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Variational quantum algorithms (VQAs) have been considered to be useful applications of noisy
intermediate-scale quantum (NISQ) devices. Typically, in the VQAs, a parametrized ansatz circuit
is used to generate a trial wave function, and the parameters are optimized to minimize a cost
function. On the other hand, blind quantum computing (BQC) has been studied in order to provide
the quantum algorithm with security by using cloud networks. A client with a limited ability to
perform quantum operations hopes to have access to a quantum computer of a server, and BQC
allows the client to use the server’s computer without leakage of the client’s information (such as
input, running quantum algorithms, and output) to the server. However, BQC is designed for fault-
tolerant quantum computing, and this requires many ancillary qubits, which may not be suitable for
NISQ devices. Here, we propose an efficient way to implement the NISQ computing with guaranteed
security for the client. In our architecture, only N+1 qubits are required, under an assumption that
the form of ansatzes is known to the server, where N denotes the necessary number of the qubits in
the original NISQ algorithms. The client only performs single-qubit measurements on an ancillary
qubit sent from the server, and the measurement angles can specify the parameters for the ansatzes
of the NISQ algorithms. No-signaling principle guarantees that neither parameters chosen by the
client nor the outputs of the algorithm are leaked to the server. This work paves the way for new
applications of NISQ devices.

I. INTRODUCTION

Quantum devices have the potential to offer signifi-
cant advantages over classical devices. Especially, quan-
tum computation, quantum cryptography, and quantum
metrology are considered promising applications of quan-
tum devices [1–19]. Recently, great efforts have been
devoted to the hybridization between quantum compu-
tation, quantum cryptography, and quantum metrol-
ogy [20–36] .

Blind quantum computation (BQC) is an idea to
combine quantum computation and quantum cryptog-
raphy [37–42], where a concept of measurement-based
quantum computation (MBQC)[43–45] is adopted. Sup-
pose that a client who does not have a sophisticated
quantum device hopes to access a server that has a scal-
able fault-tolerant quantum computer. The BQC pro-
vides a client with a way to access the server’s quantum
computer in a secure way where the client’s information
such as input, output, and algorithm is not leaked to the
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server. The server sends a cluster state, which is a re-
source of the entanglement, to the client. On the other
hand, the client performs the single-qubit measurements
on the cluster state. Importantly, the client needs to
change angles of the single-qubit measurements depend-
ing on the algorithm, while the form of the cluster state
generated by the server does not depend on the choice
of the algorithm. Therefore, the server does not obtain
any information of either the details or output of the al-
gorithm set by the client, and the no-signaling principle
guarantees the security of the protocol [46, 47].

Recently many theoretical and experimental works
have been devoted to developing quantum devices in the
noisy intermediate-scale quantum (NISQ) era. The NISQ
device could involve tens to thousands of qubits with a
gate error rate of around 10−3 [48]. The NISQ com-
puting typically requires only a shallow circuit to imple-
ment quantum algorithms. Variational quantum algo-
rithms (VQAs) are the typical application of the NISQ
computing [49–55]. In the VQA, one generates a trial
wave function from a parametrized ansatz circuit that is
typically shallow. In order to optimize a cost function
tailored to a problem, one updates the parameters with
classical computation to generate a new trial wave func-
tion. One can search exponentially large Hilbert space
with the parametzied quantum circuit via the repetition
of such hybrid quantum-classical operations, and thus
could find a solution to a given problem.
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A natural question is whether one can implement
the NISQ computing in the blind architecture. If one
adopts the BQC with the MBQC, one can in principle
perform any gate-type quantum computation including
NISQ computing. However, to implement the BQC with
the MBQC on the cluster state, the necessary number of
the qubits is around 3N [43–45], where N is the number
of the qubits required in the original NISQ algorithm.
Since the number of the qubits in the blind architecture
with the MBQC is much larger than that in the orig-
inal algorithm without blind properties [37–41], such a
scheme may not be implementable with the NISQ device
with a limited number of qubits.

Here, we propose an efficient scheme to implement the
variational secure cloud quantum computing. The pur-
pose of our scheme is that the client accesses the quantum
computer of the server to implement the NISQ comput-
ing in a secure way where the information of the ansatz
circuit’s parameters and output of the algorithm are not
leaked to the server. This is essential for security, be-
cause the ansatz circuit’s parameters could contain im-
portant information such as private data especially when
we perform machine learning with NISQ devices [56–60].
Importantly, our scheme requires only N+1 qubits while
MBQC on the cluster state requires around 3N qubits.
The key idea of our scheme is to use an ancillary qubit
for the implementation of the quantum gates on regis-
ter qubits of the server. The server performs only a
limited set of gate operations with fixed angles, namely,
Hadamard operations and controlled-Z gates on the reg-
ister qubits, while the client performs arbitrary single-
qubit measurements on the ancillary qubit.

A key idea of our scheme is the use of ancilla-
driven quantum computation (ADQC) [61–64]. While
the ADQC was originally discussed as one of the novel
ways to perform the gate-type quantum computation, we
adopt the ancilla-driven architecture for NISQ comput-
ing with security inbuilt. In our architecture, the server
couples an ancillary qubit to a register qubit via a fixed
two-qubit gate at the server side, and the ancillary qubit
is sent to the client. Then the client implements a single-
qubit measurement on the ancillary qubit either to spec-
ify a parameter for the NISQ computing or to readout a
computational result. Importantly, since the client does
not send any qubits or classical signals to the server,
the information about the parameters and output of the
NISQ algorithm cannot be leaked to the server due to
the no-signaling principle [46, 47].

The paper is structured as follows. In Secs. II and III,
we review the ADQC and NISQ algorithm, respectively.
In Sec. IV, we describe our architecture of the NISQ
computing with security inbuilt. In Sec. V, we conclude
our results.

II. ANCILLA-DRIVEN QUANTUM
COMPUTATION

In the ADQC [61], we define register qubits to execute
algorithms, and also define an ancillary qubit that can
be spatially transferred from one place to another. The
basic idea of the ADQC is to entangle the register qubit
and ancillary qubit, and the ancillary qubit is sent to
another place for the measurement at a specific angle.
These operations allow one to perform a universal set
of operations. For the implementation with the physical
systems, register qubits can be solid-state systems that
can interact with photons, and the ancillary qubit can be
an optical photon that is transmitted to a distant place.

A. Single-qubit rotation on a register qubit

We explain a realization of single-qubit rotation along
z-axis as follows (see Fig. 1).

1. We prepare a state |+〉A ≡
1√
2
(|0〉+ |1〉) of an an-

cilla qubit (which we call qubit A) and any state
|ψ〉 of register qubits (which we call qubits R).

2. The ancillary qubit A is coupled with one of the reg-
ister qubits R via a controlled-Z gate CZAR, and
subsequently, we implement two Hadamard gates
HA and HR to the qubit A and the qubit R, re-
spectively. Thus, we have a unitary operation of
EAR ≡ HAHRCZAR.

3. A rotation about the z-axis Rz(β) and a Hadamard
gate are implemented on the ancillary qubit, where
β is an arbitrary rotation angle.

4. Measuring the ancillary qubit in the z-basis
projects the state of the register qubit onto
XjAHRRz(β) |ψ〉, where jA = 0 or 1 is the result
of the measurement on the ancillary qubit.

The third and the last steps can be unified into a sin-
gle measurement step if an arbitrary-angle single-qubit
measurement can be implemented on the ancillary qubit.
The details of performing an arbitrary single-qubit rota-
tion and two-qubit gates with ADQC are explained in
Appendix A.

III. VARIATIONAL QUANTUM ALGORITHM
FOR NISQ DEVICE

Variational quantum algorithm (VQAs) perform a re-
quired task by preparing a parametrized wave function

on a quantum circuit |ψ(~θ)〉 with the variational pa-

rameters ~θ to be optimized by minimizing a cost func-

tion C(~θ) tailored to a problem. The parametrized

wavefunction can be generally described as |ψ(~θ)〉 =
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FIG. 1: The circuit for implementing the ancilla-driven
quantum computation (ADQC). The upper horizon-
tal lines (the lower line) represents register qubits (an
ancillary qubit), where CZAR denotes the controlled-Z
gate between one of the register qubits and the ancil-
lary qubit, HR (HA) denotes the Hadamard gate for
the register (ancillary) qubit, and Rz(β) denotes a pa-
rameterized rotation around the z-axis with any value
β. We prepare the initial states |ψ〉 and |+〉A for the
register qubits and the ancillary qubit, respectively,
where |ψ〉 denotes an arbitrary input state. After im-
plementing the unitary operation HARz(β)EAR and
measuring the ancillary qubit in the z-basis, where
EAR ≡ HAHRCZAR, we obtain XjAHRRz(β) |ψ〉 at
the register qubits, where X denotes the Pauli-X gate
and jA = 0 or 1 is the result of the measurement.

UAN(~θ) |0̄〉 with |0̄〉 ≡
⊗N

i=1 |0〉, where the ansatz quan-
tum circuit is represented as a repetition of parametrized

quantum gates and fixed quantum gates as UAN(~θ) =
VL+1UL(θL)VLUL−1(θL−1)...U1(θ1)V1. Here, L is the
number of parameters, Uk(θk) and Vk are the k-th
parametrized and fixed gates, respectively, and θk is the

k-th component of the parameter set ~θ. As an example
of the cost function, in the celebrated variational quan-
tum eigensolver (VQE) [49, 52], one uses the expectation

value of the Hamiltonian H, i.e., 〈ψ(~θ)|H |ψ(~θ)〉. Typi-

cally, the parameters at (j+1)-th step ~θ[j+1] is obtained

by optimizing the cost function at the j-th step C(~θ[j]) by
using e.g., gradient descent methods. The total number
of iteration steps to update the parameters is defined as
M . The other example of VQAs is variational quantum
simulation (VQS), which is used to simulate quantum dy-
namics such as Schrödinger equation [54, 55]. By using
the variational principles, it is possible to minimize the
distance between the ideal state in the exact evolution
and the parametrized trial state, which provides us with
the feasible update rule of parameters.

In variational algorithms, we should implement
not only the original quantum circuit but also vari-
ant types of the original circuit. For example, in
many variational algorithms, derivatives of quantum

states, i.e., ∂|ψ(~θ)〉
∂θk

are used. They are generated
from a different quantum circuit from the original
ansatz circuit. To discuss these cases in a gen-
eral form, we denote the set of variational quantum

circuits used in the algorithm as {U (i)
AN(~θ)}Gi=1 ≡

{V (i)
L+1U

(i)
L (θL)V

(i)
L U

(i)
L−1(θL−1)V

(i)
L−1 · · ·U

(i)
1 (θ1)V

(i)
1 }Gi=1,

where G is the number of variational quantum circuits
including the original and variants. Accordingly, we
denote the set of the observables measured in these
quantum circuits as {Â(i)

1 , Â
(i)
2 , · · · , Â(i)

K(i)}Gi=1, where

Â(i) is a Pauli matrix (or an operator made up of tensor
products of the Pauli matrices) and K(i) is the number of
observables measured in the i-th quantum circuits. We
will use these notation throughout this paper. We show
a prescription about how to implement the conventional
variational algorithms with these notation in Appendix
B.

IV. VARIATIONAL SECURE CLOUD
QUANTUM COMPUTING

We explain our protocol of the variational secure cloud
quantum computing. Suppose that a client who has the
ability to perform only single-qubit measurements hopes
to access the NISQ computer of the server in a secure
way. The main purpose of our scheme is to hide the in-

formation of the ansatz parameters ~θ set by the client
and output of the algorithm. In our scheme, the ansatz
circuit to be implemented by the server is publicly an-
nounced beforehand. Our scheme is efficient for the NISQ
device that has a limited resource, because our scheme
requires only a single ancillary qubit independently of the
number of qubits needed in the original NISQ algorithm.
These are in stark contrast with the original BQC. In the
BQC, every information of the choice of the client is hid-
den [37–41], while 3N qubits are approximately required
to execute an algorithm using N qubits.

Throughout our paper, we assume that the client has
his/her own private space, and any information in the pri-
vate space is not leaked to the outside. This is the stan-
dard assumption in the quantum key distribution [65]

The key of our protocol is to use the concept of the
ADQC when the server runs the NISQ computing algo-
rithm. We assume that the server has register qubits,
and an ancillary qubit can be sent from the server to the
client. When the server needs to implement a single-qubit
operation based on the ansatz, the server uses the single-
qubit rotation scheme of the ADQC as shown in Fig. 2.
More specifically, the server performs a two-qubit gate
EAR between the register qubit (that we want to per-
form the single-qubit rotation) and the ancillary qubit,
and sends the client the ancillary qubit to be measured
by the client side. The angle and axis of the single-qubit
rotation are determined by the client. With three sets
of the rotation, an arbitrary single-qubit rotation can be
achieved in a register qubit (see Appendix A).

We explain how the information of the parameters and
the output is hidden from the server, and define that our
scheme is secure in this case. During the implementa-
tions of the gates in our scheme, the gate operations exe-
cuted by the server do not depend on the ansatz parame-
ters. Moreover, the client does not send any information
to the server during our protocol. Therefore, the server
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cannot find the parameters of the ansatz circuit set by
the client. This discussion is based on the no-signaling
principle [46, 47]. Moreover, by performing a single-
qubit rotation on every register qubit in our scheme, we
have byproduct operators of Xj1+j3Zj2 on every regis-
ter qubit as shown in Eq. (A1). It is known that, when
Pauli matrices or an identity operator are randomly im-
plemented on a quantum state (see Sec. 8.3.4 in Ref.
[66]), the state becomes completely mixed. This means
that the byproduct operators make the state completely
mixed for the server. Due to this property, any measure-
ments on the register qubits provide random outcomes
if the server side does not have any information of the
client’s dataset, which is helpful for the client to hide
the output of the algorithm. In our scheme, we assume
that the server and the client perform the ancilla-driven
single-qubit rotation on each qubit at least once during
the protocol. We show that, even if the server does not
obey the instructions from the client, the client can still
hide the information of the ansatz parameters and output
in the Appendix C.

When the server needs to perform a two-qubit gate
based on the ansatz with a specific angle, we adopt a
quantum circuit shown in Fig. 3(a). The point is that
an arbitrary two-qubit gate can be decomposed by ar-
bitrary single-qubit gates and controlled-Z gates. We
combine the single-qubit rotations in the ADQC with two
controlled-Z gates as shown in Fig. 3(b). In this case,
the angles of the two-qubit gates can be determined by
the client because the angle of the single-qubit gate can
be specified just by the client. Similar to the case of the
single-qubit gates, the no-signaling principle guarantees
that the server does not obtain any information about
the ansatz parameters during the implementation of the
two-qubit gates.

The combinations of the single-qubit gates and two-
qubit gates in our architecture are shown in Fig. 4. The
server performs only Hadamard gates, phase gates, and
controlled-Z gates, which are clifford gates. Therefore,
when the server measures the observables in the register
qubits and sends the measurement results to the client,
the client can effectively remove the effect of the byprod-
uct operators by changing the interpretation of the mea-
surement results (see Appendix A).

Before the client performs the secure cloud NISQ
computation, the server publicly announces the set of

unitary operators {U (i)
AN}Gi=1, the set of the observ-

ables {Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1, the repetition numbers

{N (i)}Gi=1 for sampling with the quantum circuits, initial

states {|ψ(i)(~θ[0])〉}Gi=1, the number of variational param-
eters L, the total number of iteration steps for VQAs M ,
and the number of variants of variational quantum cir-
cuits G, as shown in Fig. 5.

We summarize our scheme in Fig. 6 as follows.

1. Adopting the quantum circuits of {U (i)
AN}Gi=1, the

server and client implement these unitary op-
erations to generate the trial wave functions

6HUYHU
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FIG. 2: A quantum circuit to implement a single-qubit
rotation by the client in our scheme. The circuit is the
same as that in Fig. 1. Firstly, the server entangles one
register qubit with an ancillary qubit by the unitary
operation EAR = HAHRCZAR. Secondly, the server
sends the ancillary qubit to the client. Thirdly, the
client performs a single-qubit rotation of HARz(β) on
the ancillary qubit, where β is determined only by the
client. Finally, after the client measures the ancillary
qubit in the z-basis, XjAHRRz(β) |ψ〉 is generated for
the register qubit. Since the client does not send any
signals to the server, the server does not have any infor-
mation about the rotation angle β and a measurement
result jA, which is guaranteed by the no-signaling prin-
ciple. By repeating this process several times, arbitrary
single-qubit rotations on a register qubit can be imple-
mented.

{|ψ(i)(~θ[1])〉}Gi=1. Here, parametrized single- and
two-qubit gates should be implemented in the spe-
cific ways as described in Figs. 2 and 3(b), respec-
tively. More specifically, the server performs op-
erations, such as the Hadamard, the controlled-Z,
and the phase gates (1.a in Fig. 6), while the client
specifies the measurement angles (1.b of Fig. 6).

We do not need to prepare {|ψ(i)(~θ[1])〉}Gi=1 simul-
taneously by using G quantum computers, but we
can prepare and measure these in sequence by using
a single quantum computer, similar to the standard
VQA for NISQ devices (see Appendix B).

2. The server measures the states of the register qubits

with {Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1, and sends the re-
sults to the client with classical communications.

3. For the sampling, the server and client repeat
the first and the second steps with {N (i)}Gi=1

times for each state {|ψ(i)(~θ[1])〉}Gi=1 so that
the client should obtain the expectation values of

{Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1. When the observables
are measured, the effect of the byproduct operators
can be canceled out by the client (see Appendix A).

4. By processing the measurement results with a
classical computer at the client side, the client

updates the parameters and obtains ~θ[2] =
(θ1[2], · · · , θL[2])T for the next step.
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FIG. 3: An implementation of two-qubit gates in our
scheme. (a) An equivalent circuit with a controlled-gate
operation. We can decompose an arbitrary two-qubit
gate into several gates such as single-qubit rotations
(including parameters) and controlled-Z gates, where
we need to choose appropriate parameters of α, β, γ,
and δ for the equivalence. (b) A quantum circuit to
implement an arbitrary controlled-gate operation by
the client while the rotation parameters are hidden to
the server in our scheme. The basic structure of the
circuit is the same as that in (a), where S denotes a
phase gate. The Hadamard, the controlled-Z, and the
phase gates are implemented by the server in the reg-
ister qubits. An important point is that every single-
qubit rotation in the circuit should be performed by the
client in the same way as described in Fig. 2. In this
case, no-signaling principle guarantees that the rotation
parameters (α, β, γ, and δ) cannot be inferred by any
operation on the server.

5. The client and the server repeat the steps 1-4 (M−
2) times with {U (i)

AN}Gi=1 and ~θ[j], where classical
computation based on the results at the j-th step
provides the client with the updated parameters of
~θ[j + 1] for j = 2, 3, · · · ,M − 1. The client finally
obtains desired results in a secure way from the
server.

As a physical implementation, the register qubits can
be the solid-state systems that interact with a photon,
and the ancillary qubit can be an optical photon that
transmits to a distant place. We implicitly assumed that
the photon loss would be negligible during the transmis-

sion in the discussion above.

We discuss the effect of photon loss on our scheme.
When the server sends the client an ancillary qubit that
corresponds to an optical photon, there is a possibility
that the photon can be lost during the transmission. In
principle, if the server and the client have quantum mem-
ories, they can share a Bell pair under the effect of pho-
ton loss by repeating the entanglement generation pro-
cess until success [67], and they can use the Bell pairs
to perform our gate operations in a deterministic way.
In this case, the client needs to ask the server to send
the photons again and again, depending on how many
times the photon is lost [67]. However, in order to ap-
ply the no-signaling principle, the client is not allowed
to send the server any information. This means that the
client cannot ask the server to send the photon again. So
we cannot adopt the repeat-until-success strategy with
quantum memories.

Thus, we assume that the client adopts the observa-
tion results of the readout of the register qubits by the
server only when all photons are successfully transmit-
ted to the client during the computation. In this case,
the probability of the no photon loss during the compu-
tation exponentially decreases as the number of sending
photons increases. The number of required photons sent
to the client can be determined by the number of the
tunable parameters used in the ansatz circuit. When

U
(i)
AN is composed of n

(i)
single single-qubit operations and

n
(i)
two = L − n

(i)
single two-qubit operations, the necessary

number N
(i)
ph of the photons to send the client is at most

N
(i)
ph = 3n

(i)
single + 6n

(i)
two as shown in Eq. (A1) and Figs. 2

and 3(b). The probability for all the photons to be de-

tected by the client is (1−ploss)
N

(i)
ph , where ploss is a pho-

ton loss probability for a single transmission. Therefore,
the repetition number N (i) with the photon loss should

be set to be much larger than N
(i)
ideal/(1−ploss)

N
(i)
ph , where

N
(i)
ideal denotes the required number of repetition with no

photon loss. To keep N (i) within a reasonable amount,
ploss should be smaller than 1% under the assumption

that N
(i)
ph is around a few hundreds.

We could overcome such a problem due to the recent
experimental and theoretical developments of quantum
repeating technology. The best single-photon detector in
optics has 99% efficiency [68–70]. Microwave quantum
repeater with a short distance such as 100 m has been
proposed [71], and a qubit can catch a microwave pho-
ton with 99.4% absorption efficiency in the microwave
regime [72]. Also, there are proposals to physically move
the solid-state qubit [73, 74] for distributed quantum
computation or a quantum repeater. Through the combi-
nation of these protocols and a long-lived quantum mem-
ory such as a nuclear spin [75, 76], the ancillary solid-
state qubits might be carried to the client without the
problems of the photon loss.

In our scheme, the depth of the quantum circuit in-
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FIG. 4: A quantum circuit to implement our variational secure cloud quantum computing. The NISQ algorithm
requires the parameters {θj}Lj=1 to change the ansatz circuit in a variational way. The server implements gate op-
erations that do not depend on the parameters, and sends the ancillary qubit to the client. On the other hand, the
client can specify the parameters by changing the measurement angles on the ancillary qubits sent from the server.
Importantly, in our scheme, the client does not send any signal to the server, and thus the server does not know the
parameters set by the client, due to the no-signaling principle.
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FIG. 5: Before the client starts the protocol, the
server broadcasts the information about their
quantum circuit. This includes the set of unitary

operations {U (i)
AN}Gi=1, the set of the observables

{Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1 to be measured, the repeti-

tion numbers {N (i)}Gi=1 for the quantum circuits, initial

states {|ψ(i)(~θ[0])〉}Gi=1, and the total number M of iter-
ation steps to update the parameters. The client imple-
ments the NISQ algorithm based on this information.

creases compared with the conventional NISQ algorithms
without security. For example, if the client and the server
implement single-qubit rotations for every register qubit
with those variational parameters in the ansatz circuit,
our scheme requires Θ(N) steps, where N denotes the
number of register qubits. However, we can reduce the
depth of the quantum circuit in our scheme as follows.
Suppose that the client has N photon detectors and can

perform single-qubit rotations on N photonic qubits in
parallel. In this case, the server can interact with each
solid-state qubit (register qubit) with a photonoic qubit
(ancillary qubit) and emit N photons to the client, who
can measure these photons in parallel. This scheme al-
lows the client to implement the single-qubit measure-
ments on all qubits with N variational parameters at the
same time, and therefore the depth of the quantum cir-
cuit becomes shorter.

Finally, we present some future works. First, in princi-
ple, we could also reduce the depth of the quantum circuit
in another approach as follows. In our scheme, we assume
that the client tries to hide all variational parameters in
the ansatz circuit from the server. However, if the client
just wants to hide a part of the variational parameters,
the depth of the quantum circuit in our scheme should be
shorter. Although this approach seems to be important
for the NISQ devices using a short-depth quantum cir-
cuit, further research is needed to assess the feasibility.
Second, our scheme requires quantum communications
while some previous blind quantum computation proto-
cols for the fault tolerant architecture with graph states
require only classical communications [77, 78]. It is im-
portant to investigate whether the client can implement
the NISQ algorithm with the server’s quantum computer
by using classical communications while the information
of the ansatz parameters and output is hidden. Third, if
the server is adversary to perform some POVM measure-
ments by deviating from the instructions, the client may
not be able to obtain correct calculation results. It would
be interesting if one could find a scheme to check whether
the server obeys the client’s instruction so that the client
can verify the calculated results. We leave these points
for further research.
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FIG. 6: The sequence of our scheme to implement a NISQ algorithm with a parameter set of ~θ in a variational

secure cloud quantum computing. (1) The server sequentially performs the unitary operations {U (i)
AN}Gi=1 for the

register qubits, where G denotes the number of the quantum circuits to be performed. (1.a) The server imple-

ments a unitary (non-parameterized) operation V
(i)
n for n = 1, 2, · · · , L + 1; a Hadamard or a controlled-Z, or a

phase gate, on the register qubits. (1.b) The server entangles a register qubit with an ancillary qubit and sends
the ancillary qubit to the client in the same way as Fig. 2. The client measures the ancillary qubit sent from the

server, where the client specifies a measurement angle based on the initial parameters ~θ[1]. (2) The server measures

Â
(i)
1 , Â

(i)
2 , · · · , and Â

(i)

K(i) for i = 1, 2, · · · , G and sends the results to the client by the classical communication. (3)

For each {U (i)
AN}Gi=1, the server and the client repeat these two steps {N (i)}Gi=1 times, and then the client obtains ex-

pectation values of {Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1 with {|ψ(i)(~θ[1])〉}Gi=1. (4) The client updates the parameters as ~θ[2]
by processing the measurement data with classical computation. (5) The server and the client repeat these four

steps with M − 2 times updating the parameters from ~θ[j] to ~θ[j + 1] for j = 2, 3, · · · ,M − 1, and the client ob-
tains the output. Since the client does not send any signals to the server during the computation, the server cannot

obtain any information about ~θ[1], ~θ[2], . . . , ~θ[M ], because of the no-signaling principle.

V. CONCLUSION

In conclusion, we proposed a noisy intermediate-scale
quantum (NISQ) computing with security inbuilt. The
main targets of our scheme are variational quantum al-
gorithms (VQAs), which involve parameters of an ansatz
to be optimized by minimizing a cost function. We con-
sidered a circumstance that a client with a limited abil-
ity to perform quantum operations hopes to access a
NISQ device possessed by a server and the client tries

to avoid leakage of the information about the quantum
algorithm that he/she runs. Importantly, the naive ap-
plication of the previously known blind quantum com-
putation (BQC) [47] requires around 3N qubits [43–45],
where N denotes the number of the qubits to run the
quantum algorithm in the original architecture. That
may not be suitable for the NISQ devices with the lim-
ited number of qubits. Our proposal is more efficient in
the sense that we use a single ancillary qubit and N reg-
ister qubits required in the original NISQ algorithm. In



8

VQAs, we use a parametrized trial wave function, and
our scheme prevents the information about the param-
eters from the leakage to the server. We rely on the
no-signaling principle to guarantee security. Our scheme
paves the way for new applications of the NISQ devices.

Y. S. and Y. T. contributed to this work equally.
This work was supported by Leading Initiative for
Excellent Young Researchers MEXT Japan and JST
presto (Grant No. JPMJPR1919) Japan. This work
was supported by MEXT Quantum Leap Flagship Pro-
gram (MEXT Q-LEAP) (Grant No. JPMXS0120319794,
JPMXS0118068682), JST ERATO (Grant No. JP-
MJER1601), JST [Moonshot R&D–MILLENNIA Pro-
gram] Grant No. JPMJMS2061, MEXT Quantum Leap
Flagship Program (MEXT Q-LEAP) Grant No. JP-
MXS0118067394, and S.W. was supported by Nanotech
CUPAL,National Institute of Advanced Industrial Sci-
ence and Technology (AIST). This paper was partly
based on results obtained from a project, JPNP16007,
commissioned by the New Energy and Industrial Tech-
nology Development Organization (NEDO), Japan.

Appendix A: Detailed ancilla-driven quantum
computation

1. Arbitrary single-qubit rotation

We describe a way to implement an arbitrary single-
qubit rotation. Any single-qubit rotation U can be
represented by U = Rz(β

′)Rx(γ′)Rz(δ
′), where Rx de-

notes a rotation about the x-axis, and β′, γ′, and δ′ de-
note the rotation angles about the corresponding axis.
Defining J(β) ≡ HRz(β), one can rewrite U as U =
J(β)J(γ)J(δ), where we choose β, γ, and δ to satisfy
Rz(β)Rx(γ)Rz(δ) = HU . As we explained, one can im-
plement the single-qubit rotation of XjHRRz(β) |ψ〉 on
the register qubit by the coupling with an ancillary qubit
and a subsequent measurement. Therefore, three sequen-
tial operations of this type of the single-qubit rotation
provide us with the following operation

(
Xj3HRRz((−1)j2β)

)(
Xj2HRRz((−1)j1γ)

)(
Xj1HRRz(δ)

)
= Xj3J((−1)j2β)Xj2J((−1)j1γ)Xj1J(δ)

= (−1)j1·j2Xj1+j3Zj2J(β)J(γ)J(δ) (A1)

where ji denotes the result of the i-th measurement on
the ancillary qubits. For the implementation of this oper-
ation, we change the rotation angle of the ancillary qubit
depending on the previous measurement results. Equa-
tion. (A1) involves the byproduct operator Xj1+j3Zj2 .
However, as long as we measure the qubit in a compu-
tational basis for the readout, the byproduct operators
just flip the measurement result from 0 to 1 or vice versa,
and so we can effectively remove the byproduct operators
from the states by changing the interpretation of the mea-
surement results.

2. Two-qubit gate between the register qubits

We explain a way to perform the controlled-Z gate on
the two register qubits R and R′ in the ADQC. Firstly, we
implement EAR on the ancillary qubit (prepared in the
state |+〉A) and the register qubit R, and subsequently
perform EAR′ on the ancillary qubit and the other regis-
ter qubit R′. Secondly, one measures the ancillary qubit
in the y-basis. These operations are equivalent to the
controlled-Z gate, up to local operations. When we per-
form several single-qubit gates and two-qubit gates, the
byproduct operators are applied as UΣUideal|0〉, where
UΣ denotes the total byproduct operators and Uideal de-
notes the unitary operations that we aim to implement.
Again, when one measures observables of Pauli matrices
(or a tensor product of Pauli matrices), one can effec-
tively remove the byproduct operators from the states by
changing the interpretation of the measurement results.

Appendix B: VQA for NISQ devices

We show a prescription about how to implement
the conventional variational algorithms with our nota-
tion. We prepare a parametrized wave function on

a quantum circuit |ψ(~θ)〉 with the variational param-

eters ~θ to be optimized by minimizing a cost func-

tion C(~θ) tailored to a problem. Firstly, with the

quantum circuits of {U (i)
AN}Gi=1, we realize parametrized

wave functions of N -qubits {|ψ(i)(~θ[1])〉}Gi=1, where

|ψ(i)(~θ[1])〉 ≡ V
(i)
L+1U

(i)
L (θL[1])V

(i)
L · · ·U

(i)
1 (θ1[1])V

(i)
1 |0̄〉

with |0̄〉 ≡
⊗N

i=1 |0〉 denotes the wave function, ~θ[1] =
(θ1[1], · · · , θL[1])T is a vector of the parameters and

{|ψ(i)(~θ[0])〉}Gi=1 are initial states, and we measure the

state of the wave function with observables of {Â(i)
1 , Â

(i)
2 ,

· · · , Â(i)

K(i)}Gi=1.

Secondly, for the sampling, we repeat the first step

to obtain expectation values of {Â(i)
1 , Â

(i)
2 , · · · , Â(i)

K(i)}Gi=1

with {|ψ(i)(~θ[1])〉}Gi=1. Thirdly, based on the expectation
values, we implement a classical algorithm so that we can

obtain updated parameters ~θ[2] for the next quantum
circuits, where we typically use a gradient method to
make the cost function smaller. For example, we use
~θ[j + 1] = ~θ[j]− αgradC(~θ[j]) for the gradient method.

Finally, we repeat the first, second, and third steps

M−2 times with {U (i)
AN}Gi=1 and ~θ[k], where classical com-

putation based on the results at the k-th step provides

the updated parameters of ~θ[k+1] for k = 2, 3, · · · ,M−1.
These processes provide us with an output of the algo-
rithm.
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Appendix C: Security proof

In this appendix, we show that even when the server
is adversary to perform positive operator-valued measure
(POVM) measurements at his/her own will at any stage
of our protocol in order to know the information of the
client, the server cannot obtain any information about
the client’s output and measurement angles chosen by
the client. Our proof is based on the previous work of
Morimae and Fujii [47]. We assume that the server can-
not guess the choice of the client’s measurement angles
from the form of the ansatz. Also, due to the byproduct
operators acting on every qubit, the server cannot guess
the final outputs by directly measuring the output quan-
tum states obtained from the ansatzes. By considering
these, we have to show that our scheme satisfies C1 and
C2.

C1: Given all the classical information obtained by the
server during our protocol and the measurement
results of any POVM measurements implemented
by the server at any stage of our protocol, a condi-
tional probability distribution of the client’s mea-
surement angles is defined. This conditional prob-
ability distribution is equal to its prior probability
distribution, which is a uniform probability distri-
bution among all possible angles.

C2: Given all the classical information obtained by the
server during our protocol and the measurement
results of any POVM measurements implemented
by the server at any stage of our protocol, a con-
ditional probability distribution of the final output
of the algorithm for the client is. This probability
distribution is equal to its prior probability distri-
bution, which is a uniform probability distribution
among all possible outputs.

C1 and C2 mean that the server cannot obtain any infor-
mation of the ansatz parameters and the output for the
client by implementing any POVM measurements.

Theorem 1: Our scheme satisfies C1.

Proof:

No-signaling principle provides the following relationship
between probabilities [46, 47],

P
(
MS = mS|Θ = ~θ, S = s

)
= P

(
MS = mS|Θ = ~θ′, S = s

)
for all mS , ~θ, ~θ

′, and s where Θ denotes the random vari-
able representing the client’s measurement angles, S de-
notes the random variable representing the type of the
POVM measurement performed at the server side, MS

denotes the random variable representing the result of
the POVM measurement, mS denotes the result of the

POVM measurent, ~θ denotes the variational parameters,
~θ′ denotes another set of the variational parameters, and

s denotes a choice of the POVM measurement. We as-
sume P

(
Θ = ~θ

∣∣S = s) = P
(
Θ = ~θ′

∣∣S = s), because we
take an average over all possible client’s choice, which is
the same assumption as adopted in [47]. By using this
equality, we show that the operations at the server side
do not affect the probability distribution of the client’s
measurement angles, as follows

P
(
Θ = ~θ|S = s,MS = mS

)
=
P
(
MS = mS|Θ = ~θ, S = s

)
P
(
Θ = ~θ, S = s

)
P
(
S = s,MS = mS

)
=
P
(
MS = mS|Θ = ~θ, S = s

)
P
(
Θ = ~θ|S = s

)
P
(
S = s

)
P
(
S = s,MS = mS

)
=
P
(
MS = mS|Θ = ~θ′, S = s

)
P
(
Θ = ~θ′|S = s

)
P
(
S = s

)
P
(
S = s,MS = mS

)
= P

(
Θ = ~θ′|S = s,MS = mS

)
.

Thus, the server cannot obtain any information of the
client’s measurement angles.

Theorem 2: Our scheme satisfies C2.

Proof:

No-signaling principle provides the following relationship
between probabilities [46, 47],

P
(
MS = mS|O = o, S = s

)
= P

(
MS = mS|O = o′, S = s

)
for all mS , o, o

′, and s where O denotes the random vari-
able representing the output of the algorithm for the
client, S denotes the random variable representing the
type of the POVM measurement which the server per-
forms at the server side, MS denotes the random vari-
able representing the result of the POVM measurement,
mS denotes the result of the POVM measurement, o de-
notes the output of the algorithm for the client that
the client obtains, o′ denotes another output and s de-
notes a choice of the POVM measurement. We assume
P
(
O = o

∣∣S = s) = P
(
O = o′

∣∣S = s), because we take an
average over all possible client’s choice, which is the same
assumption as adopted in [47]. By using this equality, we
show that the operations at the server side do not affect
the probability distribution of the measurement result,
as follows

P
(
O = o|S = s,MS = mS

)
=
P
(
MS = mS|O = o, S = s

)
P
(
O = o, S = s

)
P
(
S = s,MS = mS

)
=
P
(
MS = mS|O = o, S = s

)
P
(
O = o|S = s

)
P
(
S = s

)
P
(
S = s,MS = mS

)
=
P
(
MS = mS|O = o′, S = s

)
P
(
O = o′|S = s

)
P
(
S = s

)
P
(
S = s,MS = mS

)
= P

(
O = o′|S = s,MS = mS

)
.

Thus, the server cannot obtain any information of the
outputs of the algorithm for the client.
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