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Dynamic core-electron polarization (DCeP) is a correction to the single-active electron (SAE)
approximation by considering a response of the core electrons to the time-dependent laser field.
Despite being initially construed as a perturbative correction, in some cases especially atoms and
molecules with large polarizabilities, DCeP can qualitatively alter predictions produced by the bare
SAE theory. In this study, we unambiguously demonstrate the non-perturbative role of DCeP in
the resolved odd-even high-order harmonic generation (HHG) of the CO molecule. In particular,
we find that the even-to-odd ratio, i.e., the ratio between the harmonic intensities of even order and
average of the two adjacent odd orders, changes by as much as one order of magnitudes when DCeP
is included, making the theoretically predicted values remarkably consistent with the experimental
ones. This strong manifestation allows us, for the first time, to verify the DCeP role in HHG by
experimental data. Furthermore, our analysis of the harmonic time profile shows that this agreement
is not an artifact of the numerical method but reflects relevant physics, establishing that DCeP must
be incorporated into the standard framework for strong-field physics.

I. INTRODUCTION

Over the past few decades, advances in intense ul-
trashort laser technologies have enabled unprecedented
non-linear laser-matter interactions [1–3], which mo-
tivate theoretical frameworks to evolve rapidly. The
simplest model is probably the single-active electron
(SAE) approximation [4–10] where the least-bound elec-
tron moves in the effective potential forming by the nu-
clei and frozen core electrons. However, for some atoms
and molecules with large polarizabilities, this approach
produces unacceptable mismatches with experimental
observation, raising the question of the role of the mul-
tielectron effect [11–15]. An obvious way to improve
the predictive power of the SAE theory is to relax one
or several of its assumptions. Instead of assuming frozen
core electrons, we allow them to dynamically respond to
the external laser field; thus, the field induced by core
electrons over the active electron now contains an extra
time-modulated term.

In a strong laser field, core electrons are periodi-
cally shaken by the external laser field, causing the
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dynamic core-electron polarization (DCeP) [16]. The
core-electron polarization is particularly strong for po-
lar molecules, making them suitable platforms to study
the effect of this phenomenon. Many studies demon-
strate that DCeP improves the quantitative agreement
with experimental measurements in many aspects, in-
cluding the ionization rate [15, 17–20], photoelectron
distribution of above-threshold ionization (ATI) [14,
15], and Coulomb-explosion image of highly charged
molecules [21]. In theory, the effect can be resolved
in the intensity and shape of the high-order harmonic
generation (HHG) spectra [22, 23], but the magnitude
is too small, preventing comparison with experimental
data. In this paper, we aim at a different aspect of
HHG spectra, the even harmonic orders. This feature
is distinctive to polar molecules, which are also known
to have strong DCeP manifestation, making it a good
candidate to study the signature of DCeP.

The presence of both odd and even harmonic orders is
due to the symmetry breaking of the laser-molecule sys-
tem [24–26] (unpolarized targets in linearly polarized
laser only emit odd orders). The richer resolved odd-
even spectra from polar molecules thus can be used to
study various molecular properties [27–30]. Features of
the resolved odd-even spectra can be captured through
the even-to-odd ratio defined as the ratio between HHG
intensities of the even and the average of the two adja-
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cent odd orders [24, 25, 31, 32]. It is then natural to
ask whether the even-to-odd ratio is sensitive to mul-
tielectron effects. Our earlier work [33] has introduced
the DCeP effect on the even-to-odd ratio of fixed har-
monic orders with varying CO molecular orientation.
In the present work, we comprehensively investigate
the imprint of the DCeP effect in the even-to-odd ra-
tio from CO molecules exposed to a linearly polarized
laser pulse. The influence is not only analyzed theoreti-
cally but also compared with the available experimental
measurements [24, 25]. We also establish that the strong
manifestation of DCeP in the even-to-odd ratio is a con-
sequence of the DCeP influence on the magnitude and
phase of the harmonic time profile.

II. NUMERICAL METHODS

To simulate HHG, we numerically solve the time-
dependent Schrödinger equation (TDSE) in the frame-
work of SAE approximation, incorporating the DCeP
potential. Although all-electron methods of time-
dependent density functional theory [34] and multi-
configuration time-dependent Hartree-Fock [35] can
capture multielectron dynamics, the TDSE method
saves computational resources, and by it the roles of
physical processes, particularly the DCeP are more
transparent.

The TDSE method for the system of CO molecule and
a linearly polarized laser pulse is presented in detail in
our previous works [23, 32, 33, 36]. Accordingly, the
potential of the CO molecule is constructed within the
SAE approximation [37, 38]. The SAE potential gives
the 5σ energy of −0.510 a.u. in good consistency with
the experimental value of −0.514 a.u. for CO [39]. The
5σ permanent dipole of 1.55 a.u. well matches 1.57 a.u.
obtained by the time-dependent density functional the-
ory [40]. For establishing the calculation, the CO molec-
ular axis is aligned along the z−axis, as exhibited in
Fig. 1.
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FIG. 1. The CO model and molecular frame. An electric
field aligned along the unit vector e makes with the molec-
ular axis an orientation angle θ.

The coupling of the active electron and the time-
dependent electric field is written as

VL(r, t) = r ·E(t), (1)

where the electric field has the following form

E(t) = ef(t)E0sin(ω0t+ ϕ), (2)

in which, E0, ω0, ϕ and f(t) are respectively the peak
amplitude, carrier frequency, carrier-envelope phase,
and envelope function of the laser pulse. e is a unit
vector located in the xz plane, as shown in Fig. 1. The
angle θ between the z−axis and vector e is called the
orientation angle.

Besides the SAE component, we add an extra term de-
scribing the interaction between the active electron with
the dynamically polarized core electrons, i.e., DCeP po-
tential

VP(t) = −E(t)α̂cr

r3
. (3)

Here, α̂c is the total polarization tensor of the core elec-
trons whose values are taken from Ref. [18].

Specifically, αcxx = αcyy = 6.72 a.u. and αczz =
12.22 a.u. It is worth noting that within a small dis-

tance near the core, i.e., r ≤ rc with rcx = rcy = α
1/3
cxx

and rcz = α
1/3
czz , the polarization potential should cancel

the external laser field [16, 17]. Operationally, both the
external and DCeP potentials are turned off at r ≤ rc to
avoid the singularity and also minimize the unphysical
dipole coupling of the HOMO to the lower-lying bound
states [20].

After getting the time-dependent wave function
ψ(r, t) by solving the TDSE, we calculate the induced
dipole acceleration as

a(t) =
d2

dt2
〈ψ(r, t)|r|ψ(r, t)〉 . (4)

The HHG spectra are obtained by taking the square
modulus of the Fourier transform of the acceleration
dipole. We are interested in both parallel and perpen-
dicular HHGs, i.e., whose polarization is respectively
parallel and perpendicular to the external electric po-
larization.

To analyze the spectral and temporal behaviors of
HHG, we utilize the Gabor transform with the following
form

A(Ω, t) =

∫
dt′a(t′)

exp[−(t′ − t)2/2σ2]

σ
√

2π
exp(iΩt′), (5)

where Ω is the harmonic frequency; σ = (3ω0)−1 ensures
the impartiality between the resolutions in the temporal
and frequency domains [41]. Through this analysis, we
easily obtain both the numerical amplitude and phase
of the attosecond bursts from the induced dipole accel-
eration simulated by TDSE, see Eq. (4).

To ensure the numerical convergence for all laser pa-
rameters used in this study, we perform the calculation
with 380 radial grid points and 180 B-spline functions in
a spherical box within the radius of 100 a.u., 50 partial
waves, and the time step of 0.055 a.u. The total basis
set is 395,213. To prevent the artificial reflections from
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the grid boundary, the cos1/8 mask function [42] is ap-
plied at a distance beyond rmask. If both the short and
long trajectories are to be kept, we set rmask = 60 a.u
which equals 3/5 radius of the simulated box.

Throughout this study, to obtain sharp peaks at in-
teger harmonic orders, we adopt a 10-cycle laser pulse
with the trapezoidal envelope, in which two optical cy-
cles linearly ramp up and down, and eight cycles in the
flat part. We have examined for laser pulse with a larger
number of optical cycles and obtained the same conclu-
sion. The carrier-envelope phase ϕ is set to π.

We also consider the macroscopic propagation, which
can be mimicked by selecting only short trajectories in
theoretical simulations [30, 43–45]. In this case, we ap-
ply the trajectory-resolved numerical procedure with re-
striction of the absorbing boundary beyond the maxi-
mal displacement of the short electron trajectories in
the laser field, rmask = 1.2E0/ω

2
0 . As shown in numeri-

cal simulations in Appendix A, this practice indeed pro-
duces smooth even-to-odd ratios that are relatively in-
dependent of the laser parameters. Remarkably, experi-
mental data that measured the even-to-odd ratio of CO
molecule when the laser intensity of 1.5 × 1014 W/cm2

[24] and 2.2 × 1014 W/cm2 [25], as shown in Fig. 2, also
exhibits stability against different laser intensities. Sup-
ported by this experimental fact, in the rest of the pa-
per, our simulations only keep the short trajectories by
restricting the absorbing boundary. All the simulation
results in the main body of this paper are performed for
the case of the CO molecule aligned parallel to the in-
cident laser field. Results for other angles are presented
in Appendix B.

III. EFFECT OF DCEP
ON THE EVEN-TO-ODD RATIO

We first demonstrate the even-to-odd ratio by the
TDSE method for CO molecule without and with DCeP
potential, presented in Fig. 2 as SAE and SAE+P, re-
spectively. The 10-cycle laser pulse with the wavelength
of 800 nm and intensity of 1.5 × 1014 W/cm2 is adopted.
We also display available experimental data reported in
Refs. [24, 25]. In these experiments, the CO molecules
are partially oriented with degrees of orientation ζ of
0.24 [24] and 0.73 [25], but our simulation is for perfect
orientation. Therefore, we normalize the experimental
even-to-odd ratios by a factor of 1/ζ2 [31]. The the-
oretical results with and without DCeP, together with
normalized experimental data, are shown in Fig. 2.

Dynamic core-electron polarization is usually thought
of as a small perturbation, only producing minuscule
corrections to the intensity and shape of HHG spectra
[22, 23, 36]. Surprisingly, Fig. 2 shows that DCeP mod-
ifies the even-to-odd ratio as much as one order of mag-
nitude, significantly improving its consistency with ex-
perimental data. Specifically, when ignoring the DCeP,
the even-to-odd ratio is around one order of magnitude
larger than unity for all harmonics, except ones around
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FIG. 2. The simulated even-to-odd ratios of the CO
molecules with DCeP (SAE+P) (solid line) and without
DCeP (SAE) (dashed line). The 800 nm laser pulse with
the intensity of 1.5 × 1014 W/cm2 is used. The experimental
data are taken from Refs. [24] (blue crosses) and [25] (green
open hexagons) for the 800 nm laser pulse with intensities
of 1.5 × 1014 W/cm2 and 2.2 × 1014 W/cm2, respectively.
The break interval in y−axis is [2.5, 2.7] dividing the fig-
ure into two spaces with different scales. The experimental
even-to-odd ratios match the theoretical ones with the DCeP
effect.

37 eV. With DCeP, the ratio only varies within the range
∼ [0, 2], matching the experimental energy-dependent
even-to-odd ratio in both magnitude and shape. Partic-
ularly, with increasing harmonic energy, the even-to-odd
ratio gradually grows near unity at harmonics around
21 eV – 31 eV, then decreases until reaching the mini-
mum near 37 eV. We also observe an agreement at the
peak around 28 eV related to the shape resonance phe-
nomenon [46].

We emphasize that the effect of DCeP in the even-
to-odd ratio is so pronounced that even if moderate
experimental noise is factored in, the agreement with
experiments is still undoubtedly superior to the simple
SAE approximation. In Appendix B, we also show that
DCeP has a measurable effect in the energy-dependent
even-to-odd ratio at different orientation angles, in both
parallel and perpendicular HHGs. We thus recommend
the even-to-odd ratio as a prospective experiment to
study DCeP.

This strong DCeP effect can be understood by esti-
mating the molecular dipole in the external field. The
adiabatic electric dipole is approximately µp + µind,
where µp and µind = αczzE(t) are respectively the per-
manent and induced dipoles of the cation. The value
µp = 1.07 a.u. is obtained by the chemical code Gaus-
sian09 [47] with the DFT-UB3LYP method using the
basis set aug-cc-pVQZ. In the laser pulse with the in-
tensity of 1.5 × 1014 W/cm2, i.e., 0.065 a.u., the elec-
tric dipole varies between 0.28 a.u. and 1.86 a.u. This
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asymmetry-induced strong variation results in a consid-
erable effect of even and odd harmonics.

IV. DCEP EFFECT
ON HARMONIC TIME PROFILE

To explain the prominent manifestation of DCeP in
the even-to-odd ratio, we start from the origin of even
and odd harmonics. Harmonic generation is a coherent
interference of the attosecond bursts emitted periodi-
cally with half-cycle time translation [5]. Specifically,
the complex spectral amplitude of harmonic with fre-
quency nω0 (ω0 is the fundamental frequency deter-
mined by the laser frequency) is defined as A(n) =
A1(n) − A2(n)e−iπn, where A1(n), and A2(n) are the
complex amplitudes of the harmonic emitted from the
opposite sites of the CO molecules [24]. As a result, the
odd (even) harmonics are caused by the constructive
(destructive) interference of the two successive attosec-
ond bursts. Consequently, we can derive the magnitude
of the even-to-odd ratio as

η(n) = 1− 2 κ(n)cos∆φ(n)

1 + κ(n) cos∆φ(n)
, (6)

where κ(n) =
2|A1(n)| |A2(n)|
|A1(n)|2 + |A2(n)|2

∈ [0, 1] is the inten-

sity imbalance, and ∆φ(n) is the phase difference of the
two adjacent attosecond bursts. The complex spectral
amplitude of the attosecond bursts, A1(n) and A2(n),
can be obtained from induced dipole acceleration ob-
tained from TDSE via the time-frequency transform,
see Eq. (5).

By reconstructing the amplitude and phase of the at-
tosecond bursts, we can identify the origin of the DCeP
effect on the even-to-odd ratios via their connection
with the harmonic time profile. The polar nature of the
molecule CO breaks the symmetry between two consec-
utive laser half-periods, making the destructive inter-
ference between two immediate attosecond bursts im-
perfect. Even though the existence of this symmetry
breaking is standard in all theoretical models, its quan-
titative characteristics strongly depend on the accuracy
level of the theory. We show in Fig. 3 the numerical
magnitude and phase of the time profile produced with
and without DCeP at orders 16 and 22 as examples for
low- and high-order harmonics.

As shown in Fig. 3(a) for low-order harmonics, the
DCeP enhances the attosecond-burst intensity emitted
at the instants t ≈ (1.25 + k)T0 (with k = 1 − 8 and
T0 is the laser period), while almost eliminates bursts
at the half-cycle translation, t′ ≈ (1.76 + k)T0. Mean-
while, the intensity imbalance among attosecond-bursts
produced by the bare SAE is negligible. For high-order
harmonic, as in Fig. 3(c), even though SAE displays
strong intensity imbalance, the time-dependence is op-
posite to the SAE with DCeP. In both examples, the
difference between the two theories is clearly qualita-
tive and can be attributed to the fact that the DCeP
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FIG. 3. The time profile intensity [(a), (c)] and phase [(b),
(d)] for orders 16 and 22 from theoretical models with-
out (SAE) and with DCeP (SAE+P). The lasers with the
same parameters as used in Fig. 2 but with the laser inten-
sity of 1.5 × 1014 W/cm2. The red and black circles indicate
the peaks of attosecond bursts when ignoring and including
DCeP, respectively.

significantly enhances the ionization when the electric
field points from C to O (called parallel orientation),
and depresses the ionization for the inverse case (an-
tiparallel orientation) [17, 18]. Matching with classical
paths shows that the emission instants t (t′) in Fig. 3
correspond to the ionization instants whose electric field
has the parallel (antiparallel) orientation. As a result,
DCeP amplifies the bursts at t moments and weakens
those at t′ moments. However, it is surprising that this
effect is so strong that it overrides the initial behavior
without DCeP. In addition, the DCeP shifts the emis-
sion times of the attosecond bursts; for example, for
order 22, about 20 attoseconds forward at the instants t
and about 60 attoseconds backward at t′. This observa-
tion closely relates to the detuning of emission times of
synthesized attosecond pulse for molecular parallel and
antiparallel orientations caused by the dynamic defor-
mation of the electronic orbital as stated in Ref. [22].

Similar to the intensity, the phase also undergoes a
significant change as DCeP is taken into account, as
shown in Figs. 3(b) and 3(d). This impact is more ap-
parent for high harmonic orders. For low orders, the
bursts at t′ almost vanish, making the phase differ-
ence meaningless. In particular, for order 22, the two
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bursts at ∼ 4.25T0 and ∼ 4.76T0 are almost in phase
(∆Φ ≈ 44◦) in SAE but out of phase (∆Φ ≈ 107◦) in
SAE+P. For order 16, these bursts are still in phase,
with the phase differences being about 27◦ and 49◦ for
SAE and SAE+P, respectively. According to the strong-
field approximation [5, 48], the phase difference between
the two adjacent bursts of a polar molecule consists of
three terms representing the phase difference of electron
acquired on tunneling ionization, propagation, and re-
combination steps. The phase differences accumulated
during photo-ionization and photo-recombination steps
depend on the phase discrepancy between the molecu-
lar ground state and the continuum state of a tunneled
electron. The phase of the propagation step is accumu-
lated from the ionization to the recombination instants,
and relates to the Stark-shifted ion ground state. More-
over, the DCeP deforms the HOMO orbital and changes
HOMO energy in the opposite direction for parallel and
antiparallel orientations [17, 22], and also affects the re-
combination instants as shown in Figs. 3(a) and 3(c).
Consequently, the DCeP can change the phase differ-
ences at each step and accordingly the phase differ-
ences between the attosecond bursts. Again the effect of
DCeP on the harmonic phase is expected, but the sur-
prising result we find is the very high magnitude of this
effect. Together with the aforementioned discussion on
the harmonic intensity, we can assert that DCeP must
be considered not as a correction but on the same level
as other terms such as the kinetic energy or the laser
potential.

Given the strong effect of DCeP on the harmonic time
profile, we now identify the exact mechanism through
which DCeP significantly corrects the measurable even-
to-odd ratio. In Fig. 4, we present the components
of Eq. (6), κ(n) and −cos∆φ(n) reconstructed from
the two adjacent attosecond bursts around 4.76T0 and
5.25T0. Note that the phase differences here are sub-
tracted by π phase compared with those directly cal-
culated from Gabor transform [Figs. 3(b), 3(d)] due to
the half-cycle time translation. Figure 4(a) shows that
within the bare SAE, κ(n) is close to unity for the most
part of the harmonic energy range; while with DCeP,
κ(n) not only changes its modulation with the harmonic
energy but is also significantly reduced in its magni-
tude. This difference has an important implication to
the even-to-odd ratio. The small value of κ(n) means
a large imbalance in the magnitudes of two consecutive
bursts, indicating that besides the region around order
22, for instance, order 16 shown in Fig. 3(a), DCeP al-
most eliminates the bursts at instants t′. As a result,
the even-to-odd ratio produced with DCeP is close to
unity as the interference is dominated by bursts at t
instants.

In addition to the magnitude imbalance, the bare SAE
also incorrectly estimates the phase difference between
two consecutive bursts. For −cos∆φ(n), with increasing
the harmonic energy, the value when neglecting DCeP
remains mostly positive close to unity (except a sharp
dip at order 26). Together with that κ(n) ∼ 1, this
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FIG. 4. The illustration of κ(n) (a) and − cos ∆φ(n) (b)
calculated from the two adjacent attosecond bursts emitted
around 4.76T0 and 5.25T0 for the cases without (SAE) and
with DCeP (SAE+P). In Fig. (c), the even-to-odd ratio cal-
culated by Eq. (6) is compared to the result from TDSE
when considering DCeP. The laser parameters are the same
as in Fig. 3. The phase difference between the adjacent at-
tosecond bursts and the even-to-odd ratio have similar mod-
ulation with harmonic energy.

means the two consecutive bursts have the same magni-
tude but opposite phase, resulting in the vanishing odd
harmonics and an unphysically large even-to-odd ratio.
However, the inclusion of DCeP can correct both the
magnitude imbalance and the phase difference, leading
to a much more physical even-to-odd ratio.

In Fig. 4(c), we show the even-to-odd ratio recon-
structed from components κ(n) and −cos∆φ(n) of ad-
jacent attosecond bursts using Eq. (6) when including
DCeP, which agrees well with the simulated data from
TDSE both in magnitude and shape. For low harmonic
energy, the fluctuation of the simulated from TDSE is
not captured by the reconstruction from Eq. (6) since
this formula simply utilizes only two adjacent out of a
series of attosecond bursts; however, their typical mag-
nitudes are consistent with each other. Interestingly,
Figs. 4(b) and 4(c) reveal that − cos ∆φ(n) and the
even-to-odd ratio have the same modulation with har-
monic energy. The turning point of the even-to-odd ra-
tio from > 1 to < 1 exactly matches the turning point of
− cos ∆φ(n) from positive to negative, as can be under-
stood from Eq. (6). Remarkably, this turning point is
confirmed experimentally (see Fig. 2 at around 31 eV),
implying that other corrections to the theory might only
be of high-orders. Following this argument, we empha-
size that the analogous turning point of − cos ∆φ(n) is
absent in the bare SAE, consistent with the observation
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that the even-to-odd ratio produced by bare SAE has
not only the wrong magnitude scale but also incorrect
shape compared to experiments. Our finding comple-
ments the DCeP effect on the harmonic phase besides
the knowledge on the harmonic intensity found in previ-
ous studies [22, 23, 33, 36]. We thus recommend that the
basic theoretical framework for polar molecules should
be SAE+P (instead of SAE) with the effect of dynamic
core polarization calculated unperturbatively.

V. CONCLUSION

In this paper, we have theoretically investigated
the even-to-odd ratio of CO molecule by solving the
TDSE in the framework of SAE approximation includ-
ing DCeP. We demonstrate the remarkable influence of
the multielectron effect via DCeP on the even-to-odd
ratio of CO molecule. Without DCeP, the even-to-odd
ratio is much larger than unity, in contrast to the case of
including DCeP, where the even-to-odd ratio is close to
unity, significantly improving the agreement with avail-
able experimental data.

Furthermore, we also explicitly show that the DCeP
significantly imprints in the harmonic time profile in
both intensities and phases, which directly causes the
DCeP signature in an even-to-odd ratio. Our find-
ing complements the understanding of the DCeP effect
on the harmonic phase besides the harmonic intensity
found in previous studies. We emphasize that the role of
DCeP in the even-to-odd ratio is nonperturbative and
should be included in the standard theory.
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Appendix A: Stability of even-to-odd ratio

In this appendix, we prove that removing the long
trajectories leads to smooth even-to-odd ratios that are
relatively independent of the laser intensities and wave-
lengths. First, we simulate the case of CO molecular
orientation θ = 0◦ where only parallel HHG is gener-
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FIG. A.1. The separated odd- and even-harmonic spec-
tra [(a)-(b)] and the even-to-odd ratios when considering
both long and short [(c)-(d)], or only short [(e)-(f)] trajec-
tories of ionized electrons. In [(c)-(f)], the horizontal dotted
grey lines show the even-to-odd ratio equals one. The laser
parameters are: wavelength of 800 nm and various intensi-
ties [(c), (e)]; and intensity of 1.5 × 1014 W/cm2 and various
wavelengths [(d), (f)]. The notation I0 in the figures stands
for 1.0 × 1014 W/cm2. The molecular orientation angle is 0◦.
The DCeP effect is included. The elimination of long tra-
jectories smooths the odd- and even-harmonic spectra, and
the even-to-odd ratios. Moreover, the even-to-odd ratios are
stable with changing laser intensities (e) and wavelengths (f).

ated. The simulated odd and even HHG spectra, and
even-to-odd ratios are presented in Fig A.1.

Figures A.1(a) and A.1(b) compare the separated
odd- and even-harmonic spectra when considering full
trajectories (dashed lines) and only the short ones (solid
lines). The laser wavelength and intensity are respec-
tively 800 nm and 1.8 × 1014 W/cm2. The DCeP
effect is included for simulating HHG. Figures A.1(a)
and A.1(b) reveal that with full trajectories, except the
cutoff region, the intensities of both even- and odd-
harmonic spectra strongly fluctuate, thus leading to the
oscillation of the energy-dependent even-to-odd ratio, as
shown by the blue dashed line in Fig. A.1(c). This fluc-
tuation can be attributed to the interference of long and
short trajectories in each optical half-cycle of the laser
pulse. Only for the harmonics at the cutoff, the two
trajectories are merged, resulting in the smooth mod-
ulation observed in the HHG [Figs. A.1(a) and A.1(b)]
and even-to-odd ratio in this region [Fig. A.1(c)] (as
opposed to the rapid oscillating HHG and even-to-odd
ratio at low harmonic orders when the long and short
trajectories are widely separated). Therefore, avoiding
the quantum path interference by removing the long tra-
jectories makes the odd and even spectra [Figs. A.1(a)
and A.1(b)], as well as the even-to-odd ratio [blue solid
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FIG. B.1. The simulated even-to-odd ratios for parallel (up-
per panels) and perpendicular (lower panels) HHG spectra
from CO molecules without (SAE) and with the DCeP effect
(SAE+P) in the case of orientation angles of 30◦ [(a)-(b)]
and 75◦ [(c)-(d)]. The 800 nm laser pulse with the intensity
of 1.5 × 1014 W/cm2 is used. The DCeP affects both the
magnitude and shape of the even-to-odd ratio of parallel and
perpendicular HHGs.

line in Fig. A.1(e)], much smoother. For comparison, we
also present the even-to-odd ratio with full trajectories
when varying the laser intensities (with the fixed wave-
length of 800 nm) shown in Fig. A.1(c), and wavelengths
(with the fixed intensity 1.5 × 1014 W/cm2) shown in
Fig. A.1(d) within the tunneling ionization regime. The
results indicate that the fluctuation of the even-to-odd
ratio occurs disorderly with the changing of laser param-
eters. However, it is interesting that when restricted to
only short electron trajectories, the even-to-odd ratio is
almost insensitive to the laser intensities [Fig. A.1(e)]
and the wavelengths [Fig. A.1(f)]. Our statement is
supported by available experimental data showing rel-
atively similar even-to-odd measurements for the CO
molecule at different laser intensities (see Fig. 2).

We also examine the stability of the even-to-odd ra-
tio for other molecular orientations and obtain similar
results. Macroscopically, this stability ensures that fea-

tures of the even-to-odd ratio still persist after integra-
tion over the laser-focus volume. Therefore, the even-
to-odd ratio can be used as a tool to extract molecular
asymmetricity such as geometric structure or permanent
dipole of polar molecules.

Appendix B: Orientation angles other than 0◦

Besides the case of θ = 0◦ presented in section III,
we study the signature of DCeP in the even-to-odd ra-
tio for other orientation angles, where HHG with both
parallel and perpendicular polarizations are generated.
Figure B.1 shows the even-to-odd ratios for the cases
of θ = 30◦ and θ = 75◦ as representatives. The results
show that except θ = 90◦ whose parallel and perpendic-
ular HHGs contain respectively purely odd and purely
even harmonics [33, 49, 50], the DCeP strongly affects
the energy-dependent even-to-odd ratio in both magni-
tude and shape (one to two orders of magnitude), see
Fig. B.1. In particular, for small alignment angles with
θ < 60◦ [Figs. B.1(a) and B.1(b)], the even-to-odd ra-
tio with DCeP is mostly around unity, while it is much
greater than unity when omitting DCeP. It means that
the even harmonics substantially predominate the odd
ones for the bare SAE, but they are comparable in the
whole plateau when including DCeP.

For the orientation angle θ = 75◦ shown in
Fig. B.1(c), the even-to-odd ratio of parallel HHG in
both cases SAE and SAE+P is less than unity, which
implies that the intensity of the odd harmonic orders is
much greater than that of the even ones. For the bare
SAE, the even-to-odd ratio is extremely low since the
even harmonic orders almost vanish. In other words,
when the orientation angle approaches 90◦, the DCeP
slows down the diminishing of even orders for parallel
HHG.

For the perpendicular HHG at θ = 75◦ presented in
Fig. B.1(d), the even-to-odd ratio of the bare SAE is
greater than unity for high-order harmonics, meaning
the intensity of even harmonic orders predominates the
odd ones. Meanwhile, the odd harmonics still dominate
the even ones when including DCeP. In this case, the in-
tensity of the odd harmonic orders with DCeP decreases
slower than those without DCeP.
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D. Dimitrovski, M. Abu-Samha, C. P. J. Martiny, and
L. B. Madsen, Nat. Phys. 6, 428 (2010).

[3] T. Popmintchev, M.-C. Chen, D. Popmintchev,
P. Arpin, S. Brown, S. Aliauskas, G. Andriukaitis,
T. Baliunas, O. D. Mcke, A. Pugzlys, A. Baltuka,
B. Shim, S. E. Schrauth, A. Gaeta, C. Hernndez-Garca,

L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane,
and H. C. Kapteyn, Science 336, 1287 (2012).

[4] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[5] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier,

and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[6] N. I. Shvetsov-Shilovski, D. Dimitrovski, and L. B.

Madsen, Phys. Rev. A 85, 023428 (2012).
[7] N. I. Shvetsov-Shilovski, M. Lein, and L. B. Madsen,

Phys. Rev. A 98, 023406 (2018).
[8] M. Nurhuda and F. H. M. Faisal, Phys. Rev. A 60, 3125



8

(1999).
[9] W. Becker, F. Grasbon, R. Kopold, D. B. Milošević,
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