wilson pro-
posed a regularization of the gauge theory on space-time
lattices [1] that exhibits quark confinement in the strong
coupling limit. Wilson’s lattice gauge theory (LGT) has
been used extensively over the past four-five decades be-
cause one can perform lattice QCD calculations by Monte
Carlo simulations [2]. World’s largest super-computing
resources are now being employed for the same [3].

Although the lattice QCD numerical scheme is very ef-
ficient, there is the infamous ‘sign problem’ that limits
its applicability [4]. For example, it cannot handle sys-
tems with finite and non-zero density or calculate real-
time dynamics within the Euclidean framework. Follow-
ing Feynman’s visionary idea [5], quantum simulation of
lattice QCD offers hope to address these issues. With the
recent technological progresses, there has been a surge of
interest towards developing quantum algorithms to study
gauge theories using both digital and analog approaches
[6–13]. However, the progress in quantum simulation of
non-Abelian gauge theories lags far behind its Abelian
counterparts. The present work outlines a scheme for
simulating real-time dynamics of a non-Abelian gauge
theory in an analog way. In particular, we demonstrate
the simulation of a manifestly gauge-invariant frame-
work, namely loop-string-hadron (LSH) formalism [14] of
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SU(2) gauge theory. This scheme successfully bypasses
the nontrivial task of imposing the non-Abelian gauge
invariance (local constraints) additionally.

The concept of analog quantum simulation involves
mimicking a quantum system described by a Hamiltonian
(simulated Hamiltonian) by a different quantum system
described by some other Hamiltonian (simulating Hamil-
tonian). Systems of ultracold atoms [15] or ions [16]
trapped in optical lattices serve as excellent quantum
simulators, as the relevant parameters can be precisely
measured and controlled. It can be recalled that though
the experimental realization of Bose-Einstein condensate
and trapped ultracold fermions [17–23] initially inspired
studies on the macroscopic quantum coherent phenom-
ena only [24–26], soon it was discovered that ultracold
atoms can serve as wonderful testing grounds for other
branches of physics as well. The atom-atom scattering
length (and thus, the interaction strength ) in ultracold
gases can be varied across a wide range via Feshbach res-
onances. The creation of optical lattices [27] by using
two counter-propagating coherent laser beams took this
tunability a step further: as the size, shape, and dimen-
sionality of the lattice could be easily controlled. In the
past, cold atomic systems have successfully emulated a
rich variety of systems and addressed problems in dis-
ordered systems, spin liquids, superconductivity, nuclear
pairing, artificial gauge fields, and topology [28–30]. Ad-
vanced cooling and trapping methods have now led to
quantum engineering at an unparalleled precision level.
This allows for each individual atom to be monitored,
and one can have a perfect quantum simulator.

Over the last few years, there has been a continuous
pursuit of using cold atom systems for analog quantum
simulating both Abelian and non-Abelian lattice gauge
theories. Mostly based on Kogut-Susskind (KS) formal-
ism [31–34] as well as Quantum Link Model(QLM) for-
mulation [35–37] and also Abelian Higgs Model [38–40],
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these schemes involved a careful designing of the set-up
so that the system remains in the gauge-invariant Hilbert
space throughout the dynamics. Quantum simulating
non-Abelian gauge theories using Rydberg atom gates
[41] was also proposed.

Following the first experimental demonstration of a
digital quantum simulation of a lattice Schwinger model
[42], a density-dependent quantum gauge field was ex-
perimentally demonstrated [43], which is useful for sim-
ulating dynamics of Z2 gauge theory. The first analog
quantum simulation of Z2 gauge theory on a two stag-
gered site lattice by cold atom quantum simulator was
reported in [44]. The first experiment demonstrating a
scalable quantum simulation of continuous gauge theory
[45] has also been reported recently.

The major difficulty in any Hamiltonian simulation of
gauge theory is to impose the local constraints (Gauss
law) and to keep the dynamics confined within the phys-
ical Hilbert space that satisfies the constraint. Recently,
such a gauge invariance has been experimentally demon-
strated for analog simulation of U(1) gauge theory on a
sufficiently large lattice [46]. The notion of gauge invari-
ance becomes many-fold complicated for a non-Abelian
theory such as SU(2) where there exists more than one
mutually non-commuting constraint at each lattice site.
That might be a reason why a practically/immediately
realizable analog quantum simulation scheme for simulat-
ing dynamics even with the simplest non-Abelian, con-
tinuous gauge group such as SU(2) in (1+1)−d is absent
in the literature till date .

We aim to quantum simulate the same, i.e SU(2) lat-
tice gauge theory on a (1 + 1)-d dimensional lattice de-
scribed by Kogut-Susskind (KS) Hamiltonian [47]. In a
recent study [48], it has been demonstrated that amongst
many variants of Hamiltonian formulation of non-Abelian
gauge theories [49–54], the loop string hadron (LSH) for-
malism [14] is the most convenient and computationally
least expensive one for (1+1)-d within the scope of classi-
cal computation. The reason is, being a manifestly gauge
invariant formalism, the LSH Hamiltonian describes the
dynamics of only relevant physical degrees of freedom.
In a 1-d spatial lattice, that is precisely the dynamics of
strings and hadrons. It can be shown [48, 55] that in
(1 + 1)-d, any gauge theory with open boundary condi-
tion can be mapped to a theory of only fermions, i.e.,
equivalent to the XYZ model and hence much simpler to
analyze. The novel LSH formalism shares many features
of this purely fermionic formalism but can actually be
generalized to periodic boundary conditions as well as to
higher dimensions [14].

The present paper exploits this versatility of LSH for-
malism of SU(2) gauge theory. Here, different parameter
regimes of SU(2) gauge theory are mapped to different
parameter regimes of an atomic Hamiltonian: that of an
ionic Hubbard model. We consider the half-filled Hub-
bard model to be exactly equivalent to the gauge the-
ory Hilbert space containing a strong coupling vacuum
(no matter/anti-matter state). We show that the spec-

trum, obtained with exact diagonalization of both the
simulating and simulated systems compared remarkably
in the weak coupling regime. We also provide a bench-
mark comparison of the dynamics of the atomic system
directly mapped to the pair production-string breaking
dynamics of the low energy sector of SU(2) gauge theory.
The numerical analysis employs parameters and experi-
mental set-ups already realized with ultracold atom sys-
tems. We demonstrate two key points: (i) the full gauge
theory Hamiltonian can be reduced to an approximated
LSH Hamiltonian, which, in turn, can be perfectly mim-
icked by the atomic system to the low energy dynamics
in the weak coupling limit of gauge theory, and (ii) for
the strong and intermediate coupling regimes, the differ-
ence between the full gauge theory Hamiltonian and the
approximated Hamiltonian is slightly more prominent :
but it can be compensated by tuning the on-site interac-
tion parameter of the Hubbard Hamiltonian. Thus, one
can still access the dynamics of strings and hadrons in
presence of a background gauge field in the bulk limit
of the lattice. Further improvements of this scheme to
include dynamical gauge fields in the higher dimensions,
and also generalization to SU(3) gauge theory will take
us close to quantum simulating the full QCD.

The plan of the paper is as follows: The section II
contains the minimal details of the lattice gauge theory
Hamiltonian including LSH framework at different cou-
pling regimes that we aim to quantum simulate. The sim-
ulating Hamiltonian is discussed in section III, including
the atomic system to be used for the quantum simulation
scheme, i.e. a fermionic Hubbard model on a bipartite
lattice and specification of the parameters of the simu-
lating Hamiltonian to simulate the gauge theory at wide
range of coupling regimes. In section IV the proposed
experimental set-up is described. Section V contains nu-
merical study and comparison of the spectrum and real
time dynamics of both the simulating and simulated sys-
tems using the parameters for the proposed experimental
scheme and also . Finally, in section VI the results are
summarized and also the future prospects have been dis-
cussed.

II. THE THEORY TO BE SIMULATED

In this section, we briefly review the theory we would like
to simulate ( subsection II A), discuss different parame-
ter regimes of interest ( subsection II B), propose a mean
field ansatz (subsection II C) and apply the ansatz to a
gauge invariant formalism for the same theory ( subsec-
tion II D). Finally, the Hamiltonian we quantum simulate
in presented (subsection II E).

A. Kogut-Susskind Hamiltonian

Hamiltonian or canonical formulation of lattice gauge
theories was developed by Kogut and Susskind [47] right
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after Wilson introduced lattice gauge theory originally in
Euclidean formalism [1]. In the classical computing era,
lattice gauge theory calculations have explored the orig-
inal Euclidean formulation extensively, but the Hamil-
tonian framework remained a relatively uncharted terri-
tory. However, the interest in the Hamiltonian descrip-
tion of lattice gauge theories is renewed, as it turns out
to be the natural framework to work with in the upcom-
ing quantum simulation/computation era. The mostly
used formalism in this context is Quantum Link Model
representation of gauge theory as it provides a finite di-
mensional representation of the gauge fields. There is a
drawback though : in smaller dimensions, that are ac-
cessible by present-day quantum technology, the quan-
tum link model does not have the desired spectrum as
obtained with the original Kogut-Susskind Hamiltonian
[48, 49]. In this work we consider the original Kogut-
Susskind Hamiltonian for the simplest non-Abelian gauge
group, i.e. SU(2) and proceed to construct a quantum
simulator for the same in (1 + 1)-d.

The Kogut-Susskind (KS) Hamiltonian describing
SU(2) Yang Mills theory coupled to staggered fermions
on (1 + 1)-d (1d spatial lattice and continuous time) [47]
can be written as:

H(KS) = H
(KS)
E +H

(KS)
M +H

(KS)
I . (1)

Where, H
(KS)
E corresponds to electric part of the Hamil-

tonian given by,

H
(KS)
E =

g2a

2

N−1∑
j=0

3∑
a=1

Ea(j)Ea(j). (2)

Here,

3∑
a=1

Ea(j)Ea(j) =

3∑
a=1

EaL(j)EaL(j) =

3∑
a=1

EaR(j)EaR(j)

for left and right electric fields EL/R associated with a
link connecting sites j and j + 1.

The staggered fermionic matter ψ, in the fundamen-
tal representation of SU(2) consisting of two components( ψ1

ψ2

)
yields a staggered mass term:

H
(KS)
M = m

N∑
j=0

(−1)j
[
ψ†(j) · ψ(j)

]
. (3)

H
(KS)
I denotes interaction between the fermionic and

gauge fields and is given by:

H
(KS)
I =

1

2a

N−1∑
j=0

[
ψ†(j)U(j)ψ(j + 1) + h.c.

]
. (4)

The gauge link U(j) is a 2× 2 unitary matrix defined on
the link connecting sites j and j + 1. A temporal gauge
is chosen to derive the above Hamiltonian which sets the
gauge link along the temporal direction equal to unity.

The color electric fields EaL/R are defined at the left

L and right R sides of each link and they satisfy the
following commutation relations (SU(2) algebra) at each
end:

[EaL(j), EbL(j′)] = iεabcδjj′E
c
L(j),

[EaR(j), EbR(j′)] = iεabcδjj′E
c
R(j′),

[EaL(j), EbR(j′)] = 0, (5)

where εabc is the Levi-Civita symbol. The electric fields
and the gauge link satisfy the following quantization con-
ditions at each site,

[EaL(j), U(j′)] = −σ
a

2
δjj′U(j),

[EaR(j), U(j′)] = U(j)δjj′
σa

2
, (6)

where σa are the Pauli matrices. The Hamiltonian in (1)
is gauge invariant as it commutes with the Gauss’ law
operator,

Ga(j) = EaL(j) + EaR(j − 1) + ψ†(j)
σa

2
ψ(j) (7)

at each site j. The physical sector of the Hilbert space
corresponds to the space consisting of states annihilated
by (7). Solving the non-Abelian Gauss laws at each site
j as given in (7) is non trivial and engineering the same
in an analog experiment is the most difficult job.

In a very recent work [48], all available formalisms
for non-Abelian gauge theory with gauge group SU(2)
in (1 + 1)-d has been analyzed and compared in terms
of their applicability in Hamiltonian simulation. As con-
cluded in [48], the recently developed LSH formalism [14]
enjoys two unique advantages: (i) It is exactly equiva-
lent to the original Kogut-Susskind Hamiltonian (ii) it
removes the non-trivial steps (computational costs) re-
quired in the original Hamiltonian formulation to con-
tain the dynamics in the gauge invariant sector of LGT
Hilbert space. The second advantage becomes particu-
larly important in designing analog/digital quantum sim-
ulator [46, 56]. That is why we choose the novel LSH
framework to describe gauge theory and map the same to
an atomic Hamiltonian. It is already established [48] that
the original Kogut-Susskind Hamiltonian, and the LSH
Hamiltonian (given in the Appendix A) share identical
spectrum and hence generate the same dynamics. At this
point we must mention that all the feasible/implemented
past proposals involve QLM formulation of lattice gauge
theory, that in lower dimension exhibits a complete dif-
ferent spectrum as well as a different Hilbert space than
that of the Kogut-Susskind Hamiltonian.

B. The two coupling regimes

It is convenient to scale the Hamiltonian H(KS) given
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in (1) as per [57], so as to make it dimensionless:

H̃ =
2

g2a
H(KS)

=
∑
j

E2(j)︸ ︷︷ ︸
H̃E

+µ0

∑
j

(−1)j
[
ψ†(j) · ψ(j)

]
︸ ︷︷ ︸

H̃M

+x0
∑
j

[
ψ†(j)U(j)ψ(j + 1) + h.c.

]
︸ ︷︷ ︸

H̃I

. (8)

Here, x0 = 1
g2a2 and µ0 = 2

√
x0
m

g
are dimensionless

coupling constants of the theory. Evolving this H̃ with
scaled time (from zero to τ̃)

τ̃ =
τgauge
x0

(9)

is due to the unitary operator:

U(τ̃) = exp
(
−iH̃τ̃

)
= exp

(
−i 2

g2a
H(KS)g2a2τgauge

)
= exp

(
−i2aH(KS)τgauge

)
. (10)

Here, 2aH(KS) is another scaled Hamiltonian with dimen-
sionless parameters given by,

2aH(KS) =
1

x0

∑
x

E2(x)

+2
m

g

1
√
x0

∑
j

(−1)j
[
ψ†(j) · ψ(j)

]
+
∑
j

[
ψ†(j)U(j)ψ(j + 1) + h.c.

]
. (11)

The strong coupling limit is defined for x0 → 0, where
the interaction part of Hamiltonian become less domi-
nant as evident from both (8) and (11). On the other
hand, in the weak coupling limit defined at x0 → ∞,
interaction part of the Hamiltonian becomes the most
important term that cannot be treated perturbatively.
These scaling rules work equivalently on the LSH Hamil-
tonian defined in (A18, A19, A20) as the LSH Hamilto-
nian is exactly equivalent to the original Kogut-Susskind
Hamiltonian.

In the strong coupling regime, lattice gauge theory
shows the desired physics such as quark confinement and
finite mass gap. In this limit, the interaction terms in
(4) that involves transitions between different eigenstates
of the electric-field operator becomes insignificant, and
hence in the Hamiltonian, diagonal terms dominate over
the off-diagonal ones in the strong coupling basis 1. As

1 For LGT, the natural and most convenient basis is formed out

x0 → 0, only very small electric flux configurations on the
lattice contribute to the low energy sector of the theory.
In this regime, lattice Hamiltonian matrices can be ana-
lyzed perturbatively with the electric part as the unper-
turbed Hamiltonian. Order by order perturbation cor-
rections yield a finite dimensional Hilbert space, within
a cut-off imposed on the bosonic quantum number corre-
sponding to gauge flux. The computation cost rises ex-
ponentially with increasing Hilbert space dimension, that
grows with system size as well as cut-off [48]. As a result,
calculating Hamiltonian dynamics for an arbitrary large
system even with the largest possible computer seems im-
possible. However, the continuum limit of the LGT lies
in the opposite regime, where x0 → ∞ (g → 0, a → 0)
together with bulk limit , i.e lattice size N → ∞. In
this regime, the dynamics becomes heavily cut-off sensi-
tive. Here all possible electric flux states contribute to
the low energy spectrum with major contributions com-
ing from strong coupling basis states with electric flux
values to grow larger with x0 → ∞. The Hamiltonian
moves away from diagonal structure as (4) becomes dom-
inants. As a whole, analyzing the weak coupling limit of
lattice gauge theory is extremely difficult on a classical
computer except some extrapolation technique of strong
coupling analysis.

Now, we propose a mean field ansatz for the low en-
ergy sector of the gauge theory Hilbert space in the weak
coupling regime. In the next section, we propose an ana-
log quantum simulator to simulate the dynamics of gauge
theory in this regime. However, this particular novel pro-
posal accurately simulates the dynamics of gauge theory
beyond this particular regime as well, within the mean
field ansatz. Quantum simulation of the intermediate
coupling regime of the full SU(2) gauge theory involves
suitable tuning of atomic interactions as described in
later part of this work.

C. Weak coupling limit: Mean field ansatz

As stated earlier, we choose the LSH representation
of the Kogut-Susskind Hamiltonian (Given in Appendix
A) as it provides the most convenient and economic de-
scription of the physical degrees of freedom and their dy-
namics. The LSH basis is characterized by three integer
quantum numbers

nl(j) ∈ (0,∞) & ni(j), no(j) ∈ (0, 1). (12)

for each site j
The strong coupling vacuum of the theory is defined

by zero electric flux state. In the LSH formalism, the

of eigenstates of the electric-field operator. Tensor product of
fermionic occupation number basis and electric field basis con-
stitute the full Hilbert space. This particular basis, being eigen-
basis of the diagonal Hamiltonian (HE + HM ) in the g → ∞
limit, is called the strong-coupling basis of LGT.
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same state is given by nl = 0 in (12) at all lattice sites.
However, as one approaches the weak coupling regime,
the low energy spectrum of the theory contains states
that carry large fluxes. In [58], a weak coupling vacuum
ansatz was proposed and justified for the (2 + 1)-d pure
SU(2) gauge theory within prepotential framework. In
that proposal, each lattice site contains a large but mean
value for the local loop quantum numbers. The (1 + 1)-d
version of that ansatz within LSH framework (i.e prepo-
tential + staggered matter) would be equivalent to each
site containing more and more gauge fluxes, i.e nl � 0,
for all sites as one approaches the weak coupling limit
g → 0. As discussed before, the incoming flux or bound-
ary flux li fixes the bosonic loop quantum numbers nl’s
at each of the lattice site for any configurations of ni, no
throughout the lattice as per (A30). Hence, choosing for
li � 0 for any finite lattice would result,

nl(j) = li ≡ nl ∀j. (13)

D. Approximate Hamiltonian

In this section, we present a particular form of LSH
Hamiltonian that we would like to simulate. This
is derived from the Hamiltonian given in (A18, A19,
A20), that generates the spectrum of the original Kogut
Susskind Hamiltonian discussed before.

Electric Hamiltonian: The electric part of the LSH
Hamiltonian as given in (A18) can be written as:

H
(LSH)
E =

g2a

2

∑
j

hE(j) (14)

At each site j, depending upon the fermionic quantum
numbers ni, no, the local contribution to electric energy
is given by,

ni no hE

0 0 nl

2

(
nl

2 + 1
)

0 1 nl+1
2

(
nl+1
2 + 1

)
1 0 nl

2

(
nl

2 + 1
)

1 1 nl

2

(
nl

2 + 1
)

(15)

The site index (j) is omitted in the above equation as it
is on one particular site. Within the average electric field
ansatz, i.e., for nl(j) = nl ⇒ hE(j) = hE for all sites j,
resulting,

H
(approx)
E =

g2a

2
Nh0E (16)

where, N is total number of staggered sites on the lattice
and h0E = nl

2

(
nl

2 + 1
)
. Note that, for nl � 0, one can

actually consider h0E = hE ≡ n2
l

4 .

At any site j, the onsite electric energy hE(j) differs
from h0E if ni(j) = 0, no(j) = 1, and that difference, that
is relevant in strong coupling regime (for nl > 0) is given
by:

∆hE =
nl + 1

2

(
nl + 1

2
+ 1

)
− h0E =

nl
2

+
3

4
. (17)

This correction term to H
(approx)
E is particularly impor-

tant for strong as well as intermediate coupling regime,
where we consider mean value of gauge flux, that is not
very large compared to that considered in weak coupling
regime. Within the mean field ansatz the total electric
part of the LSH Hamiltonian Hamiltonian is given by:

H
(LSH)
E =

g2a

2

Nh0E +
∑
{j′}

(
nl
2

+
3

4

) (18)

where, {j′} denotes the sites with fermionic configuration
ni(j

′) = 0, no(j
′) = 1. In the bulk limit of the lattice, the

occurrence of j′ will be N/4 for N site lattice. Hence, the
total mean field electric Hamiltonian in the bulk limit is
given by:

H
(mLSH)
E =

g2a

2

[
N
nl
2

(nl
2

+ 1
)

+
N

4

(
nl
2

+
3

4

)]
(19)

Mass Hamiltonian: The mass term (A19), being in-
dependent of gauge field configuration remain the same
in the mean field ansatz, also for both the strong and
weak coupling regime.

H
(approx)
M = m

∑
j

(−1)j(n̂i(j) + n̂o(j)) (20)

Interaction Hamiltonian: The matter-gauge field
interaction term is the most complicated within LSH
framework as detailed in (A20). In the strong coupling
limit of the theory, this particular term gives small con-
tribution to the Hamiltonian (see subsection II B) and
can be treated perturbatively. However, in the weak cou-
pling regime, this term becomes significant. The purpose
of the present approximation scheme is to bring the in-
teraction Hamiltonian into simple form, yet describing
matter gauge dynamics in the weak coupling regime.

The approximation scheme that we follow is replacing
the local loop quantum numbers nl(j) by a constant nl �
0 at all of the lattice sites. The interaction Hamiltonian
given in (A20) can be written as,

HLSH
I =

1

2a

N−2∑
j=0

hI(j, j + 1) (21)

where,

hI(j, j + 1) = h1I(j, j + 1) + h2I(j, j + 1)

+h3I(j, j + 1) + h4I(j, j + 1) (22)
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Each of these terms, can be further decoupled into left
(L) and right (R) parts located at site j and site j + 1

respectively,

h
[s]
I (j, j + 1) = h

[s]
I (L)h

[s]
I (R) , [s] = 1, 2, 3, 4. (23)

Now, considering each term separately, one would obtain
the following:

h
[1]
I (L) =

1√
n̂l + n̂o(j)(1− n̂i(j)) + 1

χ̂+
o (λ+)n̂i(j)

√
n̂l + 2− n̂i(j) = χ̂+

o (λ+)n̂i(j)Ĉ1(L) (24)

h
[2]
I (L) =

1√
n̂l + n̂o(j)(1− n̂i(j)) + 1

χ̂−o (λ−)n̂i(j)
√
n̂l + 2(1− n̂i(j)) = χ̂−o (λ−)n̂i(j)Ĉ2(L) (25)

h
[3]
I (L) =

1√
n̂l + n̂o(j)(1− n̂i(j)) + 1

χ̂+
i (λ−)1−n̂o(j)

√
n̂l + 2n̂o(j) = χ̂+

i (λ−)1−n̂o(j)Ĉ3(L) (26)

h
[4]
I (L) =

1√
n̂l + n̂o(j)(1− n̂i(j)) + 1

χ̂−i (λ+)1−n̂o(j)
√
n̂l + 1 + n̂o(j)) = χ̂−i (λ+)1−n̂o(j)Ĉ4(L) (27)

and

h
[1]
I (R) = χ̂−o (λ+)1−n̂i(j+1)

√
n̂l + 1 + n̂i(j + 1))√

n̂l + n̂i(j + 1)(1− n̂o(j + 1)) + 1
= χ̂−o (λ+)1−n̂i(j+1)Ĉ1(R) (28)

h
[2]
I (R) = χ̂+

o (λ−)1−n̂i(j+1)

√
n̂l + 2n̂i√

n̂l + n̂i(j + 1)(1− n̂o(j + 1)) + 1
= χ̂+

o (λ−)1−n̂i(j+1)Ĉ2(R) (29)

h
[3]
I (R) = χ̂−i (λ−)n̂o(j+1)

√
n̂l + 2(1− n̂o(j + 1))√

n̂l + n̂i(j + 1)(1− n̂o(j + 1)) + 1
= χ̂−i (λ−)n̂o(j+1)Ĉ3(R) (30)

h
[4]
I (R) = χ̂+

i (λ+)n̂o(j+1)

√
n̂l + 2− n̂o(j + 1)√

n̂l + n̂i(j + 1)(1− n̂o(j + 1)) + 1
= χ̂+

i (λ+)n̂o(j+1)Ĉ4(R) (31)

The only approximation made in the above set of equa-
tions is nl(j), nl(j + 1) → nl, where nl is the mean

field value. The explicit operator form of the coefficients
Ĉ[s](L/R)’s are the following:

ni no Ĉ1(L) Ĉ2(L) Ĉ3(L) Ĉ4(L) Ĉ1(R) Ĉ2(R) Ĉ3(R) Ĉ4(R)

0 0 1 1 1

√
nl + 1

nl + 2
1

√
nl

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

0 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1
1

√
nl

nl + 1

√
nl

nl + 1
1

1 0

√
nl + 1

nl + 2
1 1

√
nl + 1

nl + 2
1 1 1

√
nl + 1

nl + 2

1 1

√
nl + 1

nl + 2
1 1 1

√
nl + 2

nl + 1

√
nl + 2

nl + 1

√
nl

nl + 1
1

(32)

It is clear from the above set of coefficients that in the limit nl � 0, all of the coefficients can be approximated
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to be equal to identity operators, that is their leading
order contribution. One can expand the coefficients and
add corrections order by order. However, for this work,
we confine ourselves to the leading order contribution
only.

In this regime we also approximate λ± as identity op-
erator as per the approximation, nl + 1 ≈ nl. Hence, the
approximated interaction Hamiltonian is given by,

H
(approx)
I =

1

2a

∑
j

[
χ+
o (j)χ−o (j + 1) + χ−o (j)χ+

o (j + 1)

+χ+
i (j)χ−i (j + 1) + χ−i (j)χ+

i (j + 1)
]

(33)

E. The simulated Hamiltonian

In summary, we obtain the following approximate
Hamiltonian that acting on the LSH states on the 1d
spatial lattice with the boundary flux li � 0 would re-
sult the exact dynamics of the full gauge theory 2:

H
(approx)
E =

g2a

2

∑
j

[
n̂l
2

n̂l
2

]
(34)

H
(approx)
M = m

∑
j

(−1)j(n̂i(j) + n̂o(j)) (35)

H
(approx)
I =

1

2a

∑
j

[
χ̂+
o (j)χ̂−o (j + 1) + χ̂−o (j)χ̂+

o (j + 1)

+χ̂+
i (j)χ̂−i (j + 1) + χ̂−i (j)χ̂+

i (j + 1)
]

(36)

We present the details of an atomic quantum simula-
tion scheme to simulate this mean-field Hamiltonian in
next section.

III. THE SIMULATING HAMILTONIAN

In this section, we construct an atomic Hamiltonian
that can successfully simulate (34 - 36). We describe the
relevant quantum system (subsection III A), and its con-
nection with the LSH Hamiltonian is established (sub-
section III B). That the model is well-suited for both the
weak coupling and strong coupling limits of gauge theory
is demonstrated in subsection III C.

A. Atomic Hamiltonian : Hubbard Model on a
Bipartite Lattice

We consider a Fermi-Hubbard model in a one-
dimensional lattice. The optical potential is of the form

2 In this limit, the Abelian Gauss law constraint (A1) is automat-
ically satisfied as (A15) and (A16) effectively become equal.

:

V (x) = −VLcos2(kx) (37)

The minimum of each well corresponds to the physical
lattice site with site index j. V (x) can also act as the
trapping potential. Here VL > 0, and k = π/d, d being
the lattice periodicity. Next, energy offsets of V ′ and −V ′
are added to the odd and even sites respectively. So,
a bipartite lattice is created, and effectively the lattice
spacing is 2d now.

The fermionic atoms can belong to either of its two
accessible hyperfine states : we denote them by the sym-
bols | ↑〉 and | ↓〉 respectively. Let c↑(j) be the fermionic
annihilation operator for spin index ↑ and c↓(j) be the
fermionic annihilation operator for spin index ↓, both for
site j. The corresponding number operators are Nj↑ and
Nj↓. The total number of fermions at site j is given by
N (j) = N↑(j) +N↓(j) .

The lattice depth VL can be written as (V1 − V0). It
is to be noted that V1 and V0 are theoretical parameters
only, and will be used to make a connection between the
atomic Hamiltonian and the LSH Hamiltonian. From an
experimental perspective, it is only VL that is of impor-
tance.

The Hamiltonian can be written as :

H = Hhopping +Hint +HV0
+HV ′ (38)

where, in terms of the tight-binding parameters,

Hhopping = −
∑
j

tj
(
c†↑(j)c↑(j + 1) + c†↓(j)c↓(j + 1)

)
+h.c (39)

Hint = u
∑
j

N↑(j)N↓(j). (40)

HV0 =
∑
j

V0N (j) (41)

and

HV ′ = V ′
∑
j=odd

N (j)− V ′
∑

j=even

N (j) (42)

Here we have dropped a term HV1 =
∑
j V1N (j) from

the Hamiltonian, as this provides just a constant energy
shift. The details are there in appendix B.

If the hopping −t is a constant throughout the lattice,
this model essentially is a 1D Hubbard model with al-
ternating potential, often termed as the “ ionic Hubbard
model”, defined on a bipartite lattice. Here, in addi-
tion to a site-independent hopping −t and the on-site
interaction u, there is a difference in the energy offset
2V ′ between sublattice A and sublattice B. This model
was originally proposed to study transitions in organic
crystals [59], and later, found application in the studies
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FIG. 1. Structure of the two-color lattice

of ferroelectric transitions [60]. In the recent past, this
model has been experimentally realized [61] in a system
of ultracold atoms. So we consider this to be a very suit-
able candidate to simulate lattice gauge theories.

At half-filling, the ionic Hubbard model is capable of
describing a band-insulator [62]. However, this model
has a rich phase diagram, and at higher inter-atomic in-
teraction strengths, can support transitions to different
states, including Mott insulator [62], correlated insulator
[63, 64], AFM insulator and half-metal [64] phases; and
certain combinations of u and V ′ can even lead to su-
perfluidity [65]. As we will see in the later part of this
work, we have to carefully choose our parameters such
that the entire dynamics remains confined to a single
paramagnetic phase in order to mimic the dynamics of
gauge theory.

B. Mapping the parameters

We are now in a position to compare the weak coupling
LSH Hamiltonian and the atomic Hamiltonian. For a
particular site j, we make the following identification :

ni(j) = N↑(j); no(j) = N↓(j) (43)

χ+
i (j) = c†↑(j); χ−i (j) = c↑(j) (44)

χ+
o (j) = c†↓(j); χ−o (j) = c↓(j) (45)

m = V ′ (46)

Also, the magnitude of V0 has to be chosen to be mapped
to electric part of the gauge theory Hamiltonian for a
particular nl, fixed by the open boundary condition.

The electric term of approximated LSH Hamiltonian
is mapped to:

H
(approx)
E →

∑
j

V0N (j). (47)

Similarly, the potential V ′ is fixed by the mapping:

H
(approx)
M → V ′

∑
j=odd

N (j)− V ′
∑

j=even

N (j) (48)

and the hopping terms are identically related as,

H
(approx)
I → −t

∑
j

(
c†↑(j)c↑(j + 1) + c†↓(j)c↓(j + 1)

)
+h.c. (49)

Note that, there is no term in the weak coupling LSH
Hamiltonian that corresponds to the on site interaction
term (B6). So, in the limit u→ 0, one would have a com-
plete mapping between atomic system and weak coupling
limit of gauge theory.

We would like to point out that although the LSH
Hamiltonian contains explicit bosonic modes nl(j), these
are actually non-dynamical in the weak coupling approx-
imation as discussed before, and hence we do not keep
actual bosons in the atomic system. Instead, we incor-
porate the effect of these bosons in the potential itself,
in the form of a constant energy shift. This enables us to
(i) keep nl uniform for each site, and (ii) ensure that the
bosonic and the fermionic modes are completely decou-
pled: as there remains no chance of any boson-fermion
scattering.

C. Simulating both weak and strong coupling
regimes of gauge theory

We now present the novel features of this proposed
scheme that enable one to simulate accurate dynamics of
the gauge theory beyond the weak coupling limit empha-
sized so far.

It is important to note that this particular scheme as-
sumes mean field contribution from the loop degrees of
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freedom, while the two fermionic degrees of freedom de-
scribe the dynamics of the theory. The configurations
with large incoming flux li correspond to low energy
states in the weak coupling regime. On the other hand,
the strong coupling vacuum is defined to be the state
with zero electric flux. This particular scheme calls for
choosing a non-zero value of the incoming flux li ≥ N for
a N -site staggered lattice, such that all of the fermionic
configurations correspond to physical LSH configurations
[48]. Physically this amounts to a constant shift in the
vacuum energy level as compared to the strong coupling
vacuum of the theory. We propose that different sectors
of the gauge theory can be simulated by choosing ap-
propriate values of li (li >> 0 for weak coupling theory,
li ≈ N for strong coupling theory).

Moving away from the weak coupling approximation,
the electric part of the Hamiltonian becomes dominant.
This part (2) measures the electric flux contribution of
each individual link. Within the LSH framework, it has
some contribution from the local loop quantum number
nl as well as from the local string quantum numbers ni, no
at the site from where the link starts as given in (A18).
One can also express the total electric contribution as
function of local nl depending on the local fermionic con-
figurations as listed in (15). Thus, the complete on-site
contribution to the electric part of the Hamiltonian can
divided into two categories :

• (a) for three of the four allowed fermionic configu-
rations at any site (15), the approximated contri-
bution is a function of nl only (16).

• (b) For the other fermionic configuration, the elec-
tric contribution to the Hamiltonian has an addi-
tional correction term (17). In our scheme, this
correction term (17) is added to (16) for N/4 sites
(as the probability of obtaining one such particu-
lar arrangement of fermions is 1/4). Therefore, the
total correction in the electric Hamiltonian is:

∆H
(LSH)
E =

g2a

2

N

4

(
nl
2

+
3

4

)
(50)

The on-site interaction in the atomic Hamiltonian, which
does not have an equivalent in the approximate LSH
Hamiltonian, can be tuned to recover the exact contribu-
tion of (50). For a Hubbard model at half-filling, all the
four accessible states |0〉, | ↑〉, | ↓〉 and | ↑↓〉 are equally
likely as long as the system remains in the paramagnetic
phase. So,

N|↓〉 ≈
N

4
& N|↑↓〉 ≈

N

4
(51)

Here N|↓〉 denotes the number of sites belonging to state
| ↓〉, and N|↑↓〉 is the number of sites with doublons. N
is the total number of lattice sites. It is the doublon
configurations that contribute to (B6). Hence, one can

utilize the on-site interaction term to recover the exact
correction term,

u
∑
j

N↑(j)N↓(j) = u
N

4
⇒ u ≡ g2a

2

(
nl
2

+
3

4

)
(52)

in order to match it with (50).
Hence, for the bulk limit of the lattice (N >> 0), we

have the maximum overlap of the (mean field approx-
imated) strong coupling lattice gauge theory to Fermi-
Hubbard Hamiltonian as Then

H
(mLSH)
E −→ HV0

+Hint (53)

H
(LSH)
M −→ HV ′ (54)

H
(approx)
I −→ Hhopping (55)

provided we fix V0 and u such that the system, staying in
the desired phase, mimics the dynamics of gauge theory
as shown in Fig. 2.

The correction to the approximate interaction Hamil-
tonian is negligible in weak coupling regime, and also
insignificant in the strong coupling limit. In this work,
we do not consider any correction to the interaction term.

We now, explicitly calculate the parameters of the
atomic Hamiltonian, that has to be tuned in the exper-
iment to simulate desired gauge theory dynamics in dif-
ferent coupling regime.

1. Weak coupling regime of gauge theory: u/t 0

In this particular regime we consider the scaled Hamil-
tonian given in (8). Within the approximation scheme
done for the equivalent LSH Hamiltonian for a finite lat-
tice given in (34), we consider the bosonic loop quantum
number to take the average value

nl ≈ O(10p)⇒ H̃
(approx)
E ≈ O(102p). (56)

For a comparative mass and interaction contribution of
the Hamiltonian, i.e.

H̃LSH
M ≈ O(102p) (57)

&H̃
(approx)
I ≈ O(102(p+p

′)), (58)

is obtained for the following scaling of the parameters:

m

g
≈ O(10p−p

′
)
√
x0 ≈ O(10p+p

′
) ,∀p′ ∈ Z+. (59)

The exact values of the dimensionless parameters of
gauge theory can be taken as:

nl = ñl × 10p (60)

µ0 = µ̃0 × 102p (61)

x0 = x̃0 × 102(p+p
′), ∀ integer p, p′ (62)

= 102p for the choice, p′ = 0, x̃0 = 1. (63)
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FIG. 2. Cartoon representation of dynamics of 1d ionic Hubbard model mimicking that of SU(2) lattice gauge theory in one
spatial dimension. (a) Initial state: fully filled odd sites and empty even sites mimicking the strong coupling vacuum consisting
of no particles (ni = 0, no = 0 on even sites) and no antiparticles (ni = 1, no = 1 on odd sites). Under Hamiltonian evolution,
one atom hops from an odd site to neighboring even site in Hubbard model, that mimics creation of a particle antiparticle pair
at two neighboring staggered site of the gauge theory, connected by one unit of flux to form a gauge singlet string configuration.
One further hopping as shown in the figure mimics the dynamics in gauge theory as elongation of the string and creation a
baryon on one site. In these three states, the total number of particle (antiparticle) for the gauge theory are respectively 0, 1, 2.
(b) Ionic Hubbard model dynamics is mimicking string breaking dynamics of gauge theory. Starting from a string of length 3
unit, pair production occurs and the initial string breaks into two smaller strings.

Now, the dynamics of this scaled Hamiltonian H̃ in (8), is
to be simulated by the simulating Fermi-Hubbard Hamil-
tonian given in (38) in the time scale τ̃ as defined in (9),
such that

exp(−iH̃τ̃) −→ exp(−iHτ) (64)

where, H is the atomic Hamiltonian given in (38) with
the parameters:

V ′ = µ̃0 (65)

V0 =
1

4

(
ñ2l + 2ñl

)
(66)

u = 0 (67)

t = −1. (68)

Here, all the parameters are fixed in units of ‘t’. The
only choice that we have made in setting the parameters
is p′ = 0 in (62). Gauge theory with a nonzero p′ can be
equivalently simulated by the same atomic system with
tuning V ′ to smaller values µ̃0×10−2p

′
in an experiment.

This will access all mass values of gauge theory in the
quantum simulation protocol.

2. Strong coupling regime of gauge theory: |u/t| > 1

We consider the scaled Hamiltonian in (11) in strong
coupling regime x0 < 1. As discussed earlier, the bulk
limit of the Fermi-Hubbard Hamiltonian in the param-
agnetic phase will correspond to the exact mean field
electric term (19) and mass term (A19). Although the

interaction term is approximated, will not make a major
difference in spectrum and/or dynamics as x0 → 0 as it is
less dominant compared to diagonal terms. Likewise, in
the weak coupling regime, we fix the boundary condition
li to be a fixed integer, but is of O(1). We map the gauge
theory Hamiltonian to Fermi-Hubbard Hamiltonian with
parameters

V ′ = 2
1
√
x0
· m
g

(69)

V0 =
1

x0
· li

4
(li + 2) (70)

u =
1

x0
· 1

4
(2li + 3) (71)

t = −1. (72)

Here also, all the parameters are fixed in units of ‘t’. It
is clear from the above relations that for a fixed value of
li, smaller values of x0 require larger V0/t and u/t for the
atomic system. However, we will have to be careful to re-
main in the same paramagnetic phase such that our anal-
ysis of compensating errors in electric Hamiltonian from
the uniform potential are well compensated by the self in-
teraction term. For this purpose, i.e., in order to keep u/t
below the critical point for paramagnetic-ferromagnetic
phase transition one can not really expect to simulate
x0 → 0 under the present scheme. However, one can
simulate x0 < 1 as well as x0 = 1 besides accurately sim-
ulating intermediate coupling range x0 ≈ 10−100 as will
be demonstrated in the numerical analysis.

Likewise the weak coupling case, the simulating and
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simulated dynamics are comparable up to a factor

τatomic = 2a× τgauge. (73)

where, a is small but finite in strong coupling limit.
In the next section, we propose the precise experimen-

tal set-up that is close to already performed experiments
for Ionic-Hubbard model following the above mentioned
scheme, where strong coupling regime of lattice gauge
theory dynamics is mapped to ionic Hubbard model with
u/t > 1, whereas the weak coupling regime is mapped to
the same with u/t ≈ 0.

IV. EXPERIMENTAL REALIZATION

The experimental scheme calls for the realization of
1-dimensional Fermi-Hubbard model in a bipartite lat-
tice. In the recent past, the ionic Fermi-Hubbard model
was experimentally realized in a honeycomb lattice [61],
and its bosonic counterpart was implemented on a bi-
partite chequerboard lattice [66]. Also, a 1-dimensional
Fermi-Hubbard model was implemented in a experiment
by Scherg et al.[67]. Both [61] and [67] used a degener-
ate gas of fermionic 40K of numbers ≈ 105 and 104 re-
spectively. We propose that a combination of these two
methods can successfully yield a 1-dimensional Hubbard
model with alternating lattice potentials. The set-up,
which is very much realizable with current experimen-
tal techniques, is described in IV A. The procedures for
preparing the initial states and observing the final dy-
namics are outlined in IV B and IV C respectively. We
discuss the possible sources of errors (that can affect the
accuracy of the results in this experiment) in IV D.

A. Proposed set-up

The interference pattern of two counter propagating
lasers is used to create an optical lattice. The lattice
depth is proportional to the intensity of the laser beam
and is measured in units of the recoil energy ER.

In the experiment by Messer et al.[61], first a regular
honeycomb lattice was created, and that fixed the hop-
ping parameter t on each bond. Next a staggered energy
offset of ∆ was independently applied between sites of
A and B sublattices. In our 1-dimensional structure, an
equivalent would be to set up the primary lattice with
lattice depth VL : This fixes the hopping parameter t.
Then, on top of it, energy offsets V ′ and −V ′ can be
independently applied on the odd sites and even sites re-
spectively, so that the lattice depth is (V0 + V ′) for odd
sites, and (V0 − V ′) for even sites.

Just like the hopping t, the on-site interaction u, too
depends on the lattice depth. However, u can be inde-
pendently controlled as well, by means of Feshbach reso-
nance. As for the two fermionic states, any two hyperfine
states of a particular atom can be employed. In [67], the

hyperfine states

| ↑〉 = |F = −9/2;mF = −9/2〉
| ↓〉 = |F = −9/2;mF = −7/2〉

of ultracold 40K atoms were used. In [61], in addition to
the above, the combination

| ↑〉 = |F = −9/2;mF = −9/2〉
| ↓〉 = |F = −9/2;mF = −5/2〉

was also employed in order to obtain desired range of u.
In [61], the ionic Hubbard model was studied on a

honeycomb lattice. In contrast, our model requires the
implementation of the ionic Hubbard model in a simple
one-dimensional geometry. Regarding the dimensional-
ity of the system, it may be recalled that in the recent
past, ultracold atom experiments have successfully con-
fined bosonic and fermionic atoms to one dimension (1D).
The basic idea is to tightly confine the particles in two
transverse directions, and make them weakly confined in
the axial direction. Thus, their motion in the transverse
directions are completely frozen. So effectively, these are
quasi-1D systems.

For example, in our proposed set up, suppose both Vy
and Vz, the potentials in the transverse directions, are
kept fixed at a large value (Like, 33ER as in [68], or
42ER as in [69]). V (x), The lattice depth in the axial
direction is kept in a range of 5ER−12ER. We note that
in Hubbard model experiments, the potentials are to be
deep enough (V ≥ 5ER) so that the single-band descrip-
tion of Hubbard model remains valid. On the other hand,
V (x) cannot be as deep as the potentials in the transverse
direction, so as to restrict the dynamics in 1-dimension
only. The hopping parameter t is a function of the lattice
depth, and can be estimated using the Wannier functions
[70].

In III A, the lattice depth VL was written as (V1−V0),
so different combinations of V1 and V0 can result in the
same lattice depth. This offers a tremendous advantage
in the experimental pursuit, as the same optical lattice
can be assumed to be split in different pairs of V1 and
V0 : allowing one to explore a wide range of V0 values
(that, in turn, enables one to access a wide range of x0
and/or li as per (70)). It is to be noted that both V1 and
V0 are theoretical parameters in the model that leads to
constant shifts in the energy only : bearing no effect on
the dynamics of the fermions.

Accordingly, we consider two configurations :

(i) V1 = 6ER and V0 = 0.5ER and

(ii) V1 = 6.5ER and V0 = 1ER.

In both the cases, the resultant uniform lattice depth VL
is 5.5ER for all the sites. This results in a hopping t =
0.057ER. The combinations we have mentioned translate
to

(i) V0 ≈ 8.75t and (ii)V0 ≈ 17.5t
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respectively. In addition, an offset of V ′ and −V ′ is in-
dependently applied on the odd and even sites. In our
scheme, we choose V ′ = 1.6t and stick to this value in all
our numerical simulations. The on-site interaction u can
be controlled by applying a Feshbach field.

To simulate the weak coupling limit, we restrict our-
selves to the weakly interacting atomic limit : u/t << 1,
and choose u = 0.1t. On the other hand, simulation
of the strong coupling limit calls for the realization of
the strongly interacting atomic limit : u/t � 1, and we
choose u ≈ 5.5t. We note that these V ′/t and u/t val-
ues comfortably fall in the parameter regimes accessed in
recent experiments [61, 67, 71].

B. Initial state preparation:

The initial state has to be prepared in a Charge-
density-wave (CDW) configuration where all the odd
sites are occupied by the fermionic particles and the even
sites are completely empty. This can be done using some
sort of filtering sequence in the experiment. For example,
in [71, 72], this was achieved by superposing the primary
lattice (with wavelength λ) with an additional long lat-
tice (with wavelength 2λ) in the following way:

V (x) = −VL cos2(kx)− Ṽ (cos2(kx/2 + φ)) (74)

with k = 2π/λ.

The lattice depths VL and Ṽ and the relative phase φ
can be adjusted independently. Here VL stands for the
depth of the original (and short) lattice ; and Ṽ is the
depth of the additional long lattice. This long lattice is
utilized during the preparation of the initial CDW state.
Initially, the long lattice is made quite deep (like, 20ER,
as in [71]), and the short lattice is ramped up to that
depth at a non-zero relative phase φ to create a tilted
lattice of double wells. Now it is so arranged that the
odd sites host lower energy wells than the even sites, and
it is possible to load all atoms in the odd sites only. The
tilt offsets are made sufficiently large so that the parti-
cles cannot escape from the odd sites and tunnel to the
even sites. After loading all the atoms, the longer lattice
is switched off, and the short lattice is ramped down to
its desired final value (In our case, 5.5ER). The offset V ′

and −V ′ is added to the odd sites and even sites respec-
tively, to create the bipartite structure. Now tunneling is
possible between adjacent sites, and the dynamics begins.

Moreover, (52) is only valid if N|↓>=N|↑↓> = N/4 as
in 51. Since here the system is initially prepared in a
CDW state containing doublons only, this will not hold
true in a short initial time-span, and the interactomic
interaction u will overcompensate the correction term in
the electric Hamiltonian. Thus, the dynamics from the
atomic Hamiltonian will have a departure from that of
the full Gauge-theory. However, with time, more and
more atoms would hop to the adjacent sites and the dis-
tribution would get more even across the sites, resulting

in N|↓> ≈ N|↑↓>. So soon enough, the quantum sim-
ulation becomes more accurate, as demonstrated in the
numerical results in Section V.

C. Observing the dynamics

The observable can be defined as the population im-
balance P between the even sites and odd sites, defined
as

P =
Ne −No
Ne +No

. (75)

Here Ne is the total number of atoms in the even sites,
and No is the total number of atoms in the odd sites.

The time evolution of the parameter P is to be stud-
ied in order to visualize the particle number dynamics of
gauge theory. A site-resolved technique is thus needed
to determine the number of atoms on even and odd lat-
tice sites separately. In [71, 72], a band-mapping scheme
was successfully employed using the long lattice. Once
the desired time evolution in the primary (short) lattice
is over, the long lattice is introduced again to create the
tilted lattice, and tunneling stops. The phase φ is chosen
such a way that the odd sites constitute the lower wells
in the array of double wells. Now the population distri-
bution across the odd and even sites gets sealed. Next,
the depth of the long lattice is ramped to a much higher
value : and the atoms in the even sites get transferred to
the third Bloch band of the superlattice. Atoms in the
odd sites remain in the first band . The density profile in
the different bands can be obtained using Time-of-flight
(TOF) images and absorption imaging [71].

D. Possible Source of experimental errors

The particle-antiparticle pair creation and string
breaking in gauge theory are mimicked by the ionic Hub-
bard model dynamics, and the relevant observable at any
instant is P , the averaged population imbalance between
even sites and odd sites. Thus, individual site-resolved
occupancy data is not required. If the lattice is suffi-
ciently long and if the averaging is done properly (like,
in [67], each data point was averaged over four measure-
ments) , it is possible to obtain a very accurate value of
P . The lattice potential and the sub-lattice offset, too,
can be precisely monitored [61],[66].

The only major source of possible experimental errors
can be the imperfection in the initial state preparation. A
CDW state can certainly be realized where only the odd
sites are occupied, but then those sites can host zero,
single or double occupancy as in [71]. To ensure that all
the odd sites have doublons, one needs to monitor the
number of atoms precisely. As reported in [61], there
is always a systematic uncertainty of 10% in the prepa-
ration. However, as demonstrated in the next section,
the dynamics is very little affected even with this error
margin.
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V. SIMULATED DYNAMICS AND
OBSERVABLES

In this section, we present numerical analysis of our pro-
posal. The comparison between the spectrum of the sim-
ulating and simulated systems is presented in V A, and
the corresponding dynamics is presented in V B. In V C,
we demonstrate that even if there is an initial error in
preparing the system in a perfect CDW state, the dy-
namics is not affected much; and the departure from the
expected result remains well within an acceptable win-
dow of tolerance.

A. Spectrum comparison:

In weak coupling regime: We aim to quantum
simulate gauge theory Hamiltonian, with the values of
dimensionless parameters given by:

x0 = 10−10 & m/g = 1.6× 10−10

acting on the LSH Hilbert space characterized by

nl = 5× 105

at all sites and correspond to to p = 5, p′ = 0 in (60-62).
The fermionic (string) configurations remain completely
dynamical as ni, no can take all possible values at sites
0, 1, 2, ...2N . Following (65-67) we obtain the parameters
of the atomic Hamiltonian to be fixed at:

V0 = 8.75t , V ′ = 1.6t , u = 0.1t. (76)

Note that, we have chosen a feasible but small value of the
parameter u. Smaller and smaller values of u will enable
to mimic the dynamics of gauge theory more accurately
as we take p� 1. We perform exact diagonalization for
both the Hamiltonians with a small number of sites, that
is doable on a PC. Our scheme, being completely scalable,
the agreement in spectrum as in Fig. 3 holds true for any
size of lattice as per experimental capabilities.

In strong coupling regime: We aim to quantum
simulate gauge theory Hamiltonian (11), with the values
of dimensionless parameters given by:

x0 = 0.69 & m/g = 1.6.

This Hamiltonian acts on LSH Hilbert space character-
ized by li = 6 as in (13) , while ni, no can take all possible
values at sites 0, 1, 2, ...2N . Following (69-71), the mim-
icking atomic system is defined by parameters:

V0 = 17.5t , V ′ = 1.6t , u = 5.47t. (77)

Like the weak coupling case, we also perform exact diag-
onalization for this case to compare and obtain the spec-
trum as in Fig. 3. Note that, from our analysis we only
expect exact match of spectrum in the N →∞ limit, and
that is beyond the scope of exact diagonalization. How-
ever, in Fig. 4, we demonstrate that if the lattice size

keeps increasing, the agreement between the simulating
spectrum and the original spectrum gradually improves.
Thus, it is expected that in the bulk limit, there would be
a perfect agreement. Performing numerical calculations
for a longer lattice is beyond the scope of exact diagonal-
ization, and thus, the present work. In principle, it can
be carried out using state of the art tensor network tech-
niques, and establish a proper benchmark for the scheme
in strong coupling regime. However, tensor network can
only calculate a particular (low energy) sector of the the-
ory with the desired accuracy, and quantum simulation
is expected to outperform the same.

However, even with limited computational resources,
we make the following observations:

• It appears from (69-71) that, by increasing V0/t
in the atomic system, one would be able to access
smaller and smaller values of the gauge theory pa-
rameter x0. However, the consequence is that, in
order to mimic exact strong coupling dynamics, u/t
has to be increased as well.

• With an increasing u/t (even for a fixed value of
V0/t), gaps are introduced in the atomic spectrum
as the atomic system experiences a quantum phase
transition (see Fig. 6) and enters the Mott Insu-
lator phase [73]. Then the system can no longer
mimic dynamics of gauge theory as there is no such
quantum phase transition in the gauge theory spec-
trum. Hence, this quantum simulation scheme is
not suitable for x0 → 0.

• Instead, if one can arrange the experimental set-up
to fix V0/t at a smaller value, the atomic system
simulates the intermediate coupling regime of the
full gauge theory reliably. We illustrate such an
agreement for V0/t = 0.1 (x0 = 120) in Fig 3.

B. Simulated Dynamics:

One important dynamical phenomenon to observe in
real time dynamics in gauge theory is the dynamics of
pair production and string breaking as illustrated via car-
toon in Fig. 2. We consider preparing the system in a
state in which all even sites are completely empty (no
particle) and all odd sites are completely filled (no an-
tiparticle). The real time Hamiltonian evolution of the
atomic system involves atoms hopping from one site to
another, simulating the event of pair creation and particle
number dynamics of gauge theory. Within LSH frame-
work, for the no particle-no antiparticle state |Ψ0〉 on a
1d lattice of N staggered sites, we define the following
quantity to describe particle density,

ρ(τ) = 1 +
1

N
〈Ψ0|Û†(τ)ÔÛ(τ)|Ψ0〉 (78)

where, Ô =
∑
j

(
(−1)j(n̂i(j) + n̂o(j))

)
and U(τgauge) is

defined in (10).
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FIG. 3. Spectrum of the Ionic Hubbard model, Full SU(2) gauge theory (KS or LSH) Hamiltonian (without any approximation)
and the Weak coupling approximated LSH calculated by exact diagonalization for 6 site system and scaled to fit between 0 to
1. (a) The spectrum in weak coupling regime of gauge theory with parameters as per (76) for different values of p as discussed
in subsection III C 1. (b) The spectrum obtained for the string coupling analysis, for V0 = 17.5, 8.75 & 0.1 respectively.
The spectrum demonstrates that the intermediate coupling regime is better accessible by strong coupling analysis if smaller
values of V0 becomes experimentally feasible. We propose to quantum simulate strong coupling spectrum within a mean field
approximation and at bulk limit, whereas the plots are only for small lattices and hence showing magnified deviation of the
mean field spectrum from that of the full gauge theory. The approximated LSH is only valid in weak coupling regime and
matches with full gauge theory for p� 1.

The simulated dynamics in Hubbard model is mea-
sured by the observable P , as defined in (75). Its con-
nection with the particle number dynamics of gauge the-
ory can be obtained by looking at the parameter 1 + P .
In Fig. 5 we plot the quantities against a scaled time
τ = τatomic = 2aτgauge following (9).

As done in the spectrum analysis, we consider the

same parameter values for calculating pair-production
and string breaking dynamics as well. From the simu-
lated dynamics we can conclude the following :

• The proposed simulation scheme simulates the dy-
namics of weak coupling gauge theory perfectly and
that is evident even from the numerical analysis
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FIG. 4. Spectrum of the simulated Hamiltonian is compared with the spectrum of the full gauge theory Hamiltonian. In this
comparative study, the incoming flux for the lattice of size N is taken to be li = N , and the experimental parameters are
adjusted accordingly to simulate the gauge theory with the coupling x0 = 1. The deviation of the Simulated eigenvalues range
from (a) (0 − 17)% for N = 2, (b) (0 − 14)% for N = 4, and (c), (d) (0 − 12)% for N = 6, 8. This shows that the simulated
dynamics becomes more reliable as the lattice size increases. As explained in the text, in the bulk limit of the lattice, the
simulated Hamiltonian would match the original gauge theory Hamiltonian as the natural consequence of statistical distribution
of the fermions on the lattice . However, classical simulation is not the perfect tool to predict that statistical result (with at
least N 100+) via exact diagonalization of the Hamiltonian as the dimension of the Hilbert space is 22N .

using a small system. Here the particle density
dynamics resulting from i) full gauge theory, ii)
the approximated LSH theory and iii) the atomic
Hamiltonian all agree very well.

• The difference between the actual dynamics due
to the original Hamiltonian and the dynamics due
to the approximated Hamiltonian is quite pro-
nounced in the intermediate coupling/ strong cou-
pling regimes. However, by adjusting the on-site
interaction parameter, it was possible to recover
the correction in the electric energy term (50) sub-
stantially, and hence the ionic-Hubbard dynamics is
now closer to the dynamics of the full gauge theory,
when compared to the same with the approximated
LSH formulation.

• The discrepancy that still exists in the intermedi-
ate/ strong coupling regimes will surely get reduced
if one can simulate using a long enough lattice, such
that in the statistical limit, one can really recover
the correction in electric energy term (50) in full
by choosing the atomic self-interaction accordingly.
Considering that we used a small lattice (6 site sys-

tem) for our numerical simulation and yet man-
aged to observe a good agreement, it is extremely
likely that in an actual experiment (or, tensor net-
work calculation) involving a large number of lat-
tice sites, the error will be insignificant.

It is discussed in Sec. IV, how one can measure the dy-
namics in an actual experiment. However, the actual
time measured in ms during the experiment is related to
the scaled times as:

τexp =
~τatomic

t
≡
τatomic
1.5716

ms (79)

⇒ ≡
2aτgauge

1.5716
ms. (80)

Thus, for different values of lattice spacing, the same
experiment would simulate real time dynamics of gauge
theory happening in different smaller time scale.

C. Effects of possible experimental errors :

As discussed in IV D, the dominant contribution to the
experimental error would come from an imperfection in
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FIG. 5. Simulated particle density dynamics, corresponding to the cartoon of Fig. 2(a) is plotted against a scaled time τ . The
parameters are identical to that used for spectrum analysis in Fig. 3 for (a) weak coupling regime and (b) strong coupling
regime. The simulated dynamics is almost exact to that of the full gauge theory for weak coupling limit. The mismatch between
full gauge theory dynamics and Hubbard model dynamics in strong coupling regime is expected to get minimized at bulk limit.
The approximated LSH is only valid in weak coupling regime and matches with full gauge theory for p � 1 as demonstrated
in spectrum analysis as well. The simulated dynamics is matching better with the full gauge theory dynamics than that of the
approximated Hamiltonian. This is because the tuned self interaction of atomic Hamiltonian takes care of a significant error
that exists in the approximated Hamiltonian.

the initial state preparation. To obtain a rough estimate
of the same, we study the simulated dynamics for a 6-
site lattice. Ideally, all the odd sites should be doubly
occupied. We choose two other configurations : (i) 2 odd
sites doubly occupied, a singly occupied odd site and a
singly occupied even site ( an error of ∼ 17% ) and (ii)
2 odd sites doubly occupied and a doubly occupied even
site ( an error of ∼ 33% ). As shown in Fig. 7, the error

is large in a very short time-span only (< 0.5 in units of
the scaled time τ , while the dynamics was studied in the
range 0 to 10 in the same unit). If we exclude this region,
the percentage error in the first case is well within the
margin of 10% for most of the course of evolution, and
its peak value lies at around 20%. In the second case,
the percentage error lies well within the margin of 20%
for most of the course of evolution, and its peak value
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FIG. 6. A Quantum phase transition is observed with the
ionic Hubbard model at a particular value of u/t, beyond
which the spectrum becomes gapped and hence the Hubbard
model can no longer mimic the dynamics of gauge theory.
This particular plot is obtained with the parameters of Hub-
bard model given in (77) except varying u/t. Choosing a
larger value of V0/t corresponds to smaller value of x0 via
(70), but following (71) it will always be in the Mott Insulat-
ing phase.

lies slightly above 40%. Thus, one may conclude that
as long as the error in the initial state preparation is
within a reasonable range (like, in [61], the systematic
uncertainty is 10%), the dynamics is not much affected
by it.

VI. DISCUSSIONS AND FUTURE DIRECTIONS

This paper presents the very first practically imple-
mentable quantum simulation proposal for simulating
SU(2) lattice gauge theory in (1 + 1)-d, that specifically
simulates the spectrum and dynamics of gauge theory
in weak coupling regime as well as intermediate coupling
regime for a large lattice with good accuracy. Experimen-
tal implementation of this particular scheme will demon-
strate why quantum simulators can be a very effective
tool to study different aspects of gauge theories.

The experimental scheme is remarkably simple. The
parameter regimes that we prescribe are very well acces-
sible in current experiments with ultracold atoms. More-
over, the fact that it is only the averaged population-
imbalance between the odd and even sites that is to be
measured, (and not the single site resolved statistics)
makes it easier to implement. The only possible source
of experimental error could be that in the initial state
preparation where the CDW state might not be a per-
fect one. We have shown in our simulation that such an
error affects the dynamics in a very short initial time-
window only. The atomic dynamics, as observed in a
longer time-scale, can very well simulate the gauge the-
ory dynamics : creation of particle-antiparticle pairs and
breaking of strings.

The proposal is completely scalable that accesses dif-
ferent regimes of gauge theory (with a varying degree of
accuracy) and quantum simulate different symmetry sec-
tors. A suitable scaling scheme presented in this paper
enables one to model different regimes of LGT with a
single experimental set up, just by tuning the control-
lable experimental parameters. For example, the weak
and strong coupling limits of gauge theory is accessed by
taking u/t to 0 and u < uc respectively in the atomic sys-
tem, where uc is a quantum critical point beyond which
the atomic system enters into a Mott insulating phase
as observed in this particular study with small lattice
(see Fig. 6). The only requirement here is that the sys-
tem requires to remain in the same paramagnetic phase
throughout the course of its dynamics, so that in a bulk
limit, all the allowed states are equally probable at half-
filling.

The scheme we present here has a wider applicability
compared to its past counterparts, due to the following
reasons : (a) Any Formalism that deals with the purely
fermionic degrees of freedom of gauge theory (involving
a complete gauge fixing) is dimension-specific, whereas,
in LSH framework, the treatment remains valid for all
dimensions. Here the coupling of matter to the gauge
field remains the same as in 1-d lattice for any higher
dimension. Hence, construction of any building block,
as done in 1-d, will remain useful for higher dimensional
models as well. (b) Replacing gauge fields by fermions
as a solution of Gauss law constraint introduces long
range fermionic interactions in the Hamiltonian. How-
ever, in the present work, with the mean field approxi-
mation of the loop degrees of freedom of the gauge the-
ory, the Hamiltonian contains only on-site interactions
for the fermions that characterize the combined boson-
fermion (ends of string) excitations. Inclusion of the dy-
namical loop degrees of freedom as in (13), along with
Abelian Gauss law constraint (A14) gives the complete
and most general description of the theory. Then it be-
comes exactly equivalent to the purely fermionic formu-
lation [13, 74] in one spatial dimension [48].

Future works will address the issue of going beyond
mean field approximation, as well as going beyond 1 spa-
tial dimension. The LSH formalism for gauge theories in
higher dimensions should be equally useful in construct-
ing atomic quantum simulators for the same. Specifi-
cally, within LSH framework, the matter gauge coupling
remains the same as in 1d in any higher dimension, in-
cluding the feature of non-dynamic loop degrees of free-
dom at matter sites [14, 56, 58]. Hence we expect the
present proposal to remain as a useful building block for
higher dimensional quantum simulators as well. Work is
in progress in these directions and will be reported else-
where. The present scheme can also be generalized for
gauge group SU(3) upon generalization of LSH formal-
ism for SU(3) gauge theory and that will build a concrete
step towards quantum simulating QCD.
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FIG. 7. (a) The particle number dynamics of the original theory is compared against the simulated dynamics for different
values of the coupling x0; (b) percentage deviation from the dynamics of the original theory for perfectly prepared initial state
as well as imperfect initial state preparation is compared. A lattice of 6 sites is being considered. The initial state of the system
is chosen to be the strong coupling vacuum, where, the alternate sites (odd sites) are fully filled by fermions and other sites
(even sites are empty). We consider imperfect initial states with (i) one fermion at one of its even site and one odd site is half
filled that corresponds to almost 17% error in the initial state preparation and (ii) one fully filled even site and one fully vacant
odd site, representing almost 33% error in the initial state preparation.
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Appendix A: Loop-String-Hadron (LSH)
Hamiltonian

LSH formalism of lattice gauge theory is based on pre-
potential framework, where, the original canonical con-
jugate variables of the theory, i.e color electric field and
link operators are replaced by a set of harmonic oscillator
doublets, defined at each end of a link [58, 75–82]. In pre-
potential framework, the SU(2) gauge group is confined
to each lattice site allowing one to have local gauge in-
variant operators and states at each site. For pure gauge
theory, these local gauge invariant operators and states
can be interpreted as local snapshots of Wilson loop op-
erators of original gauge theory. One can now construct
local loop Hilbert space by action of local loop operators
on strong coupling vacuum of the theory (no flux state)
defined locally at each site. At this point, we must men-

tion that, mapping the local loop picture to original loop
description of gauge theory requires one extra constraint
on each link, that states

NL(j) = NR(j) (A1)

where, NL(R) is occupation number of prepoten-
tials/Schwinger bosons at the left(right) end of a link
connecting sites j and j + 1. This constraint is actually
a consequence of the constraint E2

L = E2
R mentioned in

section II.

Inclusion of staggered fermionic matter fields for SU(2)
gauge theory at each lattice site, combines smoothly with
local loop description obtained in prepotential framework
as both the prepotential Schwinger bosons and matter
fields transform as fundamental representation of the lo-
cal SU(2) at that site. In addition to local gauge in-
variant loop operators, one can now combine matter and
prepotentials to construct local string operators, that de-
notes start of a string from a particle and/or end of a
string at an antiparticle. Matter fields combine into local
gauge invariant configurations representing hadrons like-
wise in the original formalism. This complete description
is named as LSH formalism as in [14]. We are not going
into the details of the full LSH formalism here. Instead,
we will focus on the application of LSH formulation to
one spatial dimension only, and describe the appropriate
framework.

Within LSH framework, the gauge invariant and or-
thonormal LSH basis is characterized by a set of three
integers nl(j), ni(j), no(j) that satisfies Gauss’ law con-
straint:

Ga(j)|nl(j), ni(j), no(j)〉 = 0, ∀j, a. (A2)

These three quantum numbers signify loop, incoming
string and outgoing string at each site. The allowed val-
ues of these integers are given by

0 ≤ nl(j) ≤ ∞ (A3)

0 ≤ ni(j) ≤ 1 (A4)

0 ≤ nO(j) ≤ 1 (A5)

Pictorially, the LSH quantum numbers are illustrated in
FIG. 8. It is clear from the range of the quantum num-
bers, that nl is bosonic excitation, whereas ni, no are
fermionic in nature. However, it is important to note
that, unlike fermionic matter field in the original theory,
the fermionic operators building the ‘local string’ Hilbert
space are SU(2) invariant bilinears of one bosonic prepo-
tential operator and one fermionic matter field, yielding
overall fermionic statistics. Hence, the string states con-
tain the information of both gauge field and matter con-
tent.

At this point, we define a set of LSH operators consist-
ing of both diagonal and ladder operators locally at each
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FIG. 8. Two staggered sites in the LSH formulation on a
1d spatial lattice. Each site carries three types of operators
namely incoming string, outgoing string and flux. The Hilbert
space is characterized by the corresponding quantum numbers
nl, ni, no respectively for each and every site of the lattice.

site as following:

n̂l|nl, ni, no〉 = nl|nl, ni, no〉 (A6)

n̂i|nl, ni, no〉 = ni|nl, ni, no〉 (A7)

n̂o|nl, ni, no〉 = no|nl, ni, no〉 (A8)

λ̂±|nl, ni, no〉 = |nl ± 1, ni, no〉 (A9)

χ̂+
i |nl, ni, no〉 = (1− δni,1)|nl, ni + 1, no〉 (A10)

χ̂−i |nl, ni, no〉 = (1− δni,0)|nl, ni − 1, no〉 (A11)

χ̂+
o |nl, ni, no〉 = (1− δno,1)|nl, ni, no + 1〉 (A12)

χ̂−o |nl, ni, no〉 = (1− δno,0)|nl, ni, no − 1〉 (A13)

In the above set of equations, we have not mentioned
explicit site index as these are considered to be defined
at a particular site.

One major benefit of using LSH formalism is that, one
no longer needs to solve/satisfy SU(2) Gauss’ law (7) at
each site as the basis states are SU(2) gauge invariant
by construction. Note that, for non-Abelian gauge the-
ories imposing Gauss’ law is a non-trivial task and that
gives rise to a whole range of complications as discussed
in [48]. However, the LSH formalism still carries the
constraint (A1) that is necessary to glue SU(2) invari-
ant states residing at neighboring sites to yield original
non-local gauge invariant Hilbert space of the theory. In
terms of LSH operators, this constraint (A1) reads as:

n̂l(j) + n̂o(j)(1− n̂i(j))
= n̂l(j + 1) + n̂i(j + 1)(1− n̂o(j + 1)) (A14)

Comparing each side of (A14) to that of (A1) upon acting
on LSH basis states, we get:

NL(j) = nl(j) + no(j)(1− ni(j)) (A15)

NR(j) = nl(j + 1) + ni(j + 1)(1− no(j + 1))(A16)

where, NL(j) and NR(j) count bosonic occupation num-
bers at each end of the link connecting site j and j + 1.
As mentioned earlier, the bosonic occupation number at
each end of a link has contribution coming from fermionic
excitation ni and no as well. Pictorially, left and right
side of (A14) and/or (A1) is represented by the num-
ber of thick solid lines at left and right end of a link

connecting sites j and j + 1 in FIG. 8. As in [14, 48],
definition of a hadronic state in LSH basis is given by
|nl = 0, ni = 1, no = 1〉 at one particular site.

Hamiltonian of the theory, exactly equivalent to the
original Hamiltonian (1) in terms of LSH operators is
given by:

H(LSH) = H
(LSH)
E +H

(LSH)
M +H

(LSH)
I (A17)

where, H
(LSH)
E is the electric energy term, H

(LSH)
M is the

mass term and H
(LSH)
I is the matter-gauge interaction

term of the Hamiltonian. Explicitly, in terms of LSH op-
erators defined in (A6-A13), each part of the Hamiltonian
is as below:

H
(LSH)
E =

g2a

2

∑
n

[
n̂l(j) + n̂o(j)(1− n̂i(j))

2
,

×
(
n̂l(j) + n̂o(j)(1− n̂i(j)

2
) + 1

)]
(A18)

H
(LSH)
M = m

∑
n

(−1)j(n̂i(j) + n̂o(j)), (A19)

H
(LSH)
I =

1

2a

∑
n

1√
n̂l(j) + n̂o(j)(1− n̂i(j)) + 1

×(A20)[
S++
o (j)S+−

i (j + 1) + S−−o (j)S−+i (j + 1)

+S+−
o (j)S−−i (j + 1) + S−+o (j)S++

i (j + 1)
]

× 1√
n̂l(j + 1) + n̂i(j + 1)(1− n̂o(j + 1)) + 1

.

Here (A20) contains LSH ladder operators in the follow-
ing combinations (suppressing the explicit site index),

S++
o = χ̂+

o (λ+)n̂i
√
n̂l + 2− n̂i (A21)

S−−o = χ̂−o (λ−)n̂i
√
n̂l + 2(1− n̂i) (A22)

S+−
o = χ̂+

i (λ−)1−n̂o
√
n̂l + 2n̂o (A23)

S−+o = χ̂−i (λ+)1−n̂o
√
n̂l + 1 + n̂o) (A24)

and

S+−
i = χ̂−o (λ+)1−n̂i

√
n̂l + 1 + n̂i) (A25)

S−+i = χ̂+
o (λ−)1−n̂i

√
n̂l + 2n̂i (A26)

S−−i = χ̂−i (λ−)n̂o
√
n̂l + 2(1− n̂o) (A27)

S++
i = χ̂+

i (λ+)n̂o
√
n̂l + 2− n̂o. (A28)

The strong coupling (ga� 1,ma =fixed) vacuum of the
LSH Hamiltonian is given by:

nl(j) = 0 ∀j
ni(j) = 1 , no(j) = 1 for j odd (A29)

ni(j) = 0 , no(j) = 0 for j even

It is easy to check that (A29) satisfies Abelian Gauss
law (A14). One should also consider a suitable boundary
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condition for one dimensional spatial lattice as discussed
in detail in [48] as:

Open Boundary Condition (OBC):

NR(0) = lOBC
i

Periodic Boundary Condition (PBC):

NR(0) = NL(N − 1) ≡ lPBC
i .

where, NL, NR are defined in (A15) and (A16) for the
first (0) and last (N − 1) site of a N site lattice. li
can be any positive semi definite integer. Now, one
can easily check that, for any gauge invariant state∏N−1
j=0 |nl(j), ni(j), no(j)〉, the bosonic quantum numbers

nl(j) for all values of j are completely determined by the
boundary flux li and constraint (A14) imposed on each
and every link of the lattice starting from one end as:

nl(j) = li +

j−1∑
y=0

(no(y)− ni(y))

−ni(j) (1− no(j)) . (A30)

For OBC, any physical state in LSH formalism is com-
pletely determined by (ni, no) quantum numbers at each
side. For PBC, the gauge invariant or LSH Hilbert space
is characterized by many copies of the same fermionic
(ni, no) configurations with different winding number of
closed loops, that plays the exact role as the li and fixes
the nl’s throughout the lattice. We exploit this partic-
ular feature in the analog quantum simulation proposal
outlined in the present work 3. Note that, nl being deter-
mined does not mean that we describe a static gauge field
theory; rather, truly relevant or physical gauge degrees
of freedom are contained into the (ni, no) excitation of
any physical state.

Appendix B: Fermi-Hubbard Model and Tight
Binding Parameters

Let ψ↑(x) and ψ↓(x) be the field operators correspond-
ing to the two hyperfine states of the fermionic atom.
Now, if the lattice potentials are sufficiently deep, the
field operators can be expanded in terms of single-particle
Wannier functions, localized to each lattice site:

ψσ(x) =
∑
j

cσ(j)W(x− xj); σ =↑, ↓, (B1)

where cσ(j) is the fermionic annihilation operator for spin
index σ and site j. The corresponding number operators
are Njσ = c†σ(j)cσ(j).

3 The numerical analysis performed in this work is for OBC in
gauge theory as simulating the same in an experiment is easier
than that for PBC.

The Hamiltonian can be written as

H = Hhopping +Hint +H0 (B2)

Here Hhopping denotes the hopping of a fermion from
one site to another, Hint represents the interaction when
one up-spin fermion shares the same site with a down-
spin fermion, and H0 is energy offset, arising out of the
single-particle Hamiltonian.

Let

H0(x) =
−~2

2m

∂2

∂x2
+ V (x) (B3)

In our construction, V (x) = −VL cosx2. So effectively,
V (x) = −VL for each site.

Hopping: The hopping term, which represents the
tunneling between sites is given by :

Hhopping = −
∑
j

ti,j
(
c†↑(j)c↑(i) + c†↓(j)c↓(i)

)
.2 (B4)

Tunneling to next-nearest neighbors is usually suppressed
by one order of magnitude, in comparison with the near-
est neighbor tunnelling. So we consider hopping between
adjacent sites only. The tunneling rate from site j to
(j + 1) is given by the matrix element

tj,(j+1) = −
∫
W(x− xj)H0W(x− xj+1)dx. (B5)

On-site interaction term: In the low-energy scat-
tering regime, the atoms usually interact via s-wave scat-
tering. The corresponding coupling constant is given by

g0 =
4π~2as
m

as being the scattering length. The interacting part
of the Hamiltonian (between up-spin and down-spin
fermions sharing the same site) is given by:

Hint = u
∑
j

N↑(j)N↓(j). (B6)

Here the on-site interaction matrix element is given by

u = g0

∫
|W(x− xj)|4dx. (B7)

Energy offset : The energy offset can be expressed
as :

H0 =
∑
j

εjN (j). (B8)

where

εj =

∫
W(x− xj)H0W(x− xj)dx. (B9)

In our construction, the lattice potential V (x) =
−VL cos kx2, and in Section III A we split this potential
as VL = V1−V0. At this point, We drop the contribution
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from the kinetic term and also V1, because these simply
add a constant energy shift throughout the lattice. HV0

,
the contribution from V0 is a constant, too, but we keep
this, in order to make a direct correspondence with the
reduced LSH Hamiltonian.

HV0
=
∑
j

V0N (j) (B10)

Next, alternating potentials V ′ and −V ′ are added to

the odd and even sites respectively. Thus the relevant
part of the energy offset becomes:

H0 = HV0 +HV ′ (B11)

with

HV ′ = V ′
∑
j=odd

N (j)− V ′
∑

j=even

N (j) (B12)
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