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Since the 4He dimer supports only one weakly bound state with an average interatomic distance
much larger than the van der Waals length and no deeply bound states, 4HeN clusters with N > 2
are a paradigmatic model system with which to explore foundational concepts such as large s-
wave scattering length universality, van der Waals universality, Efimov physics, and effective field
theories. This work presents structural properties such as the pair and triple distribution functions,
the hyperradial density, the probability to find the Nth particle at a given distance from the center
of mass of the other N − 1 atoms, and selected contacts. The kinetic energy release, which can be
measured via Coulomb explosion in dedicated size-selected molecular beam experiments—at least
for small N—, is also presented. The structural properties are determined for three different realistic
4He-4He interaction potentials and contrasted with those for an effective low-energy potential model
from the literature that reproduces the energies of 4HeN clusters in the ground state for N = 2 to
N = ∞ at the & 95 % level with just four input parameters. The study is extended to unitarity
(infinite s-wave scattering length) by artificially weakening the interaction potentials. In addition to
contributing to the characterization of small bosonic helium quantum droplets, our study provides
insights into the effective low-energy theory’s predictability of various structural properties.

PACS numbers:

I. INTRODUCTION

Bosonic helium droplets, i.e., clusters consisting of a
finite number of 4He (helium-4) atoms, have captivated
physicists’ interests over many decades [1–34]. They
provide a bridge between the microscopic and macro-
scopic worlds, with the helium dimer being bound by
just 1.6 mK [35, 36] and the binding energy per par-
ticle reaching about 7 K in bulk liquid helium-4 [37].
Mesoscopic helium-4 droplets are essentially incompress-
ible and a subset of their properties are captured accu-
rately by a “bare bone” liquid drop model, which con-
tains a volume term, a surface term, and two additional
terms that are treated as fitting parameters [12]. We
note that liquid drop models that contain volume, sur-
face, Coulomb, pairing, and asymmetry terms provide a
starting point for understanding key properties of nuclei,
including the stability of highly-deformed nuclei and nu-
clear fission [38]. The roton minimum, the smoking gun
of superfluid bulk helium-4 [39, 40], has been found the-
oretically to first emerge for N ≈ 60 atoms [41], moti-
vating the term microscopic superfluidity. Experimen-
tally, the prediction was verified by embedding a small
helium-4 cluster of varying size into a much larger helium-
3 droplet [42]. Large helium-4 droplets with more than
about N = 1, 000 atoms, in turn, have been employed
as micro-laboratories with which to capture, cool, and
equilibrate impurities of varying size, from single atoms
to proteins [43–49].

This paper provides a detailed analysis of various ob-
servables of small pristine 4HeN clusters, N = 2 − 10,
that interact either through a sum of realistic two-body
potentials [50–52] or an effective low-energy model po-
tential that includes two- and three-body terms [33].
Emphasis is placed on structural properties, including
the long-distance tail and the short-distance correlations
(on the scale of the van der Waals length rvdW) of the
pair, Jacobi, and hyperradial distribution functions. The
long-distance tails are expected to be governed by the
effective low-energy model, i.e., the large-distance fall-off
should be fully governed by the binding energy, which
was matched for N = 2− 4 when constructing the effec-
tive low-energy model and reproduces the exact binding
energies at the & 95 % level for N > 4 [33].

The short-distance correlations are expected to be gov-
erned by the two-body wave function for an attractive
van der Waals potential, i.e., a potential with −C6/r

6

tail [53, 54]. For helium clusters that have been “arti-
ficially” scaled to the unitary point, this has previously
been confirmed through dedicated calculations [53, 54].
For the physical point, this is demonstrated, to the best
of our knowledge, for the first time in this work. The
collapse of the pair, triple, and higher-order distribution
functions for interatomic distances around r ≈ rvdW was
noted in the literature, motivating the adaption of the n-
body Tan contact (n = 2, 3, · · · ) [55–60] to quantum clus-
ters that exhibit weak universality (two-body potentials
with van der Waals tail and strongly repulsive hard-wall
like short-distance repulsion) [34]. This work compares
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the two-body contact with results from the literature and
additionally introduces a (2 + 1) contact. We note that
short-distance correlations, or generalizations of the Tan
contact from zero- to finite-range interactions, are also
being actively investigated in nuclei [61–65].

Since the effective low-energy potential model does not
“know” about rvdW, the short-distance or high-energy
correlations are not captured by that model despite the
fact that the short-distance physics is universal, i.e., gov-
erned by the s-wave scattering length as and the van
der Waals length rvdW. Thus, the development of a low-
energy van der Waals theory is highly desirable. While
this is beyond the scope of the present paper, we note
that first steps in this direction were recently taken [66].
Our aim in the present work is to provide a careful anal-
ysis of the different “universality regimes,” providing a
comprehensive study of the structural properties of pris-
tine helium-4 clusters at the physical point and at uni-
tarity.

Many naturally occurring systems are characterized by
competing length or energy scales. The helium-helium in-
teraction is unique in that its naturally occurring s-wave
scattering length as is more than an order of magnitude
larger than its effective range. Even though as is large, it
is not infinitely large. The regime where as goes to infin-
ity and the effective range goes to zero has been studied
quite extensively, not only in the context of bosons but
also in the context of fermions. Correspondingly, a com-
parison of the behaviors of small helium clusters at the
physical point and those of helium clusters at unitarity
provides insights into developing universal van der Waals
theories. The lessons learned have importance beyond
atomic droplets—some findings carry over to the nuclear
chart, with the weakly bound triton, alpha-particle, and
halo-nuclei playing loose analogs of weakly-bound atomic
clusters.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian, describes
the numerical techniques employed to solve the time-
independent Schrödinger equation for clusters consisting
of up to N = 10 atoms, and defines several structural
observables of interest. Section III presents and inter-
prets our results. Connections with the literature are
established throughout. Finally, Sec. IV summarizes and
offers an outlook.

II. THEORETICAL BACKGROUND

A. Hamiltonian

Each 4He atom is treated as a point particle with po-
sition vector ~rj (j = 1, · · · , N) and mass m [67]. The

non-relativistic N -atom Hamiltonian Ĥ reads

Ĥ =

N∑
j=1

−~2

2m
~∇2
~rj

+ Vint(r1,2, · · · , rN−1,N ). (1)

The interaction potential Vint depends on the interatomic
distances rj,k, where rj,k is equal to |~rj − ~rk|. We con-
sider two different classes of interaction potentials Vint,
referred to as Model I and Model II. For Model I, Vint

consists of a sum over two-body Born-Oppenheimer po-
tentials VBO(rj,k), which have a repulsive core at small
interatomic distances due to the electron repulsion and
Pauli exclusion principle and an attractive van der Waals
tail with leading order term −C6/(rj,k)6,

Vint(r1,2, · · · , rN−1,N ) =

N−1∑
j=1

N∑
k>j

VBO(rj,k). (2)

Calculations for Model I are performed for three variants;
specifically, we consider the Born-Oppenheimer poten-
tials by Aziz et al. [50] (HFD-HE2 potential, Model IA),
Cencek et al. [51] (CPKMJS potential, Model IB), and
Tang et al. [52] (TTY potential, Model IC).

For Model II, Vint is taken to be the effective low-energy
potential developed by Kievsky et al. [31, 33],

Vint(r1,2, · · · , rN−1,N ) =

N−1∑
j=1

N∑
k>j

V2,G(rj,k) +

N−2∑
j=1

N−1∑
k>j

N∑
l>k

V3,G(Rj,k,l), (3)

where V2,G(rj,k) and V3,G(Rj,k,l) denote two- and three-
body Gaussian potentials,

V2,G(rj,k) = w0 exp
[
−(rj,k/r0)2

]
(4)

and

V3,G(Rj,k,l) = W0 exp
[
−(Rj,k,l/R0)2

]
(5)

with

R2
j,k,l =

1

9
(r2
j,k + r2

j,l + r2
k,l). (6)

Reference [33] adjusted the parameters w0, r0, W0, and
R0 such that the low-energy Hamiltonian reproduces
the “exact” two-body s-wave scattering length and the
N = 2, 3, and 4 ground state energies of the realistic
HFD-HE2 Born-Oppenheimer potential (Model IA) [68].
While the two-body potential V2,G is attractive for all dis-
tances rj,k (i.e., w0 is negative), the three-body potential
is purely repulsive for all hyperradii Rj,k,l (i.e., W0 is pos-
itive). The effective three-body repulsion “counteracts”
the strong short-distance attraction of V2,G. For W0 = 0,
the Gaussian interaction model yields a ground state en-
ergy that scales as N2 [30, 69]. The finite repulsive three-
body term changes the scaling for N up to about 10 to
approximately N [31, 33, 69, 70], in agreement with what
is being observed for the realistic interaction potentials
(Model IA, Model IB, and Model IC).

The 4He-4He potential is characterized by a large s-
wave scattering, i.e., a scattering length that is about
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35 to 45 times larger than the van der Waals length
rvdW, rvdW ≈ 5 a0 (the exact ratio depends on the in-
teraction potential); see, e.g., Refs. [18, 71]. We employ
the definition rvdW = (mC6/~2)1/4/2. The scale sep-
aration is a key requirement for the emergence of Efi-
mov physics in the three-body sector [72–74]. Indeed,
the first excited state of the 4He trimer, which has been
probed experimentally [26], has been identified as an es-
sentially pure Efimov state, i.e., a state that can be de-
scribed with high accuracy by just two input parameters
(the s-wave scattering length and a three-body parame-
ter) [4, 5, 8, 23, 25, 27, 29, 72]. In contrast, finite-range
effects enter into the description of the 4He trimer ground
state [25, 26, 75]. Despite of this, the low-energy model
(Model II) reproduces the ground state energies of 4HeN
clusters with N = 2 to N = ∞ remarkably well (i.e., at
the & 95 % level) [33].

To investigate the regime where the two-body s-wave
scattering length as diverges, we follow the literature and
scale Vint by λ (λ < 1); we do this for Model IA and
Model IB, choosing λ such that the s-wave scattering
length of VBO is infinitely large. For Model IA, we use
λ = 0.9792445 [33]; because our mass is slightly differ-
ent than that used in Ref. [33], the resulting scattering
length is large but not infinitely large (1/as ≈ 10−5 a−1

0 ).
For Model IB, we use λ = 0.9713665 [25], resulting in
1/as ≈ 10−7 a−1

0 . We note that the scaling changes the
van der Waals length and effective range of VBO only
slightly [76]. For Model II, we use again the parameters
from Kievsky et al. [33]; while r0 and R0 remain the same
as at the physical point, |w0| and W0 are, respectively,
slightly smaller and slightly larger at unitarity than at the
physical point. As stated, the scaling factors λ and the
parameters of the effective low-energy model are taken
from the literature. Since the m values employed in the
literature differ, the resulting scattering lengths are very
large but not infinitely large; we emphasize that this does
not impact the conclusions of the paper.

B. Monte Carlo techniques

Our N ≥ 3 results are obtained by the diffusion Monte
Carlo (DMC) method [77–79], which yields the ground
state energies and structural properties of the ground
state. The DMC method with importance sampling uti-
lizes a guiding or trial wave function ψT that is optimized
using the variational Monte Carlo (VMC) technique [80].
The nodeless guiding or trial wave function ψT , which
depends on a set of non-linear variational parameters ~p,
is optimized by minimizing the energy expectation value,
which is evaluated stochastically using Metropolis sam-
pling [81]. If the walker number is sufficiently large and
the imaginary time step τ sufficiently small, the DMC en-
ergies are, within statistical uncertainties, exact. We use
between 2, 000 and 5, 000 walkers for all N considered.
The energy is calculated using the growth estimator and
the mixed estimator, yielding the growth energy Eg and
the mixed energy Em, respectively. For the calculations
reported in Tables I and II, the two estimators yield con-
sistent energies, i.e., the distribution of the energies and
errors are consistent with the fact that the errors indicate
a 68 % confidence interval. For N = 2, a statistically sig-
nificant time step dependence is observed (see Fig. S1 in
the Supplemental Information [82] for details); the cap-
tion of Table I reports the extrapolated zero imaginary
time step energies Eg. The time step dependence for
N = 3 is smaller than for N = 2 but still, at least for
Models IA-IC, statistically significant (see Fig. S2 of the
Supplemental Material). Correspondingly, Tables I and
II report extrapolated zero imaginary time step growth
energies Eg. For N > 3, the time step dependence is
estimated to be smaller than 0.5 % and Tables I and
II report growth energies that are obtained for a fixed
imaginary time step (τ between 200 and 400 a.u., where
“a.u.” stands for “atomic units”).

To obtain essentially unbiased structural properties,
we use the “forward walking (tagging) scheme” intro-
duced in Refs. [83, 84]. We find that the structural prop-
erties calculated in this manner agree, except for regimes
where the sampling probability is extremely low, with
those obtained by subtracting the VMC estimate 〈Â〉VMC

from twice the mixed DMC estimate 〈Â〉DMC [83]; here,

〈Â〉VMC and 〈Â〉DMC denote expectation values of the

operator Â that are calculated with respect to |ψT |2
and ψTΨ0, respectively, where Ψ0 denotes the exact real
ground state wave function.

The trial wave function ψT is taken to be of the Bijl-

Jastrow form for all four models [7, 21, 80],

ψT (r1,2, · · · , rN−1,N ) =

N−1∏
j=1

N∏
k>j

exp[f(rj,k)]. (7)

For Model I, the two-body correlation function f(rj,k)
contains five variational parameters (pα, pβ , pγ , p0, and
p1) that are optimized for each N ,

fI(r) = −pαr−α − pβr−β − pγr−γ − p0ln(r)− p1r. (8)

Two combinations for α, β, and γ are considered. The
first combination (α = 5, β = 4, and γ = 2) is similar to
what has been used frequently in the literature [7, 21, 80],
namely, the same α and γ but β = 0. The second com-
bination (α = 4.6, β = 1.2, and γ = 0) was found to
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N EHFD-HE2
(d) ECPKMJS ETTY EGAUSS ECPKMJS/EHFD-HE2 EGAUSS/EHFD-HE2

(Model IA) (Model IB) (Model IC) (Model II) (in percent) (in percent)

2(a) −2.645× 10−9 −5.147× 10−9 −4.183× 10−9 −2.6357× 10−9 195 100

3(b) −3.713(3)× 10−7 −4.174(5)× 10−7 −4.006(3)× 10−7 −3.715(1)× 10−7 112 100

4(c) −1.688(1)× 10−6 −1.815(1)× 10−6 −1.768(1)× 10−6 −1.6984(1)× 10−6 108 101

5(c) −3.966(1)× 10−6 −4.201(1)× 10−6 −4.112(1)× 10−6 −3.9622(3)× 10−6 106 100

6(c) −7.102(2)× 10−6 −7.467(2)× 10−6 −7.325(1)× 10−6 −7.0166(4)× 10−6 105 99

7(c) −1.0986(5)× 10−5 −1.150(1)× 10−5 −1.130(1)× 10−5 −1.0737(1)× 10−5 106 98

8(c) −1.5531(6)× 10−5 −1.621(1)× 10−5 −1.594(1)× 10−5 −1.5030(1)× 10−5 104 97

9(c) −2.066(1)× 10−5 −2.152(1)× 10−5 −2.1176(8)× 10−5 −1.9830(2)× 10−5 104 96

10(c) −2.631(1)× 10−5 −2.736(1)× 10−5 −2.694(1)× 10−5 −2.5083(2)× 10−5 104 95

TABLE I: Ground state energies, in atomic units (columns 2-5), and selected energy ratios, in percent (columns 6-7), at the
physical point for various interaction models. The two-body s-wave scattering lengths are as = 234.84, 170.86, 188.20, and
235.24 a0 for Model IA, Model IB, Model IC, and Model II, respectively. (a)The N = 2 energies are calculated using a grid
based approach. The extrapolated zero imaginary time-step DMC growth energies are −2.638(10) × 10−9, −5.11(3) × 10−9,
−4.166(10)×10−9, and −2.632(6)×10−9 a.u. for Model IA, Model IB, Model IC, and Model II, respectively. The comparatively
large errors for the N = 2 DMC energies are due to the large fluctuations associated with extremely weakly-bound systems.
(b)For N = 3, extrapolated zero imaginary time-step DMC growth energies are reported. (c)For N = 4 − 10, finite imaginary
time-step DMC growth energies are reported; the errors only account for the statistical uncertainty and not for the extrapolation
error (the extrapolation to the zero imaginary time-step is estimated to lead to a correction that is smaller than 0.5 %). (d)The
HFD-HE2 energies differ slightly from those reported in Ref. [33] due to the difference in m [67]. When we use the same mass
as Ref. [33], our energies agree within errors with those of Ref. [33].

N EHFD-HE2
(d) ECPKMJS EGAUSS ECPKMJS/EHFD-HE2 EGAUSS/EHFD-HE2

(Model IA) (Model IB) (Model II) (in percent) (in percent)

3(b) −2.656(6)× 10−7 −2.65(1)× 10−7 −2.665(1)× 10−7 100 100

4(c) −1.391(1)× 10−6 −1.395(5)× 10−6 −1.4028(1)× 10−6 100 101

5(c) −3.411(3)× 10−6 −3.418(4)× 10−6 −3.4130(2)× 10−6 100 100

6(c) −6.235(6)× 10−6 −6.241(4)× 10−6 −6.1642(4)× 10−6 100 99

7(c) −9.764(9)× 10−6 −9.773(4)× 10−6 −9.5379(6)× 10−6 100 98

8(c) −1.391(1)× 10−5 −1.392(8)× 10−5 −1.3446(1)× 10−5 100 97

9(c) −1.861(1)× 10−5 −1.863(10)× 10−5 −1.7824(1)× 10−5 100 96

10(c) −2.379(2)× 10−5 −2.382(12)× 10−5 −2.2626(2)× 10−5 100 95

TABLE II: Ground state energies, in atomic units (columns 2-4), and selected energy ratios, in percent (columns 5-6), at
unitarity for various interaction models. The superscripts (b), (c), and (d) have the same meaning as in Table I.

result in comparable or lower variational energies with
one less variational parameter. Table S1 in the Supple-
mental Material reports the variational parameters for
Model IB, using α = 4.6, β = 1.2, and γ = 0 for all N .
The VMC energy EVMC for N ≥ 4 reaches between 91 %
and 96 % of the DMC energy at the physical point and
between 91 % and 97 % of the DMC energy at unitarity.

The pair correlation function for the effective low-
energy model (Model II) is known to differ from that
for the van der Waals potentials. Correspondingly, the
functional form of the correlation function needs to be
adjusted to capture the short-distance characteristics of
the two-body Gaussian potential. For Model II, the two-
body correlation function f(rj,k) takes the form

fII(r) =

{
−
∑8
k=3 pkr

k−7 − p9ln(r) for r > rm
−p2r

2 for r < rm
. (9)

The parameters p3 and p7 are chosen such that fII(r)
and its first derivative with respect to r are continuous
at r = rm; the matching distance rm and the parameters

p2, p4, p5, p6, p8, and p9 are optimized for each N by
minimizing the energy (see Table S2 in the Supplemental
Material). The VMC energy EVMC for N ≥ 4 reaches
between 97 % and 98 % of the DMC energy at both the
physical point and at unitarity.

For both the realistic van der Waals and low-energy
models, we checked carefully that the structural proper-
ties are independent of the trial wave function. Specif-
ically, we compared results for fully optimized and not
fully optimized parameters and we compared structural
properties obtained by the VMC method, the mixed esti-
mator, and a forward walking scheme (see next section).

C. Structural observables

This section defines several structural observables that
are analyzed in Sec. III as a function of N for different
Vint. As mentioned above, our DMC implementation de-
termines the structural properties using a forward walk-
ing scheme that ensures that the excited state contribu-
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tions contained in the mixed density ψTΨ0 decay prior
to measuring the observable during the DMC run.

The pair distribution function P
(2)
N (r) of the N -body

cluster, which has units of (length)−3 and is normalized
according to ∫ ∞

0

P
(2)
N (r)r2dr = 1, (10)

is obtained by calculating the expectation value of the

operator P̂
(2)
N (r),

P̂
(2)
N (r) =

2

N(N − 1)

N−1∑
j=1

N∑
k>j

δ(rj,k − r)
r2

. (11)

The short distance behavior of P
(2)
N (r) enters into the

definition of the r-independent scalar two-body contact

C
(2)
N [34]. The premise is that the short-distance pair

correlations of the N -body cluster, if scaled by an overall
factor, collapse approximately. Specifically, the dimen-

sionless two-body contact C
(2)
N of the N -atom cluster is

found by enforcing [34, 55–57]

P
(2)
N (r) →

small r
C

(2)
N P

(2)
2 (r). (12)

The operator P̂
(2)
N (r) defined in Eq. (11) differs by an

overall factor from the operator employed in Ref. [34].
Correspondingly, we convert the results from Ref. [34]
to our definition when comparing our two-body contacts

with theirs. Equation (12) implies C
(2)
N = 1 for N = 2. In

practice, C
(2)
N is treated as a fit parameter when matching

the left and right hand sides of Eq. (12), including only

the short-distance region where P
(2)
N (r) (N > 2) takes

values between about 5 % and 95-100 % of its maxi-
mum. Reference [34] extracted the two-body contact for
helium clusters interacting through the realistic LM2M2
potential [85], an interaction model that is similar to the
Models IA, IB, and IC used in our work. Section III de-
termines the two-body contact at the physical point for
Models IA, IB, and IC and furthermore discusses that the
two-body contact has limited meaning for N -atom clus-
ters interacting through Model II. This is not unexpected
since Vint for Model II includes a three-body potential.

In addition to the pair distribution function, we mon-

itor the probability ρ2P
(jacobi)
N (ρ) to find one of the par-

ticles located at a distance ρ from the center-of-mass of
the other N − 1 particles. The corresponding operator is

P̂
(jacobi)
N (ρ),

P̂
(jacobi)
N (ρ) =

1

N

N∑
j=1

δ(ρj − ρ)

ρ2
, (13)

where

ρj =

∣∣∣∣∣∣~rj − 1

N − 1

N∑
k=1,k 6=j

~rk

∣∣∣∣∣∣ . (14)

Since the lowest break-up threshold of the N -particle
cluster corresponds to the break-up into a cluster con-
sisting of N − 1 atoms and a single far-separated atom,

P
(jacobi)
N (ρ) should—in the large ρ limit—fall off as

P
(jacobi)
N (ρ) →

large ρ
ANρ

−2 exp(−2κNρ), (15)

where the binding momentum κN is defined through√
2µN εN/~, the binding energy εN of the N -particle clus-

ter is defined with respect to the ground state energy
EN−1 of the N − 1 cluster, and µN is equal to (N −
1)m/N . By comparing the tail of P

(jacobi)
N (ρ) with the

expected asymptotic behavior, the extent of the univer-
sal, binding-energy-dominated regime can be determined.

We note that limr→∞ P
(2)
N (r) and limρ→∞ P

(jacobi)
N (ρ) be-

have, except for an overall normalization constant, iden-
tically. For ground state helium clusters with N ≥ 3,

the r-region over which P
(2)
N (r) is governed by the bind-

ing momentum is notably smaller than the ρ-region over

which P
(jacobi)
N (ρ) is governed by the binding momentum.

This can be seen by rewriting ρj ,

ρj =

∣∣∣∣∣∣ 1

N − 1

N∑
k=1,k 6=j

~rj,k

∣∣∣∣∣∣ . (16)

For ρj → ∞, the vectors ~rj,k are all parallel and

P
(jacobi)
N (ρ) and P

(2)
N (r) agree, except for an overall nor-

malization factor. When ρj is finite, the vectors ~rj,k with
k = 1, · · · , j − 1, j + 1, · · · , N are not all parallel and

P
(2)
N (r) deviates from P

(jacobi)
N (ρ).

To quantify the three-body correlations of the 4HeN
clusters, we monitor two complementary distribution

functions, P
(3,jacobi)
N (ρ3) and P

(3,shape)
N (x̄, ȳ). The three-

body Jacobi distribution function P
(3,jacobi)
N (ρ3), which

is measured by the operator P̂
(3,jacobi)
N (ρ3),

P̂
(3,jacobi)
N (ρ3) =

2

N(N − 1)(N − 2)

N−2∑
j=1

N−1∑
k>j

N∑
l>k[

δ(ρjk,l − ρ3)

(ρ3)2
+
δ(ρjl,k − ρ3)

(ρ3)2
+
δ(ρkl,j − ρ3)

(ρ3)2

]
, (17)

where

ρjk,l =

∣∣∣∣~rl − 1

2
(~rj + ~rk)

∣∣∣∣ . (18)

The quantity (ρ3)2P
(3,jacobi)
N (ρ3) tells us, for each triple

within the N -body cluster, the likelihood to find one of
the particles at distance ρ3 from the center of mass of
the other two particles of the triple. In analogy to the

two-body contact C
(2)
N , we define a (2 + 1) or pair-atom

contact C
(2+1)
N for N ≥ 3 through

P
(3,jacobi)
N (ρ3) →

small ρ3
C

(2+1)
N P

(3,jacobi)
3 . (19)
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Equation (19) defines the pair-atom contact C
(2+1)
N

through the short-range behavior of the distribution

function. Alternatively, we may define C
(2+1)
N by assum-

ing that the many-body wave function Ψ factorizes when
ρjk,l takes on small values,

Ψ(~r1, · · · , ~rN ) →
small ρjk,l

Φ(~ρjk,l)B
(2+1)
N (~rj,k, ~Rj,k,l, {~rn;n 6=j,k,l}), (20)

where ~Rj,k,l = (~rj + ~rk + ~rl)/3. The function B
(2+1)
N

is non-universal and the limit in Eq. (20) is taken while

keeping ~rj,k, ~Rj,k,l, and all {~rn;n 6=j,k,l} unchanged. If the
pair-atom function Φ(~ρjk,l) is universal, then the pair-
atom contact is a meaningful quantity and can be related
to Φ(~ρjk,l) following the same steps as when relating the
two-body contact, the relevant product ansatz, and the
pair distribution function (see, e.g., Ref. [34]). While
the (2 + 1) contact characterizes three-body correlations
of N -particle systems, it differs conceptually from the
three-body contact considered in the literature [59, 60].

Since the distribution function P
(3,jacobi)
N (ρ3) does

not capture the relative orientation of the sub-trimers
(the angles are being averaged over), we addition-
ally monitor the normalized trimer correlation function

P
(3,shape)
N (x̄, ȳ), which captures the relative orientation

of any three atoms within the N -atom cluster [26]. For
each triple spanned by ~rj , ~rk, and ~rl, we determine the
maximum of rj,k, rj,l, and rk,l and scale all lengths by
this value. For concreteness, let us assume that rj,k is
larger than rj,l and rk,l. Next, we rotate the triangle
spanned by ~rj , ~rk, and ~rl so that it lies in the xy-plane,
so that the normalized position vectors of particles j and
k are equal to (x, y, z) = (±1/2, 0, 0), and so that the
y-coordinate of particle l is positive. The distribution

P
(3,shape)
N (x̄, ȳ) yields the likelihood that the lth particle

has the normalized, rotated position vector (x̄, ȳ, 0).

The hyperradial distribution function P
(hyper)
N (ρN ) is

measured by the operator P̂
(hyper)
N (ρN ),

P̂
(hyper)
N (ρN ) =

δ(ρN −R)

R3N−4
, (21)

where R is the hyperradius,

R2 =
1

N2

N−1∑
j=1

N∑
k>j

r2
j,k. (22)

The normalization is such that∫ ∞
0

P
(hyper)
N (ρN )(ρN )3N−4dρN = 1. (23)

The quantity (ρN )3N−4P
(hyper)
N (ρN ) tells one the like-

lihood that the N -atom cluster has the hyperradius
ρN . The hyperradius provides a measure of the clus-
ter size [32, 86, 87]. Our definition of the hyperradius
implies a hyperradial mass of M ,

M = Nm. (24)

Section III uses the hyperradial distribution functions
to determine approximate effective hyperradial potential
curves assuming separability of the hyerradial and hy-
perangular degrees of freedom. Despite the crudeness of
the approach (the coupling of the hyperradial and hy-
perangular degrees of freedom can, in general, not be ne-
glected), the resulting approximate hyperradial potential
curves provide, as shown in Sec. III, some insight.

The kinetic energy release (KER),

KER =

N−1∑
j=1

N∑
k>j

1

rj,k
, (25)

of the helium dimer as well as pure and mixed-isotope
helium trimers has been measured in Coulomb explo-
sion experiments [26, 36, 88]. While it is not clear that
the experimental determination of the KER generalizes
straightforwardly to larger clusters [89, 90], Sec. III re-
ports and interprets the KER for helium clusters with up
to N = 10 particles.

III. RESULTS

This section presents results for the observables de-
fined in Sec. II C. In addition to tracking the structural
properties as a function of N , particular focus is placed
on comparing

• the characteristics of helium clusters at the physical
point (“true” helium clusters) and quantum clus-
ters at unitarity (helium-helium interaction artifi-
cially tuned to unitarity);

• the characteristics of helium clusters at the physical
point interacting through the three realistic interac-
tion potentials Model IA, Model IB, and Model IC;

• the characteristics of helium clusters at the physical
point interacting through the realistic HFD-HE2
potential (Model IA) and the effective low-energy
potential (Model II); and

• the characteristics of helium clusters at unitarity
interacting through the realistic HFD-HE2 poten-
tial and the effective low-energy potential.

To put the structural properties into context, we dis-
cuss a few characteristics of the energies at the physical
point (see Table I) and at unitarity (see Table II). Table I
shows that the two-body binding energy for the CPKMJS
potential at the physical point is 1.95 times larger than
that for the HFD-HE2 potential. For N = 3, the differ-
ence in the energy is notably smaller, namely the energy
for the CPKMJS potential at the physical point is 12 %
larger than that for the HFD-HE2 potential. As N in-
creases, the difference decreases from 8 % for N = 4 to
4 % for N = 10. For N = 10, this percentage differ-
ence between the energy for Model IB and Model IA is
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similar to that between the energy for the effective low-
energy Model II and Model IA. Table II shows that the
dependence of the energy at unitarity is, for the scaled
realistic interaction potentials, notably suppressed com-
pared to the physical point. Specifically, the energies for
N = 3− 10 for the CPKMJS potential are slightly larger
than those for the HFD-HE2 potential (rounding, the
percentage is 100 %).

The solid lines in Fig. 1 show the likelihood

ρ2P
(jacobi)
N (ρ) for realistic interaction models to find a

particle at distance ρ from the center of mass of the other
N − 1 particles for N = 3 − 10. The color of the lines
changes nearly continuously from green for N = 3 to dark
red for N = 10. The top and bottom rows show results
at the physical point and at unitarity, respectively. It
can be seen that the distributions at unitarity extend to
somewhat larger ρ, owing to the smaller binding energies
εN at unitarity than at the physical point. The third col-
umn compares results for the HFD-HE2 potential and the
effective low-energy model. It can be seen that the large

ρ behavior of ρ2P
(jacobi)
N (ρ) for the HFD-HE2 potential

(Model IA, solid lines) and for the effective low-energy

potential (Model II, dotted lines) agrees well. This is ex-
pected since the effective low-energy potential has been
shown to reproduce the energies of the N -particle cluster
interacting through the HFD-HE2 potential at the 95 %
or higher level (see Ref. [33] and Tables I and II).

The solid lines in the left and middle columns of Fig. 1

show ρ2P
(jacobi)
N (ρ) for the realistic CPKMJS potential

(Model IB) on a linear and logarithmic scale, respec-
tively. The logarithmic representation allows us to vi-
sually quantify the portion of the distribution that is
governed by the exponential binding momentum dom-
inated fall-off. Specifically, the dotted lines show the
expected fall-off, using the binding momentum κN , ob-
tained by combining DMC energies of clusters contain-
ing N and N − 1 atoms, as input. To plot the dot-
ted lines, the normalization constant AN , Eq. (15), is
treated as a fitting parameter to best match the large-ρ
tail, including ρ ≥ ρm, where ρm is adjusted such that∫∞
ρm
P

(jacobi)
N (ρ)ρ2dρ is equal to 0.2. The visual agree-

ment at large ρ between the solid and dotted lines in the
middle column of Fig. 1 is good.

Figure 2 shows the scaled pair distribution functions

r2P
(2)
N (r) for N = 2− 10 at the physical point (top row)

and at unitarity (bottom row). The scaled pair distribu-
tion functions for the realistic interaction models display
a clear maximum for N . 6. For larger N , the max-
imum broadens and shifts to larger r-values; for these
larger N , the scaled pair distribution functions display a
hint of a double-peak structure that can be interpreted
as a signature of the development of a “second length
scale or shell”. It is important to keep in mind that the
clusters at the physical point and at unitarity are ex-
tremely floppy and diffuse and that the terms “second
length scale” and “second shell” should be contextual-
ized within the framework of extremely diffuse quantum
liquids. The double-peak structure is not reproduced by
the low-energy model (dotted lines in the third column).

The third column of Fig. 2 shows that the quantities

r2P
(2)
N (r) for Model IA (solid lines) and Model II (dot-

ted lines) differ for small r (r . 20 a0). Interestingly,

the scaled pair distribution functions for the HFD-HE2
potential and the CPKMJS potential (solid lines) rise at
about the same r-value for all N , namely at r ≈ 4.5 a0

or r ≈ 0.9 rvdW. Careful inspection shows that the rise
is shifted to somewhat larger r-values for the clusters
at unitarity interacting through realistic potentials than
for the clusters at the physical point interacting through
realistic potentials. The scaled pair distribution func-
tions for the effective low-energy potential (Model II,
dotted lines), in contrast, rise at much smaller r values.
The scaled pair distribution functions for Model I and
Model II are different at small r for two reasons: (i) The
two-body Gaussian potential used in Model II does not
have a hard wall at small r. (ii) Model II contains a re-
pulsive three-body Gaussian potential, which alters the
behavior when three particles are in close vicinity to each
other, impacting the short-distance correlations of two-,
three-, and higher-body subclusters.

To highlight the universality of the short-range be-

havior of the scaled pair distribution function r2P
(2)
N (r)

for realistic interaction models, Fig. 3 replots r2P
(2)
N (r)

at the physical point—including the factor C
(2)
N —for

Model IA (dash-dotted lines) and Model IB (solid lines).

As discussed in Sec. II, the two-body contact C
(2)
N is de-

termined by fitting the N > 2 curves for small r to the

N = 2 curve. It can be seen that the rise of the scaled
curves collapses for N = 2−10 in the regime r . 1.4 rvdW

separately for both interaction models. The fact that
the curves for each of the interaction models collapse

confirms that the two-body contact C
(2)
N , determined in

the manner described in Sec. II, provides a meaningful
characterization of the short-distance behavior of van der
Waals clusters.
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FIG. 1: ρ2P
(jacobi)
N (ρ) for N = 3 − 10 at the physical point (top row) and at unitarity (bottom row). The solid lines in

Figs. 1(a)-1(d) show ρ2P
(jacobi)
N (ρ) for Model IB. At ρ = 20 a0, the curves are ordered, from top to bottom, from the smallest

N (the curve for N = 3 is green) to the largest N (the curve for N = 10 is dark red). Note that the data shown in the first and
second columns are identical but that the x- and y-scales differ. The dotted lines in Figs. 1(b) and 1(d) show the asymptotic
behavior AN exp(−2κNρ), using the numerically determined binding momentum κN and treating the “normalization constant”

AN as a fitting parameter. The solid and dotted lines in Figs. 1(e)-1(f) (third column) show ρ2P
(jacobi)
N (ρ) for Model IA and

Model II, respectively. The agreement between the dotted and solid lines is excellent at large ρ and deteriorates for smaller ρ.
The deterioration is due to the inability of the low-energy model to fully capture the small length scale correlations. The color
scheme used here is also used in Figs. 2, 3, 4(a), 6, 7, S3, and S4. The layout used here, i.e., the top row showing results at the
physical point and the bottom row showing results at unitarity, is also used in Figs. 2, 5, 6, 7, and S4.

Table S3 reports C
(2)
N for helium clusters with N = 3−

10 interacting through Model IA-IC at the physical point.

The ratio of C
(2)
N , N ≥ 3, for two different interaction

potentials is approximately constant. To leading order,
this ratio is given by the ratio of as/rvdW for the two dif-
ferent interaction potentials. Specifically, the values for
the HFD-HE2 potential are between 1.32 and 1.38 times
larger than those for the CPKMJS potential; for com-
parison, (as/rvdW)HFD-HE2/(as/rvdW)CPKMJS is equal to
1.40. Those for the TTY potential are between 1.09 and
1.10 times larger than those for the CPKMJS poten-
tial; for comparison, (as/rvdW)TTY/(as/rvdW)CPKMJS is
equal to 1.10.

To understand this behavior, we recall that the pair
distribution functions for the realistic interaction poten-
tials at the physical point are, for N & 5, to a very
good approximation independent of the potential model
[compare, e.g., the solid lines in Figs. 2(a) and 2(e)].
The N = 2 pair distribution functions, in contrast, dif-
fer notably. Because of this, the difference between the

contacts C
(2)
N , N & 5, for Model IA and Model IB pre-

dominantly reflects the difference between the respective
N = 2 pair distribution functions. Specifically, using
the fact that the dimers are weakly bound and the pair

distribution functions are normalized, the difference in

the height of r2P
(2)
2 (r) at small r for different realistic

potential models can be expressed in terms of the bind-
ing momentum and thus, using effective range theory, in
terms of as/rvdW. Assuming that the pair distribution
functions for different potential models agree for larger
N , we find that the ratio of the two-body contacts for
larger N is given, to leading order, by the ratio between
as/rvdW for the two interaction potentials. Our anal-
ysis indicates that the N -dependence of the two-body

contact C
(2)
N for helium clusters at the physical point in-

teracting through one realistic interaction model is, to a
fairly good approximation, universally linked to that for
helium clusters interacting through another realistic in-
teraction model. The arguments presented here are rem-
iniscent of the discussion of effective range corrections to
the asymptotic normalization constant, which is defined
by relating the “true” nuclear wave function to a wave
function that is calculated assuming that the effective
interaction in the asymptotically dominant channel has
vanishing range [91, 92].

Table S3 also compares our results with those obtained

in Ref. [34] for the LM2M2 potential. The C
(2)
N values

for the LM2M2 potential are between 1.06 and 1.08 times
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FIG. 2: r2P
(2)
N (r) for N = 2− 10 at the physical point (top row) and for N = 3− 10 at unitarity (bottom row). The solid lines

in Figs. 2(a)-2(d) show r2P
(2)
N (r) for Model IB. Note that the data shown in the first and second columns are identical: the

first column shows r in units of a0 and the second column shows r in units of rvdW, focusing on the small-r region. It can be
seen that the scaled pair distribution functions for different N collapse approximately for r ≈ rvdW. The solid and dotted lines

in Figs. 1(e)-1(f) (third column) show r2P
(2)
N (r) for Model IA and Model II, respectively. Differences are most pronounced in

the r . 20 a0 region. The color scheme is the same as in Fig. 1.

larger than those for the CPKMJS potential; this is quite
a bit smaller than (as/rvdW)LM2M2/(as/rvdW)CPKMJS =
1.13. We expect that the LM2M2 data from Ref. [34]
would follow the same trends as displayed by our data;
we speculate that the differences might be related to the
different data analysis strategies employed.

Last, we note that our analysis of the short-distance
behavior of the scaled pair distribution functions for the
effective low-energy Model II reveals that the small-r be-

haviors of r2P
(2)
2 (r) and r2P

(2)
N (r) with N ≥ 3 do not

collapse as neatly by introducing an r-independent scal-
ing factor for each N (see Fig. S3 from the Supplemen-
tal Material) as the corresponding data for the realistic
interaction models. Due to the presence of the repul-
sive three-body potential, the low-energy model does not
capture the small-r, “high-energy” van der Waals univer-
sality of the pair distribution function.

The fact that the curves for Model IA in Fig. 3 are
pushed to larger r compared to those for Model IB can
be interpreted as being due to Model IA being charac-
terized by a larger effective repulsion than Model IB: the
two-body s-wave scattering length for Model IA is larger
than that for Model IB (as = 234.84 a0 compared to
as = 170.86 a0). Interestingly, the rise of the scaled pair
distribution functions is captured quantitatively by the

universal van der Waals function ϕvdW(r) [93, 94],

ϕvdW(r) = B

[
Γ(5/4)x1/2J1/4(2x−2)−

rvdW

as
Γ(3/4)x1/2J−1/4(2x−2)

]
, (26)

which is obtained by solving the scaled radial Schrödinger
equation for a purely attractive −C6/r

6 potential. In
Eq. (26), x is equal to r/rvdW. Thin black dash-dotted
and solid lines in Fig. 3 show the quantity |ϕvdW(r)|2 for
Model IA (as/rvdW = 46.95) and Model IB (as/rvdW =
33.63), respectively. The nodes of the wave function
ϕvdW(r) in the r . rvdW region reflect the presence of
deep-lying two-body bound states. For r-values beyond
the last node, the density |ϕvdW(r)|2 agrees well with

r2P
(2)
2 (r)/C

(2)
N . For the infinite scattering length case,

Refs. [53, 54] established the van der Waals universality
of the short-distance correlations of the scaled pair dis-
tribution function of trimers interacting through realistic
interaction potentials. Figure 3 shows that |ϕvdW(r)|2

captures the short-distance correlations of r2P
(2)
N (r) also

for helium clusters at the physical point.
Figures 4 and 5 as well as Fig. S4 in the Supple-

mental Material summarize the three-body correlations
of N -atom clusters. Figure S4, which shows the quan-

tity (ρ3)2P
(3,jacobi)
N (ρ3), highlights two key points. First,

the scaled three-body distributions (ρ3)2P
(3,jacobi)
N (ρ3)
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FIG. 3: r2P
(2)
N (r)/C

(2)
N , N = 2− 10, for two realistic interac-

tion potentials at the physical point. The sets of dash-dotted
and solid lines show results for Model IA and Model IB, re-
spectively. The color scheme is the same as in Fig. 1. The
thin black dash-dotted and solid lines show the universal
van der Waals function |ϕvdW(r)|2, Eq. (26), for Model IA
and Model IB, respectively (these two models are character-
ized by slightly different rvdW); the normalization constant

B is adjusted by fitting |ϕvdW(r)|2 to r2P
(2)
2 (r), including r

values (r . 2rvdW) for which P
(2)
2 (r) takes values that are

larger than 5 % and smaller than the maximum of P
(2)
2 (r) for

Model IA and smaller than 95 % of the maximum of P
(2)
2 (r)

for Model IB, respectively.

for Model IB and Model II (first and third columns)
are visually indistinguishable, including in the small ρ3

region; this is in clear contrast to the behavior of the
scaled pair distribution functions. Second, the quantity

(ρ3)2P
(3,jacobi)
N (ρ3) becomes narrower as N changes from

N = 3 to N = 4 to N = 5 but changes comparatively
little for N = 6−10. This indicates that the correlations
of the three-body sub-system saturate approximately for
these N -values. This “saturation” is different from the
behavior of the scaled pair distribution functions, which
show a more pronounced N dependence for N = 6− 10.

Figure 4(a) focuses on the small ρ3 behavior at the
physical point. The solid and dash-dotted lines show

[(ρ3)2P
(3,jacobi)
N (ρ3)/C

(2+1)
N ]/r−1

vdW for N = 3 − 10 for
Model IA and Model II, respectively; to make the fig-
ure, the x- and y-axis are scaled using the van der Waals
length rvdW for the HFD-HE2 potential (Model IA). The
collapse of the scaled distribution functions is extremely
clean for the realistic interaction potential (solid lines)
and very clean for the low-energy potential (dash-dotted
lines). Differences between the scaled curves for the real-
istic and low-energy models are clearly visible for small
ρ3. Figures 4(b) and 4(c) show the N -dependence of

the (2 + 1) contact C
(2+1)
N at the physical point and at

unitarity, respectively, for three different interaction po-
tentials. The overall trends are the same for all three
interaction potentials: C

(2+1)
N increases for N . 6 or 7

and then slowly decreases. The contacts C
(2+1)
N for the

FIG. 4: Triple correlations and (2 + 1) contact. (a) The solid

and dash-dotted lines show (ρ3)2P
(3,jacobi)
N (ρ3)/C

(2+1)
N for the

realistic HFD-HE2 potential (Model IA) and the effective low-
energy potential (Model II), respectively, at the physical point
for N = 3 − 10. The color scheme is the same as in Fig. 1.
(b) The squares, circles, and triangles show the pair contact

C
(2+1)
N at the physical point as a function of N for Model IA,

Model IB, and Model II, respectively. (c) The squares, cir-

cles, and triangles show the pair contact C
(2+1)
N at unitarity

as a function of N for Model IA, Model IB, and Model II,
respectively.

low-energy model (triangles) are notably larger for N ≥ 4
than those for the realistic potentials (squares and cir-

cles). Interestingly, while the contacts C
(2+1)
N for the two

realistic potentials (Model IA and Model IB) differ by a
small amount for N ≥ 4 at the physical point, they co-
incide, within our numerical accuracy, at unitarity (see

numerical values of C
(2+1)
N are collected in Table S4 This

behavior of the contact is related to the three-body en-
ergies. The ratio ECPKMJS/EHFD-HE2 is equal to 1.12 at
the physical point (see Table I) and 1.00 at unitarity (see
Table II).

As already mentioned in Sec. II, the (2 + 1) contact
investigated here differs from the three-body contact in-
vestigated in Ref. [59, 60] at the physical point. While the
three-body contact for realistic interaction models is, to
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FIG. 5: P
(3,shape)
N (x̄, ȳ) for Model IB at the physical point (top row) and at unitarity (bottom row). The first, second, and third

columns show results for N = 3, N = 4, and N = 10, respectively. The color bar on the right applies to all six panels. Since
the triangles are oriented and normalized such that one particle sits at (x̄, ȳ) = (−1/2, 0) and the other at (x̄, ȳ) = (+1/2, 0)
(with the interparticle distance vector corresponding to the largest distance being oriented along the ±x̄-axis), the regions in
the top left and top right of the panels are excluded by construction.

a large degree, governed by the short-distance two-body
correlations, the three-body contact for the low-energy
model depends notably on the repulsive three-body po-
tential. The (2 + 1) contact, in contrast, captures the
behavior as a third particle approaches the center-of-
mass of a two-body sub-unit of any size. As such, the
(2 + 1) contact probes, on average, larger length scales
than the three-body contact. Correspondingly, the low-
energy model does a better job of reproducing the (2+1)
contact obtained for the realistic potentials than it does
of reproducing the three-body contact obtained for the
realistic potentials (we are not showing data for the three-
body contact).

To gain insights into the distribution of the shapes
that the triples are arranged in, the first, second, and
third columns of Fig. 5 show the distribution function

P
(3,shape)
N (x̄, ȳ) for N = 3, N = 4, and N = 10, respec-

tively. We observe that the distributions, and thus the
structures, at the physical point (top row) and at unitar-
ity (bottom row) are very similar. The highest probabil-
ity is found at x̄ = 0 and ȳ ≈ 0.35, which corresponds
to a slightly elongated triangle. Even though the distri-
butions have a maximum, the clusters’ wave functions
include essentially all shapes, except for those where two
particles sit on top of each other (ȳ = 0 and arbitrary x̄)
and where the triangles are highly elongated (ȳ ≈ 0 and
x̄ ≈ ±0.5). Figure 5 shows that the distributions become
more peaked with increasing N and that the likelihood
to find highly-elongated triangles becomes smaller with
increasing N .

Figures 6(a) and 6(b) show the scaled hyperradial den-

sity (ρN )3N−4P
(hyper)
N (ρN ) for N = 3 − 10 clusters in-

teracting through the CPKMJS potential at the physi-
cal point and at unitarity, respectively. The differences
between the scaled hyperradial densities at the physi-
cal point and at unitarity for fixed N are small. Care-
ful inspection shows that the scaled hyperradial densi-
ties at unitarity extend to larger ρN and rise at slightly
larger ρN than those at the physical point. Correspond-

ingly, the maximum of (ρN )3N−4P
(hyper)
N (ρN ) is located

at slightly larger ρN for the clusters at unitarity than
for the clusters at the physical point. The fact that the
scaled hyperradial densities at unitarity extend to larger
ρN than those at the physical point is a consequence of
the smaller binding energy at unitarity than at the phys-
ical point. As N increases, the scaled hyperradial densi-
ties become more localized, with their maximum shifting
to larger ρN . To interpret this behavior, one needs to
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FIG. 6: Hyperradial properties for N = 3− 10 at the physical point (top row) and at unitarity (bottom row). The first column

shows P
(hyper)
N (ρN ) for Model IA. The second column shows the (approximate) effective potential curves Veff(ρN ) for Model IA,

calculated using Eq. (27). For comparison, the third column shows Veff(ρN ) for Model II (the Model II plots are made using
the van der Waals length for Model IA as a scale). The color scheme is the same as in Fig. 1.

keep in mind that the definition of the hyperradius is in-
timately linked to the definition of the hyperradial mass
M . Since the quantity Mρ2

N is an invariant but not ρN
and M separately, ρN can be multiplied by an overall fac-
tor [32, 86, 87]. If all interparticle distances were equal
to r̄, then ρN [as defined in Eq. (22)] would approach

r̄/
√

2 in the N →∞ limit. Since helium clusters behave
roughly as incompressible liquids, the maximum of the
hyperradial density is expected to occur at increasingly
larger ρN as N increases. Figures 6(a) and 6(b) confirm
this notion.

We now use the hyperradial densities to calculate ap-
proximate hyperradial potential curves. We note that
Ref. [32] obtained the effective hyperradial potential
curves of helium clusters with N = 3 − 10 at the physi-
cal point following an alternative and more rigorous ap-
proach; in addition, Ref. [32] presented careful bench-
mark calculations of the different approaches for N = 3.
The approach pursued here yields potential curves that
agree semi-quantitatively with the more accurate poten-
tial curves presented in Ref. [32]. If the hyperradial and
hyperangular degrees of freedom separate, the effective
one-dimensional Schroedinger equation for the lowest ef-
fective hyperradial potential curve Veff(ρN ) can be writ-
ten in terms of FN (ρN ) [59, 95–98],[
− ~2

2M

∂2

∂ρ2
N

+ Veff(ρN )

]
FN (ρN ) = ENFN (ρN ), (27)

where FN (ρN ) = [(ρN )3N−4P
(hyper)
N (ρN )]1/2. For the

N -particle clusters (N ≥ 3) at unitarity, the separabil-

ity is broken due to the finite-range nature of the two-
body interactions. At the physical point, the finiteness of
the scattering length provides an additional separability-
breaking mechanism. Even though Eq. (27) is not strictly
valid for the potential models considered in this work,
we “invert” it to obtain approximate effective hyperra-
dial potentials Veff(ρN ). The same strategy was pursued
in Ref. [98] for N = 3 and 4. Figures 6(c) and 6(d)
show the results for Model IB at the physical point and
at unitarity, respectively. The differences between the
potential curves at the physical point and at unitarity
are very small. Reference [98] conjectured, based on re-
sults for N = 3 and N = 4, that the location of the
repulsive inner wall of the hyperradial potential curves
varies as (N − 1)rvdW/

√
2N ; this scaling accounts for an

effective non-trivial reduction of the configuration space
due to an energy cost associated with adiabatic defor-
mation [53, 54]. This scaling was contrasted with an al-

ternative scaling of
√
N − 1rvdW/

√
2N , which arises as-

suming that the minimum average interparticle spacing
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FIG. 7: KER for N = 3 − 10 at the physical point (top row) and at unitarity (bottom row). The first, second, and third
columns show the KER for Model IA, Model IB, and Model II, respectively. The color scheme is the same as in Fig. 1.

is given by rvdW. For N = 10, the inner wall would be lo-
cated, according to these two scalings, at 0.671rvdW and
2.01rvdW. Figures 6(c) and 6(d) show that the scaling is
somewhere in between.

The corresponding effective hyperradial potential
curves for Model II are shown in Figs. 6(e) and 6(f). The
effective potential curves for Model II are significantly
softer (less steep) at small ρN (ρN/rvdW between about
0.6 and 1.2) than those for Model IB; this is consistent
with what was discussed above for the pair distribution
functions.

Last, Fig. 7 presents the KER distribution functions
at the physical point (top row) and at unitarity (bottom
row). While small helium clusters have been isolated in
molecular beam experiments [26, 88], Coulomb explosion
experiments for N & 4 are expected to be complicated
by the fact the ions leaving the helium clusters might be
undergoing additional collisions [89, 90]. Despite of this
challenge, we find it useful to analyze the dependence of
the KER distribution functions on the various interac-
tion models. Since the number of interparticle distances
increases as N2 with increasing N , the KER distribu-
tion functions move to larger KER with increasing N .
The KER distribution functions for Model IA (first col-
umn) and Model IB (second column) are nearly indistin-

guishable on the scale shown. Careful inspection reveals
small differences between the KER distribution functions
of clusters interacting through realistic interaction poten-
tials at the physical point and at unitarity.

The KER distribution functions for clusters interacting
through Model II extend to significantly larger KER; this
behavior is linked to the enhanced probability for clusters
interacting through Model II, relative to those interact-
ing through realistic interaction potentials (Model I), to
find two particles at small interparticle distances. The
broader KER distribution functions for Model II also
lead to peak values of the KER distribution functions
compared to those for Model I. We note that the KER
distribution functions for Model II do not only differ
in the tail region from those for Model I (high-energy
region or short-distance region) but also in the “rising
portion” of the KER distribution function (large dis-
tance region); these deviations are more pronounced for
larger N than for smaller N . The deviations arise be-
cause the KER distribution functions in the rising por-
tion are not dominated by configurations in which all
interparticle distances are large but by configurations
where N − 1 interparticle distances are large and the
remaining N(N − 1)/2− (N − 1) interparticle distances
are not particularly large.

IV. CONCLUSIONS

This paper presented a comprehensive study of the
structural properties of small bosonic helium clusters

consisting of up to N = 10 atoms and interacting through
realistic interaction potentials. In addition to helium
clusters at the physical point, characterized by a two-
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body s-wave scattering length that is positive and finite
(and notably larger than the van der Waals length), clus-
ters interacting with an infinite s-wave scattering were
investigated. To reach unitarity, the realistic helium-
helium interaction potential was multiplied by an overall
factor that is close to but smaller than one.

For comparison, the properties of the systems at the
physical point and at unitarity were also calculated for
an effective low-energy interaction model that was in-
troduced in the literature [33]. The model’s strictly at-
tractive two-body potential reproduces the two-body s-
wave scattering length and two-body binding energy ob-
tained for the HFD-HE2 potential. A strictly repulsive
three-body potential is added to reproduce the three- and
four-body energies obtained for the HFD-HE2 potential.
Importantly, there is a difference between the effective
low-energy model construction for clusters at the phys-
ical point and at unitarity. At the physical point, the
requirements for matching the two-body s-wave scatter-
ing length and two-body binding energy are two distinct
requirements. At unitarity, in contrast, the two require-
ments are equivalent, i.e., fulfilling one of these require-
ments implies that the other requirement is fulfilled au-
tomatically.

A detailed analysis of the structural properties at small
and large length scales was presented, with focus on com-

paring the results for different realistic interaction poten-
tials and those for the HFD-HE2 potential and the effec-
tive low-energy model. Several small distance behaviors
were found to be described accurately by the two-body
correlation function for a purely attractive −C6/r

6 po-
tential. The small length scale behavior of the pair dis-
tribution functions for the realistic interaction models at
the physical point was summarized by the two-body con-
tact and the (2 + 1) contact for each cluster size. The
two-body contacts for different realistic interaction po-
tentials were found to be related to each other through,
roughly, N -independent scaling factors. Following the
spirit of Ref. [34], it would be interesting to extend the
current study to larger clusters and to extract, using the
liquid drop model, the bulk pair-atom contact both at the
physical point and at unitarity. It would also be inter-
esting to investigate mixed clusters that contain bosonic
4He and fermionic 3He atoms.
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